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Abstract

The future lepton colliders proposed for the High Energy and Precision Frontier set strin-

gent demands on theory. The most ambitious, broad-reaching and demanding project is the

FCC-ee. We consider here the present status and requirements on precision calculations, pos-

sible ways forward and novel methods, to match the experimental accuracies expected at the

FCC-ee. We conclude that the challenge can be tackled by a distributed collaborative effort

in academic institutions around the world, provided sufficient support, which is estimated to

about 500 man-years over the next 20 years.
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1 Shaping the future of particle physics theory with FCC-ee

The FCC project proposes to build a sequence of colliders in a common infrastructure close to

CERN. It is a unique opportunity to step up in our understanding the physical world at the smallest

scales. It is the most versatile, feasible high energy collider project for the next few decades.

Two, or even four, interaction points on the 100 km facility (important for setting up independent

experimental analyses) along with at least three different types of collisions (ee as a first step, hh
and eh in a second life, and may be more) will challenge the physics community with a very broad

program. Fine details of the Standard Model theory of particle interactions will be revealed; even

more importantly, the widest possible spectrum of new theoretical concepts in the fundamental

laws of physics will be explored. This quest will take several forms: i) exquisite precision mea-

surements, ii) search for tiny violations of conservation laws, or iii) discovery of extremely rare

phenomena forbidden in the Standard Model. Details can be found in [1].

The following three characteristics make the FCC multi-task and multi-purpose circular col-

lider project special in its theoretical challenges. They call for a proper strategy for theoretical

computations to back the analysis and interpretation of FCC-ee data.

1. FCC-ee: the first stage of the most powerful high energy discovery tool. The FCC-ee

will provide a set of ground-breaking measurements of a large number of new-physics sen-

sitive observables, with improvement by one to two orders of magnitude in experimental

precision. This will require the corresponding improvement in calculation ability with

respect to the present baseline of perturbative Quantum Field Theory (pQFT). An im-

portant feature of FCC-ee will be to improve the precision of input parameters of the SM,

in particular mZ , mt and αQCD(mZ); it will also offer a unique possibility to measure di-

rectly αQED(mZ), without the use of low energy hadronic data. Theoretical calculations

will have to keep pace with these improvements. More precise knowledge of electroweak,

Higgs and flavour physics will open the way to accurate investigations of the most burning

questions in particle physics: like the baryon asymmetry of the Universe, the nature of Dark

Matter, the origin of neutrino masses, to name a few. See FCC CDR vol. 1 [1] for more

extensive discussions.

2. FCC-ee: an interdisciplinary challenge. An interdisciplinary character of the FCC-ee

project is manifest in the accelerator itself and the experiments where cutting edge technolo-

gies, equipment, facilities and software must be developed, often in the cooperation with the

industry.

Presently available techniques of pQFT are unable to match the experimental precision of

the future FCC data for almost all observables. The needs are well defined, especially in

the case of the most demanding FCC-ee Tera-Z case [2, 3]. Future theoretical computa-

tions for FCC-ee physics will require a considerable synergy of pQFT with advanced

and explorative mathematics in order to develop new computational methods to deal with

much higher level of complexity of the anticipated pQFT calculations. Development of the

new sophisticated (Monte Carlo) programs for direct simulation of the scattering processes

at FCC-ee will provide another important synergy with the corresponding branch of the
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computing science. This connection between advanced pQFT and advanced exploratory

mathematics and computing has played a fertile role in the development of both branches

of science for a long time. New challenges in pQFT will induce significant progress in the

computer algebra systems, algebraic geometry – new cutting edge algorithms for analytical

and numerical methods will be developed, to the profit of several branches in advanced

mathematics and computing science.

3. FCC-ee: highly demanding collective educational, scientific and social networking. The

enormous diversity of the physics topics that will be explored at several stages on the FCC

constitutes a challenge both to theory and experiment parts of the grand project, concerning a

proper organization of the work and the choice of dedicated teams. The project needs skillful

and versatile researchers, in all stages of their scientific career. Well prepared educational

and research theoretical programs must be set up, including Initial Training Networks,

ERC and national grants. A world-wide collaborative effort of theoretical physicists and

contributors from related relevant disciplines will be carried out mainly in the framework

of the academic environment. An initial estimate of the efforts related to development of

new theory calculation techniques and tools for FCC experiments points to about 500

person years, corresponding to about 25 full-time-equivalent TH experts throughout the

design, construction and operation phases of the FCC-ee programme.

2 Precision theoretical issues and objectives at the FCC-ee

FCC-ee defines a very clean experimental set-up compared to hadron colliders, but the demands in

precision are much higher. Initial state QED radiation is well understood, leading to the possibility

of very precise measurements requiring leap-jumps in the precision of theoretical computa-

tions for Standard Model phenomena and so-called electroweak pseudo-observables (EWPOs).

Such are partial widths and couplings of Z and W, forward-backward and polarization asymme-

tries, peak cross sections at the Z resonance position, effective electroweak mixing angle [2, 4],

and additional EWPOs in the WW, ZH and tt̄ processes. EWPOs encapsulate experimental data

after extraction of well known and controllable QED and QCD effects, in a model-independent

manner. They provide a convenient bridge between real data and the predictions of the SM (or SM

plus New Physics). Contrary to raw experimental data (like differential cross sections), EWPOs

are well suited for archiving and long term exploitation. In particular archived EWPOs can be ex-

ploited over long periods of time for comparisons with steadily improving theoretical calculations

of the SM predictions, and for validations of the New Physics models beyond the SM. They are

also useful for comparison and combination of results from different experiments.

For extracting the interesting physics from data in form of EWPOs it will be mandatory to

develop a library of new Monte Carlo (MC) event generators implementing both QED and

EW/QCD higher order effects. They will have to be developed for all processes at FCC-ee in

all four stages, Tera-Z, WW, HZ and tt̄. Well tested legacy MC programs of the LEP era can

be used for benchmarking purposes, but the development of new event generation techniques and

programs, should be done in parallel with a campaign of advances in the theoretical physics calcu-

lation methods.
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Fitting EWPOs to data near Z-resonance was possible at LEP using non-MC semi-analytical

calculations of QED effects implemented in ZFITTER and TOPAZ0 programs, and MC generators

such as KORALZ. However, already at LEP the extraction of W mass from WW process was done

by means of a direct fitting of the output of the MC programs (with W mass as a parameter) to WW

cross section and final four fermion distributions, without any use of analytical formulas, with all

QED effects handled by the MC [5]. For FCC-ee data analysis, due to the rise of non-factorisable

QED effects above the experimental errors, the latter way of using MC programs might become the

standard for fitting EWPOs to data, even at the Tera-Z stage. New MC event generators will have

to provide built-in provisions for efficient direct fitting of EWPOs to data, which are not present

in the LEP legacy MCs. Section C3 of [2] describes possible forms of future EWPOs at FCC-ee

experiments and specification of a new required MC software is given. It is underlined there that

due to non-factorisable QED contributions, the factorization of the multiphoton QED effects will

have to be done at the amplitude level. Additional quantities available in tau and heavy flavour

physics will reach the 10−5 precision and are likely to need similar attention.

The state of art and the open issues for these analysis in the context of FCC-ee near Z-boson

resonance has been reported in [2]. As FCC will start from e+e− Tera-Z option and it will bring

the highest luminosities and stringiest experimental results, we quote below the main goals and

tasks, adapted from the executive summary given in [2].

1. In order to meet the experimental precision of the FCC-ee Tera-Z for EWPOs, 3-loop and

partial 4-loop calculations of the Zff̄ -vertex will be needed. The leading 3-loop corrections

are O(αα2
s),O(Nfα

2αs),O(N2
fα

3), where α denotes an electroweak loop, and Nn
f denotes

n or more closed internal fermion loops. Sub-leading corrections may also be needed, de-

pending on insights gained from computing the leading terms.

2. Full 2-loop corrections to the Zff̄ -vertex have been completed recently. The principal tech-

niques for the electroweak loop calculations have been and will likely be numerical, due to

the large number of scales involved. A few digits of internal precision will be sufficient at

the 3-loop level. Several additional exploratory strategies, methods and tools have been also

identified and discussed.

3. The Zff̄ -vertex corrections are embedded in a structure describing the hard scattering pro-

cess e+e− → f f̄ , based on matrix elements in form of Laurent series around the Z pole.

Here, additional non-trivial contributions like 2-loop weak box diagrams must be imple-

mented properly.

4. The experience gained in the high precision calculation for physics near Z pole will provide a

strong basis for more advanced treatment of four fermion processes in the W mass and width

measurements. In spite of the fact that the experimental precision is less demanding, (permil

precision rather than a few per-million), more precise SM calculations will be required for

the Higgs and top physics, as well.

5. Numerically dominant effects due multi-photon emission constitute another key problem;

their complexity will be often comparable to that of the electroweak loop calculations. The

methodology of joint treatment of electroweak and QCD loop corrections with the photonic
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corrections is essentially at hand. In practice, however, construction of new Monte Carlo

programs, which can handle efficiently the above problems, will need special efforts [6].

The elementary techniques for higher order perturbative SM corrections are basically under-

stood, but their use in practical calculations at the level of computer programs will be highly non-

trivial and will require considerable effort. The understanding of all sources of possible theoretical

uncertainties will be fundamental for success of the FCC-ee data analysis.

δΓZ [MeV] δRl [10
−4] δRb [10

−5] δ sin2,l
eff θ [10−6]

Present EWPO theoretical uncertainties

EXP-2018 2.3 250 66 160
TH-2018 0.4 60 10 45

EWPO theoretical uncertainties when FCC-ee will start

EXP-FCC-ee 0.1 10 2÷ 6 6
TH-FCC-ee 0.07 7 3 7

Table 1: Comparison for selected precision observables of present experimental measurements

(EXP-2018), current theory errors (TH-2018), FCC-ee precision goals at the end of the Tera-Z

run (EXP-FCC-ee) and rough estimates of the theory errors assuming that electroweak 3-loop

corrections and the dominant 4-loop EW-QCD corrections are available at the start of FCC-ee

(TH-FCC-ee). Based on discussion in [2].

Table 1 shows the current experimental and theoretical errors (EXP-2018, TH-2018) for some

basic Z-physics EWPOs, and the prospective measurement errors at FCC-ee (EXP-FCC-ee) to-

gether with the corresponding estimate for theoretical uncertainties after the leading 3/4-loop re-

sults become available (TH-FCC-ee). The entry TH-2018 takes into account recent completion

of the 2-loop electroweak calculations [7, 8], so the error estimate comes solely from an estimate

of magnitudes of missing 3-loop and 4-loop EW and mixed EW-QCD corrections. The estimated

TH-FCC-ee error stems from remaining 4-loop and higher effects. These are rather difficult to

estimate presently, however, a rough conservative upper bound on them has been provided in [2].

They are denoted in Tab. 1 as TH-FCC-ee. As we can see, the uncertainties of the TH-FCC-ee

scenario are comparable to the corresponding EXP-FCC-ee experimental errors and will not

limit the FCC-ee physics goals.

An illustration of complexity of future perturbative calculations is provided in Table 2, where

the numbers of distinct topologies of diagrams to be calculated and the numbers of diagrams and

various categories at the 1-, 2- and 3-loop order are shown for the most complicated Z → bb̄ decay.

According to Ref. [2], the calculation of fermionic 3-loop corrections, which will be the largest

part of them, are within reach, already with present methods and tools.

Another important issue in electroweak fits are uncertainties from the existing (often experi-

mental) errors on SM input parameters, themselves EWPOs, which affect the SM predictions of

EWPOs when comparing them with experiment.

Well-defined subsets of experimental data (EWPOs) are treated as input SM parameters, like [9,

10] for instance: Fermi constant (from muon decay), αQED(MZ) (from the dispersion integral of

e+e− data at low energies), αs(MZ) (from the measurement of Rℓ and Rb at the Z peak), MZ , mt,
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Z → bb̄
1 loop 2 loops 3 loops

Number of topologies 1 5 51

Number of diagrams 15 1074 120472

Fermionic loops 0 150 17580
Bosonic loops 15 924 102892

QCD / EW 1 / 14 98 / 1016 10386/110086

Table 2: Numbers of relevant topologies and diagrams for Z → bb̄ decays. Adapted from [2].

MH and the masses of other fermions – all of them with well defined experimental and theoretical

errors. Remaining EWPOs, like sin2 θeffW , mW , ΓZ , and more, can be measured either directly

with an experimental error or can be predicted using SM perturbative machinery, with parametric

errors inherited from the chosen subset of input parameters (EWPOs).

EWPO Exp. direct error Param. error Main source Theory uncert.

ΓZ [MeV] 0.1 0.1 δαs 0.07

Rb [10−5] 6 1 δαs 3

Rℓ [10−3] 1 1.3 δαs 0.7

sin2 θℓeff [10−5] 0.5 1 δ(∆α) 0.7

MW [MeV] 0.5 0.6 δ(∆α) 0.3

Table 3: Estimated experimental precision for the direct measurement of several important EWPOs

at FCC-ee [2] (column two) and experimental parametric error (column three), with the main

source shown in the forth column. Important input parameter errors are δ(∆α) = 3 · 10−5, δαs =
0.00015 see FCC CDR, vol. 2 [1]. Last column shows anticipated theory uncertainties at start of

FCC-ee.

In Table. 3 the size and main sources of parametric errors connected with QED and QCD run-

ning couplings for selected important EWPOs are shown. It is important to note that e.g. δαs is a

common parametric error on ΓZ and Rℓ, and will not affect e.g. the leptonic partial width of the Z.

These EWPOs serving as SM input parameters will be determined very precisely at the FCC-ee. It

should be noted that determination of ∆α with error at the level of 3 · 10−5 assumed in the table is

from present perspective a big challenge. Standard approach exploiting low energy hadronic con-

tributions to vacuum polarization will try to reach such a precision. Another independent method

aiming at the same precision was proposed [11]. It relies on measuring at FCC-ee charge asym-

metry of the e+e− → µ+µ− process very precisely at s1/2 ≃ MZ ± 3.5 GeV. Future projections of

the theory uncertainty are also shown in Table. 3. Both theoretical uncertainties and parametric

errors are smaller or comparable to the corresponding experimental direct errors.

To complete the picture of precision studies at the FCC-ee, the remaining FCC-ee-W, FCC-ee-

H and FCC-ee-t stages of the e+e− collider should be also considered.

Very precise determinations of MW at FCC-ee will rely on the precise measurement of the cross
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section of the e+e− → W+W− process near the threshold. A statistical precision of 0.04% of this

cross section translates into 0.6 MeV experimental error on MW , which is almost three orders of

magnitude better than at LEP. Theoretical legacy calculations from the LEP era for this process

with a precision tag of ∼ 0.2% would yield an unacceptable 3 MeV theory error for MW [12].

Therefore, improved theoretical calculations are required for the generic e+e− → 4f process near

the WW threshold with an improvement of one order of magnitude. As advocated in [13], the

most economical solution will be to combine O(α1) calculation for e+e− → 4f process with

O(α2) calculation for the doubly-resonant e+e− → W+W− subprocess. The former calculation

is already available [14]. The latter will need to be developed; Inclusion of the resummed QED

corrections will be mandatory.

Present estimation for the above two-loop electroweak O(α2) corrections based on the unstable-

particle Effective Field Theory approach translates into 1 MeV theory uncertainty of MW [15,16].

Assuming that the two-loop electroweak O(α2) corrections are known, an estimate of the missing

three-loop electroweak O(α3) corrections in such a hybrid calculation [13], shows that ∼ 0.02%
theory precision for the threshold cross section could be achieved, which translates into 0.3 MeV

theory uncertainty of MW given in Tab. 3, comparable with the FCC-ee experimental precision.

On the other hand, MW mass will be also extracted from the subsequent decays of W’s to four

fermions, away from the threshold. Most likely, the same progress in the theory calculations will

be mandatory for this measurement as well.

In case of FCC-ee-H, MH will be obtained from e+e− → HZ process with the precision better

of order 10 MeV [1]. Theory uncertainties (mainly due to final-state radiation effects) will be

subdominant.

The anticipated experimental error for mt measurement at FCC-ee-t [2] is δmt ∼ O(20) MeV.

On the theory side, there are several uncertainty sources: (i) The perturbative uncertainty for the

calculation of the threshold shape with higher order QCD corrections, (ii) the threshold mass defi-

nition translated into the MS scheme (iii) precision of αs. Combining these three error sources, a

theory uncertainty close to experimental and less than 50 MeV for mt appears feasible. In addition

a very accurate determination of the efficiency of experimental acceptances and selection cuts is

needed. This task will require the inclusion of higher-order corrections and re-summation results

in a Monte-Carlo event generator. NLO QCD corrections for off-shell tt̄ production, and matching

between these contributions are complementing previous semi-analytic results.

An initial workshop "Precision EW and QCD calculations for the FCC studies: methods and

tools" was held at CERN in January 2018 [3] to start the process of preparing long-term research

for precision calculations needed in the FCC-ee Tera-Z physics. This activity will continue in

2019 [17]; this follow-up workshop will focus on establishing solid plans for precision calculations

the FCC-ee project connected with W, H and top quark physics.

3 The need for development of methods and refined tools in

theoretical calculations

An estimation of theory errors has always to be taken with a grain of salt. As was shown recently

in [8] they can differ from the actual calculations even by factors 3-5. There is no other way than
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to perform the concrete calculation of higher loop effects, and, in view of the huge complexity,

ideally with at least two independent methods and/or teams. In fact, we will need the leading

electroweak 3-loop and QCD 4-loop contributions in order not to limit the interpretation of the Z

resonance shape, and there are similar demands from the other FCC-ee modes. There is no closed

form theory for perturbation theory calculations of Feynman integrals beyond one loop. For this

reason, numerical integration methods are the most promising, if not the only, avenues for ad-

dressing that challenges. Analytical techniques are expected to be important in many respects, but

numerical integration methods have advantages for increasing number of masses and momentum

scales. Fortunately, there is an impressive progress in recent years in this direction [2]. The renor-

malization and treatment of ultra-violet divergences is basically understood. There are only two

numerical methods known to allow a systematic treatment of infra-red divergences. In 2014 the

only advanced automatic numerical two-loop method was one of them, sector decomposition SD.

However, the corresponding software was not capable to work out the complete set of Feynman

integrals for the electro-weak bosonic two-loop corrections to the Z-boson decay with the desired

high precision (up to 8 digits per integral). The task could be completed succesfully with a sub-

stantial development of the other numerical approach, based on Mellin-Barnes MB representations

of Feynman integrals [7, 8]. These calculations are challenging due to the numerical role of par-

ticle masses MZ ,MW , mt,MH , leading to (i) a huge number of contributions, ranging from tens

to hundreds of thousands of diagrams (at 3-loops), and (ii) the occurrence of up to four dimen-

sionless parameters in Minkowskian kinematics (at s = M2
Z) with intricate threshold and on-shell

effects where contour deformation fails. To tackle more loops or legs, merging both the MB- and

SD-methods in numerical calculations is a key for final success.

A well founded expectation is that these two methods, combined with more specialized tech-

niques for specific topologies, will allow to execute the next steps of the necessary multi-loop

calculations. There are also many opportunities for improvement in other approaches and software

packages; see [2] for a year-2018 overview. There is a lively activity in many areas of multi-loop

calculations, and several promising (semi-) analytical methods are also under development [2].

For instance a treatment of multi-scale integrals beyond multiple polylogarithms, direct numerical

calculations of Feynman integrals in d = 4, or calculations based on unitarity methods, all of them

with first examples of two-loop numerical evaluations.

Concerning the numerically important QED corrections, further refinements of the factoriza-

tion to infinite order of the multi-photon soft real and virtual contributions, and their re-summation,

using Monte Carlo methods have to be pursued in order to meet the accuracy needs. Again infra-

red problems appear to be crucial: The inclusion of collinear (mass) singularities must be improved

in the existing schemes. Techniques for disentangling QED and EW corrections for two and more

loops in the framework of soft photon factorization/resummation are in principle available, but

their practical implementation will require more work. A central issue is the implementation of the

higher loop terms in their proper form as Laurent series around the Z-boson pole, characterized by

mass and width, in the scattering energy, which is mandated by analyticity, gauge-invariance and

unitarity.
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4 Summary

FCC-ee, a circular collider with extremely high statistics and high energy resolution, will provide

the possibility to test the Standard Model with its fine quantum electroweak effects with a pre-

cision far beyond the current state of the art. Significant future theory effort will be needed

for both for parametric and theoretical calculational errors to match the experimental accuracy of

FCC-ee physics program. No potential showstoppers are foreseen [1, 2]. It will be important

that adequate theory funding will be available to ensure that theory uncertainties are reduced to

the desired level. The combined advances in experimental and theoretical techniques will yield

unprecedented sensitivity to very weakly coupled or very massive new physics, or to forbidden

violations of symmetries, at FCC-ee.
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