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1 Introduction

In recent years, great progress has been made in QCD calculations of multi-parton
processes, where resummation of large logarithmic terms must be performed to all
orders, most notably in e*e” annihilation. This has the advantage of increasing
the range of applicability of the predictions[l]. At the same time, 1t has been
realised that not all quantities give perturbation series that can be resummed,
and having a sequentially factorisable phase space has had to be added to the
requirements of a ‘good’ observable. In particular, for jet rates and multiplicities
to be resummed, distance measures of ‘k,-type must be introduced[2]. This has
allowed resummed calculations of the jet multiplicity to be made(3].

Generalisations of the k| algorithm have also been proposed for deep inelastic
scattering[4] and hadron-hadron collisions[5], and a resummed calculation has
recently been completed for the former[6].

Studies of the hadron-hadron algorithm using a Monte Carlo event generator
[5, 7] and next-to-leading order matrix elements(8] have shown a variety of ad-
vantages over more commonly used cone-type algorithms. It also has a two-scale
form in which hard jets are defined at some large scale, and their internal struc-
ture resolved into sub-jets at some smaller scale. In this paper we calculate the
multiplicity of such sub-jets. Our result is exact to leading order in as, and re-
sums all leading and next-to-leading logarithms in the small resolution scale, ycut,
even those suppressed by powers of the jet radius, R. We find that the multiplic-
ity in a jet of a given flavour is largely independent of its production mechanism,
and exhibits large differences between quark and gluon jets. It would therefore
be a particular suitable variable with which to study such differences in a way
that is under perturbative control.

In section 2 we define the particular variant of the k) -jet clustering algorithm
we shall be using, which defines jets inclusively, and then resolves their internal
structure exclusively. In section 3 we calculate the multiplicity of sub-jets within
a jet defined according to this algorithm, to leading order in as. Then, in section 4
we give results for the resummation of the large logarithmic terms associated with
small Yeut, and show how to match these with the leading-order calculation. In
section 5 we present some numerical results for the sub-jet multiplicity. Of course
our result is purely perturbative, and will suffer non-perturbative hadronisation
effects. In section 6, we compare our result with the prediction of a Monte Carlo
event generator that includes a model of hadronisation, to estimate the size of
such effects. Finally in section 7 we make some concluding remarks.

2 The Jet Algorithm

The algorithm we use to define jets is the inclusive version of the k; algorithm
for hadron-hadron collisions[5,8]. It proceeds according to the following steps,



1. For every pair of particles, define

di; = min(pes, pos) {(0: — m3)" + (6 — #3)°} (1)

where p,;, 7; and ¢; are the transverse momentum, pseudorapidity and
azimuth of particle 4. In addition, define for every particle

d; = p?,i R27 (2)

where R is a parameter that plays the role of a jet radius in (7, ¢) space,
assumed to be of order 1.

2. Find the smallest member of {d;;, d;}, dmin.

3. If dmin = di;, merge particles 7 and j into a single pseudoparticle according
to some recombination scheme, specified below. The algorithm continues
from step 1, considering pseudoparticles on an equal footing with particles.

4. If dpin = d;, call pseudoparticle ¢ a jet. Continue until there are no remain-
ing pseudoparticles.

Note that in the soft and collinear limits d;; reduces to the transverse momentum
of the softer particle relative to the harder particle’s direction, k7.

It can be seen that a particle or pseudoparticle will be merged with its nearest
neighbour if, and only if, their invariant opening angle is less than R. Thus the
jets produced are phenomenologically rather similar to those defined by a cone-
type algorithm. However, as a clustering algorithm of ki -type, it has greatly
improved theoretical properties.

As stressed in [8], this is a suitable way to define jets for a measurement of the
inclusive jet cross-section, since the relevant large scale is measured from events.
In contrast, the more exclusive methods discussed in [5] correspond to measuring
event features at a chosen scale. Defining R to be exactly 1 is then particularly
attractive, since the scale is then a global cut on the transverse momentum of
emission, with initial-state and final-state radiation treated on an equal footing.
This is also the value around which the scale-variation of the inclusive cross-
section is smallest[8,9].

The idea of an inclusive jet definition is unappealing to proponents of QCD
coherence, since jets can never be studied in isolation, but always as part of a
coherent system. However, since this definition provides a strict cut on opening
angles within the jet, it does allow such an isolation, at least to leading logarithmic
accuracy. As we shall see, terms arise at next-to-leading logarithmic accuracy
that violate this picture, although they disappear as the jet radius is made small.
Nevertheless, they can be formulated in such a way as to be resummed.

Sub-jets are resolved within jet ¢ by considering only those particles that
ended up in it, and repeating steps 1 to 3, but stopping when all dj. are above
dewt = ycutpf,i. All remaining particles and pseudoparticles are called sub-jets.
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We consider two recombination schemes. In the E-scheme the four-momenta
of the particles are simply added,

Pgij) = Pi + Dj- (3)

Since the momenta become massive, the pseudorapidity in (1) must be replaced
by the true rapidity, y, to preserve longitudinal boost invariance. The p;-scheme
is equivalent to what is often done in cone algorithms, and means that the jets
remain massless, which is sometimes an advantage. The scalar transverse mo-
mentum is simply additive,

Pe(ij) = Pti T Pijs (4)

while the direction is given by the p;-weighted sum,
M) = (Peimi + Pein;)/ Peis)s (5)
by = (Pridi + pejbs)/Peis)- (6)

Monte Carlo studies have not shown a strong preference for either scheme over
the other[5, 7], so we consider both here.

3 Leading-order Calculation
The two-parton cross-section is given by

(2m)* 1 2
doy = Wﬁfl(wl)fz(mﬂdﬂ, ptdptdn4¢\M2| ] (7)
where |M,|? is assumed to contain the relevant sums and averages, and a sum
over incoming partons is implicit. The lowest-order inclusive jet cross-section at
a given phase-space point, (pt, 7, ¢), is simply given by do, integrated over 7',
between the kinematic limits,

— Mmax < ' < Mmax = log(\/g/pt). (8)

The three-parton cross-section is given by

27 4 1 i
(2((27r))3)3 ;_gfl(w1)f2(x2)d77 Pi2dpi2dnadds peadpesdnsdds| Msl®,  (9)

where p, ordering has been assumed, pis < pe2 < ps1 = |pr2 + Pesl.
We always use p; for the scale in the structure functions and running coupling.

d0'3 =



3.1 ps-scheme

The final state we are interested in has two partons that are clustered together
by the inclusive jet definition, giving a jet with given (p¢,7,¢). Thus they must
be less than R apart in (7, ¢) space. However, they are resolved by the sub-jet
algorithm, with cutoff deyy = yeuwp?. Thus parton 3’s k. relative to parton 2 must

be greater than |/ycuip¢. In the pi-scheme the jet variables are given in terms of
the sub-jet variables as

Pt = Pe2t pe, (10)
¢ = (pd2+ pds)/p:, (11)
n = (pan2 + Pans) /pe- (12)

—_

We parameterise the two-body sub-space, ((pi2,%2, #2), (Pt3, 73, ¢3)) in terms of
(pt,m, ¢) and the energy fraction z = py3/(pe2 + pia), the rescaled transverse mo-

mentum y = k2 /p? = 22 ((¢2 — ¢3)? + (n2 — 73)?) , and an angle defined in (7, ¢)
space, ¢. These give

Pi2 = (1 - Z)Pt, (13)

2 = ¢+./ysing, (14)

T2 = N+ \ycosy, (15)

pt3 = zpy, (16)

¢3 = ¢— /ysin c,ol;—z, (17)
1-z

T = N Vycosp—. (18)

Note that in this form, it 1s clear that the rescaled transverse momentum, /y,
is given by the opening angle between the jet axis and the axis of the harder
sub-jet. It is possible that this is better determined experimentally than its usual
definition, the product of the transverse momentum of the softer sub-jet and the
opening angle between the two sub-jets.

The Jacobian transformation is

1—2,

Pe2dpiadnady piadpisdnadgs = pidpdndeg dedydz N Pe- (19)

The kinematic limits are
0 < ¢ < 2m, (20)
Yt < ¥ < R2/4: (21)

VY/R < 2 < 1/2. (

N
[\>]
N’



Thus the two-sub-jet fraction is given by
R2(ycut; P, M, ¢) =
7r ﬂmax R2/4 1/2 1 — Z 1
(z(zﬂ.)a 3pt/ 77 / / dz —‘—f1(1171)f2(132) |M3‘
Yeut

Thmax \/ﬂ/R 2z s§

(23)
nlllﬂx
(—2%3—,,))37% /Anmudﬂ ’S—éfl(ml)fz(wz) IM;|?
and the sub-jet multiplicity by
N (Yeut; Pt 1, 8) = 1+ Ra(Yeur; e, 1, ¢)- (24)

3.2 FE-scheme

We define z, y and ¢ in the same way, but use the E-scheme to recombine partons
2 and 3 into the jet. Thus we have

1

P2 — (1 - t ; (25)
P \/1 —22(1 — z)(1 — cos(rsin ¢))
_ . zsin(rsin @)
¢: = ¢tan (z cos(rsing) +1 — z) ’ (26)

(27)

v = -+ tanh! ( z sinh(r cos @) )

zcosh(rcosp) +1—2

1
Ptz = 2Pt ) (28)
1 —22(1 — 2)(1 — cos(rsin p))
ds = ¢y — Tsing, (29)
M3 = T2 — TCOSQ, ' (30)
where r is the solution of
_ pf:s:z _ 2%r? . . (31)
pi 1 —22(1 — 2)(1 — cos(rsin ))
The kinematic limits are given by
0 < ¢ < 2, (32)
Yeut < Yy < Ymax, (33)
Zmin < 2 < 1/2, (34)
with
R%*/4
Ymax = / . (35)

L(1 4 cos(Rsin p))’

JJ1 — 9/R2(1 — cos’(Rsin p)) — /§/ R(1 — cos(Rsin ¢)) (36)
1 — 2y/R*(1 — cos(Rsin ¢)) '

Zmin = \/??/R

5



Note that in the limits of small » and z that dominate the cross-section, the
scheme is identical to the p;-scheme, and that ymax > R?/4, Zmin < /¥/R, so
that the phase space is everywhere larger than in that scheme. The Jacobian
transformation is also the same but with an extra factor of order 1,

1—-2

2
P: >

Peodpeadnadds pradpesdnzdes = pedpednded dpdydz

1
1—2z(1 — z)(1 — cos(rsing)) + rz(1 — z) sin(rsin)sin g’ (37)

Since these formula are so cumbersome, we only show the p;-scheme when dis-
cussing analytical results, although we have made the analogous calculations in
the E-scheme, and show numerical results in section 5.

3.3 Jet Flavours

The flavour of a jet is not well-defined beyond leading order calculations. Nev-
ertheless, it will prove useful to be able to obtain sub-jet rates for individual jet
flavours. We therefore proceed as follows.

In the two-parton matrix element the flavour of the detected jet is uniquely de-
termined, and we can separate it into two pieces, |M3|? and | M3|* corresponding
to gluons and quarks (meaning the sum of all quark and antiquark flavours). We
define f, and f, to be their relative sizes, f, = |M3?/|Maf*, fq = |IME12/ M3,
such that f, + f, = 1. We also define the integrated fractions

[ dn' (o) fola) ISP

- —TNmax S‘é

Fg = 7;:uax / 1 ’27 (38)
[ b i) falen) M|
—Tmax 88

and likewise for Fy, so that F, + F, = 1.

In the three-parton case, the two partons that are clustered to make the jet can
be in any of three flavour states: ‘gluon’, i.e. gluon+gluon or quark+antiquark;
‘quark’, i.e. quark-+gluon; or ‘other’; i.e. quark+quark or quark+antiquark’. Note
that ‘other’ does not give rise to any large logarithms, and the cross-section 1s
dominated by ‘quark’ and ‘gluon’ jets.

It is important to stress that the main results we show do not rely on this

unphysical separation, but are simply the full three-body cross-section divided
by the full two-body cross-section.

3.4 Large Logarithmic Terms

In the limit of small y, Ro will be given by the leading and next-to-leading
logarithmic terms. In order to be able to match to the resummed calculation, we



would like to extract these terms, and treat them analytically. Doing so will also
improve the convergence of the integral, which we perform numerically.

To next-to-leading logarithmic accuracy, the integrand of the numerator of
(23) can be approximated by

d
4. (?f - 3) , (39)
y z 2

where u and v are constants to be defined shortly. This can be integrated to give
R2/4dy 1/2 u v
[ [
Yeut y \/ﬂ/R A 2
1
= 1 (ulog2 Y + (v + 2ulog4)log Y + ulog®4 + v(2 — 4/Y + log 4)) ,(40)

where Y = yeu/R?.

We can use this to improve the convergence of the integral, by subtracting
the approximated integrand from |M3|?, and adding the right-hand-side of (40)
after integration to give back the full integral. We define

16ras v —vz/2 1
IM;‘Z — ‘M3‘2 - 2 : - 1M2l27 (41)
Pt l—2z gy

where u and v are chosen to match the leading and next-to-leading logarithmic
behaviour of |Mj|?. In order to account for the mixture of jets at each phase-
space point, the coefficients for quark jets, U,, V, and gluon jets, Uy, V;, should
be weighted by the flavour fractions f; and f, defined earlier. So we set

u = quq+ngg> | (42)
= foVo + foVs (43)

We define a corresponding R}, by replacing | M3|? by |M35|? in (23). After using
(40) to integrate over z, y and the trivial ¢, the only non-constants multiplying
|M,|? are f; and f,, so they give the integrated flavour fractions F;, and F,. R 1s
therefore given by

R?,(ycut;phna QS) = R;(ycut;ptana ¢) +
% (Ulog®Y + (V + 2U log4)log Y + Ulog®4 + V(2 — 4/Y +log4)) , (44)
T

where

U = FU;+ FU,, (45)
Vo= B+ RV, (46)



4 Resummation of Large Logarithmic Terms

4.1

Final-state Emission

Large logarithmic terms of leading and next-to-leading type arise at all orders

in the cross-section due to final-state emission.

By explicitly setting up the

evolution equations, one easily finds that they are identical to the final state of

ete~

annihilation at scale p; R with cutoff p;,/ycw:. However, at next-to-leading

logarithmic accuracy, the overall energy scale is not fixed, only the ratio of the
upper and lower scales, so we use this freedom to define the scale as @ = p; and
cutoff as Qo = Pt+/Yeur/ R. This makes the matching with the leading-order result

more natural, since that
in a gluon and quark jet

NQ(Q(J? Q)
NQ(QO’ Q)

where
Nt (zo,21) =
N7 (20,21) =
N(zo,21) =

with

and

uses p; for the scale in as. The multiplicity of sub-jets
respectively is then given by|[3]

a—b -

= N+(20721) b (20321): (47)
Ce o C.
= (1—&)/\/ (20,21)+a[./\/+(20,21)
+2LT*?&/\7(20, 21)}7 (48)
B
( Upar(2)Kp(20) + Kpp(z)Is(z0)],  (49)
(=)™, (50)
20\ B '
(22) Us(=)Kp(z0) ~ (=) a(z0)], (51)
32nC,
20 = 4o 2
\/;QS(QO) (5 )
32nC, .
T bzas(Q)’ (53)
B = a/b, (54)
o Ny 4CeN;
@ = gl 30, (5)
_ . 2Ny
b= SO - (56)



Note that in the threshold region (the region where as log2 Yeur 18 small but
log Yeus 1s still large), these have expansions

N, = 1+
N, = 1+

1 [Calog’ Y +blog Y] + O(ad), (57)
T
1 [Celog’ Y +3Crlog Y] + O(od), (58)

where Y = y.../R%.

4.2 Soft Emission

In addition to soft and collinear emission within the jet, the multiplicity is in-
creased by soft emission from elsewhere in the event that happens to lie close
enough to the jet to be combined with it. Although this is suppressed by the
area of the jet, R?, it gives rise to a logarithm of y.,; at leading order, and thus
must be included in our resummation. However, it is clear that the probability
for such emission does not factorise into the jet evolution, but depends on the
flavours and kinematics of the entire event. It is therefore a surprise that such
terms can be systematically resummed to all orders, as we shall see.

First we consider a simple analogy with a two-jet event in e*e™ annihilation,
where there is a single well-defined colour current. We use our jet algorithm at
a large angle to the event axis and calculate the leading term of the number of
gluons reconstructed, (r? = y% + ¢?),

Ce [ dg
Vo= G Bae) fay [ s (R~ 1) 0lar ) Op—a) (59
Cp ptdt
™ o qt
o _Cros(P) gy Ly (61)

Note that this depends only on the colour factor, Cy, and on parameters of the
jet, pe, R and Y, but not of the whole event.

Now consider calculating the same quantity to second order in as, and next-to-
leading logarithmic accuracy. Two contributions arise: the emission of a second
soft gluon into the jet, and the splitting of the leading order gluon. The former is
~ R*a?log? and is therefore next-to-next-to-leading, and thus negligible. How-
ever, if the splitting is both soft and collinear it contributes two logarithms to
give ~ R?a?log®. It can be seen that this structure will continue to all orders
and, to next-to-leading logarithmic accuracy, the additional multiplicity is given
by the convolution of the first-order probability with the resummed multiplicity
of a gluon jet,

N — CFRZ /Pt @ QS(qt)Ng(QO, Qt)~ (62)

o Gt T
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This integral can be rewritten using the leading logarithmic evolution equation,

to give
Ng(Qo, Q)
20,
where N[(Qo, Q) = Q%Ng(Qo, ®@). We use the double-logarithmic approxima-
tion for N;, since this i1s sufficient to retain next-to-leading logarithmic accuracy
overall, while avoiding the practical problems that would be caused by the next-
to-leading result (47) being non-monotonic for @ ~ Q. It also avoids subtleties
related to the flavour-dependence that would arise in (62) if the next-to-leading
kernel were used. Thus, in terms of the parameters defined earlier, we have

8C,
bZl

N = Cu R? (63)

N;;(QO,Q) =

sinh(z; — zq). (64)

Returning now to hadron-hadron collisions, we see that the ‘colour factor’
appearing in (63) is not well defined—it is a function of both the flavours and
dynamics of the hard scattering. A rough guide to its size can be found by
considering the small t and % limits of each colour amplitude, the most important
of which give ~ Cr for quark jets and ~ 1C, for gluon jets. Numerically we
find that these are about right. However, we only use these approximate values
to improve the convergence of the integral, and it is the exact result of this
integral that is used in the final answer. This then effectively gives us the single
logarithmic term equivalent to (61). We can then resum the associated next-to-
leading logarithmic terms to all orders, simply by multiplying this integral by the

factor )
No(pev/Y, pt)
—Chas(ps)/mlog Y’

to give the equivalent of (63). This factor rises slowly from unity as ¥ becomes
much smaller than one.

(65)

4.3 Matching with the Leading-order Calculation

By comparing (44) with (57,58), it is clear that the resummed final-state log-
arithms can be combined analytically with the leading-order result, simply by
setting

Uy, = C., (66)
V, = b-2U,log4, (67)
Uy, = Cu, (68)
V, = 3C: - 2U,log4, (69)

and adding the entire resummed result instead of the leading part. The soft next-
to-leading logarithms can be resummed simply by multiplying what remains of the
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leading-order cross-section after the final-state logarithms have been subtracted,
by the factor given in (65). That is, we write

N’(ycut;Pt,na‘FS) = FgNy(pt\/Y)Pt) + Fqu(pt\/Y,p,) +

N!(py/Y,
R;(ycut;phn: ¢) + 42:; (U logz 4 + Vv (2 — 4\/Y' + IOg 4))} g(pt\/ Pt)

—Chas/mlogY”’

(70)

This result is exact to leading order in as, and next-to-leading order in logarithms
of Y = yeu/ R2.

We finally note that in our approach, Y is assumed to be the only small
parameter. Additional large logarithmic terms will arise for small R, as well
as for the extreme kinematic regimes of large rapidity or small p;, so our result
should only be used well away from those extremes.

5 Numerical Results

We have adapted a version of the NJETS matrix-element Monte Carlo package[10]
to calculate the sub-jet multiplicity for any desired configuration.

There is no appreciable dependence of the sub-jet multiplicity of a given jet
flavour on the parton distribution set used. There is a weak dependence of the
total sub-jet multiplicity due to small differences in the predicted ratios of gluon
to quark jets in the inclusive jet sample, but we have found this to be small over
most of phase-space, so we do not show individual graphs for each set. Instead
we choose Duke and Owens set 1[11]. This uses a A value of 200 MeV, which we
also use for the running coupling.

The results are shown in fig. 1, for a central 100 GeV jet in a pp collision
at /s = 1.8 TeV, with R = 1 in the p;-scheme (these are the parameters we
use for all graphs, except where stated otherwise). We see that resumming the
leading and next-to-leading logarithms is essential for small yu values, and even
for intermediate values around 0.01 makes a significant difference. The soft next-
to-leading logarithms are just as important as the final-state leading logarithms
in the intermediate y. tange although they become relatively less important
at small yey. In the intermediate region, we would expect that most of the
correction given by our resummation would actually be reproduced by a next-to-
leading fixed-order calculation, since aslog? yeus is not too large there.

In fig. 2 we show the value of the integral performed by the Monte Carlo
program. The Monte Carlo errors are strongly correlated between the different
curves and Yy values, so only one is shown to set the overall scale. The integral
is rather flat in yeu, showing that our guess of the size of the soft logarithm is
quite accurate. Comparing this graph with fig. 1, we see that only a tiny fraction
of the final answer comes from this integral, and the majority comes from the
analytically treated logarithms and finite terms.
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In fig. 3 we show the sub-jet multiplicity in quark and gluon jets separately,
which 1s much as one would expect. Although the leading logarithms give a
ratio of C, /Cr = 9/4 for the multiplicities, this is reduced by the next-to-leading
logarithmic terms, particularly the soft logarithm, which is almost identical for
quark and gluon jets. The ‘other’ jet contribution is not visible in fig. 3 because
it 1s so small. It has no logarithmic part, so is entirely given by the dotted line
i fig. 2, which is clearly completely insignificant.

Fig. 4 shows the difference between the two recombination schemes, which is
small. It might appear from the definitions of section 3.2 that the multiplicity
should be larger in the E-scheme than the p;-scheme. However, the E-scheme
requires the vector sum of the sub-jet momenta to be equal to the jet momentum,
while the p;-scheme requires their scalar sum to be equal to it. Thus any given
point in the sub-jet phase space corresponds to a larger sub-process energy in the
E-scheme, and so a smaller cross-section. Since the schemes become identical in
the dominant regions of phase space, this difference is small.

In fig. 5 we show the p; dependence of the sub-jet multiplicity for two repre-
sentative y.., values. For quark and gluon jets, this is almost entirely due to the
running coupling. The average sub-jet multiplicity interpolates between them as
the relative rate of quark and gluon jets changes with p;. Note that the inclusive
jet rate falls by about ten orders of magnitude over this p; range.

In any inclusive jet algorithm, one would hope that the properties of the
detected jet are as independent of the production mechanism as possible. As
we see in figs. 6 and 7 this is indeed the case for our algorithm. Note that the
kinematic limit for a 100 GeV jet in a 1.8 TeV collision is about |p| = 2.9, so it
1s not too surprising that the jet gets squeezed near to that rapidity.

6 Hadronisation

We have used the HERWIG Monte Carlo event generator[12], version 5.7, to
simulate the non-perturbative contributions to the sub-jet multiplicity. The pa-
rameters of the hadronisation model give a good overall fit to data from ete”
annihilation at the Z peak. The simple underlying event model, based on a pa-
rameterisation of minimum bias events, gives at least qualitative agreement with
hadron collider jets. We leave all parameters at their default values.

The result is shown in fig. 8, and is very similar to that shown in [3] for eTe™
annthilation. The parton-level output from HERWIG is in reasonable agreement
with the analytical result down to gy ~ 107%. This corresponds to a momentum
scale of 1 GeV, which is about the infrared cutoff value used in HERWIG. The
effect of this cutoff can be clearly seen. However, the result using the hadrons that
come from the hard interaction rises above the perturbative prediction at a yeu
value corresponding to a few GeV. This seems to be a universal prediction of the
cluster hadronisation model. It would certainly be interesting to measure sub-jets
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in this region, with the hope of learning more about the onset of hadronisation.
The additional hadrons coming from the model of the underlying event do not
have as large an effect, but do increase the sub-jet multiplicity a little.

In addition to affecting the average sub-jet multiplicity, hadronisation effects
will cause event-to-event fluctuations in the scales at which sub-jets are resolved.
As shown in [5], these fluctuations are somewhat larger than those found in e*e”
annihilation, and it seems that comparisons with perturbative calculations will
become difficult for sub-jet scales below about 10 GeV. Although the jet and sub-
jet definitions used there are slightly different to this one, we would not expect
the conclusion to be significantly different with this algorithm. Nevertheless, as
just mentioned, there is much to be learned from this region, for example in

comparing sub-jet distributions at very small scales with the equivalent hadron
distributions.

7 Conclusion

The introduction of k. -type algorithms for hadron-hadron collisions makes pos-
sible many theoretical improvements in the QCD predictions for jet rates and
properties.

In this paper we have concentrated on one particular property of jets that
are inclusively defined in this algorithm, the multiplicity of sub-jets within them.
At large ycy:, this would provide a new way to measure ag in hadron-hadron
collisions. However, for this to be theoretically attractive, next-to-leading order
predictions would be needed, both because the renormalisation scheme/scale is
not well defined in leading order calculations, and because we expect the correc-
tions to be numerically important.

At small y, the k; algorithm has the great advantage that leading and
next-to-leading logarithms of y.,. can be systematically resummed to all orders.
This is even true of the next-to-leading logarithms that are suppressed by powers
of the jet radius, which arise due to soft emission from elsewhere in the event.

In both the small and large ycu regions, large differences between quark and
gluon jets are predicted. In addition, the sub-jet multiplicity in a jet of a given
flavour and given transverse momentum is predicted to be almost independent of
the jet’s production mechanism, i.e. its rapidity, the energy of the collision, the
colliding beam types, parton distributions, etc. Thus it seems that this sub-jet
multiplicity would be an ideal area in which to look for quark/gluon jet differences
that are under perturbative control.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

The multiplicity of sub-jets in a 100 GeV jet according to the leading-
order matrix element (dashed), resummed final-state logs (dotted),
matched leading-order and final-state logs (dot-dashed) and the full
result with matched leading-order and leading and next-to-leading
logs (solid). (a) and (b) are identical, but on different axes.

The result of the integration that is used to obtain the multiplicity
of sub-jets in a 100 GeV jet (solid), which is also broken down by
flavour into gluon (dashed), quark (dot-dashed), and ‘other’ (dotted)
jets. The single Monte Carlo error bar shown is indicative of those on
each point of each curve, which are all strongly correlated.

The multiplicity of sub-jets in a 100 GeV jet (solid), which is also
broken down by flavour into gluon (dashed) and quark (dot-dashed)
jets.

The multiplicity of sub-jets in a 100 GeV jet in the p;-scheme (solid)
and E-scheme (dashed).

The multiplicity of sub-jets in a jet as a function of its transverse
momentum, broken down by flavour. Curves are as in fig. 3.

The multiplicity of sub-jets in a 100 GeV jet as a function of its
rapidity, broken down by flavour. Curves are as in fig. 3.

The multiplicity of sub-jets in a 100 GeV jet as a function of the
centre-of-mass collision energy, broken down by flavour. Curves are

as in fig. 3. The barely discernible pairs of curves are for pp and pp
collisions.

The multiplicity of sub-jets in a 100 GeV jet according to the an-
alytical result (solid), and HERWIG at parton level (dashed), using
only hadrons from the hard interaction (dotted) and using all hadrons

(dot-dashed),
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