
A
TL

-S
O

FT
-P

U
B-

20
18

-0
03

11
D

ec
em

be
r

20
18

Computing and Software for Big Sciences manuscript No.
(will be inserted by the editor)

Using ATLAS@Home to exploit extra CPU from busy grid
sites

Wenjing Wu · David Cameron · Di Qing

Received: date / Accepted: date

Abstract Grid computing typically provides most of1

the data processing resources for large High Energy2

Physics experiments. However typical grid sites are not3

fully utilized by regular workloads. In order to increase4

the CPU utilization of these grid sites, the ATLAS@Home5

volunteer computing framework can be used as a back-6

filling mechanism. Results show an extra 15% to 42%7

of CPU cycles can be exploited by backfilling grid sites8

running regular workloads while the overall CPU uti-9

lization can remain over 90%. Backfilling has no impact10

on the failure rate of the grid jobs, and the impact on11

the CPU efficiency of grid jobs varies from 1% to 11%12

depending on the configuration of the site. In addition13

the throughput of backfill jobs in terms of CPU time14

per simulated event is the same as for resources dedi-15

cated to ATLAS@Home. This approach is sufficiently16

generic that it can easily be extended to other clusters.17

Keywords BOINC · ATLAS@Home · CPU Utiliza-18

tion · grid site · backfilling19

1 Introduction20

Large High Energy Physics (HEP) experiments require21

a huge amount of computing resources for their data22

processing [1][2]. The ATLAS experiment is the largest23

Wenjing Wu
Institute of High Energy Physics, CAS, 19B Yuquan Road,
Beijing, 100049, China
Tel.: +8610-88236883, Fax: +8610-88236839
E-mail: wuwj@ihep.ac.cn

David Cameron
Department of Physics, University of Oslo, P.b. 1048 Blin-
dern, N-0316 Oslo, Norway

Di Qing
TRIUMF, Vancouver, BC, V6T2A3 Canada

of the LHC experiments in terms of computing resources24

and its computing infrastructure [3][4] is built on grid25

computing. ATLAS jobs are a mixture of single-core26

and multi-core [5] workflows which typically use be-27

tween 4 and 12 cores on a single node (depending on28

site configuration). The real time computing resources29

available to ATLAS in 2018 from grid sites are around30

2.5 million HEPSPEC061 [6]. ATLAS also uses an in-31

creasing level of opportunistic computing resources such32

as clouds, High Performance Computing[7] and volun-33

teer computing.34

Even though grid sites provide 75% of the total com-35

puting resources to ATLAS, opportunistic computing36

resources play an important role. One such resource is37

the volunteer computing project ATLAS@Home[8][9]38

which uses the BOINC[10][11] middleware to harness39

worldwide heterogeneous volunteer computers. The AT-40

LAS@Home project is integrated into the ATLAS work-41

load management system PanDA[12][13], and processes42

ATLAS simulation tasks[14][15]. Simulation is a CPU-43

intensive task which on average consumes over half of44

the wall time of the ATLAS CPUs.45

Most grid sites are clusters managed by batch sys-46

tems such as HTCondor[16], SLURM[17] and PBS[18],47

and the scale of the sites ranges from a few hundred48

to tens of thousands of cores. However, when the CPU49

time utilization of several ATLAS grid sites was mea-50

sured, results showed that none of these clusters were51

being fully used. In other words, both the wall time52

utilization and CPU time utilization rates were not as53

high as expected. This means a significant percentage54

1 HEPSPEC06 is the HEP-wide benchmark for measuring
CPU performance and the official CPU performance metric
used by the Worldwide LHC Computing Grid. The average
performance of one CPU core is around 10 HEPSPEC06 for
the ATLAS grid sites.



2 Wenjing Wu et al.

of cluster resources were being wasted, hence the need55

to seek solutions to improve the CPU time utilization.56

The rest of this paper is organized as follows: Sec-57

tion 2 analyzes the CPU time utilization of the AT-58

LAS grid sites, Section 3 introduces a new method of59

backfilling the grid sites, Section 4 presents results of60

backfilling two ATLAS grid sites, Section 5 measures61

the impact of backfilling and Section 6 concludes.62

2 Utilization of grid sites63

2.1 Analysis from the ATLAS job archive64

In order to understand the utilization rate of grid sites,65

a few example sites from ATLAS are studied. The se-66

lected sites are of different scale and locations and they67

are dedicated to ATLAS, so the CPU time and wall68

time of ATLAS jobs is representative of the overall us-69

age of the clusters. CPU efficiency (εCPU) is used to70

measure the efficiency of the jobs, and wall time uti-71

lization (uwall) and CPU time utilization (ucpu) mea-72

sure how fully these clusters are being utilized. Assum-73

ing that in a given period M days, the total wall time74

(in seconds) of all jobs is Twall, the total CPU time (in75

seconds) of all jobs is TCPU, and the total number of76

available cores of the site is Ncore, then:77

uwall =
Twall

3600 × 24 ×M ×Ncore
(1)78

ucpu =
Tcpu

3600 × 24 ×M ×Ncore
(2)79

εCPU =
Tcpu
Twall

(3)80

Table 1 The average utilization of typical ATLAS grid sites
over a period of 100 days

Site
Amount
of Cores

Avg.
uwall

Avg.
uwall

Avg.
εCPU

BEIJING 634 68% 55% 81%
TOKYO 6144 85% 72% 85%
SiGNET 5288 88% 68% 77%
MWT2 16250 83% 70% 84%
AGLT2 10224 72% 61% 84%

As shown in Table 1, 5 ATLAS sites were chosen81

from Asia, North America and Europe. They have dif-82

ferent scales in terms of the number of cores, and they83

use different local batch systems. From the selected84

sites, the average uwall is around 85%, and the corre-85

sponding ucpu is around 70%. Ideally, uwall should be86

close to 100%, but there are several reasons why grid87

sites cannot achieve this, as follows.88

(1) Sites often have downtime for scheduled main-89

tenance or unexpected problems.90

(2) The inefficiency of both the grid scheduling sys-91

tem and local batch systems. In the ATLAS case, the92

central PanDA scheduling system is rather conserva-93

tive, and sites are assigned fewer jobs during the periods94

before and after downtimes.95

(3) Over 50% of the ATLAS worker nodes run multi-96

core jobs which have lower CPU efficiency compared to97

the single-core jobs. This is due to the fact that certain98

stages of the multi-core job can only use a single core99

and hence leave the other allocated cores idle.100

(4) Sites with fixed partitioning of worker nodes be-101

tween single-core and multi-core ATLAS jobs can have102

idle worker nodes when the mix of workloads assigned103

to the site does not well match the partition well.104

(5) For sites configured to mix single and multi-core105

jobs on the same worker nodes, the multi-core jobs may106

need to wait for a number of single-core jobs to finish107

in order to obtain the number of cores they require.108

In the best case, even if the site has 100% uwall,109

ucpu would still be less than 100% because the CPU110

efficiency of the jobs is always less than 100%, so the111

CPU time utilization is always lower than wall time112

utilization. Different types of job demonstrate different113

CPU efficiency.114

2.2 Observation from site’s local monitoring115

Using local monitoring tools to look at the CPU time116

utilization of single worker nodes in different periods,117

it was observed that in the long run, the CPU time118

utilization of the worker nodes was not as high as ex-119

pected.120

As shown in Fig. 1, on a worker node for the AT-121

LAS BEIJING site, the CPU time utilization of grid122

jobs (in green) can reach 91% over a 24 hour period,123

because this worker node is running highly CPU effi-124

cient simulation jobs. But on the same worker node,125

looking over a period of two weeks, the CPU time uti-126

lization is only 69%. This is because the site had two127

scheduled downtimes in those two weeks, and also be-128

cause of the inefficiency of the job scheduling and the129

jobs.130



Using ATLAS@Home to exploit extra CPU from busy grid sites 3

Fig. 1 CPU utilization on one node over one day (left) and two weeks (right). Green: grid jobs, red: BOINC jobs

3 Using ATLAS@Home to backfill the sites131

3.1 The basic idea132

From section 2, it can be seen that with the traditional133

batch system assignment of one job slot per core, the134

CPU cycles can never be 100% utilized due to the job135

CPU efficiency. The key is to have more than one job136

slot on each core, but jobs must have different priori-137

ties, otherwise more wall time and CPU time would be138

wasted on the scheduling of CPU cycles between dif-139

ferent jobs at the operating system level. In addition,140

sites use different batch systems so it is not easy to im-141

plement a universal configuration for all batch systems,142

and some batch systems may not support the feature of143

defining more than one job slot per core and assigning144

different priorities to different jobs.145

Using ATLAS@Home meets the above requirements146

in terms of being independent from the sites’ local batch147

system and having the ability to use different job pri-148

orities.Using the ATLAS@Home platform to run AT-149

LAS@Home jobs in the background of the regular grid150

job workload effectively exploits CPU cycles which can151

not be fully utilized by the grid jobs.152

3.2 The advantages of ATLAS@Home jobs153

When ATLAS@Home started it was aimed towards the154

general public, most of whom were running hosts with155

the Microsoft Windows operating system. Therefore it156

was developed to use virtualization to provide the re-157

quired Linux-based computing environment (operating158

system, and dependent software installation). Later, as159

more and more Linux hosts joined the project, con-160

tainerization and native running were developed to re-161

place virtualization on Linux hosts. This improved the162

average CPU efficiency of the ATLAS@Home jobs by163

up to 10% and is also more lightweight to deploy as164

it does not require the pre-installation of virtualization165

software.166

Like many volunteer computing projects, the AT-167

LAS@Home project uses the BOINC middleware to168

manage job distribution to volunteer hosts. A BOINC169

project defines jobs in a central server, and volunteers170

install the BOINC client software and configure it to171

pull jobs from the servers of the projects to which they172

would like to contribute. A grid site wishing to run AT-173

LAS@Home installs the BOINC client on its worker174

nodes and configures it to take jobs from the ATLAS@Home175

server. In this paper “BOINC jobs” are defined as the176

jobs which BOINC controls on a worker node (as op-177

posed to grid jobs controlled by a batch system), whereas178

ATLAS@Home is the general framework for volunteer179

computing in ATLAS.180

One key feature of BOINC is that the processes are181

set to the lowest priority in the operating system, so182

they only use CPU cycles when they are not being used183

by any other higher priority processes. In particular, for184

Linux systems it uses the non-preempt scheduling[19]185

mechanism for CPU cycles, which means the higher186

priority processes will always occupy the CPU unless187

they voluntarily release it. This feature guarantees that188

starting low priority processes, such as all the processes189

spawned by the BOINC jobs, will not increase the wall190

time of the higher priority processes due to switching191

CPU cycles between processes. Hence BOINC should192

not impact the CPU efficiency of the higher priority193

grid jobs. Of course, the CPU efficiency might be lower194

due to the memory contention of both jobs (overflowing195

of memory into swap space can prolong the wall time196

of the jobs).197

Another advantage of using BOINC to add the ex-198

tra job slots is that these jobs are from two different199

batch systems: the higher priority jobs from the local200

batch system of the cluster, and the lower priority jobs201

from BOINC. They are invisible to each other, and the202

local batch system does not know the BOINC jobs ex-203

ist, so it will still send as many jobs as it is configured204

to. In other words, this does not affect the wall time205

utilization of the higher priority grid jobs.206



4 Wenjing Wu et al.

BOINC provides a convenient way to schedule pay-207

loads to the worker node because it is already fully inte-208

grated into ATLAS distributed computing systems. Al-209

ternative methods of over-committing resources would210

require either requesting sites to re-configure batch sys-211

tems to allow over-commit, or developing a way to sched-212

ule jobs behind the batch system - essentially duplicat-213

ing BOINC’s functionality.214

The multi-core simulation jobs of ATLAS@Home215

use very little memory (less than 300 MB per core for216

12-core jobs), and the majority of ATLAS grid jobs (ex-217

cept for special jobs requiring higher memory) use less218

than 1.5GB memory per core. This means that grid219

jobs and BOINC jobs usually have enough memory to220

co-exist on the same worker node, and the BOINC jobs221

can also be kept in memory while they are suspended222

(if for example no CPU cycles are available). Therefore223

the BOINC jobs do not get preempted even if the grid224

jobs are using 100% of the CPU, hence no CPU cycles225

are wasted.226

There is on-going work to integrate ATLAS@Home227

with the ATLAS Event Service [20], a framework which228

reduces the granularity of processing from the job-level229

to the event-level. Events are uploaded to grid stor-230

age as they are produced which make it ideal for op-231

portunistic resources where jobs may be terminated at232

any point. For ATLAS@Home it will be useful in cases233

where memory requirements are tighter and BOINC234

jobs cannot be held in memory, so that when a BOINC235

job is preempted only the current event being processed236

is lost.237

4 The harvest from the grid sites238

The ATLAS@Home backfill method was tested on two239

ATLAS grid sites. The first is a small site in China240

(BEIJING) which has 464 cores and PBS as its batch241

system, and the second is a large site in Canada (TRI-242

UMF) which has 4816 cores and HTCondor as its batch243

system. Both sites are dedicated to ATLAS, so the AT-244

LAS job measurements can serve as an overall mea-245

sure of the sites’ efficiency. The BOINC software was246

deployed on both clusters, and the worker nodes re-247

ceived jobs from ATLAS@Home to run in the back-248

ground while the grid jobs were also running. In order249

to compare the difference, the CPU time utilization and250

wall time utilization defined in section 2.1 are used.251

4.1 Results from the BEIJING site252

Backfilling was started on the BEIJING site in Septem-253

ber 2017. Results from both ATLAS job monitoring and254

Table 2 Utilization of BEIJING site in a busy week

fs εCPU ucpu uwall

BOINC 1.00 0.17 0.15 0.88
Grid 0.99 0.53 0.80 0.93
All 0.99 0.53 0.95 1.81

Table 3 Utilization of BEIJING site in an idle week

fs εCPU ucpu uwall

BOINC 1.00 0.47 0.42 0.88
Grid 0.96 0.61 0.48 0.62
All 0.98 0.61 0.90 1.50

Table 4 Utilization of TRIUMF site before backfilling

fs εCPU ucpu uwall

BOINC n/a n/a n/a n/a
Grid 0.90 0.80 0.69 0.88
All 0.90 0.80 0.69 0.88

local monitoring during this period suggest that the255

CPU time exploited by BOINC is dependent on the256

wall time and CPU time utilization of the grid jobs. In257

addition to the ucpu, uwall and εCPU metrics defined in258

section 2.1, an additional metric fs was used to mea-259

sure the effect of BOINC jobs on the success rate of260

grid jobs. fs is defined as the ratio between successful261

jobs and total jobs.262

Tables 2 and 3 show the utilization of BOINC, Grid263

and All jobs over two different periods of 7 days. In a264

busy week, the average uwall of the grid jobs reaches265

93%, and the corresponding ucpu is 80%. Under these266

circumstances, BOINC backfilling jobs can exploit an267

extra 15% CPU time from the cluster, which makes268

the average overall ucpu of the cluster reach 95%. With269

backfilling jobs, the average overall uwall is 181%, which270

means there are on average 1.81 ATLAS processes run-271

ning or waiting on each core.272

In an idle week, the uwall of the grid jobs is only273

62%, and the corresponding ucpu of grid jobs is 48%. In274

this case, the BOINC backfilling jobs exploit an extra275

42% CPU time, which makes the overall ucpu of the276

cluster reach 90%.277

It can be seen that BOINC backfilling can exploit278

the CPU cycles which cannot be used by grid jobs, and279

the ucpu of BOINC jobs depends on the ucpu of the grid280

jobs. In addition the overall ucpu also depends on the281

ucpu of the grid jobs, usually higher ucpu of grid jobs282

yields higher overall ucpu; For 6 months in BEIJING,283

the average overall ucpu of the site remains above 85%.284



Using ATLAS@Home to exploit extra CPU from busy grid sites 5

Table 5 Utilization of TRIUMF site after enabling backfill-
ing

fs εCPU ucpu uwall

BOINC 0.97 0.29 0.27 0.91
Grid 0.95 0.50 0.65 0.97
All 0.95 0.50 0.92 1.88

4.2 Results from the TRIUMF site285

For the TRIUMF site, the overall ucpu of the site before286

and after adding the BOINC backfilling jobs is com-287

pared.288

Table 4 shows a 7-day period before adding the289

backfilling jobs, during which the average overall ucpu290

is 69%. Table 5 shows a 7-day period when backfilling291

was enabled, when the average overall ucpu is 92% of292

which 27% is exploited by the backfilling jobs. It is also293

notable that the average uwall of grid jobs after is 9%294

higher, in other words the backfilling jobs do not af-295

fect the throughput of the grid jobs; After adding the296

backfilling jobs the overall uwall of the cluster is 188%,297

corresponding to an average 1.88 ATLAS processes run-298

ning or waiting on each core.299

5 Measuring the effects of backfilling300

In order to understand the impact of the backfilling jobs301

on the grid jobs and vice-versa, several metrics are used302

to compare them: the εCPU and fs defined respectively303

in section 2.1 and 4 for grid jobs, and the CPU time304

per event for the BOINC jobs.305

5.1 Failure of grid jobs306

Tables 2-5 show that the fs of jobs for both sites re-307

mains very high after adding the backfilling jobs. In308

fact, the fs is even 5% higher for TRIUMF after adding309

the backfilling jobs, indicating that the backfilling jobs310

do not have any negative effect on the grid job success311

rate.312

5.2 CPU efficiency of grid jobs313

To study the effect of backfilling on CPU efficiency of314

grid jobs, a reliable and stable set of jobs needed to315

be found. Rather than using all the ATLAS jobs over316

a certain period of time, only simulation jobs whose317

wall time was longer than 0.3 CPU days were selected.318

There were several reasons for this: simulation jobs on319

average use over 50% of a sites CPU time, there is usu-320

ally a constant flow of them over time, and these jobs321

have much higher and more stable εCPU compared to322

the other types of ATLAS jobs. In addition, restricting323

to jobs longer than 0.3 CPU days leads to average εCPU324

above 95% and increases the sensitivity of the measure-325

ment of the effect of backfilling.326

Table 6 shows the average εCPU for 6 sets of simu-327

lation tasks (3 before running backfill, 3 after) running328

on the BEIJING site. The jobs all used 12 cores. The329

εCPU of grid simulation jobs drops by between 1.12%330

and 1.92% after adding the backfilling jobs. This is ex-331

pected, as a little bit of extra wall time can be added332

to the grid jobs if there is memory contention between333

the grid and BOINC jobs.334

When comparing the εCPU in TRIUMF, the differ-335

ence is larger. As shown in Table 7, the εCPU of grid336

simulation jobs drops by between 10.02% and 13.32%337

after adding the backfilling jobs. The drop can mainly338

be ascribed to two reasons. Firstly the memory usage339

of grid jobs in TRIUMF is higher since it runs 6-core340

multi-core jobs compared to 12-core in BEIJING. TRI-341

UMF also runs a larger variety of ATLAS jobs, some342

of which have higher memory requirements. Secondly,343

TRIUMF uses cgroups [21] to control the resource al-344

location between grid and BOINC jobs. With cgroups,345

BOINC jobs could “steal” the CPU cycles from the grid346

jobs, in other words, with cgroups BOINC is allocated347

more CPU cycles than it should have been.348

Table 6 CPU efficiency comparison for grid jobs in BEIJING
site (12 cores per job)

Sample
jobs

Avg. MEM
(MB)per core

Avg. εCPU

(%) per core
Avg. wall time

(day)

Before 113 405.04 97.07 0.44
Before 387 402.77 97.23 0.58
Before 430 403.44 97.37 0.52
After 127 394.95 95.95 0.64
After 292 374.24 95.88 0.68
After 120 389.12 95.45 0.41

Table 7 CPU efficiency comparison for grid jobs in TRIUMF
site (6 cores per job)

Sample
jobs

Avg. MEM
(MB)per core

Avg. εCPU

(%) per core
Avg. wall time

(day)

Before 79 248.38 97.67 0.60
Before 259 550.98 97.61 0.62
Before 2534 541.40 97.59 0.41
After 542 542.21 87.65 0.61
After 168 541.78 84.35 0.69
After 2858 539.72 86.36 0.59



6 Wenjing Wu et al.

However, this is tunable from both the BOINC and349

site’s resource allocation, depending on whether the350

goal of the site is to maximize the overall CPU time351

utilization of the cluster or to minimize the εCPU drop352

of the grid jobs. In general, since both grid and back-353

filling jobs are ATLAS jobs, for ATLAS dedicated sites,354

it is obvious that the goal should be to maximize the355

overall CPU time utilization.356

5.3 Impact of backfilling on ATLAS@Home357

The effects on running BOINC jobs in backfill mode358

can be measured by comparing similar jobs running359

on dedicated (BOINC-only) nodes and backfill nodes360

which have the same hardware configuration. The fol-361

lowing results came from one set of 48 cores dedicated362

for BOINC jobs and another set of 400 cores which ran363

both grid jobs and backfilling jobs. The metric used for364

comparison is the consumed CPU time per simulation365

event processed (a BOINC job consists of processing366

200 events).367

Since jobs from the same simulation task take a368

similar time to simulate each event, 8012 sample jobs369

from 8 different simulation tasks were selected to com-370

pare the dedicated and backfill nodes. As shown in Ta-371

ble 8, for each task the CPU time per event for the372

BOINC jobs differs by only 1-4% between the dedicated373

and backfill cores. This indicates that the CPU time374

exploited by the BOINC backfilling jobs (when they375

are actually using CPU) is similar to the CPU time376

from dedicated nodes. The εCPU is a clear indicator of377

whether the job is run on dedicated or backfilling cores378

- εCPU for backfilling jobs is much lower because they379

have to wait for CPU cycles to be released by higher380

priority processes.381

6 Conclusion382

There are many factors causing low overall CPU ef-383

ficiency of grid sites, and this study shows that for384

ATLAS grid sites it is very difficult to achieve CPU385

time utilization above 70% of the CPU time available386

from the site. The ATLAS@Home framework provided387

a convenient solution to experiment with backfilling388

grid sites thanks to a few unique and convenient fea-389

tures of the ATLAS@Home jobs. Running BOINC back-390

filling jobs on two ATLAS grid sites (one small site391

and one medium size site) has demonstrated that using392

backfilling can exploit a considerable amount of extra393

CPU time which could not otherwise be used by grid394

jobs. With backfilling jobs, the overall CPU time uti-395

lization reaches over 90% for both sites. This improves396

the overall CPU time utilization of the cluster by 15-397

42% depending on the workload of the grid jobs. The398

impact of the backfilling jobs was also measured. From399

the grid jobs point of view, there is no impact on the400

failure rate. The impact on the CPU efficiency of grid401

jobs is 1-11% depending on the configuration of the site,402

the memory usage of grid jobs and the resource alloca-403

tion configuration. From the BOINC jobs point of view,404

the CPU time exploited in the backfilling model gener-405

ates the same amount of events as the CPU time from406

resources dedicated to BOINC.407

Based on both the improvement of the overall CPU408

time utilization of the site and the impact on the CPU409

efficiency on the grid jobs, for the sites dedicated to AT-410

LAS it is recommended to prioritize the improvement411

of the overall CPU time utilization over the sacrificing412

of CPU efficiency of grid jobs. For non-dedicated sites,413

the BOINC resource allocation can be tuned to balance414

the overall CPU time utilization improvement and the415

sacrificing of the CPU efficiency of higher priority jobs.416

This method has so far been deployed on ATLAS grid417

sites, but the approach and results could also be ex-418

tended to general purpose clusters.419

Acknowledgements This work was done as part of the420

distributed computing research and development programme421

within the ATLAS Collaboration, which we thank for their422

support. In particular we wish to acknowledge the contribu-423

tion of the ATLAS Distributed Computing team (ADC). This424

project is supported by the Chinese NSF grants ”Research on425

fine grained Event Service for the BESIII offline software and426

its scheduling mechanism (No.11675201)” and ”Research on427

BESIII offline software and scheduling mechanism on desktop428

grid No.11405195”. We would also like to thank all the volun-429

teers of ATLAS@Home who made this project possible, and430

also for the support of NCRC, CFI and BCKDF (Canada)431

for the TRIUMF Tier1 site. ATLAS@Home relies on many432

products that comprise the ATLAS distributed computing433

ecosystem and so we would like to acknowledge the help and434

support of PanDA, Rucio and NorduGrid ARC.435

References436

1. Shiers, Jamie, The worldwide LHC computing grid (world-437

wide LCG), Computer physics communications, 177, 219-438

223 1-2 (2007)439

2. Bird, Ian and Bos, Kors and Brook, N and Duellmann, D440

and Eck, C and Fisk, I and Foster, D and Gibbard, B and441

Girone, M and Grandi, C and others, LHC computing Grid,442

Technical design report CERN-LHCC-2005-024,(2005)443

3. Simone Campana, ATLAS Distributed Computing in LHC444

Run2, Journal, 664, 032004 3 (2015)445

4. Filipcic A, ATLAS Collaboration, ATLAS Distributed446

Computing Experience and Performance During the LHC447

Run-2, Journal of Physics: Conference Series, 895, 052015448

5 (2017)449

5. Calafiura, Paolo and Leggett, Charles and Seuster, Rolf450

and Tsulaia, Vakhtang and Van Gemmeren, Peter, Run-451

ning ATLAS workloads within massively parallel dis-452



Using ATLAS@Home to exploit extra CPU from busy grid sites 7

Table 8 CPU time per event comparison for BOINC jobs

Task
Dedicated

Sample
jobs

Dedicated
cpu(sec)
per event

Dedicated
εCPU(%)

Backfilling
Sample

jobs

Backfilling
cpu(sec)
per event

Backfilling
εCPU(%)

offset(%)
CPU time
per event

1 673 172.02 91.49 3235 165.59 34.66 4
2 15 225.21 93.37 241 219.68 31.69 2
3 59 255.41 93.96 320 246.82 48.76 3
4 255 200.99 91.90 1220 198.55 34.30 1
5 74 211.48 92.98 334 204.66 38.26 3
6 60 289.73 93.85 320 291.78 43.38 1
7 78 481.49 95.06 284 471.89 48.53 2
8 248 218.78 93.01 596 220.32 51.00 1

tributed applications using Athena Multi-Process frame-453

work (AthenaMP), Journal of Physics: Conference Series,454

664, 072050 7 (2015)455

6. Bird I (2018) Worldwide LHC Computing Grid: Report on456

project status, resources and financial plan. CERN report457

CERN-RRB-2018-023458

7. Nilsson, Paul and Panitkin, Sergey and Oleynik, Danila459

and Maeno, Tadashi and De, Kaushik and Wu, Wenjing460

and Filipcic, Andrej and Wenaus, Torre and Klimentov,461

Alexei,Extending atlas computing to commercial clouds462

and supercomputers, PoS,034 (2014)463

8. C Adam-Bourdarios, D Cameron,A Filipcic, E Lancon464

and Wenjing Wu for the ATLAS Collaboration, AT-465

LAS@Home:Harnessing Volunteer Computing for HEP,466

21st International Conference on Computing in High En-467

ergy and Nuclear Physics, 664, 022009 2 (2015)468

9. Adam-Bourdarios, C., R. Bianchi, D. Cameron, A. Filipi,469

G. Isacchini, E. Lanon, Wenjing. Wu, and ATLAS Collab-470

oration, Volunteer Computing Experience with ATLAS@471

Home, Journal of Physics: Conference Series, 898, 052009 5472

(2017)473

10. David Anderson, Boinc: A system for public-resource474

computing and storage, proceedings of the 5th IEEE/ACM475

International Workshop on Grid Computing, 4–10 (2004)476

11. Myers, Daniel S and Bazinet, Adam L and Cummings,477

Michael P, Expanding the reach of Grid computing: com-478

bining Globus-and BOINC-based systems, Grid computing479

for bioinformatics and computational biology, 71-84 (2007)480

12. Maeno T, PanDA: distributed production and dis-481

tributed analysis system for ATLAS, Journal of Physics:482

Conference Series, 119, 062036 5 (2008)483

13. De, Kaushik and Klimentov, A and Maeno, T and Nils-484

son, P and Oleynik, D and Panitkin, S and Petrosyan,485

Artem and Schovancova, J and Vaniachine, A and Wenaus,486

T, The future of PanDA in ATLAS distributed computing,487

Journal of Physics: Conference Series, 664, 062035 6(2015)488

14. Rimoldi, A and Dell’Acqua, A and Gallas, M and Nairz,489

A and Boudreau, J and Tsulaia, V and Costanzo, D, The490

simulation for the ATLAS experiment: Present status and491

outlook, Nuclear Science Symposium Conference Record,492

2004 IEEE, 3, 1886–1890 (2004)493

15. ATLAS C, Yamamoto S, Shapiro M, et al, The simula-494

tion principle and performance of the ATLAS fast calorime-495

ter simulation FastCaloSim, ATL-COM-PHYS-2010-838496

(2010)497

16. Team C, HTCondor, http://research. cs. wisc.498

edu/htcondor/htc. html499

17. Yoo A B, Jette M A, Grondona M. Slurm: Simple500

linux utility for resource management[C]//Workshop on501

Job Scheduling Strategies for Parallel Processing. Springer,502

Berlin, Heidelberg, 2003: 44-60.503

18. Feng H, Misra V, Rubenstein D. PBS: a unified504

priority-based scheduler[C]//ACM SIGMETRICS Perfor-505

mance Evaluation Review. ACM, 2007, 35(1): 203-214.506

19. Difference Between Preemptive and Non-Preemptive507

Scheduling in OS,https://techdifferences.com/difference-508

between-preemptive-and-non-preemptive-scheduling-in-509

os.html510

20. P. Calafiura, K. De, W. Guan, T. Maeno, P. Nilsson,511

D. Oleynik, S. Panitkin, V. Tsulaia, P.V. Gemmeren, T.512

Wenaus, The ATLAS Event Service: A new approach to513

event processing, Journal of Physics: Conference Series, 664,514

062065 (2015)515

21. Introduction to Control Groups (Cgroups),516

https://sysadmincasts.com/episodes/14-introduction-517

to-linux-control-groups-cgroups518


