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The ATLAS multithreaded offline framework
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Abstract. In preparation for Run 3 of the LHC, scheduled to start in 2021, the
ATLAS experiment is revising its offline software so as to better take advan-
tage of machines with many cores. A major part of this effort is migrating the
software to run as a fully multithreaded application, as this has been shown to
significantly improve the memory scaling behavior. This note outlines changes
made to the software framework to support this migration.

1 Introduction

Run 3 of the Large Hadron Collider (LHC) at CERN is planned to start in 2021, with an ever-
increasing demand for computing to simulate, reconstruct, and analyze the data recorded
by the experiments. Meanwhile, the computing landscape is also evolving. Commodity CPU
clock speeds have not increased significantly for some time now; rather, systems are including
more cores and wider vector units. Further, memory prices have not been decreasing recently.
Thus, the ratio of memory to cores will likely be decreasing in deployed systems.

Typical computational problems in high-energy physics are embarrassingly parallel, in-
volving the processing of independent events. These can be trivially parallelized simply by
running multiple jobs on a given host. However, these jobs tend to require a lot of memory:
ATLAS reconstruction requires at least 4 GB of memory per job. If the number of cores per
system grows faster than the available memory, then eventually one cannot keep all the cores
occupied in this way. To fully use all the cores, one must reduce the memory required per
core.

For Run 2, ATLAS reduced memory requirements with multiprocessing. After initial-
ization, a job forks subprocesses processing events in parallel. Due to the copy-on-write
behavior of the operating system, unmodified memory pages remain shared between all sub-
processes, yielding memory savings up to about a factor of two [1]. This, however, is not
expected to be sufficient for Run 3. Fully multithreaded (MT) tests have demonstrated sub-
stantial additional memory savings [2]; therefore, ATLAS is adopting this solution [3].

Section 2 discusses changes that were made to the framework to support multithreading.
Section 3 briefly discusses the use of the multithreaded framework in the high-level trigger,
and Section 4 discusses the migration of algorithmic code and a compiler plugin that is used
to statically check for thread-safety violations. Section 5 then discusses the current status and
presents some preliminary scaling results.
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2 Athena framework and modifications for multithreading

The ATLAS offline software framework, Athena [4], is based on the Gaudi project [5], which
is developed jointly with LHCb and other experiments. An Athena application consists of
dynamically-loadable components, including Algorithms, Services, and Tools; see Fig. 1.
Algorithms process data which reside in a separate ‘event store’; they read objects (identified
by type and a string key) from the store and write new objects back to the store. Ideally, an
Algorithm itself does not store any event data. Services are singletons; examples include the
event store as well as error logging and random number generation. Tools serve as helpers
for other components. They are ideally accessed via an abstract interface, and may be owned
by Algorithms, Services, or other Tools.

Figure 1. General structure
of an Athena application.

In the currently-deployed, serial, version of Athena, Algorithms are executed in a fixed
sequence, which is defined during job configuration. To enable parallelism within an event,
Algorithms are modified so that they declare their inputs from, and outputs to, the event
store. This allows the construction of a dependency graph for Algorithms. A scheduler [6]
then looks for Algorithms that have all their inputs satisfied and queues them for execution,
using the task facility of the Intel Threading Building Blocks library (TBB) [7]. Further, by
allowing multiple event stores (‘slots’), multiple events can also be processed in parallel.

Algorithms declare their data dependencies as a side effect of data access [8]. Every Gaudi
component has a set of named properties, which are set via job configuration. To access data,
an Algorithm should first declare a property with the special type of either ReadHandleKey
or WriteHandleKey:

1 class MyAlg : public AthReentrantAlgorithm { ...
2 // Declare that this Algorithm will read an object of type X.
3 // The name of the property is ‘XKey’, and its default value is ‘x’.
4 SG::ReadHandleKey<X> m_xKey { this, "XKey", "x" };
5 // This Algorithm will also output an object of type Y.
6 SG::WriteHandleKey<Y> m_yKey { this, "YKey", "y" };

To actually read or write data, one creates a ReadHandle or WriteHandle from the
HandleKey object; the handles then act like smart pointers. (Handle objects are distinct
from HandleKeys to avoid requiring mutable state in Algorithm members.)

1 StatusCode MyAlg::execute_r (const EventContext& ctx)
2 {
3 // Create handle objects.
4 // The ctx argument identifies the event being processed.
5 // If omitted, it is read from thread-local storage.
6 SG::ReadHandle<X> xH (m_xKey, ctx);
7 SG::WriteHandle<Y> yH (m_yKey, ctx);



8 // New object to be written to event store.
9 auto y = std::make_unique<Y>();

10 // Initialize new object; the handle dereference reads the X object
11 // at this point.
12 y->fillFrom (*xH);
13 // Record new object in store.
14 ATH_CHECK( yH.record (std::move (y)) );
15 // The new object may be modified through the handle.
16 // Once the WriteHandle is destroyed, the object becomes immutable.
17 yH->setSomething();
18 return StatusCode::SUCCESS;
19 }

Handles can be set from the job configuration (expressed in Python):

1 # Create a new algorithm, overriding the XKey and YKey properties.
2 alg = MyAlg (’myalg’, XKey = ’myX’, YKey = ’myY’)
3 topSequence += alg # Add algorithm to the configuration.

The scheduler infers an Algorithm’s data dependencies from the set of HandleKeys that
the Algorithm has declared (ignoring any that have a null key). In addition to Algorithms,
Tools may also declare HandleKeys; such dependencies are automatically propagated to the
owning Algorithm. Services should not declare HandleKeys.

In the ATLAS Run 2 ‘xAOD’ event data model [9], objects are stored in a structure-of-
arrays fashion: object data consist of a set of named vectors of various types. Even after
an object has been recorded, new named variables, called ‘decorations,’ may be dynamically
added to an object, provided that they do not conflict with existing variables. Decorations are
also made known to the scheduler, using additional Handle types:

1 class MyAlg : public AthReentrantAlgorithm { ...
2 // Read decoration ‘indec’ and write decoration ‘outdec’
3 // on object ‘x’ of type ‘XContainer’.
4 SG::ReadDecorHandleKey<XContainer> m_inDecKey
5 { this, "InDecKey", "x.indec" };
6 SG::WriteDecorHandleKey<XContainer> m_outDecKey
7 { this, "OutDecKey", "x.outdec" };
8 ...
9 StatusCode MyAlg::execute_r (const EventContext& ctx) {

10 // Declare handles corresponding to the handle keys.
11 // Second template argument is the type of the decoration.
12 SG::ReadDecorHandle<XContainer, float> inDec (m_inDecKey, ctx);
13 SG::ReadDecorHandle<XContainer, float> outDec (m_outDecKey, ctx);
14

15 // Loop over objects in the container.
16 for (const X* x : inDec) {
17 // Copy the decoration for this container element.
18 outdec(*x) = indec(*x);

Decoration handles act like ordinary read handles, except that they have additional methods
to read and write the decorations themselves. Both read and write decoration handles will set
up a read dependency on the underlying object to which the decorations are attached.



A common use case is that of reprocessing, in which some objects existing in an input
file are remade from other data in the file. To support this case, Athena arranges that ob-
jects in the input file with keys that match any declared WriteHandleKeys are ignored, rather
than being read. Alternatively, objects existing in an input file may need to be modified, for
example to correct a deficiency in an earlier reconstruction version. For this case, an ob-
ject being read from an input file may be renamed. For example, if an input file contains
a container called ‘Electrons’, one may set up job configuration to rename ‘Electrons’
to, say, ‘Electrons_in’ on input. One can then schedule an Algorithm to apply a correc-
tion and produce ‘Electrons’ from ‘Electrons_in’. Any downstream Algorithms that
used the ‘Electrons’ container will then use the corrected versions without needing further
modification.

Besides event data, reconstruction Algorithms may depend on conditions data, which are
valid over some range of events or time. Since the framework may be processing multiple
events at one time, it needs to be able to manage having potentially several versions of a
conditions object active at any one time. Conditions data are kept in a separate ‘conditions
store’ analogous to the event store; objects recorded here are containers that can hold multiple
versions of a conditions object. A special Algorithm, CondInputLoader, runs at the start of
an event and ensures that the versions of conditions objects needed for the current event are
present in the store. A garbage collection procedure, invoked from the event loop, removes
conditions object versions when they are no longer needed. In some cases, Algorithms ap-
ply some transformation to conditions data. In this case, the transformation is factored out
into a separate ‘conditions Algorithm’, which acts on data in the conditions store in the same
way in which other Algorithms act on data in the event store. Algorithms (and conditions
Algorithms) access conditions data using additional handle types, ReadCondHandle and
WriteCondHandle, and the corresponding key classes. These handles transparently resolve
to the proper version of the conditions object appropriate for the current event. They also
make the conditions dependencies known to the scheduler, which uses them to run conditions
Algorithms at the appropriate times. See also [10] for more information about conditions in
the multithreaded framework.

The dependency information provided by handle declarations, referred to as ‘data flow,’
is one of the inputs to the Gaudi scheduler [6], It is also possible to declare ‘control flow’
rules, that explicitly state the sequence in which some set of Algorithms must run. Control
flow may also be used to implement filtering, which terminates processing of an event at
a given point if a condition is not satisfied. The scheduler uses both data and control flow
rules to find an efficient order for executing Algorithms. The scheduler was designed to have
low response time and constant amortized complexity, and to scale well to many threads. It is
capable of looking ahead in the dependency graph to maximize intra-event parallelism, which
is preferred to inter-event parallelism.

By default, a given Algorithm instance cannot be executing simultaneously in more
than one thread. To achieve more parallelism, an algorithm may be declared as clon-
able. In this case, multiple copies of the Algorithm instance are made and may be ex-
ecuting simultaneously (though any given copy will be executing in no more than one
thread at a time). An Algorithm is declared as clonable by overriding the virtual function
‘bool isClonable() const’ to return true; the number of copies created is then con-
trolled by the Cardinality property of the Algorithm. Finally, an Algorithm may be de-
clared as reentrant. In this case, only a single instance of the Algorithm is used, but that
instance may execute in multiple threads simultaneously. An Algorithm is declared as reen-
trant by deriving from the special base class AthReentrantAlgorithm. A non-reentrant
Algorithm has a non-constmethod execute() that is called for every event. For a reentrant
Algorithm, the corresponding interface is instead:



1 virtual StatusCode execute_r (const EventContext& ctx) const;

The context argument identifies the particular event being processed. Since the execute
method of a reentrant Algorithm is const, the Algorithm should be thread-safe as long as
const-correctness is strictly observed. But if the Algorithm does have any internal mutable
state, then that must be written to be explicitly thread-safe.

The I/O components of Athena have been made thread-safe. Currently, there is one ser-
vice for reading event data, one for writing event data, and one for reading conditions data.
Each of these is serialized internally, but they may run concurrently with each other. The
ROOT [11] TTreeCache is used to perform read-ahead and caching of event data to prevent
I/O thrashing when multiple events are being processed simultaneously. Additional paral-
lelism on writing is gained by using the implicit multithreading mode of ROOT. See [12] for
more information on I/O in the multithreaded framework.

Gaudi supports a form of structured callbacks called ‘incidents.’ At any time, any piece
of code can raise an incident of some type. Arbitrary Gaudi components can then register to
receive a callback when a given incident type is raised. The callbacks are brokered by a Gaudi
service, IncidentSvc. Examples of incident types are starting and ending a file, starting and
ending an event, and so on. This is problematic for MT because incidents could in principle
be asynchronous with respect to event processing, and they don’t respect event boundaries.

Upon examining how incidents were used in the reconstruction, it was found that almost
all were used to signal discrete state changes and were generated outside of Algorithms,
from the event loop. Incident handling was therefore redesigned for MT: rather than having
incidents being called directly from the IncidentSvc, they are instead called from special
Algorithms that are run at the beginning and end of event processing. Incidents themselves
are extended to include an event context. Algorithms no longer receive incidents directly.
Instead, incidents are received by services, which can, if needed, retain data separately for
each active event context. Algorithms can then call these services in order to observe the
effects of incidents.

Random number generation is another issue that can be problematic for MT jobs. The
generator state must be protected against concurrent access; but using locking or thread-local
storage for every random number call can add a significant performance overhead. Further,
the sequence of random numbers should be reproducible from run to run, regardless of the
order in which Algorithms are scheduled.

In Athena, this is managed by a service, AthRNGSvc. Clients call this to get a ‘wrapper’
object that contains an array of generator states, one for each event slot. The client Algorithm
identifies itself to the service, so that each Algorithm gets a distinct wrapper object. The gen-
erator state can then be retrieved from the wrapper and used without further synchronization.
This is safe because no algorithm can be executing on the same event slot in more than one
thread. An example of the usage of AthRNGSvc is shown below.

1 ServiceHandle<IAthRNGSvc> m_rngSvc; // Reference to service.
2 ....
3 StatusCode MyAlg::execute_r (const EventContext& ctx) { ...
4 // Get wrapper object.
5 ATHRNG::RNGWrapper* wrapper = m_rngSvc->getEngine (this);
6 // Reseed from current run and event number.
7 wrapper->setSeed (this->name(), ctx);
8 // Get random generator.
9 CLHEP::HepRandomEngine* engine = wrapper->getEngine();



3 Use in the high-level trigger

Besides offline reconstruction, an important use case for the ATLAS framework is the high-
level trigger (HLT), which reuses many of the offline components. In the Run 2 HLT, all
trigger processing takes place within a single Gaudi Algorithm, which internally steers the
execution of trigger-specific algorithms. In practice, this leads to substantial code duplica-
tion, as the same Algorithm often needs to exist in both offline and HLT versions. For Run 3,
the HLT steering has been redesigned to use the common Athena scheduler to run HLT Al-
gorithms, allowing the same Algorithm classes to be used both offline and for the trigger.

A key requirement for the HLT is the ability to do reconstruction only within a geomet-
rically limited region of interest (ROI). This is implemented in the multithreaded framework
via an ‘EventView’. The classes used to access event data, ReadHandle and WriteHandle,
communicate with the event data store only through an abstract interface. An EventView ob-
ject implements this same interface but provides only a subset of the detector data. In this way,
Algorithms that access the data using handles can transparently be restricted to the subset of
event data provided by an EventView. At the start of processing, a specialized Algorithm
creates the EventView, populates it with region-specific data, and requests that the scheduler
run a sequence of Algorithms in the context of the view. Once processing has finished in the
EventViews for all ROIs, the results are concatenated and entered into the primary event data
store.

See [13] for additional information about the implementation of the HLT software for
Run 3.

4 Algorithmic code migration and static code checker

Numerous changes must be made to algorithmic code in order to work properly with thread-
ing. These include:

• Use handles to access event and conditions data.

• Algorithms that transform or cache conditions data must be changed to use a conditions
Algorithm.

• Some existing Algorithms were relying on modifying data objects that other Algorithms
had recorded in the event store. These must be redesigned.

• Avoid thread-unfriendly constructs, including non-const static data and const-
correctness violations.

• Services and reentrant Algorithms must be explicitly thread-safe.

ATLAS has developed a static checker [14] to assist in locating some categories of thread-
unfriendly code. This was inspired by the static checker used by CMS [15], but the ATLAS
checker is written as a plugin for gcc [16]. As this is the primary compiler used by ATLAS, it
can be enabled for all compilations by the ATLAS build system. Problems for which it checks
include the use of non-const static data and const-correctness violations, including use of
mutable members, casting away const, and returning non-const pointer members from a
const member function. The checker operates on an ‘opt-in’ basis, with authors tagging
packages or source files to be checked. Violations detected by the checker can be suppressed
by annotating the source using macros that expand to custom C++ attributes. For example,
discarding const would normally elicit a warning, but this may be suppressed:

1 const int * y = ...;
2 int* yy ATLAS_THREAD_SAFE = const_cast<int*> (y);



In addition to identifying thread-safety issues, the static checker also enforces some elements
of the ATLAS coding standards, in particular naming conventions.

5 Status and preliminary results

At the present time, almost all of the framework functionality thought to be needed for the
MT migration is complete and available. Migration of algorithmic code is well underway.
The task of changing event data access to use handles is essentially complete. Migration to
the new conditions infrastructure is continuing, as well as making thread-safety fixes. The
goal is to have the full reconstruction working as a MT job by the end of 2019, leaving 2020
for validation, debugging, and performance improvements.

Fully MT jobs have been successfully run for the calorimeter subset of the reconstruction
on simulated data. Some preliminary scaling data for this job are shown in Fig. 2. For these
tests, writing the output was disabled; this is a known bottleneck, but it is expected to become
less important as more of the reconstruction is implemented. The CPU scaling behavior is
promising for this stage of the project; work continues to identify and resolve instances of
lock contention that affect the scaling. The memory usage is seen to increase very modestly
with the number of threads.
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Figure 2. Scaling of CPU time and memory required versus number of threads for a calorimeter-only
reconstruction job with output disabled reading simulated data. Tested on an Intel Xeon X5560 system
with eight physical cores.

6 Summary

In preparation for Run 3, ATLAS is redesigning its offline and trigger software to become
fully multithreaded. This is in order to reduce the amount of memory required per core, but
it will also serve as a foundation for future developments to adapt to expected trends in hard-
ware, such as the use of heterogeneous systems. The migration is currently well underway,
with some selected pieces of the reconstruction already working in a fully multithreaded job.
It is expected to be complete before Run 3 starts in early 2021.

This work is supported in part by the U.S. Department of Energy under contract DE-
AC02-98CH10886 with Brookhaven National Laboratory.
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