
A
TL

-S
O

FT
-P

R
O

C
-2

01
8-

02
9

25
N

ov
em

be
r

20
18

Harvester : an edge service harvesting
heterogeneous resources for ATLAS

Tadashi ​Maeno​1*​, ​Fernando Harald Barreiro Megino​2​, ​Doug Benjamin​3​, ​David Cameron​4​,
John Taylor Childers​3​, ​Kaushik De​2​, ​Alessandro De Salvo​5​, ​Andrej Filipcic​6​, ​John Hover​1​,
FaHui​ Lin​7​, ​Danila​ Oleynik​2​, on behalf of the ATLAS Collaboration

 ​Brookhaven National Laboratory, NY, USA
1

2 ​University of Texas at Arlington, TX, USA
3 ​Argonne National Laboratory, IL, USA
4 ​University of Oslo, Oslo, Norway
5 ​Sapienza Universita e INFN, Roma I, Roma, Italy
6 ​Jozef Stefan Institute, Ljubljana, Slovenia
7 ​Academia Sinica, Taipei, Taiwan

Abstract. ​The Production and Distributed Analysis (PanDA) system has been
successfully used in the ATLAS experiment as a data-driven workload
management system. The PanDA system has proven to be capable of
operating at the Large Hadron Collider data processing scale over the last
decade including the Run 1 and Run 2 data taking periods. PanDA was
originally designed to be weakly coupled with the WLCG processing
resources. Lately the system is revealing the difficulties to optimally
integrate and exploit new resource types such as HPC and preemptible
cloud resources with instant spin-up, and ​new ​workflows such as the event
service, because their intrinsic nature and requirements are quite different
from that of traditional grid resources. Therefore, a new component,
Harvester, has been developed to ​mediate the control and information flow
between PanDA and the resources, in order to enable more intelligent
workload management and dynamic resource provisioning based on
detailed knowledge of resource capabilities and their real-time state.
Harvester has been designed around a modular structure to separate core
functions and resource specific plugins, simplifying the operation with
heterogeneous resources and providing a uniform monitoring view. This
paper will give an overview of the Harvester architecture, current status
with various resources, and future plans​.

1​​ ​​Introduction

The Production and Distributed Analysis (PanDA) system [1] has been developed to
meet ATLAS [2] production and analysis requirements for a data-driven workload

1*​ ​Corresponding author: ​tmaeno@bnl.gov

mailto:tmaeno@bnl.gov

management system capable of operating at LHC [3] data processing scale. PanDA
scalability has been demonstrated in ATLAS through the rapid increase in usage over the
last decade. PanDA was designed to have the flexibility to adapt to emerging computing
technologies in processing, storage, networking and distributed computing middleware. The
flexibility has been successfully demonstrated through the past years of evolving
technologies adopted by computing centers in ATLAS which span many continents. PanDA
performed very well during the LHC data taking. The system had been producing high
volumes of Monte Carlo samples and making large-scale diverse computing resources
available for individual analysis. The PanDA system used to rely on a server-pilot diagram
where the PanDA server centrally manages workload with various granularities, such as
task, job, and event, while the pilot executes jobs on compute resources. This model has
been working well for the grid with 250,000 jobs concurrently running as underlying
resources are not very heterogeneous, but not very well for opportunistic resources,
especially for HPCs. Each HPC center has a different edge service and operational policy,
leading to an over-stretched architecture of the pilot and incoherent implementation at
different HPCs. In addition, too many manual interventions were required to effectively fill
available CPU resources at all HPC centers. Although some HPC sites had seamlessly been
integrated with the grid through ARC Control Tower (aCT) [4], it was tightly coupled with
ARC Compute Element [5] which could not be deployed at all HPC centers, especially at
large HPC centers in US.

A new component, Harvester, has been developed to address those issues since
December 2016 with wide collaboration of resource and PanDA experts. Harvester is a
resource-facing service between the PanDA server and collection of pilots. It is stateless
with a modular design to work with different resource types and workflows. The main
objectives of Harvester are as follows: First, it should be a common machinery for pilot
provisioning on all ATLAS computing resources. Second, it should provide a commonality
layer bringing coherence to HPC implementations. Third, it should add a capability to
timely optimize CPU allocation among various resource types to remove batch-level static
partitioning. Finally, it should integrate the PanDA system and resources more tightly for
new advanced workflows. We will present in this paper a brief overview of the Harvester
architecture, current status with various resources, and plans for the future.

2 ​​Overview of the Harvester architecture

Figure 1 shows a schematic view of the Harvester architecture. Harvester is a stateless
service with a local master database and a central slave database. The local database is used
for real-time bookkeeping close to resources, and the central database is periodically
synchronized with the local database to provide the resource information to the PanDA
server. The PanDA server uses the information together with global overview of workload
distribution in order to orchestrate behaviour of Harvester instances. Therefore,
communication between Harvester and the PanDA server is bidirectional. Two types of
database engines are supported, sqlite3 and MariaDB. Each Harvester instance can be
configured to choose a proper database as well as the number of threads, the number of
processes, and the number of physical nodes, depending on available runtime environment.
Multiple agents are asynchronously running in a Harvester instance to take actions based on
transition of job status in the local database. Figure 2 shows how Harvester instances work
in the PanDA system. For example, Harvester is supposed to run on edge nodes at HPC

centers where CPU and memory usage are strictly limited, and sqlite3 and only one process
are used in this kind of resource-limited environment. It is also possible to run Harvester
instances outside of the HPC network if HPC centers allow remote access to compute
resources. On the other hand, it is possible to have dedicated physical nodes for the grid and
cloud, and in this kind of resource-rich environment MariaDB and multiple-processes are
used with multiple physical nodes.

 ​Fig. 1.​​ Schematic view of Harvester architecture.

 ​Fig. 2.​​ Harvester instances in the PanDA system.

Harvester accesses resources through plugins which have been developed by resource
experts. When Harvester instances run on edge nodes of HPC centers they access compute
nodes through local HPC batch systems using HPC submission plugins. Input and output
data are transferred with various plugins which use Rucio [6], Globus Online [7], gfal [8],
and so on, according to data placement policy at each HPC center. When Harvester
instances run outside of HPC network, different sets of plugins are used which access
compute nodes through computing elements, SSH, and so on. For the grid, there is a
Harvester pool on dedicated physical nodes which are centrally managed and access worker
nodes through grid job submission engines like HTCondor [9] and aCT. The same
Harvester pool can work for cloud with different sets of plugins which use GCE API [10],
Kubernetes API [11], and so on to spin-up virtual machines or containers, or HTCondor to
talk to virtual machines which are booted by other services.

3 ​​Current status

3.1 Grid

Fig. 3.​​ The number of slots running single core jobs (in red) and multi core jobs (in yellow) at a site.

Migration to use Harvester for large scale production has been completed at CERN,
Taiwan, Spanish and Italian sites, and migration at other sites are being scheduled. The
runtime test framework for ATLAS offline software has been changed to use Harvester to
cope with the intrinsic nature of intermittent workload submission. A mechanism has been
developed to dynamically optimize resource partitioning based on current physics needs
while getting rid of static batch-level partitioning, which is described in Ref [12]. Figure 3

shows that the mechanism managed to keep the ratio between the number of single core
jobs and multi cores jobs at a site. It is planned to have better site description for more
optimal resource usage.

3.2 Cloud

Cloud resources at CERN + Leibniz Supercomputing Centre + The University of
Edinburgh with 1.2k CPU cores are running with Harvester in production, where virtual
machines are booted by HTCondor. There are two major developments ongoing for cloud.
The first development is for ATLAS High Level Trigger (HLT) CPU farm with 50k cores,
aka Sim@P1, where resource availability widely fluctuates depending on needs for the
original HLT usage [13]. Workload should proactively be assigned to the resource for quick
ramp up before the resource becomes available, while workload should quickly be released
as soon as HLT takes the resource back. The other development is to use native cloud API,
such as GCE, EC2, and Kubernetes API. Plugins with GCE API have been successfully
demonstrated in the context of the Data Ocean project [14] with GCE, Google Storage +
preemptible virtual machines. Figure 4 shows success rate of jobs running with GCE +
Harvester, where the resource was reconfigured to use preemptible virtual machines instead
of normal virtual machines on 22nd May 2018 to see the effect of switching. Success rate
become worse since some jobs were terminated during they were still running.

Fig. 4.​​ Success rate of jobs running with GCE + Harvester.

3.3 HPC

Harvester has been running in production at Theta/ALCF [15], Titan/OLCF [16],
Cori/NERSC [17] since February 2018 with a mechanism to dynamically combine many
PanDA jobs to a single batch submission. Figure 5 shows the number of events processed
per week at US HPCs for the last 12 months where there has been a steady increase since
Harvester was up and running. The number of events at Cori/NERSC shown in yellow has
not increased well since May 2018 because it had consumed all CPU allocation by then.
Many development activities are going in parallel: Combination of jumbo payload and

event service [18, 19] is going to address difficulties in payload sizing for HPCs.
Operational policies at HPC centers drive the need for large payloads, while the system has
to be protected against early termination due to preemption and/or inaccurate estimation of
execution time. Some HPCs are being integrated to the grid infrastructure with HTCondor
or ARC computing elements. A capability to dynamically change the payload size has been
developed to feed optimal payloads to HPCs based on real-time information from HPC
batch systems. Also, there is an idea to use a data streaming service and local cache service
at HPC centers to dynamically deliver data to compute nodes on demand, which should be
developed coherently with developments for ATLAS Event Streaming service [20].

 ​Fig. 5.​​ The number of events processed per week at US HPCs for last 12 months.

4 ​​Beyond ATLAS

Harvester is experiment agnostic. Six Harvester instances have been configured and ready
to use for non-ATLAS experiment in BigPanDA project, including one regional instance at
Thomas Jefferson Lab [21]. nEDM, LQCD, and LSST payloads have been tested, also with
Next Generation Executer [22]. The first LQCD production was successful at BNL. A new
plugin has been developed so that Harvester can talk to other workload management
systems than PanDA, which will expand Harvester usage more into other experiments.

5 ​​Future plans

New developments and challenges are still coming. The entire ATLAS grid should be
migrated to Harvester for production as well as analysis. The mechanism of dynamic

resource partitioning should be enhanced to optimize resource allocation between
production and analysis. Better site description should be implemented for more optimal
resource usage. All HPCs should seamlessly be integrated with the grid resources without
any manual interventions. Finally, Harvester usage could be expanded beyond ATLAS.

6 ​​Conclusions
Harvester has been developed since December 2016 with wide collaboration of resource
and PanDA experts. Many development activities have been ongoing in parallel for various
resources with coherent implementations to meet different requirements. Harvester is
already in production for various resources, while there are still a lot of challenges to come.

Acknowledgement
This manuscript has been authored by employees of Brookhaven Science Associates, LLC
under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by
accepting the manuscript for publication acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government
purposes.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. K. De et al., J. Phys. Conf. Ser.​ ​664 ​​062035 (2015)
2. ATLAS Collaboration, J. Inst.​ ​3 ​​S08003 (2008)
3. Evans L and Bryant P (editors), J. Inst.​ ​3​​ S08001 (2008)
4. J. K. Nilsen et al., J. Phys. Conf. Ser. ​664​​ 062042 (2015)
5. ARC Compute Element [software], available from ​http://www.nordugrid.org/arc/ce/

[accessed 2018-11-22]
6. Rucio [software], available from ​https://rucio.cern.ch/​ [accessed 2018-11-22]
7. Globus Online [software], available from ​https://www.globus.org/​ [accessed

2018-11-22]

http://www.nordugrid.org/arc/ce/
https://rucio.cern.ch/
https://www.globus.org/

8. gfal [software] Available from ​https://dmc.web.cern.ch/projects/gfal-2/home​ [accessed
2018-11-22]

9. HTCondor [software], available from ​https://research.cs.wisc.edu/htcondor/​ [accessed
2018-11-22]

10. GCE API [software], available from
https://cloud.google.com/compute/docs/reference/rest/v1/​ [accessed 2018-11-22]

11. Kubernetes API [software], available from
]​https://kubernetes.io/docs/concepts/overview/kubernetes-api/​ [accessed 2018-11-22]

12. F. H. Barreiro Megino et al., J. Phys. Conf. Ser. (to be published)
13. F. Berghaus et al., Phys. Conf. Ser. (to be published)
14. M. Lassnig et al., J. Phys. Conf. Ser. (to be published)
15. ALCF Theta, ​http://www.alcf.anl.gov/
16. OLCF Titan, ​https://www.olcf.ornl.gov/titan/
17. NERSC Cori, ​https://www.nersc.gov/
18. T. Wenaus et al., J. Phys. Conf. Ser.​ ​664 ​​062065 (2015)
19. V. Tsulaia et al., J. Phys. Conf. Ser. ​664 ​​092025 (2015)
20. N. Magini et al., J. Phys. Conf. Ser. (to be published)
21. P. Svirin​ et al. J. Phys. Conf. Ser. (to be published)
22. M. Turilli et al., arXiv preprint arXiv:1609.03484 (2016)

https://dmc.web.cern.ch/projects/gfal-2/home
https://research.cs.wisc.edu/htcondor/
https://cloud.google.com/compute/docs/reference/rest/v1/
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
http://www.alcf.anl.gov/
https://www.olcf.ornl.gov/titan/
https://www.nersc.gov/

