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Abstract. ​The Production and Distributed Analysis (PanDA) system has been          
successfully used in the ATLAS experiment as a data-driven workload          
management system. The PanDA system has proven to be capable of           
operating at the Large Hadron Collider data processing scale over the last            
decade including the Run 1 and Run 2 data taking periods. PanDA was             
originally designed to be weakly coupled with the WLCG processing          
resources. Lately the system is revealing the difficulties to optimally          
integrate and exploit new resource types such as HPC and preemptible           
cloud resources with instant spin-up, and ​new ​workflows such as the event            
service, because their intrinsic nature and requirements are quite different          
from that of traditional grid resources. Therefore, a new component,          
Harvester, has been developed to ​mediate the control and information flow           
between PanDA and the resources, in order to enable more intelligent           
workload management and dynamic resource provisioning based on        
detailed knowledge of resource capabilities and their real-time state.         
Harvester has been designed around a modular structure to separate core           
functions and resource specific plugins, simplifying the operation with         
heterogeneous resources and providing a uniform monitoring view. This         
paper will give an overview of the Harvester architecture, current status           
with various resources, and future plans​. 

1​​ ​​Introduction  

The Production and Distributed Analysis (PanDA) system [1] has been developed to                       
meet ATLAS [2] production and analysis requirements for a data-driven workload                     
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management system capable of operating at LHC [3] data processing scale. PanDA                       
scalability has been demonstrated in ATLAS through the rapid increase in usage over the                           
last decade. PanDA was designed to have the flexibility to adapt to emerging computing                           
technologies in processing, storage, networking and distributed computing middleware. The                   
flexibility has been successfully demonstrated through the past years of evolving                     
technologies adopted by computing centers in ATLAS which span many continents. PanDA                       
performed very well during the LHC data taking. The system had been producing high                           
volumes of Monte Carlo samples and making large-scale diverse computing resources                     
available for individual analysis. The PanDA system used to rely on a server-pilot diagram                           
where the PanDA server centrally manages workload with various granularities, such as                       
task, job, and event, while the pilot executes jobs on compute resources. This model has                             
been working well for the grid with 250,000 jobs concurrently running as underlying                         
resources are not very heterogeneous, but not very well for opportunistic resources,                       
especially for HPCs. Each HPC center has a different edge service and operational policy,                           
leading to an over-stretched architecture of the pilot and incoherent implementation at                       
different HPCs. In addition, too many manual interventions were required to effectively fill                         
available CPU resources at all HPC centers. Although some HPC sites had seamlessly been                           
integrated with the grid through ARC Control Tower (aCT) [4], it was tightly coupled with                             
ARC Compute Element [5] which could not be deployed at all HPC centers, especially at                             
large HPC centers in US.   

A new component, Harvester, has been developed to address those issues since                       
December 2016 with wide collaboration of resource and PanDA experts. Harvester is a                         
resource-facing service between the PanDA server and collection of pilots. It is stateless                         
with a modular design to work with different resource types and workflows. The main                           
objectives of Harvester are as follows: First, it should be a common machinery for pilot                             
provisioning on all ATLAS computing resources. Second, it should provide a commonality                       
layer bringing coherence to HPC implementations. Third, it should add a capability to                         
timely optimize CPU allocation among various resource types to remove batch-level static                       
partitioning. Finally, it should integrate the PanDA system and resources more tightly for                         
new advanced workflows. We will present in this paper a brief overview of the Harvester                             
architecture, current status with various resources, and plans for the future. 
 

2 ​​Overview of the Harvester architecture 
 
Figure 1 shows a schematic view of the Harvester architecture. Harvester is a stateless                           
service with a local master database and a central slave database. The local database is used                               
for real-time bookkeeping close to resources, and the central database is periodically                       
synchronized with the local database to provide the resource information to the PanDA                         
server. The PanDA server uses the information together with global overview of workload                         
distribution in order to orchestrate behaviour of Harvester instances. Therefore,                   
communication between Harvester and the PanDA server is bidirectional. Two types of                       
database engines are supported, sqlite3 and MariaDB. Each Harvester instance can be                       
configured to choose a proper database as well as the number of threads, the number of                               
processes, and the number of physical nodes, depending on available runtime environment.                       
Multiple agents are asynchronously running in a Harvester instance to take actions based on                           
transition of job status in the local database. Figure 2 shows how Harvester instances work                             
in the PanDA system. For example, Harvester is supposed to run on edge nodes at HPC                               



centers where CPU and memory usage are strictly limited, and sqlite3 and only one process                             
are used in this kind of resource-limited environment. It is also possible to run Harvester                             
instances outside of the HPC network if HPC centers allow remote access to compute                           
resources. On the other hand, it is possible to have dedicated physical nodes for the grid and                                 
cloud, and in this kind of resource-rich environment MariaDB and multiple-processes are                       
used with multiple physical nodes.  

 
                             ​Fig. 1.​​ Schematic view of Harvester architecture. 
 
 

 
                                ​Fig. 2.​​ Harvester instances in the PanDA system. 



 
Harvester accesses resources through plugins which have been developed by resource                     
experts. When Harvester instances run on edge nodes of HPC centers they access compute                           
nodes through local HPC batch systems using HPC submission plugins. Input and output                         
data are transferred with various plugins which use Rucio [6], Globus Online [7], gfal [8],                             
and so on, according to data placement policy at each HPC center. When Harvester                           
instances run outside of HPC network, different sets of plugins are used which access                           
compute nodes through computing elements, SSH, and so on. For the grid, there is a                             
Harvester pool on dedicated physical nodes which are centrally managed and access worker                         
nodes through grid job submission engines like HTCondor [9] and aCT. The same                         
Harvester pool can work for cloud with different sets of plugins which use GCE API [10],                               
Kubernetes API [11], and so on to spin-up virtual machines or containers, or HTCondor to                             
talk to virtual machines which are booted by other services. 

 

3 ​​Current status   

3.1 Grid 

 
Fig. 3.​​ The number of slots running single core jobs (in red) and multi core jobs (in yellow) at a site. 
 
 
Migration to use Harvester for large scale production has been completed at CERN,                         
Taiwan, Spanish and Italian sites, and migration at other sites are being scheduled. The                           
runtime test framework for ATLAS offline software has been changed to use Harvester to                           
cope with the intrinsic nature of intermittent workload submission. A mechanism has been                         
developed to dynamically optimize resource partitioning based on current physics needs                     
while getting rid of static batch-level partitioning, which is described in Ref [12]. Figure 3                             



shows that the mechanism managed to keep the ratio between the number of single core                             
jobs and multi cores jobs at a site. It is planned to have better site description for more                                   
optimal resource usage. 
 

3.2 Cloud 

Cloud resources at CERN + Leibniz Supercomputing Centre + The University of                       
Edinburgh with 1.2k CPU cores are running with Harvester in production, where virtual                         
machines are booted by HTCondor. There are two major developments ongoing for cloud.                         
The first development is for ATLAS High Level Trigger (HLT) CPU farm with 50k cores,                             
aka Sim@P1, where resource availability widely fluctuates depending on needs for the                       
original HLT usage [13]. Workload should proactively be assigned to the resource for quick                           
ramp up before the resource becomes available, while workload should quickly be released                         
as soon as HLT takes the resource back. The other development is to use native cloud API,                                 
such as GCE, EC2, and Kubernetes API. Plugins with GCE API have been successfully                           
demonstrated in the context of the Data Ocean project [14] with GCE, Google Storage +                             
preemptible virtual machines. Figure 4 shows success rate of jobs running with GCE +                           
Harvester, where the resource was reconfigured to use preemptible virtual machines instead                       
of normal virtual machines on 22nd May 2018 to see the effect of switching. Success rate                               
become worse since some jobs were terminated during they were still running. 

 

 
Fig. 4.​​ Success rate of jobs running with GCE + Harvester.  

3.3 HPC 

Harvester has been running in production at Theta/ALCF [15], Titan/OLCF [16],                     
Cori/NERSC [17] since February 2018 with a mechanism to dynamically combine many                       
PanDA jobs to a single batch submission. Figure 5 shows the number of events processed                             
per week at US HPCs for the last 12 months where there has been a steady increase since                                   
Harvester was up and running. The number of events at Cori/NERSC shown in yellow has                             
not increased well since May 2018 because it had consumed all CPU allocation by then.                             
Many development activities are going in parallel: Combination of jumbo payload and                       



event service [18, 19] is going to address difficulties in payload sizing for HPCs.                           
Operational policies at HPC centers drive the need for large payloads, while the system has                             
to be protected against early termination due to preemption and/or inaccurate estimation of                         
execution time. Some HPCs are being integrated to the grid infrastructure with HTCondor                         
or ARC computing elements. A capability to dynamically change the payload size has been                           
developed to feed optimal payloads to HPCs based on real-time information from HPC                         
batch systems. Also, there is an idea to use a data streaming service and local cache service                                 
at HPC centers to dynamically deliver data to compute nodes on demand, which should be                             
developed coherently with developments for ATLAS Event Streaming service [20]. 
 

 
               ​Fig. 5.​​ The number of events processed per week at US HPCs for last 12 months. 
 

4 ​​Beyond ATLAS 

Harvester is experiment agnostic. Six Harvester instances have been configured and ready                       
to use for non-ATLAS experiment in BigPanDA project, including one regional instance at                         
Thomas Jefferson Lab [21]. nEDM, LQCD, and LSST payloads have been tested, also with                           
Next Generation Executer [22]. The first LQCD production was successful at BNL. A new                           
plugin has been developed so that Harvester can talk to other workload management                         
systems than PanDA, which will expand Harvester usage more into other experiments.  
 

5 ​​Future plans  

New developments and challenges are still coming. The entire ATLAS grid should be                         
migrated to Harvester for production as well as analysis. The mechanism of dynamic                         



resource partitioning should be enhanced to optimize resource allocation between                   
production and analysis. Better site description should be implemented for more optimal                       
resource usage. All HPCs should seamlessly be integrated with the grid resources without                         
any manual interventions. Finally, Harvester usage could be expanded beyond ATLAS. 
 

6 ​​Conclusions  
Harvester has been developed since December 2016 with wide collaboration of resource                       
and PanDA experts. Many development activities have been ongoing in parallel for various                         
resources with coherent implementations to meet different requirements. Harvester is                   
already in production for various resources, while there are still a lot of challenges to come. 
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