
A
TL

-D
A

Q
-P

R
O

C
-2

01
8-

03
6

24
N

ov
em

be
r

20
18

Software based control and monitoring of a hardware
based track reconstruction system for the ATLAS experi-
ment

Simone Sottocornola1∗ , on behalf of the ATLAS Collaboration
1INFN and Universitá di Pavia

Abstract. During the Run 2 of the Large Hadron Collider (LHC) the instan-
taneous luminosity exceeded the nominal value of 1034 cm−2 s−1 with a 25 ns
bunch crossing period and the number of overlapping proton-proton interactions
per bunch crossing increased to a maximum of about 80. These conditions pose
a challenge to the trigger system of the experiments that has to manage rates
while keeping a good efficiency for interesting physics events. This document
summarizes the software based control and monitoring of a hardware-based
track reconstruction system for the ATLAS experiment, called Fast Tracker
(FTK), composed of associative memories and FPGAs operating at the rate of
100 kHz and providing high quality track information within the available la-
tency to the high-level trigger. In particular, we will detail the commissioning
of the FTK within the ATLAS online software system presenting the solutions
adopted for scaling up the system and ensuring robustness and redundancy. We
will also describe the solutions to challenges such as controlling the occupancy
of the buffers, managing the heterogeneous and large configuration, and provid-
ing monitoring information at sufficient rate.

1 Introduction

The first Large Hadron Collider (LHC) data taking period (Run 1), concluded in 2012 us-
ing only a fraction of the full LHC potential, already achieved fundamental successes as the
Higgs boson’s discovery and the placement of strong limits on new physics phenomena. Af-
ter a shutdown period of almost two years, the LHC restarted with much higher instantaneous
luminosity with respect to Run 1 (see Figure 1). In the Run 2 period, the LHC provided 13
TeV collisions, almost twice the energy of Run 1 with an integrated luminosity of ' 40 fb−1

per year and, therefore, increasing the discovery potential of the experiments. The greater
instantaneous luminosity expected during Run 3 will provide an average number of simul-
taneous collisions (pileup) up to 80. In order to achieve the required online data reduction,
the LHC experiments need to increase the use of silicon detector information at the trigger
level, reconstructing the track trajectories close to the interaction points to distinguish the
contribution of each pileup collision.
Because of its fine resolution and granularity, tracking information is critical for selecting
which level-1 triggered events should be kept for further processing. However, extensive
∗e-mail: simone.sottocornola@cern.ch
Copyright 2018 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

Figure 1. Left: Luminosity delivered by the LHC from 2011 to 2018 (Run 1 and Run 2). Right: Mean
number of interactions per bunch crossing from 2015 to 2018 (Run 2)[1].

tracking at level-1 rate is prohibitively expensive in terms of processing time per event or
needed computing cores. Therefore, it is sparingly used within specific detector regions
which have already been identified as potentially interesting by the level-1 trigger and for
full event tracking at low rates (' few kHz). This approach has limitations in several cases.
Firstly, there is a limit to either the number or size of the interesting regions processed by
the second level of trigger which forces additional non-tracking cuts to be applied and results
in reduced efficiency or higher thresholds for the considered objects. Secondly, there are
cases where global event information, such as the location of the hard interaction vertex or
the number of primary vertices in the event, are useful for object selections or corrections to
the other detector quantities. Both problems are particularly critical for the trigger selection
of signatures containing third generation fermions, such as τ or b-jets, for which tracking
information is fundamental to achieve high selection performance.
In order to cope with these problems, the ATLAS experiment has decided to include within
the existing multilevel trigger architecture an electronic system, the Fast TracKer (FTK) pro-
cessor, designed to perform real-time full track reconstruction from all the level-1 accepted
events observed in the Inner Detector (ID) for the LHC Run 3.

2 The ATLAS trigger system

Only a small fraction of the LHC collision event rate (4 × 107 events/s) can be stored for
offline analysis, typically 1.5 × 103 events/s. To reduce the event rate while maintaining the
maximum efficiency for the physics analysis, data from not physically interesting events need
to be rejected. Since the trigger decision time is much bigger than the 25 ns interval of bunch
crossing, a multilevel data organization is required. In order to cope with such requirements,
the ATLAS trigger system is composed of two levels: a hardware-based Level-1 (L1) trigger
and a software-based High-Level Trigger (HLT), as shown in Figure 2 [2]. The L1 trigger
is implemented using custom-made electronics, while the HLT is almost entirely based on
commercially available computers and networking hardware. L1 uses the muon tracks and
electromagnetic and hadronic clusters to identify interesting regions of the detector contain-
ing high energy deposits, called regions of interest (RoI), and providing a rate reduction of a
factor 400 in a latency time of 2.5 µs. The HLT has access to the whole detector information
within the regions defined by the L1, executing its rate reduction in a mean latency time of
200 ms. The HLT is based on a computing farm containing almost 2000 computers, referred
to as nodes, in which 40000 cores run the trigger software. If the HLT selection is successful,

Figure 2. Sketch of the ATLAS trigger system.

the full event is then reconstructed. All the data fragments coming from different detectors
are collected in a single record which is transferred to the Data Logger for storage in local
disks.
Because of the long computational time required to reconstruct the tracks, the tracking infor-
mation is only used at the HLT level and only for a subset of events. FTK will perform full
track reconstruction on all the L1 accepted events, enabling the HLT to have access to the
entire silicon detector tracks at an earlier event selection stage, allowing a dramatic increase
in the trigger efficiency for a large group of different signatures.

3 FTK operational principle

The FTK system is an hardware based tracking system designed to perform full scan tracking
at the full L1 trigger rate (100 kHz), providing reconstructed tracks to the ATLAS HLT in a
mean latency time of ' 100 µs, in time for the online trigger selection [3]. The FTK is a very
complex system, composed of a total of about 450 electronic boards based on two different
standards, VME [4] and ATCA [5]. The system counts about 400 input links bringing the
data from the silicon detectors and a total of about 10k links within the FTK boards. A sketch
of the FTK internal data-flow is shown in Figure 3. The Input Mezzanine (IM) and Data For-
matter (DF) boards receive hits from twelve layers of the silicon detectors and group them
into clusters of nearby hits to reduce the data size. The clustered hits are then sorted into
64 regions and sent downstream for parallel processing. Upon entering the Processing Units
(note, a PU is composed of the Associative Memory Board, AMB, and its rear transition
module AUX) the hits are stored in full resolution, meaning containing all of their original
cluster information. While the full resolution hits are stored onto input FPGAs in the PUs,
the remaining FPGAs and ASIC chips process the hits by grouping them in coarser resolu-
tion segments. During this coarser resolution processing, the silicon detectors are viewed
as groups of modules called "super-strips". For eight of the twelve layers, the PUs identify
which super-strips the clustered hits belong to. The selected super-strips are then compared
to Monte Carlo (MC) track patterns stored in Associative Memories. In AMs the user inputs
a data word and the entire memory is searched in order to find that word. Thus when the
AM finds a MC track pattern that matches the selected super-strip, returns it and calls it a

Figure 3. Sketch of the internal data-flow of FTK. The lines represent the communication links between
different boards.

"road". For each road the full resolution hits stored onto the PU input FPGA are retrieved
and a goodness of fit is determined using a χ2 test for eight layers. The eight-layer tracks are
then combined with the hits from the remaining four layers and a full twelve-layer track fit
is performed inside the SSB boards. The twelve-layer tracks are then sent to the HLT via the
FLIC boards.

4 FTK Online Software

The FTK online software is used to configure, run, monitor and integrate the FTK system
within the ATLAS data taking system.
The FTK system started its commissioning during Run 2, running in ATLAS a small fraction
of its hardware. The full system is supposed to be integrated into ATLAS for Run 3. The FTK
online software used the existing tools available from the common ATLAS framework. The
lack of experience on both the criticalities and the requirements of a system under commis-
sioning suggested to adopt available solutions (already stable and widely optimized), rather
than developing custom ones. Thus some ATLAS tools have been adapted to the FTK use-
case, sometimes making a completely new use. This choice lead us to provide a stable online
software environment since the beginning of Run 2, while working on the identification of
bottlenecks and criticalities. The issues spotted during this phase will be addressed in the
upcoming Long Shutdown period of the LHC (2019-2020).

4.1 Run Control

The ATLAS Run Control software is in charge of performing the initialization and shutdown
of TDAQ firmware and software, distributing commands to and synchronizing operations
between. In order to handle the control of complex hierarchical systems, the Run Control
system is based on a Finite State Machine (FSM), in which the FTK system needs to fit its
operations. The configuration of the FTK system is a very complex procedure, with many

different operations to be executed following a well-defined order and to be repeated in case
of error (as the setup of the many links between the different FTK boards). In order to fit all
these procedures into the ATLAS FSM transitions we had to define new FTK specific sub-
transitions. Moreover, in the configuration phase FTK needs to load on its FPGAs and AMBs
a large quantity of data (about 500MB/board), as the Patternbanks and constants used for the
pattern matching and fitting procedures. Loading such a large quantity of data is challenging
for two reasons. Firstly, the required loading time is much bigger than the available time
for the ATLAS configuration transition. Loading the Patternbanks on the AMs takes about 5
minutes per board (with a total of 16 PUs to be configured through the same controller ap-
plication), to be compared with the about 3 minutes available for configuring the full ATLAS
system. Secondly, the controller of the PU boards runs on a Single Board Computer (SBC)
limited in CPU power and memory (1.9GHz 4 Cores, 4GB RAM), avoiding the possibility of
loading the configurations simultaneously on all the boards. To cope with these problems we
developed a new configuration loading system, to be used during the interfill period. During
the configure transition of the data taking runs, the FTK online software only checks for the
correctness of the content of the board memories through the computation of checksums (the
loading logic is shown in Figure 4-Left). These checksums are computed both via FW (on
the memory content of the boards) and SW (on the desired configuration data) and compared.
In case of mismatches, the software prevents FTK from starting a data taking session with
undefined configurations loaded.

4.2 FTK automatic procedures

The ATLAS framework provides automatic procedures used to disable and recover faulty
subsystem components while running: the Stopless-Removal and Stopless-Recovery proce-
dures [6]. The exploitation of these procedures is mandatory in order to achieve the goals of a
system under commissioning, as the maximization of the running time within ATLAS while
minimizing the impact on the ATLAS data taking efficiency. Due to the system complexity,
the development of such automatic procedures was particularly challenging for FTK.
The Stopless-Removal procedure allows excluding a part of the readout that is blocking the
trigger due to a fault, replacing the subsystem output with empty fragments. This operation
requires a deep knowledge on the possible failure conditions, not yet available for a sys-
tem under commissioning. In order to cope with this, we developed a watchdog application
monitoring the output of FTK, looking for missing/late fragments. The removal procedure
is automatically triggered by the watchdog application when bad fragments are found to be
more than a configurable threshold.
More challenging was the development of the FTK Stopless-Recovery procedure. This pro-
cedure allows a user to re-activate components that had been previously disabled during the
run. We developed an ad-hoc Manager Application (MA) responsible to manage the com-
munication between the different board controllers and controlling an FTK internal FSM,
required to synchronize all the operations needed for the system reconfiguration. A sketch
of the FTK Stopless-Recovery infrastracture can be seen in Figure 4-Right. The Recovery
procedure is started by an FTK expert via a specific command sent to the MA. The MA
starts the procedure by initializing an internal FSM and dispatching the recovery transitions
to the board controller applications, waiting for the acknowledge and the operation-ended
messages before asking for the next tranistion. In order to recover the system, all the opera-
tions executed in the normal transitions are performed also in the recovery ones. When the
last internal transition is completed, the MA manages the communications with the ATLAS
Central Hint and Information Processor (CHIP), which recovers the disabled link between
FTK and ATLAS, ending the procedure.

Figure 4. Left: FTK configuration loading logic. The loading of the configuration on the boards is
performed only during a "configuration run" identified via the isLoadMode flag. Right: Sketch of
the stopless-recovery procedure infrastructure of FTK. The Manager Application (MA) manages the
communications between the board controller applications (RCDs), dispatcing the recovery transition
actions and managing the internal FTK FSM.

4.3 Board access interference

During the commissioning period we observed problems deriving from concurrent accesses
to the boards during the configuration/monitoring processes. These problems were pointed
out to be due to non atomic configuration operations. The board configuration procedures
require write-read accesses to some board registers, operations to be repeated in case of errors.
These procedures require not to be interrupted by other board accesses. If during one of
these procedures a new board access is requested, for instance by a monitoring operation,
the configuration procedure may fail. In order to solve these issues, we introduced the use
of mutexes for the board access serialization, blocking all the board accesses when another
non atomic operation is ongoing. Moreover, to overcome concurrency issues from different
applications, system semaphores were adopted. These solutions fixed the concurrency issues,
but introduced some constraints. The access serialization slowed down both the monitoring
operation and the board responsiveness to the control software. To solve this problem, we are
working on the concurrent access management at firmware level. In case this is not possible, a
restructuring of the code will be performed, moving the mutexes at a deeper level or changing
the monitoring philosophy.

5 FTK Monitoring

Monitoring the internal data-flow and the quality of the output data is fundamental. The FTK
monitoring is performed at different levels: board data-flow, board data-quality, system output
data-quality and high level data quality. While the last two levels are still under development,
the board data-flow monitoring and the board data-quality monitoring were fundamental for
the commissioning.

5.1 Board data-flow monitoring

The board data-flow monitoring is responsible to check the status of a given FTK board (e.g.
the board is stuck - processing is ongoing). This monitoring is of particular importance dur-
ing the data taking sessions, as it is used to understand if the system is correctly processing

data or problems occurred. Information on the status and processing of the board is stored in
specific board registers, read by the monitoring thread of the board control software through
VME/IPBus protocols. Two different monitoring threads are available with two different
reading rates. Particular board registers are read by the given thread depending on the impor-
tance of the stored information (e.g. some information will be used in the future to trigger
the Stopless-Removal procedure, requiring a fast monitoring cycle). In order to allow for ex-
pert data access, this information is made available through the ATLAS information [7] and
histogram [8] services. Post mortem access is given through the use of high level monitor-
ing applications, as the Grafana application [9]. An example of an FTK Grafana dashboard
showing board data-flow information is shown in Figure 5.

5.2 Board data-quality monitoring

The Board data-quality monitoring is responsible to check if an FTK board is producing a
reasonable output. It is particularly critical for debugging the FW, representing a snapshot of
the data contained in the board during the processing. The information on the data quality
are stored in spybuffers: large board circular buffers in which copy of the internal process-
ing data are stored. The typical use-case of the spybuffer is to monitor the input/output of
an FW module prior than an error occurs. Since the FW debugging requires the collection
of board spybuffers for the same event from different boards, a freeze mechanism, able to
block the monitoring buffer writing as soon as an interesting error occurs, has been devel-
oped. This freeze operation triggers the board FW to deliberately stop updating its spybuffers
(without affecting the processing FIFOs). In order to access the spybuffer information, an
online spybuffer readout system was provided making a new use of the ATLAS event moni-
toring (EMON) service [10]. The spybuffer content is read out periodically from the boards
through VME/IPBus protocol via a specific monitoring thread of the control software. Data
are then made available to the EMON service wrapped inside a specific event-format via a
custom FTK-EMON interface. The interface was designed to allow the possibility to tem-
porarily store spybuffers from different boards while waiting for client requests, and to allow
data sampling based on selection criteria. The current spybuffer readout logic has some lim-
itations. Due to the big spybuffer size the spybuffer readout for some boards is very slow
(about 1 minute per board). Because of the mutexes required to solve the board concurrent
accesses problem, the board data-flow monitoring is blocked for the whole spybuffer readout
time, even if it has higher priority. In order to cope with this problem an optimization of the
readout logic is under development. A single board register will be filled with a spybuffer
error status word by the FW every time a freeze will occur. This status register will be read
out by the board data-flow monitoring thread and will be used as a trigger for the full spy-
buffer reading. The choice of whether or not read the full spybuffer will be based on a set of
predefined error-state selection criteria defined in the board configuration. With this logic the
spybuffer readout will be performed only when a given error will occur.

6 Conclusion

The commissioning of the FTK system during Run 2 is focused on "Slices" (portion of the
system composed by a single board per kind). Since the beginning of 2018 FTK has two
slices fully integrated in the ATLAS architecture which are regularly taking data. At the
end of Run 2 half of the system is completed, with the boards installed in their respective
ATCA and VME crates. The cabling of the boards has been completed, and the infrastructure
installation, as well as the installation of the custom VME cooling system, are completed.
The FTK online software is fully integrated in the ATLAS framework. The design goal was

Figure 5. Example of high level monitoring of board data-flow variables for FTK (Grafana dashboard)

to make use of the available ATLAS tools, while spotting problems and bottlenecks of the
given implementation. This paper has reviewed the solutions adopted and some problems of
the current implementation that have been pointed out, presenting the solutions which will be
developed in the future months. The monitoring has undergone big development in the last
period, sprinted-out by the advancement of the commissioning. In particular, the board data-
flow and the board data-quality monitoring have reached a mature state, while optimizations
are still possible.

References

[1] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2.
[2] ATLAS collaboration, ATLAS detector and physics performance: TDR, CERN-LHCC-

99-14, ATLAS-TDR-14, https://cds.cern.ch/record/391176
[3] ATLAS collaboration, Fast Tracker: Technical Design Report, CERN-LHCC-2013-007;

ATLAS-TDR-021, https://cds.cern.ch/record/1552953
[4] The VMEbus specification manual: conforms to ANSI/IEEE, Std 1014-1987, IEC 821

and 297, https://cds.cern.ch/record/113323
[5] Advanced TCA base specification: advanced TCA, PICMG-3.0-R2.0, Wakefield, MA:

PICMG, 2005, https://cds.cern.ch/record/1159877
[6] Anders, G., Avolio, G., Lehmann Miotto, G., Magnoni, L., Intelligent operations of the

data acquisition system of the ATLAS experiment at LHC, J.Phys.Conf.Ser. 608 (2015) 1
[7] https://atlas-tdaq-monitoring.web.cern.ch/atlas-tdaq-monitoring/IS/doc/userguide/is-

usersguide.pdf
[8] https://atlas-tdaq-monitoring.web.cern.ch/atlas-tdaq-monitoring/OH/refman/index.html
[9] https://grafana.com/

[10] https://atlas-tdaq-monitoring.web.cern.ch/atlas-tdaq-monitoring/EMON/design.pdf

	Introduction
	The ATLAS trigger system
	FTK operational principle
	FTK Online Software
	Run Control
	FTK automatic procedures
	Board access interference

	FTK Monitoring
	Board data-flow monitoring
	Board data-quality monitoring

	Conclusion

