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Abstract. During Run 2 of the Large Hadron Collider (LHC) the instantaneous
luminosity exceeded the nominal value of 1034 cm−2 s−1 with a 25 ns bunch
crossing period and the number of overlapping proton-proton interactions per
bunch crossing increased to a maximum of about 80. These conditions pose a
challenge to the trigger system of the experiments that has to manage rates while
keeping a good efficiency for interesting physics events. This document sum-
marizes the software based control and monitoring of a hardware-based track
reconstruction system for the ATLAS experiment, called Fast Tracker (FTK),
composed of associative memories and FPGAs operating at the rate of 100 kHz
and providing high quality track information within the available latency to the
high-level trigger. In particular, we will detail the commissioning of the FTK
within the ATLAS online software system presenting the solutions adopted for
scaling up the system and ensuring robustness and redundancy. We will also
describe the solutions to challenges such as controlling the occupancy of the
buffers, managing the heterogeneous and large configuration, and providing
monitoring information at sufficient rate.

1 Introduction

The first data taking period (Run 1) of the Large Hadron Collider (LHC) has been extremely
successful with e.g. the Higgs boson’s discovery and the placement of strong limits on new
physics phenomena. After a shutdown period of almost two years, the LHC restarted with
much higher instantaneous luminosity with respect to Run 1 (see Figure 1). In the Run 2
period, the LHC provided 13 TeV collisions, almost twice the energy of Run 1 with an inte-
grated luminosity of � 40 fb−1 per year and, therefore, increasing the discovery potential of
the experiments. The greater instantaneous luminosity expected during Run 3 will provide an
average number of simultaneous collisions (pileup) up to 80. In order to achieve the required
online data reduction, the LHC experiments need to increase the use of silicon detector infor-
mation at the trigger level, reconstructing the track trajectories close to the interaction points
to distinguish the contribution of each pileup collision.
With its fine resolution and granularity, tracking information is critical for selecting which
Level-1 triggered events should be kept for further processing. However, extensive tracking
at Level-1 rate is prohibitively expensive in terms of processing time per event or needed
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Figure 1. Left: Luminosity delivered by the LHC from 2011 to 2018 (Run 1 and Run 2). Right: Mean
number of interactions per bunch crossing from 2015 to 2018 (Run 2)[1].

computing cores. Therefore, it is sparingly used within specific detector regions which have
already been identified as potentially interesting by the Level-1 trigger and for full event
tracking at low rates (� few kHz). This approach has limitations in several cases. Firstly,
there is a limit to either the number or size of the interesting regions processed by the second
level of trigger which forces additional non-tracking cuts to be applied and results in reduced
efficiency or higher thresholds for the considered objects. Secondly, there are cases where
global event information, such as the location of the hard interaction vertex or the number of
primary vertices in the event, are useful for object selections or corrections to the other de-
tector quantities. Both problems are particularly critical for the trigger selection of signatures
containing third generation fermions, such as τ or b-jets, for which tracking information is
fundamental to achieve high selection performance.
In order to cope with these problems, the ATLAS experiment has decided to include within
the existing multilevel trigger architecture an electronic system, the Fast TracKer (FTK) pro-
cessor, designed to perform real-time full track reconstruction from all the Level-1 accepted
events observed in the Inner Detector (ID) for the LHC Run 3.

2 The ATLAS trigger system

Only a small fraction of the LHC collision event rate (4×107 events/s) can be stored for offline
analysis, typically 1.5 × 103 events/s. To reduce the event rate while maintaining the maxi-
mum efficiency, only events of interest for the physics program of ATLAS can be selected.
The ATLAS trigger system [2] is composed of two levels: a hardware-based Level-1 (L1)
trigger and a software-based High-Level Trigger (HLT), as shown in Figure 2. The L1 trigger
is implemented using custom-made electronics, while the HLT is almost entirely based on
commercially available computers and networking hardware. L1 uses the muon tracks and
electromagnetic and hadronic clusters to identify interesting regions of the detector contain-
ing high energy deposits, called regions of interest (RoI), and provides a rate reduction of a
factor 400 in a latency time of 2.5 µs. The HLT has access to the whole detector information
within the regions defined by the L1, executing its rate reduction in a mean latency time of
200 ms and providing a final output rate of about 1.5 kHz. The HLT is based on a computing
farm containing almost 2000 computers, referred to as nodes, in which 40000 cores run the
trigger software. If the HLT selection is successful, the full event is then reconstructed. All
the data fragments coming from different detectors are collected in a single record which is
transferred to the Data Logger for storage in local disks.
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Only a small fraction of the LHC collision event rate (4×107 events/s) can be stored for offline
analysis, typically 1.5 × 103 events/s. To reduce the event rate while maintaining the maxi-
mum efficiency, only events of interest for the physics program of ATLAS can be selected.
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is implemented using custom-made electronics, while the HLT is almost entirely based on
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200 ms and providing a final output rate of about 1.5 kHz. The HLT is based on a computing
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trigger software. If the HLT selection is successful, the full event is then reconstructed. All
the data fragments coming from different detectors are collected in a single record which is
transferred to the Data Logger for storage in local disks.

Figure 2. Sketch of the ATLAS trigger system with FTK included. FTK runs for each event that has
been accepted by the hardware-based Level-1 Trigger and provides inputs for the software-based High
Level Trigger.

Because of the long computational time required to reconstruct the tracks, the tracking infor-
mation is only used at the HLT level and only for a subset of events. FTK will perform full
track reconstruction on all the L1 accepted events, enabling the HLT to have access to the
entire silicon detector tracks at an earlier event selection stage, allowing a dramatic increase
in the trigger efficiency for a large group of different signatures.

3 FTK: operational principle

The FTK system is a hardware based tracking system designed to perform full scan tracking
at the full L1 trigger rate (100 kHz), providing reconstructed tracks to the ATLAS HLT in a
mean latency time of � 100 µs, in time for the online trigger selection [3]. The FTK is a very
complex system, composed in total of about 450 electronic boards based on two different
standards, VME [4] and ATCA [5]. The system counts about 400 input links bringing the
data from the silicon detectors and a total of about 10k links within the FTK boards. A
sketch of the FTK internal data-flow is shown in Figure 3. The Input Mezzanine (IM) and
Data Formatter (DF) boards receive hits from twelve layers of the silicon detectors and group
them into clusters of nearby hits to reduce the data size. The clustered hits are then sorted
into 64 regions and sent downstream for parallel processing. Upon entering the Processing
Units (note, a PU is a duplex composed of the Associative Memory Board (AMB) and its
rear transition module AUX) the hits are stored in full resolution, meaning containing all of
their original cluster information. While the full resolution hits are stored onto input FPGAs
in the PUs, the remaining FPGAs and ASIC chips process the hits by grouping them in
coarser resolution segments. During this coarser resolution processing, the silicon detectors
are viewed as groups of modules called "super-strips". For eight of the twelve layers, the
PUs identify which super-strips the clustered hits belong to. The selected super-strips are
then compared to Monte Carlo (MC) track patterns stored in Associative Memories. In AMs
the user inputs a data word and the entire memory is searched in order to find that word.
Thus when the AM finds a MC track pattern that matches the selected super-strip, returns it
and calls it a "road". For each road the full resolution hits stored onto the PU input FPGA
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Figure 3. Sketch of the internal data-flow of FTK. The lines represent the communication links between
boards.

are retrieved and a goodness of fit is determined using a χ2 test for eight layers. The 8-layer
tracks are then combined with the hits from the remaining four layers and a full 12-layer track
fit is performed inside the SSB boards. The twelve-layer tracks are then sent to the HLT via
the FLIC boards.

4 FTK online software

The FTK online software is used to configure, run, monitor and integrate the FTK system
within the ATLAS data taking system.
The FTK system started its commissioning during Run 2, running in ATLAS a small fraction
of its hardware. The full system is supposed to be integrated into ATLAS for Run 3. The
FTK online software used the existing tools available from the common ATLAS framework,
adapting them to the FTK use-case or, sometimes, making a completely new use of them (e.g.
the use of EMON for the spybuffer publication, as will be shown in section 5.2). This choice
lead us to provide a stable online software environment since the beginning of Run 2, while
working on the identification of bottlenecks and criticalities. The issues spotted during this
phase will be addressed in the upcoming long shutdown period of the LHC (2019-2020).

4.1 Run control

The ATLAS run Control software is in charge of performing the initialization and shutdown
of TDAQ firmware and software, distributing commands to and synchronizing operations be-
tween the boards.
In order to handle the control of complex hierarchical systems, the run control system is based
on a Finite State Machine (FSM), in which the FTK system needs to fit its operations. The
configuration of the FTK system is a very complex procedure, with many different operations
to be executed following a well-defined order and to be repeated in case of error. In order to
fit all these procedures into the ATLAS FSM transitions we had to define new FTK specific
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sub-transitions. Moreover, in the configuration phase FTK needs to load on its FPGAs and
AMBs a large quantity of data (about 500 MB/board), like the Patternbanks and constants
used for the pattern matching and fitting procedures. Loading such a large quantity of data
is challenging for two reasons. Firstly, the required loading time is much bigger than the
available time for the ATLAS configuration transition. Loading the Patternbanks on the AMs
takes about 5 minutes per board (resulting in 80 minutes for a total of 16 PUs to be configured
through the same controller application), compared with the about 3 minutes it takes to con-
figure the entire ATLAS detector. Secondly, the controller of the PU boards runs on a Single
Board Computer (SBC) limited in CPU power and memory (1.9GHz 4 Cores, 4GB RAM),
which makes it impossible to load the configurations simultaneously on all boards. To cope
with these problems we developed a new configuration loading system, to be used during
the interfill period. During the configure transition of the data taking runs, the FTK online
software only checks for the correctness of the content of the board memories through the
computation of checksums (the loading logic is shown in Figure 4, left). These checksums
are computed both via FW (on the memory content of the boards) and SW (on the desired
configuration data) and compared with each other. In case of mismatches (e.g. because of
errors in the configuration loading procedure), the software prevents FTK from starting the
data taking session.

4.2 FTK automatic procedures

The ATLAS online software framework provides automatic procedures used to disable and
recover faulty subsystem components while running: the Stopless-Removal and Stopless-
Recovery procedures [6]. Exploring these procedures is mandatory to minimize the impact
on ATLAS data-taking while maximizing the run-time within the ATLAS system. Due to the
system complexity, the development of such automatic procedures was particularly challeng-
ing for FTK.
The Stopless-Removal procedure allows to exclude a part of the readout that is blocking the
trigger (e.g. by introducing backpressure in the system) due to a fault, replacing the subsys-
tem output with empty fragments. This operation requires a deep knowledge on the possible
failure conditions, not yet available for a system under commissioning. In order to cope with
this, we developed a watchdog application, monitoring the output of FTK and looking for
missing/late fragments. The removal procedure is automatically triggered by the watchdog
application when bad fragments are found to be more than a configurable threshold.
More challenging was the development of the FTK Stopless-Recovery procedure. This pro-
cedure allows a user to re-activate components that had been previously disabled during the
run (from a stopless removal procedure). We developed an ad-hoc Manager Application
(MA) responsible to manage the communication between the different board controllersi. It
also controls an FTK internal FSM, required to synchronize all the operations needed for the
system reconfiguration. A sketch of the FTK Stopless-Recovery infrastracture can be seen in
Figure 4, right. The recovery procedure is started by an FTK expert via a specific command
sent to the MA. The MA starts the procedure by initializing an internal FSM and dispatch-
ing the recovery transitions to the board controller applications, waiting for the acknowledge
and the operation-ended messages before asking for the next tranistion. In order to recover
the system, all the operations executed in the normal transitions are performed also in the
recovery ones. When the last internal transition is completed, the MA manages the commu-
nications with the ATLAS Central Hint and Information Processor (CHIP), which recovers
the disabled link between FTK and ATLAS, ending the procedure.
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Figure 4. Left: FTK configuration loading logic. The loading of the configuration on the boards is
performed only during a "configuration run" identified via the isLoadMode flag. Right: Sketch of
the stopless-recovery procedure infrastructure of FTK. The Manager Application (MA) manages the
communications between the board controller applications (RCDs), dispatcing the recovery transition
actions and managing the internal FTK FSM.

4.3 Board access interference

During the commissioning period we observed problems deriving from concurrent accesses
to the boards during the configuration/monitoring processes. These problems were due to
non atomic configuration operations. The board configuration procedures require write-read
accesses to some board registers, accesses to be repeated in case of errors. These procedures
require not to be interrupted by other board accesses. If during one of these procedures a new
board access is requested, for instance by a monitoring operation, the configuration procedure
may fail. In order to solve these issues, we introduced the use of mutexes for the board access
serialization, blocking all the board accesses when another non atomic operation is ongoing.
Moreover, to overcome concurrency issues from different applications, system semaphores
were adopted. These solutions fixed the concurrency issues, but introduced some constraints.
The access serialization slowed down both the monitoring operation and the board respon-
siveness to the control software. To solve this problem, we are working on the concurrent
access management at firmware level. In case this is not possible, a restructuring of the
code will be performed, moving the mutexes at a deeper level or changing the monitoring
philosophy.

5 FTK monitoring

Monitoring the internal data flow and the quality of the output data is fundamental. The FTK
monitoring is performed at different levels: board data flow, board data quality, system output
data quality and high level data quality. While the last two levels are still under development,
the board data flow monitoring and the board data quality monitoring were fundamental for
the commissioning.

5.1 Board data flow monitoring

The board data flow monitoring is responsible to check the status of a given FTK board
(e.g. the board is stuck - processing is ongoing). Monitoring this is of particular importance
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during the data taking, as it is used to understand if the system is correctly processing data
or if problems occurred. Information on the status and processing of the board is stored in
specific board registers, read by the monitoring thread of the board control software through
VME/IPBus protocols. Two different monitoring threads are available with two different
reading rates. Particular board registers are read by the given thread depending on the impor-
tance of the stored information (e.g. some information will be used in the future to trigger
the Stopless-Removal procedure, requiring a fast monitoring cycle). In order to allow for ex-
pert data access, this information is made available through the ATLAS information [7] and
histogram [8] services. Post mortem access is given through the use of high level monitor-
ing applications, as the Grafana application [9]. An example of an FTK Grafana dashboard
showing board data-flow information is shown in Figure 5.

5.2 Board data quality monitoring

The board data quality monitoring is responsible to check if an FTK board is producing a
reasonable output. It is particularly critical for debugging the FW, representing a snapshot of
the data contained in the board during the processing. The information on the data quality
are stored in spybuffers: large board circular buffers in which copies of the internal process-
ing data are stored. The typical use-case of the spybuffer is to monitor the input/output of
a FW module prior to an error occuring. Since the FW debugging requires the collection
of board spybuffers for the same event from different boards, a freeze mechanism, able to
block the monitoring buffer writing as soon as an interesting error occurs, has been devel-
oped. This freeze operation triggers the board FW to deliberately stop updating its spybuffers
(without affecting the processing FIFOs). In order to access the spybuffer information, an
online spybuffer readout system was provided making a new use of the ATLAS event moni-
toring (EMON) service [10]. The spybuffer content is read out periodically from the boards
through VME/IPBus protocol via a specific monitoring thread of the control software. Data
are then made available to the EMON service wrapped inside a specific event format via a
custom FTK-EMON interface. The interface was designed to allow the possibility to tem-
porarily store spybuffers from different boards while waiting for client requests, and to allow
data sampling based on selection criteria. The current spybuffer readout logic has some lim-
itations. Due to the big spybuffer size the spybuffer readout for some boards is very slow
(about 1 minute per board). Because of the mutexes required to solve the board concurrent
accesses problem, the board data-flow monitoring is blocked for the whole spybuffer readout
time, even if it has higher priority. In order to cope with this problem an optimization of the
readout logic is under development. A single board register will be filled with a spybuffer er-
ror status word by the FW every time a freeze will occur. This status register will be read out
by the board data-flow monitoring thread and will be used as a trigger for the full spybuffer
reading. The choice of reading the full spybuffer or not will be based on a set of predefined
error-state selection criteria defined in the board configuration. With this logic the spybuffer
readout will be performed only when a given error will occur.

6 Conclusion

The commissioning of the FTK system during Run 2 is focused on "slices" (portion of the
system composed by a single board per kind). Since the beginning of 2018 FTK has two
slices fully integrated in the ATLAS architecture which are regularly taking data. At the end
of Run 2, the installation of half of the system is completed, with the boards installed in their
respective ATCA and VME crates. The cabling of the boards has been completed, and the
infrastructure installation, as well as the installation of the custom VME cooling system, are
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Figure 5. Example of high level monitoring of board data-flow variables for FTK (Grafana dashboard)

completed.
The FTK online software is fully integrated in the ATLAS online software framework. The
design goal was to make use of the available ATLAS tools, while spotting problems and
bottlenecks of the given implementation. The adopted solutions have been presented, togheter
with some open problems and the solutions that will be developed in the future months. The
monitoring has undergone big development in the last period, motivated by the advancement
of the commissioning. In particular, the board data flow and the board data quality monitoring
have reached a mature state, whith a few optimizations still possible.
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