
A
TL

-S
O

FT
-P

R
O

C
-2

01
8-

01
1

25
O

ct
ob

er
20

18

Conditions DataHandling in the Multithreaded ATLAS

Framework

Charles Leggett1,∗, Illya Shapoval1 ,∗∗, Scott Snyder2,∗∗∗, and Vakho Tsulaia1,∗∗∗∗ on behalf of

the ATLAS Collaboration†

1Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, US
2Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973, US

Abstract. In preparation for Run 3 of the LHC, the ATLAS experiment is mi-

grating its offline software to use a multithreaded framework, which will allow

multiple events to be processed simultaneously. This implies that the handling

of non-event, time-dependent (conditions) data, such as calibrations and geom-

etry, must also be extended to allow for multiple versions of such data to exist

simultaneously. This has now been implemented as part of the new ATLAS

framework. The detector geometry is included in this scheme by having sets of

time-dependent displacements on top of a static base geometry.

1 Introduction

During Run 1 and Run 2 at the LHC, ATLAS[1] utilized a serial event processing frame-

work called Athena[2][3] and its multiprocess capable variant AthenaMP[4]. However it was

determined that neither Athena nor AthenaMP would scale to the projected computational

requirements or Run 3, and a new data flow driven, multithreaded implementation which en-

ables concurrent processing of multiple independent events, was required. This framework

has been called AthenaMT[5][6].

Asynchronous or time varying data, also commonly referred to as conditions data, are data

whose lifetime can be longer than one event. Some data may remain the same for multiple

runs, while some may sometimes change as often as every event. Managing this sort of data

in a concurrent framework poses many challenges beyond those necessary for a serial event

processing environment.

Multiple versions of the data that are referenced by different time points may be in use

at the same time when the framework processes concurrent events, and the framework must

be able to correctly return the appropriate version to a client in an efficient manner when

requested. As a processing job progresses, multiple versions of the conditions data are loaded,

necessitating some form of garbage collection to reduce memory consumption. Adding the

complexities of multithreading to the equation only increases the difficulty of the task. In this

paper we present the solution that ATLAS has implemented to manage its time varying data

as implemented in the AthenaMT framework.

∗e-mail: cgleggett@lbl.gov
∗∗e-mail: ishapoval@lbl.gov
∗∗∗e-mail: snyder@bnl.gov
∗∗∗∗e-mail: vtsulaia@lbl.gov
†Copyright 2018 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



2 Conditions Store

In Athena, the serial ATLAS framework, there is one instance of the event store, called

StoreGate[7], and one instance of the conditions store, which is implemented as a special

version of StoreGate. Algorithms, the main processing unit of the framework, access event

data by means of smart references called DataHandles, where individual data objects are

referenced via unique keys.

At the end of each event the event store is flushed, to prepare for the next event to be read

in. It is unnecessary to do the same for the conditions store, as the data therein changes at

points defined by its associated interval of validity (IOV), so the data only needs to be up-

dated, usually being read from a database, when a new IOV is entered. Clients can register

callback functions with a particular condition data object, which are triggered when a con-

dition object is read in as it enters a new IOV. This is done to generate “derived” conditions

data, which may in fact be dependent on multiple raw conditions objects. This derived data

is also written to the conditions store.

This workflow for accessing conditions data fails when multiple events are processed

concurrently. Since only a single instance of the conditions data can be held at any one time

in the conditions store, if two events are processed concurrently, with associated conditions

data from different IOVs, one will overwrite the other.

In AthenaMT, the concurrent, multithreaded ATLAS framework, there is one instance of

StoreGate created for each concurrent event. When an Algorithm or other client needs access

to an object in the event store, it does so via the use of a DataHandle, and an EventContext

object, which contains information about the current event, such as an event and run number.

The object identifier key encoded in the DataHandle, along with the EventContext object, is

sufficient to identify the appropriate object in the correct instance of the event store associated

with the current event that the Algorithm is processing.

While the same mechanism could be used for conditions data, i.e. creating separate in-

stances of the conditions store for each concurrent event, it would be grossly inefficient, from

both a memory and processing point of view, as much of the data would be identical between

all stores, and the callback functions that generate derived data would have to be executed

multiple times.

After investigating a number of different designs, with two key requirements of minimiz-

ing changes to client code, and minimizing memory usage, the implementation that ATLAS

chose was a single instance of multi-cache condition store, shared amongst all concurrent

events (see Figure 1). Instead of holding individual condition objects, the store holds con-

tainers of them, where the elements in each container correspond to individual IOVs. This

is implemented as a ConcurrentRangeMap templated in the type of the contained condition

object, and indexed by the IOV, which allows for efficient lookup with no locking, and locked

writing with concurrent reading.

Clients access condition objects via smart references, with a similar idiom to DataHan-

dles, called CondHandles, which implement logic to determine which element in any con-

dition container is appropriate for a given event. The callback functions from serial Athena

which are used to populate the derived conditions objects, are migrated to fully- fledged

Condition Algorithms, that are managed by the framework like any other Algorithm, but

only executed on demand when the conditions objects they create need to be updated. The

Algorithm Scheduler, which executes Algorithms in an order determined by their data depen-

dencies, is aware of the IOV associated with each condition object, and will only trigger the

execution of the associated Condition Algorithm when a new IOV is entered.

While some conditions data are derived, and created by Conditions Algorithms which

can perform extensive post-processing, some are merely read from a conditions database



Figure 1. The ATLAS multi-cache Conditions Store

and placed directly into the conditions store. In order to facilitate this process, a special

Algorithm called the CondInputLoader is configured with the list of database folders and

keys from which the data is to be read. During initialization, this Algorithm uses special

factory macros to automatically create the appropriate conditions containers in the conditions

store. These containers are then automatically populated via appropriate database accesses

on IOV boundaries when the CondInputLoader is executed by the Scheduler.

3 Condition Handles

One of the fundamental requirements for the client code needed for the migration to

AthenaMT is that all access to event data must be done via DataHandles. DataHandles

are declared as member variables of Algorithms, and provide two functions: to perform the

recording (WriteHandles) and retrieval (ReadHandles) of event data, and to automatically

declare the data dependencies of the Algorithms to the framework, so that the Algorithms

can be executed by the Scheduler only after the data they require has become available. We

capitalized on the migration to DataHandles by requiring that all access to conditions data

be done via related CondHandles. By using CondHandles in the Condition Algorithms to

write data to the conditions store, the framework solves the problem of Algorithm ordering

for us, ensuring that the Condition Algorithm is executed, and the updated Condition Objects

are written to the store before any downstream Algorithm which needs to use them (via a

declared ReadCondHandle) are executed.

Upon initialization, Condition Algorithms register themselves and the WriteCondHandles

that they will use create conditions data in the conditions store with a special Conditions

Service (see Figure 2). This makes an association between the WriteCondHandle and the

Condition Algorithm that creates it, which the Scheduler needs to know in order to trigger

the execution of the Algorithm at the appropriate time.

When a CondHandle is initialized during the initialization phase of its parent Algorithm,

it will look in the conditions store for its associated container, identified by a unique key,

and creating it if necessary. This container holds a set of objects of the same type and their

associated IOVs.



At the start of the event, the Scheduler queries the Condition Service to analyze the subset

of the objects held in the condition store that have been registered with it at the start of the

job by the Condition Algorithms, and determines which are valid or invalid for the current

event. If an object is found to be invalid, the Condition Algorithm that produces that object

will be scheduled for execution. If an object is found to be valid, then the Scheduler knows it

can be ignored. If all conditions objects associated with a Conditions Algorithm are valid for

an event, then the Scheduler will not execute it.

When a Condition Algorithm is executed, it queries the conditions database for data cor-

responding to the current event, as well as its associated IOV, creates the new object for which

it is responsible, and adds a new entry in the conditions container that is associated with the

WriteCondHandle. By the time a downstream Algorithm that needs to access conditions data

via a ReadCondHandle is executed by the Scheduler, the data is guaranteed to be present.

The CondHandle uses the information in the current EventContext (such as event and run

numbers, lumi-block number or nanosecond time stamp) to identify which element in the

container is the appropriate one, and returns its value.

Figure 2. Accessing ConditionHandles in AthenaMT

4 Detector Description and Geometry

The detector geometry model used in ATLAS (GeoModel), is a hierarchical tree that is built

from several components (see Figure 3): a Physical Volume (PV) which are the basic building

blocks; a Transform (TF) that is fixed at construction; and an Alignable Transform (ATF),

which accounts for the movement of the detector component as a function of time, reading

Deltas (D) from a database. When a client requests the position of a Detector Element, the

Full Physical Volume (FPV) is assembled, and the position is cached (C). As the detector

alignment changes, new Deltas are read in by the ATF, and the cache held by the FPV is

invalidated, until the position of the element is again requested, recomputed, and cached.

When multiple concurrent events are processed, this design will fail, as there is only a

single shared instance of the GeoModel tree, and the ATF and FPV can only keep track of

single Delta or cache at any one time. We can solve this problem in the same way as for the

conditions. The time dependent information (i.e. the Deltas and cache) held by the GeoModel



is decoupled from the static entries, and held in a new AlignmentObject located inside the

conditions store. The ATF and FPV use ConditionHandles to access this data, and they are

updated by a new GeoAlignAlg which is scheduled on demand by the framework. Clients

of the DetectorElements are entirely blind to this change, and the only code that needs to be

modified are base classes inside the GeoModel structure.

Figure 3. Concurrent implementation of the ATLAS Geometry Model and Detector Description

5 Garbage Collection

Since the concurrent implementation of the conditions store holds containers of conditions

data, and new elements are added to the containers as new IOVs are entered, the size of the

store will grow as the job progresses. Depending on how long the job runs, the number of

conditions data needed, and how many IOV boundaries are crossed, this can result in signifi-

cantly more memory consumption than was used in the serial implementation. However, not

all container elements are actually needed at any one time - only the ones that are referenced

by events that are currently being processed. This means that significant memory savings can

be had through judicious use of garbage collection.

One complication is that events are not necessarily guaranteed to be processed in the

same order that they were taken. This means that if conditions data is aggressively pruned

during a reprocessing run as soon as they are no longer in use, a subsequent event which

is in fact from a previous instant in time, may require reloading the just deleted data, and

Figure 4. Garbage Collection in

AthenaMT. Conditions Cleaner

Service scans a conditions

container Ndelay events after a

new object is added.



triggering a sequence of execution of Condition Algorithms. This is unwelcome as it results

in unnecessary database access, as well as extra processing. Instead a certain delay in the

removal of old objects can be beneficial.

This is implemented as follows (see Figure 4): whenever a new conditions object is cre-

ated, the framework notes that conditions container should be examined for old conditions

Ndelay events later. The actual garbage collection is performed from the event loop, at the start

of each event. First, the IOV keys for the current event are saved in a ring buffer with Nevent

entries. Each conditions container that was earlier scheduled for cleaning at this time is then

examined. The earliest conditions objects in these containers that do not match any event

currently being processed or the keys for any of the past Nevent saved in the ring buffer are

then deleted. The parameters Ndelay and Nevent are preliminarily set to 100, but will be tuned

based on further experience.

6 Migration Status

The framework and infrastructure components of the concurrent condition store handling in

AthenaMT is feature complete, and is in the process of undergoing optimization. It supports

both serial and concurrent processing environments.

The migration of clients to this environment has proved to be more challenging than

initially anticipated. This is largely due to the construction of the callback functions which

were used to update derived conditions in serial Athena. These were often implemented

as components called AlgTools, which act as callable functions that can be shared between

multiple parent Algorithms. They tended to do significant caching of event related data.

Both of these implementation methodologies are not allowed in AthenaMT, as they result in

thread and concurrent event unsafe behavior. Converting these into Conditions Algorithms

has required re-writing significant amounts of the code, and redesigning interfaces.

In general, rewriting client code to read conditions data from the conditions store has

been much more straightforward, as it usually only requires replacing direct access to the

store with an equivalent ReadCondHandle. This aspect of the migration is largely complete.

Significant effort is now being directed to the client migration, and we hope to have the

majority completed by the end of Q4 2018.

7 Conclusion

Designing a conditions handling mechanism that can efficiently manage multiple conditions

data belonging to different concurrent events has been challenging. There is a constant trade

off between processing and memory efficiency, and complexity. However, given the compu-

tational requirement and available resources for Run 3 at the LHC, it is essential to implement

a design that minimizes the use of resources. We have done so with a shared multi-cache im-

plementation that has a adjustable memory profile, where the aggressiveness of the garbage

collection can be tuned to meet the specific job requirements.

The migration of client code has proved to be more time consuming than originally an-

ticipated. This is due to the structure of the code which updates derived conditions, which

was both thread and concurrent event processing hostile, and needed significant changes to

operate in AthenaMT. The migration of clients is underway, and effort to do so has increased

as the scale of the challenge has become apparent.

References

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider,”

JINST 3, S08003 (2008).



[2] G. Barrand et al., “GAUDI - A software architecture and framework for building HEP

data processing applications,” Comput. Phys. Commun. 140, 45 (2001).

[3] P. Calafiura, W. Lavrijsen, C. Leggett, M. Marino and D. Quarrie, “The Athena con-

trol framework in production, new developments and lessons learned,” CHEP 2004 Conf.

Proc. C04-09-27 pp 456-458 (2005)

[4] Binet S et al., 2012 Multicore in production: Advantages and limits of the multipro-

cess approach in the ATLAS experiment J. Phys.: Conf. Series 368 012018 (ACAT2011

proceedings)

[5] P. Calafiura, W. Lampl, C. Leggett, D. Malon, G. Stewart and B. Wynne, “Development

of a Next Generation Concurrent Framework for the ATLAS Experiment,” J. Phys. Conf.

Ser. 664, no. 7, 072031 (2015).

[6] G. A. Stewart et al. for the ATLAS Collaboration, “Multi-threaded software framework

development for the ATLAS experiment,” J. Phys. Conf. Ser. 762 no.1, 012024 (2016).

[7] P. Calafiura, C. G. Leggett, D. R. Quarrie, H. Ma and S. Rajagopalan, “The StoreGate:

A Data model for the Atlas software architecture,” eConf C 0303241, MOJT008 (2003)

[cs/0306089 [cs-se]].


