
© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

The Future of Distributed Computing Systems in
ATLAS: Boldly Venturing Beyond Grids

Fernando Barreiro1,*, Doug Benjamin2, Taylor Childers2, Kaushik De1, Johannes
Elmsheuser3, Andrej Filipcic4, Alexei Klimentov3, Mario Lassnig5, Tadashi Maeno3, Danila
Oleynik1, Sergey Panitkin3, Torre Wenaus3 on behalf of the ATLAS collaboration

11University of Texas at Arlington, USA
2Argonne National Laboratory, USA
3Brookhaven National Laboratory, USA
4Jozef Stefan Institute, Slovenia
5European Center for Nuclear Research, Switzerland

Abstract. Since 2010 the Production and Distributed Analysis system
(PanDA) for the ATLAS experiment at the Large Hadron Collider has seen
big changes to accommodate new types of distributed computing resources:
clouds, HPCs, volunteer computers and other external resources. While
PanDA was originally designed for fairly homogeneous resources available
through the Worldwide LHC Computing Grid, the new resources are
heterogeneous, at diverse scales and with diverse interfaces. Up to a fifth of
the resources available to ATLAS are of such new types and require special
techniques for integration into PanDA. In this talk, we present the nature and
scale of these resources. We provide an overview of the various challenges
faced, spanning infrastructure, software distribution, workload
requirements, scaling requirements, workflow management, data
management, network provisioning, and associated software and computing
facilities. We describe the strategies for integrating these heterogeneous
resources into ATLAS, and the new software components being developed
in PanDA to efficiently use them. Plans for software and computing
evolution to meet the needs of LHC operations and upgrade in the long term
future will be discussed.

1 Motivation

The ATLAS [1] experiment at the Large Hadron Collider (LHC) has an ambitious
programme moving towards the High Luminosity (HL) LHC era in the coming decades. Data
volumes will increase at higher energy and luminosity, causing the storage and computing

* Corresponding author: barreiro [at] uta.edu

Copyright [2018] CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license

2

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

needs to grow at a much higher pace than the flat budget technology evolution (see Figure
1).

 †

Fig. 1. Estimation of ATLAS computing needs vs predictable increase on a flat budget*

At the same time IT landscapes, computing infrastructures and funding models change.
National science programs are consolidating computing resources and encouraging the usage
of national HPCs. Outsourcing to Cloud Computing providers is also becoming a feasible
solution for institutes with smaller computing clusters.

ATLAS is not new to using various heterogeneous resources and has successfully
integrated Grid, HPC and Clouds. As shown in Figure 2 for a random week of 2018, the Grid
is still the largest contributor, but the contribution of other resources is already significant.
However, heterogeneous resources are not always tailored for ATLAS workloads and have
been adapted independently by different ATLAS collaborators. Based on the accumulated
experience, it is now a good moment to harmonize the adaptations and overcome some of the
most challenging limitations while reducing the operational manpower.

 Fig. 2. Breakdown of ATLAS computing resources by type. The plot illustrates the important
contribution of HPC and Cloud Computing (at the order of 100k cores)

*https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

3

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

needs to grow at a much higher pace than the flat budget technology evolution (see Figure
1).

 †

Fig. 1. Estimation of ATLAS computing needs vs predictable increase on a flat budget*

At the same time IT landscapes, computing infrastructures and funding models change.
National science programs are consolidating computing resources and encouraging the usage
of national HPCs. Outsourcing to Cloud Computing providers is also becoming a feasible
solution for institutes with smaller computing clusters.

ATLAS is not new to using various heterogeneous resources and has successfully
integrated Grid, HPC and Clouds. As shown in Figure 2 for a random week of 2018, the Grid
is still the largest contributor, but the contribution of other resources is already significant.
However, heterogeneous resources are not always tailored for ATLAS workloads and have
been adapted independently by different ATLAS collaborators. Based on the accumulated
experience, it is now a good moment to harmonize the adaptations and overcome some of the
most challenging limitations while reducing the operational manpower.

 Fig. 2. Breakdown of ATLAS computing resources by type. The plot illustrates the important
contribution of HPC and Cloud Computing (at the order of 100k cores)

*https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

2 Development

2.1. Revised PanDA architecture: Server - Harvester - Pilot

During the first decade of operation, ATLAS has relied on PanDA[2] as the workload
management system to control all resources. Generic factories would submit the PanDA
pilot[3] to the batch systems. The pilot would occupy the slot, ask PanDA server for a job,
monitor the job through its lifetime and report back relevant metrics to the server.
This approach was satisfactory on the Grid, but as the heterogeneity of resources grew, the
number of specialized factories and different solutions grew over the years. Direct dialog
with the PanDA infrastructure and advanced features requiring direct PanDA integration
were not supported.
 The Harvester [4] implementation is filling this gap by providing the implementation of
a generic core and only requiring resource specific plug-ins. This approach reduces
drastically the development and integration time for new resources, allowing to make better
use of short-lived offerings. In the general case, where Harvester can manage the resources
centrally, the new resource can be configured into the existing infrastructure and avoids the
proliferation of different services that need to be operated.
 To date, Harvester has been interfaced to multiple Cloud resources (Google Compute
Engine, OpenStack), several US DOE HPCs (Titan[5], Theta[6], Cori[7]) and is being rolled
out on Grid sites (all tested CEs except Globus Toolkit 5 [8] are supported).
The next sections will highlight integration examples beyond the Grid with some key IT
players and explain some of their complexities.

2.2. High Performance Computers

2.2.1. HPC background and requirements

HPCs, and Supercomputers as their most powerful representatives, are large computing
infrastructures, architected to execute massively parallel applications, whilst following strong
design constraints like security, energy consumption and cooling. Each HPC is designed
independently and has its own set of architectures and restrictions. Coming up next is a list
of important aspects that need to be considered for each integration:

• Deployment models: Harvester has versatile deployment models, adapting to the
security and load constraints of each HPC. As such, Harvester can run on the edge
node in a very lightweight mode, or be a more heavyweight central service.

• Different operating systems
• Different software installation options: typically, the ATLAS Software is

distributed through the Grid via CVMFS [9], a distributed, read only file system.
The usual solutions on HPCs are customized CVMFS setups, containers with pre-
installed (usually Monte Carlo) ATLAS Software or manual installation on the
distributed file systems of the HPC.

• Processor architectures: ATLAS Software is currently compiled and tested for x86
CPU architectures. HPCs are increasingly moving towards different architectures.
One example is Summit, the new Supercomputer at Oak Ridge National Laboratory,
coming live in 2018 with IBM Power9 processors. Therefore, it is crucial to have
an ATLAS Software compilation methodology [10]. In addition, HPCs are having
an increasing presence of GPU co-processors, e.g. NVIDIA Volta V100s in the case

4

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

of Summit. Given the effort required of porting ATLAS Software to GPUs and the
lack of manpower, these co-processors currently remain idle. In order to remain
attractive HPC users and fully utilize ATLAS HPC allocations, making use of the
GPUs will become more and more important, either by porting the software or
implementing new workflows.

• Nodes without disk: Most HPCs provide diskless nodes on top of a shared file
system, e.g. Lustre. Concurrent file access can become a bottleneck in situations,
where hundreds of nodes read the ATLAS software simultaneously during startup.
Those I/O operations need to be optimized and, where possible, moved to solutions
like RAM disks.

• Data management: There is not always a gridFTP-compatible Storage Element
available at the HPCs and a large fraction of the HPC architectures block any
external connectivity from the nodes, preventing remote read/write to a Storage
Element on the grid. Data management solutions therefore need to provide
alternatives such as asynchronous download to/upload from the shared file system
or third-party transfers either through FTS [11] or Globus Online [12]. Additional
security constraints like 2-factor authentication make it harder to converge on a
single solution.

2.2.2. HPC vs ATLAS workloads

HPC allocations are usually awarded by millions of node-hours over a period of months. In
order to make use of the allocation, users have to submit multi-node requests to reserve a
fraction of the HPC. HPC internal scheduling algorithms prioritize large jobs and fill the gaps
with smaller workloads to optimize the usage of their infrastructures. As shown in Figure 3,
the Titan scheduling policies determine the maximum allowed wall time depending on the
size of the job: large jobs are allowed to run longer. Depending on the HPC utilization,
queueing times can be long, e.g. several weeks. There will be gaps between the large requests,
potentially available as backfill and allowed to execute for short periods, e.g. 2 hours.

 Fig. 3. Example for Titan (Oak Ridge National Laboratory) scheduling policies. The maximum
walltime increases with the number of the nodes in the slot. Large slots also get an aging boost (as if
they would have been waiting longer in the queue) to prioritize them.

On the contrary, ATLAS workloads are loosely coupled. An ATLAS job needs 1-16 cores
(parts of a node) and 2-4 GB RAM/core. It executes for several hours to process few hundred
events in a file. Hence multiple ATLAS jobs need to be combined into a single HPC multi-
node workload.
 ATLAS multi-node submissions need to maximize the efficiency: all nodes in the slot
need to be active during the slot’s lifetime. Efficiency penalties occur when submitting
together jobs of different durations, or one of the jobs misbehaving and runs longer than
expected (see Figure 4).

5

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

of Summit. Given the effort required of porting ATLAS Software to GPUs and the
lack of manpower, these co-processors currently remain idle. In order to remain
attractive HPC users and fully utilize ATLAS HPC allocations, making use of the
GPUs will become more and more important, either by porting the software or
implementing new workflows.

• Nodes without disk: Most HPCs provide diskless nodes on top of a shared file
system, e.g. Lustre. Concurrent file access can become a bottleneck in situations,
where hundreds of nodes read the ATLAS software simultaneously during startup.
Those I/O operations need to be optimized and, where possible, moved to solutions
like RAM disks.

• Data management: There is not always a gridFTP-compatible Storage Element
available at the HPCs and a large fraction of the HPC architectures block any
external connectivity from the nodes, preventing remote read/write to a Storage
Element on the grid. Data management solutions therefore need to provide
alternatives such as asynchronous download to/upload from the shared file system
or third-party transfers either through FTS [11] or Globus Online [12]. Additional
security constraints like 2-factor authentication make it harder to converge on a
single solution.

2.2.2. HPC vs ATLAS workloads

HPC allocations are usually awarded by millions of node-hours over a period of months. In
order to make use of the allocation, users have to submit multi-node requests to reserve a
fraction of the HPC. HPC internal scheduling algorithms prioritize large jobs and fill the gaps
with smaller workloads to optimize the usage of their infrastructures. As shown in Figure 3,
the Titan scheduling policies determine the maximum allowed wall time depending on the
size of the job: large jobs are allowed to run longer. Depending on the HPC utilization,
queueing times can be long, e.g. several weeks. There will be gaps between the large requests,
potentially available as backfill and allowed to execute for short periods, e.g. 2 hours.

 Fig. 3. Example for Titan (Oak Ridge National Laboratory) scheduling policies. The maximum
walltime increases with the number of the nodes in the slot. Large slots also get an aging boost (as if
they would have been waiting longer in the queue) to prioritize them.

On the contrary, ATLAS workloads are loosely coupled. An ATLAS job needs 1-16 cores
(parts of a node) and 2-4 GB RAM/core. It executes for several hours to process few hundred
events in a file. Hence multiple ATLAS jobs need to be combined into a single HPC multi-
node workload.
 ATLAS multi-node submissions need to maximize the efficiency: all nodes in the slot
need to be active during the slot’s lifetime. Efficiency penalties occur when submitting
together jobs of different durations, or one of the jobs misbehaving and runs longer than
expected (see Figure 4).

 Fig. 4. Examples of jobs with roughly same duration (left) vs problematic job holding up the slot
(right).

The aforementioned conditions are important for the selection of ATLAS jobs submitted to
HPCs. During first R&D phases tasks were manually selected and tailored for HPCs, but it
is important to automate this step and reduce the operational load. The solution being
commissioned uses Jumbo Jobs. Jumbo jobs package together multiple related jobs and
manage the Jumbo Job at a event-level granularity. Multiple consumers can pull event ranges
from the Jumbo Job and process these in parallel. The ATLAS consumer developed for HPC
is called Yoda [13] (see schematic on Figure 5 a). Yoda works together with Harvester, pulls
the event ranges and feeds these to the lower ranks through the Message Passing Interface
standard [14].
 Figure 5 b shows the execution of ATLAS event-level jobs inside a node across the 128
cores. The nodes are kept busy continuously. The only inefficiency occurs to the jobs that
didn’t complete immediately before returning the node.

 Fig. 5. a) Yoda schematic. b) Example of event level processing inside a node

2.2.3. HPC status and results

Harvester and specific plugins have been implemented for US DOE HPC (Theta, Cori, Titan)
usage. The allocations available to ATLAS on these HPCs have been successfully and timely
exploited. While some initial customization for each HPC is unavoidable, Harvester has been
equipped with plugins to handle the data management (stage-in and stage-out of data to the
HPC), communicating with the HPC batch interface and handle advanced workloads through
the usage of Yoda.

6

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

2.3. ATLAS-Google project [15]

2.3.1. Integration model

Beginning of 2018 ATLAS and Google have launched a common project with a first goal to
fully integrate both data and workload management with Google Cloud Platform. Rucio, the
ATLAS data management layer, can submit third party transfers between Grid storage
elements and Google Cloud Storage (GCS), directly download/upload files and bookkeep the
data in the cloud. PanDA can manage the Virtual Machine (VM) lifecycle in Google
Compute Engine (GCE) through the Harvester resource manager.

Fig. 6. Schematic overview of the PanDA and Rucio integration with Google Cloud Platform

We have implemented Harvester plugins to interact with the GCE API and boot, monitor and
delete VMs. We rely on standard CernVM4 [16] images that are contextualized at boot time
to run the pilot and download a job. Input and output data can be read from/written to either
GCS or Grid Storage.

2.3.2 Results on GCP

During the first phase we operated a cluster of 120 cores, seamlessly integrated with PanDA
and running standard Monte Carlo simulation jobs. The size of the cluster is not bound by
technical reasons and could be scaled up significantly. We evaluated both normal with close
to zero failure rate and preemptible [17] VMs with almost 20% failure rate (see Figure 7).
Considering that the cost of preemptible VMs is 80% lower, the cost/event ratio is an
attractive option. Event level workflows would allow to optimize the lost wall clock time, by
only losing the currently being processed event range.

With the possibility to natively use GCS storage, we also executed more I/O intensive
workloads for a few pioneer analysis users. A study for achievable data transfer rates and
cost needs to be explored further.

7

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

2.3. ATLAS-Google project [15]

2.3.1. Integration model

Beginning of 2018 ATLAS and Google have launched a common project with a first goal to
fully integrate both data and workload management with Google Cloud Platform. Rucio, the
ATLAS data management layer, can submit third party transfers between Grid storage
elements and Google Cloud Storage (GCS), directly download/upload files and bookkeep the
data in the cloud. PanDA can manage the Virtual Machine (VM) lifecycle in Google
Compute Engine (GCE) through the Harvester resource manager.

Fig. 6. Schematic overview of the PanDA and Rucio integration with Google Cloud Platform

We have implemented Harvester plugins to interact with the GCE API and boot, monitor and
delete VMs. We rely on standard CernVM4 [16] images that are contextualized at boot time
to run the pilot and download a job. Input and output data can be read from/written to either
GCS or Grid Storage.

2.3.2 Results on GCP

During the first phase we operated a cluster of 120 cores, seamlessly integrated with PanDA
and running standard Monte Carlo simulation jobs. The size of the cluster is not bound by
technical reasons and could be scaled up significantly. We evaluated both normal with close
to zero failure rate and preemptible [17] VMs with almost 20% failure rate (see Figure 7).
Considering that the cost of preemptible VMs is 80% lower, the cost/event ratio is an
attractive option. Event level workflows would allow to optimize the lost wall clock time, by
only losing the currently being processed event range.

With the possibility to natively use GCS storage, we also executed more I/O intensive
workloads for a few pioneer analysis users. A study for achievable data transfer rates and
cost needs to be explored further.

Fig. 7. Wall clock consumption for successful and failed jobs, highlighting the increased failure rate
when moving to Preemptible VMs

3 Conclusions

Harvester, through its powerful core and extendable plugin architecture, has proven extreme
versatility during its first two years of usage. It provided ATLAS with a single solution to
exploit the allocations on completely different top ranked US DOE HPCs. The integration
with Yoda allows for advanced workflows and will increase the usage efficiency in the
allocations.

In the case of Google Cloud Platform, a promising proof of concept was setup within
few weeks by implementing the corresponding plugins. While in the past ATLAS was limited
to run I/O light workflows on the cloud, the accompanying integration of Rucio with GCP
made it possible to execute different types of workloads on a scalable manner.

Acknowledgements

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

8

EPJ Web of Conferences 214, 03047 (2019)	 https://doi.org/10.1051/epjconf/201921403047
CHEP 2018

References
1. ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron

Collider J. Inst. 3 S08003
2. K. De et al. J. Phys. Conf. Ser. 664 062035 (2015)
3. P. Nilsson et al. J. Phys. Conf. Ser. 513 032071 (2014)
4. T. Maeno et al Harvester: an edge service harvesting heterogeneous resources for

ATLAS Journal of Physics: Conference Series (pre press) (2018)
5. ALCF Theta http://www.alcf.anl.gov/
6. OLCF Titan https://www.olcf.ornl.gov/titan/
7. NERSC Cori https://www.nersc.gov/
8. Globus Toolkit 5 release notes http://toolkit.globus.org/toolkit/about.html
9. J. Blomer et al. J. Phys.: Conf. Ser. 898 062031 (2017)
10. A. Undrus et al ATLAS Software Installation on Supercomputers Journal of Physics:

Conference Series (pre press)(2018)
11. A. Ayllon et al Journal of Physics: Conference Series 513 032081 (2014)
12. Globus Online https://www.globus.org/
13. V. Tsulaia J. Phys. Conf. Ser. 664 092025 (2015)
14. Message Passing Interface https://www.mpi-forum.org/docs/
15. M. Lassnig et al The Data Ocean Project Journal of Physics: Conference Series (pre

press)(2018)
16. CernVM4 http://cernvm.cern.ch/portal/release_4.1
17. Preemptible VMs in GCE https://cloud.google.com/preemptible-vms/

