
A
TL

-D
A

Q
-P

R
O

C
-2

01
8-

02
2

08
O

ct
ob

er
20

18

Evaluating Kubernetes as an orchestrator of the
Event Filter computing farm of the Trigger and
Data Acquisition system of the ATLAS
experiment at the Large Hadron Collider

Giuseppe Avolio1,*, Mattia Cadeddu2, and Reiner Hauser3

1CERN, CH-1211 Geneva, Switzerland
2CERN, CH-1211 Geneva, Switzerland (on leave)
3Department of Physics University of Michigan, Ann Arbor MI

Abstract. The ATLAS experiment at the LHC relies on a complex and

distributed Trigger and Data Acquisition (TDAQ) system to gather and

select particle collision data. The Event Filter (EF) component of the TDAQ

system is responsible for executing advanced selection algorithms, reducing

the data rate to a level suitable for recording to permanent storage. The EF

functionality is provided by a computing farm made up of thousands of

commodity servers, each executing one or more processes. Moving the EF

farm management towards a solution based on software containers is one of

the main theme of the ATLAS TDAQ Phase-II upgrades in the area of the

online software; it would make it possible to open new possibilities for fault

tolerance, reliability and scalability. This paper presents the results of an

evaluation of Kubernetes as a possible orchestrator of the ATLAS TDAQ

EF computing farm. Kubernetes is a system for advanced management of

containerized applications in large clusters. This paper will first highlight

some of the technical solutions adopted to run the offline version of today’s

EF software in a Docker container. Then it will focus on some scaling

performance measurements executed with a cluster of 1000 CPU cores. In

particular, this paper will report about the way Kubernetes scales in

deploying containers as a function of the cluster size and show how a proper

tuning of the Query per Second (QPS) Kubernetes parameter set can

improve the scaling of applications in terms of running replicas. Finally, an

assessment will be given about the possibility to use Kubernetes as an

orchestrator of the EF computing farm in LHC’s Run 4.

1 Introduction

During Run 2, the Large Hadron Collider (LHC) [1] operated at a centre-of-mass energy of

13 TeV, with a peak luminosity of about 2.0 x 1034 cm-2 s-1 and more than 60 interactions per

* Corresponding author: Giuseppe.Avolio@cern.ch

Copyright 2017 CERN for the benefit of the ATLAS Collaboration.

CC-BY-4.0 license.

mailto:Giuseppe.Avolio@cern.ch

bunch crossing. The High Luminosity LHC project (HL-LHC) [2], planned to start in 2026,

will target a peak luminosity of 7.5 x 1034 cm-2 s-1 with more than 200 interactions per bunch

crossing. The HL-LHC upgrades will occur during the so-called Long Shutdown 3 (LS3,

from 2024 to 2026). Therefore, the ATLAS [3] Trigger and Data Acquisition (TDAQ) system

will undergo a substantial upgrade [4] in order to cope with the higher luminosity provided

by the accelerator and exploit the HL-LHC physics potential.

The upgraded TDAQ system will sustain an input rate of 1 MHz (10 times more than in

Run 2) with an average event size of about 5 MB (4 times more than in Run 2). It will include

a large IT infrastructure, with thousands of computing nodes and applications to supervise.

The Event Filter (EF) component of the TDAQ system is responsible for the reduction of the

data rate to a level suitable for recording to permanent storage. The EF functionality will be

provided by a large computing farm, made up of about 3000 hosts.

The Storage Handler component will stand between the detector read-out and the EF. The

Storage Handler will buffer data received from the read-out (up to one hour of event

buffering), actually decoupling the read-out and the EF operations. Therefore, the presence

of the Storage Handler will allow to operate the EF in several different manners:

 decoupled or not from the LHC cycles;

 executing prompt or delayed processing;

 hosting mixed workloads (e.g., Monte Carlo production).

A robust and reliable mechanism for the management of all processes running in the EF

farm is a requirement to guarantee a stable and efficient execution of the EF service. The

following chapters will focus on the evaluation of a possible candidate to orchestrate the EF

computing farm operations.

2 Event Filter farm orchestration

The EF computing farm hosts both the processing units (PUs) and all the supporting services

needed to implement the last step of the event selection of the TDAQ system. In modern

software architectures, the management of large clusters of computing nodes is delegated to

so-called “Cluster Orchestrator” services. In a system like the TDAQ system, a Cluster

Orchestrator will fulfil a series of well-defined basic requirements:

 it will support different types of application lifecycles (i.e., always-running, run-

to-completion and cron-like services);

 it will allow both dynamic and static allocation of processes to computing nodes;

 it will be able to dynamically handle cluster resources (i.e., enabling/disabling

computation units at runtime, efficient exploitation of the available CPU power

and memory);

 it will scale to thousands of hosts;

 it will control (i.e., starting, stopping) and monitor the status of all active processes;

 it will allow to completely describe the requirements for all processes that need to

be started, including the definition of command-line parameters and environment

variables to be passed to the executable.

A survey of the offers currently available on the open-source market (based on the

requirements above) highlighted Kubernetes [5] to be an excellent candidate as an

orchestrator for the EF computing farm. Kubernetes was announced by Google to the open-

source community in 2014 [6] and is based on 15 years of experience at Google in managing

and orchestrating large clusters. Since its first release, the Kubernetes open-source

community has experienced steady-growth, reaching more than 1500 commits per month and

more than 150 contributors per month in February 2017 [7]. Today, Kubernetes is a mature

product contributed to by several technology partners like RedHat, CoreOS and Intel.

Kubernetes can be described as “a system for automating deployment, scaling and

management of containerised applications”. Among several supported features, Kubernetes

provides a set of services facilitating easy and effective management of applications in a

cluster:

 scheduling of applications based on required resources and other constraints;

 automatic re-scheduling of applications when the application itself fails or the node

where the application is running dies;

 built-in support for service discovery and load-balancing;

 management of several storage back-ends, allowing transparent mounting of both

local and network storage volumes;

 easy (via command line tools or GUIs) and automated (based on CPU usage)

scaling of the number of application instances.

Kubernetes requires applications to be packed into software containers. Containers

exploit virtualisation at the level of the operating system and are lightweight and simpler to

build than Virtual Machines, which instead exploit hardware virtualisation. Packing an

application into a container makes it possible to create immutable images disentangling the

application itself from the host operating system. In such a way, containers do not only

provide strong resource isolation but also make the development, integration and deployment

cycle easier, thus simplifying software portability and distribution. Kubernetes supports

Docker [8] containers. Docker is currently the market-leading container platform.

3 EF processing units in software containers

As a proof of concept, a small Kubernetes cluster (4 nodes) was set up using the CERN IT

Virtual Infrastructure [9], with the goal of running EF PU instances in software containers.

The PUs themselves were emulated with the offline version of today's EF software (i.e.,

AthenaHLT) using a realistic trigger menu. A Docker container image was created starting

from a base SLC6 [10] image and adding a few additional packages. The EF software was

retrieved directly from the CVMFS [11] installation repository. Kubernetes was able to

mount the CVMFS volume (via a dedicated Flexvolume [12] driver) and transparently make

it available to the containers, allowing to keep the size of the Docker image to a few hundred

megabytes. In order to better simulate data processing activity and mimic the future

interaction between the EF and the Storage Handler, two additional mount points were added

to the container: an input directory with data files containing real events, and an output

directory receiving the results of event selection algorithms. The AthenaHLT image was

distributed to and executed by the Kubernetes cluster. Events were correctly retrieved from

the input data files and processed by the PUs, with selection results stored in the output

directory.

4 Performance and scaling

In the most recent release available at the time of writing, Kubernetes is able to handle

computing clusters with up to 5000 nodes populated with up to 150,000 containers [13]. To

satisfy this requirement Kubernetes fulfils two performance goals for the reported cluster

size:

 99% of the calls to its backend (e.g., the calls to inspect the state of a container)

return in less than 1 s;

 containers (with pre-pulled images) are able to start within 5 s with a probability

of 99% †.

It is worth noting that the performance goals were achieved with the cluster being fully

populated; giving also an estimation of the time needed to restart a container in case of

failures. Larger clusters are also supported, but with degraded performance.

The time needed to completely fill the cluster represents another crucial performance and

scaling figure, particularly important for system operations. Since Kubernetes does not

provide any official result in that respect, some specific and dedicated experiments were

performed on a cluster made up of about 1000 virtual cores. The cluster was organised in the

following way: one Kubernetes master node (32 CPU cores and 60 GB of RAM) and 240

slave nodes (4 CPU cores and 8 GB of RAM each). All the nodes were equipped with CPUs

of the Intel Broadwell family clocked at 2.2 GHz. The latest Kubernetes version (1.5)

available on the CERN virtual infrastructure was used.

Fig. 1. Number of started pause containers as a function of time for a cluster of 240 hosts and five

replicas per host. Time is counted from the moment the command to deploy the containers is sent to

Kubernetes. Measured times are reported for four different values of the QPS parameter set.

The tests aimed at measuring the time needed to scale an application to a certain number

of replicas (from one to five instances per host). In order to minimise the impact of the started

† Performance of a big cluster is sensitive to the size of the Kubernetes “master” node (i.e., the cluster

control plane). The Kubernetes documentation indicates that the reported performance figures were

achieved running tests on the Google Compute Engine using a n1-standard-32 [14] virtual machine

for the master node.

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

Ti
m

e
 (

s)

Cluster Size

QPS x1 QPS x2 QPS x3 QPS x4

applications on the measurement (i.e., they may consume CPU cycles competing with the

Kubernetes system), a pause container was used and its image was pre-pulled into the cluster.

Such a container sleeps for an undefined period of time after being started with very minimal

resource usage.

Figure 1 shows the time needed to scale the pause container up to five replicas per node

as a function of the cluster size, for a total of 1200 started containers in a 240 host cluster.

The number of replicas was chosen to match the number of applications executed on each EF

Fig. 2. Number of started pause containers as a function of time for a cluster of 240 hosts and five

replicas per host. Time is counted from the moment the command to deploy the containers is sent to

Kubernetes. Measured times are reported for four different values of the QPS parameter set.

Fig. 3. Sustained rate of the pause container deployment for different values of the QPS parameter

set. With QPS values four times higher than the Kubernetes default configuration, a sustained rate of

70 containers per second is reached.

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

St

ar
te

d
 A

p
p

lic
at

io
n

s

Time (s)

QPS x1 QPS x2 QPS x3 QPS x4

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5

D
e

p
lo

ym
e

n
t

R
at

e
 (

s-1
)

QPS Multiplier

host during LHC’s Run 2 (as a reference, in Run 2 fully populating the EF cluster - 2000

hosts - took about 30 seconds). The size of the cluster could be easily changed by enabling

or disabling the corresponding hosts in the Kubernetes scheduler. The measurements are

reported for different values of the Kubernetes Query per Second (QPS) configuration

parameter. The QPS set is used to set a limit on the maximum number of requests the different

Kubernetes components can handle. In such a way it is possible to avoid overloading the

system, resulting in a possible denial of service. The default QPS values are quite

conservative and defined to safely allow Kubernetes to run on a wide range of hardware

platforms. Tests were executed increasing QPS values to up to four times their defaults.

Kubernetes performance proved to be strongly dependent on the QPS configuration. As

an example, the time to fully scale the pause container to 1200 replicas in a 240 hosts cluster

decreased from about 74 seconds down to 27 seconds with the most aggressive QPS

configuration. The impact of QPS settings can also be seen in Figures 2 and 3. The QPS value

does not only strongly impact the rate at which Kubernetes manages to deploy applications,

but it also has an impact on the time needed to start the first container (from 11 seconds down

to 5 seconds for QPS values four times higher than the default configuration). At the same

time it is evident how the time needed to have all the containers up and running is impacted

by a few outlier instances beyond the 95th percentile. That behaviour could not be traced back

to any slow node in the cluster and needs further investigation in order to be properly

understood. At the same time, it impacts performance figures only marginally.

Fig. 4. Time to fully populate the cluster with pause containers as a function of the cluster size and for

different number of replicas on each host. QPS values are set to four times the default Kubernetes

configuration. Extrapolating the results for one replica to a cluster of 3000 nodes, the cluster itself

would be fully populated in about 35 seconds.

5 Conclusions

In general, the executed tests demonstrated that:

0

5

10

15

20

25

30

0 50 100 150 200 250 300

Ti
m

e
 (

s)

Cluster Size

1 Replica 3 Replicas 5 Replicas

 the capability of Kubernetes to deploy containers in a cluster scales linearly with

the size of the cluster itself. Assuming no higher order effects with larger clusters

(Kubernetes officially supports 5000 hosts clusters), an EF PU service instance can

be fully deployed on each node of a 3000 host cluster in about 35 seconds (Figure

4), matching the corresponding performance figures in Run 2 after a proper choice

of the QPS values;

 Kubernetes performance is highly dominated by its QPS configuration. QPS values

four times higher than their defaults make it possible to reach a sustained

deployment rate of almost 70 containers per second (to be compared to about 20

containers per second with the out-of-the-box configuration). The Kubernetes

development road map aims to reach a rate of 100 containers per second on a 5000

host cluster in upcoming releases.

Overall Kubernetes performance has proven to be sufficient for its usage as an

orchestrator of the EF computing farm. Even so, it will be worthwhile to keep monitoring

upcoming Kubernetes releases in order to track and verify evolving performance figures.

Appendix

Several Kubernetes modules expose some QPS parameters, mainly to configure the

interaction with the API server. As reported in the previous paragraphs, the out-of-the-box

configuration resulted in poor performance in terms of container deployment rate. The QPS

values can be modified applying changes to the command line parameters of the concerned

modules. Table 1A reports all the parameters that have been modified for this study: the first

column contains the concerned Kubernetes components, while the second column contains

the corresponding command line option(s). Default values are reported in brackets and they

were coherently scaled by a constant factor ranging from one to four.

Table 1A. QPS-related command line parameters that have been

modified for each Kubernetes component. Default values are

reported in brackets.

Component Parameters (def. values)

kubelet event-qps (5)

kube-api-qps (5)

event-burst (10)

kube-api-burst (10)

kube-controller-manager kube-api-qps (20)

kube-api-burst (30)

kube-proxy kube-api-qps (5)

kube-scheduler kube-api-qps (50)

kube-api-burst (100)

The authors would like to thank the CERN IT-CM-RPS section for the enormous and precious support

provided to realize this work. Our gratitude goes especially to Ricardo Rocha and Spyridon Trigazis:

nothing would have been possible without their precious help.

References

[1] L. Evans and P. Bryant (editors), LHC Machine JINST 3 (2008) S08001

[2] G. Apollinari et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical

Design Report V. 0.1. CERN Yellow Reports: Monographs. CERN, Geneva, 2017

CERN-2017-007-M http://cds.cern.ch/record/2284929

[3] The ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron

Collider JINST 3 (2008) S08003

[4] The ATLAS Collaboration, Technical Design Report for the Phase-II Upgrade of

the ATLAS TDAQ System CERN-LHCC-2017-020, ATLAS-TDR-029

https://cds.cern.ch/record/2285584?ln=en

[5] Kubernetes: Production-Grade Container Orchestration https://kubernetes.io/

[6] An update on container support on Google Cloud Platform

https://cloudplatform.googleblog.com/2014/06/an-update-on-container-support-on-

google-cloud-platform.html

[7] The Kubernetes Open Source Project on Open Hub

https://www.openhub.net/p/kubernetes

[8] Docker: the world's leading software container platform https://www.docker.com/

[9] CERN Cloud Infrastructure https://openstack.cern.ch/

[10] SLC6: Scientific Linux CERN 6 http://linux.web.cern.ch/linux/scientific6/

[11] CernVM File System https://cernvm.cern.ch/portal/filesystem

[12] Kubernetes Flexvolume

https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolum

e.md

[13] Scalability updates in Kubernetes 1.6: 5000 node and 150000 pod clusters

http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html

[14] Google Cloud Platform: Machine Types

https://cloud.google.com/compute/docs/machine-types

http://cds.cern.ch/record/2284929
https://cds.cern.ch/record/2285584?ln=en
https://kubernetes.io/
https://cloudplatform.googleblog.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
https://cloudplatform.googleblog.com/2014/06/an-update-on-container-support-on-google-cloud-platform.html
https://www.openhub.net/p/kubernetes
https://www.docker.com/
https://openstack.cern.ch/
http://linux.web.cern.ch/linux/scientific6/
https://cernvm.cern.ch/portal/filesystem
https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md
https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html
https://cloud.google.com/compute/docs/machine-types

