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Abstract

For gauge theory, the matrix element for any physical process is indepen-
dent of the gauge used. Since this is a formal statement and examples are
known where gauge invariance is violated, for any specific process this gauge
invariance needs to be checked by explicit calculation. In this paper, gauge
invariance is found to hold for a large non-trivial class of processes described
by tree diagrams in the standard model – tree diagrams with two external W
bosons and any number of external Higgs bosons. This verification of gauge
invariance is quite complicated, and is based on a direct study of the differ-
ence between different gauges through induction on the number of external
Higgs bosons.

1 Introduction

In a recent paper [1], the decay process

H → γγ (1)

through one W loop was studied in detail in the standard model of Glashow,
Weinberg, and Salam [2]. Here H is the Higgs particle proposed theoreti-
cally in 1964 [3] and discovered experimentally in 2012 [4]. This reference [1]
gives the first case where the non-zero difference is found between the matrix
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element calculated using the Rξ gauge and the unitary gauge. This calcula-
tion, using Feynman rules for both gauges, is straightforward and elementary,
involving only high-school algebra.

In spite of its simplicity, this result raises immediately a number of ques-
tions, including the following:

(1) What other matrix elements in the standard model have the property
that the result using the Rξ gauge differs from that using the unitary gauge?

(2) The straightforward and elementary calculation presented in Ref. [1]
has the shortcoming that it gives no indication as to what the underlying
reason is for the difference between the unitary gauge and the Rξ gauge. Is
there another method of calculation that may be more enlightening?

For the first question here, the answer is of course there are many other
matrix elements with this property. A second example has been given in Ref.
[1], that for the decay

H → Zγ, (2)

also through a W loop. Moreover any matrix element that contains an Hγγ
or an HZγ one-W -loop insertion has this property. But it is believed that
there are many other such cases. Some possible candidates are the one W -
loop matrix element for the processes

γγ → γγ (3)

γγ → Zγ (4)

etc.
It is the purpose of the present paper to address the second question

above.
In the case of the decay (1), the difference of the matrix element using the

two gauges takes a very simple form – see Eq. (82) of Ref. [1]. Therefore, it
seems reasonable to be able to find this difference directly without carrying
out a tedious subtraction of matrix element in the two gauges. In order to
learn a better way to find this difference, it is desirable and perhaps necessary
to study simple cases first. What can be simple than the decay process (1)?
The answer is obvious: tree diagrams.

It is therefore proposed in this paper to study an especially simple case of
tree diagrams: those with two external W boson and any number of external
Higgs bosons.
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In Ref. [1], the difference between the two gauges is attributed to the
failure for a limiting process and a momentum integration to commute with
each other. In the case of tree diagrams, there is no momentum integra-
tion and hence this lack of commutation is not relevant. Nevertheless, even
without any integration, the present treatment of this particular class of tree
diagrams is by no means straightforward. It is expected that the method
developed here will be generalized to deal with diagrams with loops.

In Sec. 2, the motivation and the basic idea of the present approach is
described and motivated: it involves first the differentiation with respect to ξ,
the parameter in the Rξ gauge, and secondly the fact that, for tree diagrams,
the matrix elements are necessarily rational functions of ξ. In Sec. 3, this
method is applied to this particular class of tree diagrams being studied.
In this way, the derivative of the matrix elements is expressed in terms of
two functions called P and Q. Mathematical induction with respect to the
number of external Higgs bosons is then applied to the difference P−Q. This
rather involved induction process is described in the lengthy Sec. 4. Sec. 5
gives the conclusion and some discussions.

2 Method

For the purpose of the present study of comparing different gauges, what
is the major difference between the Rξ and the unitary gauge? Since the
unitary gauge is the limit ξ →∞ for the Rξ gauge, there can be no difference
between these two gauges unless this variable appears in the matrix element
for the Rξ gauge.

For tree diagrams, the absence of loops implies that the Faddeev-Popov
ghost [5] cannot appear. Without the Faddeev-Popov ghost, this variable
ξ appears only in the propagators for W and Z together with those for the
associated ϕ and ϕ0, sometimes referred to as the Higgs ghosts. Therefore,
for tree diagrams without any of these propagators, the same matrix element
is obtained for the unitary gauge and the Rξ gauge.

The simplest non-trivial cases are those with only a pair of external W
lines or a pair of external Z lines without any additional vector-particle
external lines. For definiteness, the case of two external W lines is to be
studied here. With this choice, there is a well-defined charged line that
connects these two external W lines; without loss of generality, this lines is
taken to be positively charged, as illustrated in Fig. 1. When the Rξ gauge
is used, the propagators along this charged line is that of either W+ or ϕ+.

3



Figure 1: Examples of WWnH tree diagrams. Here n=10.

For the tree diagrams in the standard model, this consideration leads
to the WWnH diagrams, meaning the tree diagrams with two external W
boson and any number of external Higgs boson. Such tree diagrams can
look quite complicated, some examples being shown in Fig. 1. It should be
emphasized that both external W bosons and all the external Higgs bosons
are on their respective mass shells.

In all the diagrams in this paper, including those in this Fig. 1, the
following convention is used unless otherwise specified: the horizontal line
means a charged line, either W or ϕ, with the positive charge going from left
to right, while all lines not horizontal are Higgs lines.

The only conceivable way to study these WWnH matrix elements for a
general value of n is to carry out a mathematical induction on the number
of n of external Higgs bosons, i.e., to express the matrix element for any
integer n in terms of those with smaller values of n. However, as seen from
the examples of Fig. 1, the W lines on the extreme right and on the extreme
left are external and hence must be on mass shell, while those in between are
not. Therefore, for the matrix elements themselves, there is no way to carry
out a mathematical induction on this integer n.

In order to apply induction to the present problem of WWnH, it is nec-
essary to break the horizontal W+/φ+ line. For this purpose, it is proposed
to make use of the following general property of tree diagrams. Since there
is no momentum integration, the contribution of any tree diagram to the
matrix element is a rational function of the parameter ξ. Moreover, since,
for any fixed value of n, the matrix element for the WWnH vertex is the sum
of contributions from a finite number of tree diagrams, this matrix element
is itself a rational function of ξ.
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A rational function of ξ is either a constant or not a constant. If the
matrix element for this WWnH vertex is a constant, then this constant
gives the answer for both the Rξ gauge and the unitary gauge, implying that
there is no violation of gauge invariance. If there is a violation of gauge
invariance, i. e., if the matrix element calculated using the unitary gauge
is different from that using the Rξ gauge, then the matrix element is not
a constant. This not being a constant has the strong implication that not
only the unitary gauge and the Rξ gauge give different answers, but also the
answer obtained using the Rξ gauge must depend on the value of ξ.

It is in general easier to determine whether a complicated expression is
zero or not then to find out whether it is a constant. For example, in the
former problem, common factors can often be ignored.

The central idea of the present investigation of the WWnH vertices is
therefore: apply the differential operator ∂

∂ξ
to the matrix elements from tree

diagrams.
As to be shown in the present paper, this derivative with respect to ξ

of the tree matrix elements has a number of additional desirable properties.
In particular, while it is not possible to apply induction with respect to n
directly to the matrix elements as discussed above, this induction procedure
can be used on this derivative of the matrix element with respect to ξ.

While this idea of differentiating with respect to ξ is motivated and jus-
tified only in the case of tree diagrams, it is likely that it is also useful in the
cases of matrix elements given by diagrams with loops.

3 Differentiation of matrix elements with respect to ξ

The first step is to apply this ∂/∂ξ to the WWnH matrix elements so
that an induction can be carried out on the number n of external Higgs lines.

The relevant Feynman rules for the standard model [2] are given in Fig. 2.
Following the notation of Ref. [1], the coupling constant g and the overall
factors of i have been omitted. Here m is the mass of the W boson, and mH

is the mass of the Higgs boson. As seen from this Fig. 2, the parameter ξ
appears only in the W+ and ϕ+ propagators, both in the denominator. Their
derivatives with respect to ξ are given by

∂

∂ξ
{ 1

p2 −m2
[−gµν +

(1− ξ)pµpν

p2 − ξm2
]} = − 1

(p2 − ξm2)2
pµpν (5)

and
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∂

∂ξ

1

p2 − ξm2
=

m2

(p2 − ξm2)2
. (6)

The similarity of the right-hand sides of these Eqs. (5) and (6), both involving
the factor (p2 − ξm2)2 in the denominators, plays an important role in the
present treatment. In particular, this appearance of the square indicates that
the differentiation of the propagators with different momenta can be treated
independently.

Suppose a ϕ+ propagator with momentum p is differentiated with respect
to ξ. This contribution to the derivative of the matrix element is the product
of the following three factors:

(a) the right-hand side of Eq. (6);

(b) a factor Q coming from the part of the diagram to the right of this ϕ+

propagator with momentum p; and

(c) a factor Q′ coming from the part of the diagram to the left of this ϕ+

propagator with momentum p.

With the convention that the factor (a) is not written explicitly, this contri-
bution to the derivative is QQ′.

Consider next a W+ propagator with the same momentum p. Let the
Lorentz indices for this W+ propagator be denoted by ν to the left and µ
to the right; see Fig. 2. This contribution to the derivative of the matrix
element also consists of three factors:

(a’) the same as (a);

(b’) a factor P coming from pµ/m contracted with the Feynman rules
coming from the part of the diagram to the right of this W+ propagator with
momentum p; and

(c’) a factor P ′ coming from a similar contraction of pν/m with the
corresponding left part of the diagram.
The contribution to the derivative is PP ′; the signs are arranged so that the
contributions from differentiating the W+ propagator and the ϕ+ propagator
taken together is PP ′ −QQ′.

These P and Q of course depend on the number of external Higgs bosons
to the right of the propagator that has been differentiated, and similarly
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Figure 2: Relevant Feynman rules for the WWnH vertices in the Rξ gauge.
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these P ′ and Q′ on the number of external Higgs bosons to the left. Roughly
speaking, through the use of ∂/∂ξ, each contribution to the WWnH matrix
element is broken up into two pieces, a right-hand piece (P or Q) and a
left-hand piece (P ′ or Q′).

Through a trivial application of the CPT Theorem [6] or by looking at
the Feynman rules of Fig. 2, the P ′ and Q′ can be expressed in terms of
some P and Q with different momenta for the external lines. Therefore it is
sufficient to concentrate on the P and Q.

For each P and each Q, the horizontal line on the extreme right is neces-
sarily a W+ line, and this W+ line represents an external outgoing W+ which
is on mass shell. This is entirely similar to the case of the matrix element
as discussed in Sec. 2. However, the horizontal line on the extreme left does
not represent an external line. Therefore, the P ′s and Q′s can be reduced
starting from the left-hand side. Such is the great power of differentiation
with respect to ξ.

This somewhat complicated reduction of the P ′s and Q′s is to be dis-
cussed in the next section.

4 Properties of P ′s and Q′s

A. Simplest case
The simplest of the P ′s and Q′s are those that correspond to n = 1.

There is only one of each, they are conveniently designated as P (1), and Q(1),
and their diagrammatic representations are shown in Fig. 3. For P (1), the
left-hand line is a W+, and a dot near this line is introduced to indicate the
factor pβ2/m; see (b’) of Sec. 3. This dot also serves the purpose of showing
that the diagram is for P , not for the matrix element itself. Thus a dot is
also introduced for Q; for Q(1), the left-hand line is a ϕ+, but the dot does
not give any additional factor.

From the Feynman rules of Fig. 2, it is seen immediately that

P (1) =
pβ2
m
mgβα = p2α (7)

and

Q(1) =
1

2
(p2 + k)α = p2α (8)

because p1 is on mass shell, which implies
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Figure 3: Diagrams for (a) P (1) and (b) Q(1).

p1α = 0. (9)

The important relation

P (1) −Q(1) = 0 (10)

then follows. It should be emphasized that this Eq. (10) holds even for the
external Higgs line off-shell.

For n = 2, there are four P
(2)
j and Q

(2)
j , not counting the permutation of

the external Higgs lines. The diagrams for these P
(2)
j and Q

(2)
j are given in

Fig. 4. The total contributions for n = 2 are

P (2) = P
(2)
1 + P̂

(2)
1 + P

(2)
2 + P̂

(2)
2 + P

(2)
3 + P

(2)
4 (11)

and

Q(2) = Q
(2)
1 + Q̂

(2)
1 +Q

(2)
2 + Q̂

(2)
2 +Q

(2)
3 , (12)

where theˆdenotes exchange of the two external Higgs bosons.
The numbers of these P ′js and Q′js increase rapidly with n : 13 P

(3)
j and

12 Q
(3)
j ; 48 P

(4)
j and 45 Q

(4)
j . All these P ′js and Q′js up to n = 4 have been

studied in detail.

B. Branches of the tree
It is seen clearly from Fig. 1 that the tree diagram has many ”branches”,

and these branches are formed entirely of the Higgs propagators and Higgs
external lines. Some examples of these branches, taken mostly from Fig. 1,
are shown in Fig. 5. These branches, and many others, can occur not only
with the matrix elements, but also with the P ′s and Q′s.
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Figure 4: Diagrams for (a) P
(2)
1 , (b) P

(2)
2 , (c) P

(2)
3 , (d) P

(2)
4 , (e) Q

(2)
1 , (f) Q

(2)
2 , and (g)

Q
(2)
3 .
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Figure 5: Examples of the branches of a WWnH tree diagram. These branches also
appear in the P and Q. Fig. 3(f) represents branches such as (b), (c), and (d), but not
(a) or (e).

In Fig. 5, for (a), (b), (c), and (d), the branch is attached to the tree
trunk, represented by the W/ϕ propagators, through one Higgs line, the
possible vertices being HWW , HWϕ, HϕW , and Hϕϕ three-vertices. For
case (e), two Higgs lines are used to attached the branch to the trunk, where
the possible vertices are HHWW and HHϕϕ.

In this figure, the diagram of the case (f) is a symbolic representation of
(b), (c), and (d). If K is the momentum of the vertical Higgs line, then

expression for (f) = A
1

K2 −m2
H

. (13)

what A is depends on what the branch is; two specific examples for this A
are

A = −3

2

m2
H

m
(14)

for the branch given by (b), and

A =
3

4

m2
H

m2
(15)

for that of (c). In both Eq. (14) and Eq. (15), the appearance of the factor
3 is to play an important role. This factor A has momentum dependence
except in these two cases.

As seen from (14) and (15), the upper end of the vertical Higgs line in (f)
is either attached to a HHH three-vertex or to a HHHH four-vertex. It is
convenient to define B and C simply through

B = (−3

2

m2
H

m
)−1A (16)
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in the former case, and

C = (
3

4

m2
H

m2
)−1A (17)

in the latter case.

C. Reduction of P −Q — first case
In Sec. 4A, it has been shown by Eq. (10) that the difference between

P (1) and Q(1) is zero. Motivated by this result, the next step is to study the
difference P (n) −Q(n) recurrently in n.

The simplicity of Eq. (10) is due to the following fact: as seen from Fig. 3,
the segment of the horizontal line next to the one on the left is that the W+.
More generally, as seen from Fig. 4, this segment can be that of W+ or that of
ϕ+, the former in the case of (a) and (e), the latter in (b) and (f) for example.
These two cases need to be treated separately, the W+ in the present Sec. 4C
and the ϕ+ in the next Sec. 4D. As perhaps to the expected, the development
in Sec. 4D is much more complicated than that of the present Sec. 4C.

Using the notation of Fig. 5(f), consider the two diagrams of Fig. 6:

Fig. 6(a) gives P
(n)
j while Fig. 6(b) gives Q

(n)
j . Here the subscript j indicates

that these P
(n)
j and Q

(n)
j come from a specific diagram, a notation that has

been used extensively in Fig. 4. Following Sec. 3, they are given by

P
(n)
j =

pβ

m
A

1

K2 −m2
H

mgβα′
1

p′2 −m2
[−gα′β′

+
(1− ξ)p′α′

p′β
′

p′2 − ξm2
]R(n′) (18)

and

Q
(n)
j = A

1

K2 −m2
H

1

2
(p+K)α′

1

p′2 −m2
[−gα′β′

+
(1− ξ)p′α′

p′β
′

1

p′2 − ξm2
]R(n′), (19)

where R(n′) denotes the factors that come from the rest of the diagram. Here
n− n′ is the number of Higgs external lines in A.

Since p = p′ +K, Eqs. (18) and (19) lead immediately to

P
(n)
j −Q(n)

j

= A
1

K2 −m2
H

1

2
p′α′

1

p′2 −m2
[−gα′β′

+
(1− ξ)p′α′

p′β
′

p′2 − ξm2
]R(n′)

= A
1

K2 −m2
H

−ξm
2(p′2 − ξm2)

p′β
′

m
R(n′)

(20)
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Figure 6: Diagrams for the first case (a) P
(n)
j and (b) Q

(n)
j .

Figure 7: Diagrams for the second case (a) P
(n)
j+1and (b) Q

(n)
j+1.

The appearance of p′β
′

m
on the right-hand side of Eq. (18) is important: it

converts the R(n′) into a P , say P
(n′)
j′ :

P
(n′)
j′ =

p′β
′

m
R(n′). (21)

Therefore

P
(n)
j −Q(n)

j = CA 1

K2 −m2
H

P
(n′)
j′ . (22)

where

C =
−ξm

2(p′2 − ξm2)
. (23)

The main task at this point is to find the formula corresponding to

Eq. (22), where the P
(n′)
j′ on the right-hand side is replaced by Q

(n′)
j′ with

the same n′ and j′. This corresponding formula must come from the dia-
grams of Fig. 6 with the W+ of momentum p′ replaced by a ϕ+. These
diagrams are shown in Fig. 7.
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As already mentioned, this second case is much more complicated than
the first case that has led to the above Eq. (22).

It should also be noted that everything goes through without any mod-
ification if n − n′ = 1, i.e., when K is the momentum of an external Higgs
particle. This is to be expected in general since this case of n− n′ = 1 is an
especially simple one.

D. Reduction of P −Q — second case
Following Sec. 3C, the P and Q for the diagrams of Fig. 7 are given by

P
(n)
j+1 =

pβ

m
A

1

K2 −m2
H

1

2
(p′ −K)β

1

p′2 − ξm2
Q

(n′)
j′ (24)

and

Q
(n)
j+1 = A

1

K2 −m2
H

(−1

2

m2
H

m
)

1

p′2 − ξm2
Q

(n′)
j′ , (25)

where use has been made of the fact that the rest of the diagram gives Q
(n′)
j′ .

Since

pβ

m

1

2
(p′ −K)β − (−1

2

m2
H

m
) =

1

2m
[p′2 − (K2 −m2

H)], (26)

the difference P
(n)
j+1 −Q

(n)
j+1 can be written as

P
(n)
j+1 −Q

(n)
j+1 = S0 + S1 + S2, (27)

where, using the definition (23),

S0 = −CA 1

K2 −m2
H

Q
(n′)
j′ (28)

is the desired term [see Eq. (22]), while

S1 =
1

2m
A

1

K2 −m2
H

Q
(n′)
j′ (29)

and

S2 = − 1

2m
A

1

p′2 − ξm2
Q

(n′)
j′ (30)

need to be combined with the contributions from additional diagrams. In
the notations S0, S1, and S2, the indices j′ + 1 and n′ have been suppressed.
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Figure 8: Diagrams for some of the contributions to P
(n)
j+1 and Q

(n)
j+1 (a) Pa and (b) Qa.

The diagrams (c) Pb and (d) Qb are obtained from (a) and (b) by exchanging two branches
of the tree.

The suppression of these and other indices will also be applied to a number
of additional quantities in this Sec. 3D.

As seen from Figs. 6 and 7, the momentum of the propagator to the left
has been called p and that next-to-left called p′. In order to study additional
contributions similar to S1 and S2, it is necessary to introduce a further
momentum p′′. This leads to the diagrams of Figs. 8(a) and 8(b); when
the two branches in these diagrams are exchanged, they then lead to those
Figs. 8(c) and 8(d).

As noted in the caption of Fig. 8, Pa and Qa are parts of P
(n)
j+1 and Q

(n)
j+1

respectively, the indices j + 1 and n having been suppressed. It therefore
follows form Eqs. (27) and (29) that

Pa −Qa = S0a + S1a + S2a, (31)

where

S1a =
1

2m
AA′

1

K2 −m2
H

1

K ′2 −m2
H

1

2
(p′ +K ′)α′′R(n′′). (32)

Here R(n′′), similar to the R(n′) of Eqs. (18)-(21), are the factors that come
from the rest of the diagram. When the two branches of the tree are ex-
changed, leading to the diagrams of Figs. 8(c) and 8(d) for Pb and Qb, the
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corresponding expressions are

Pb −Qb = S0b + S1b + S2b, (33)

where

S1b =
1

2m
AA′

1

K2 −m2
H

1

K ′2 −m2
H

1

2
(p̄′ +K)α′′R(n′′). (34)

Note that the same R(n′′) appears in Eqs. (32) and (34). Furthermore, as
seen from Fig. 8, the momenta are related by

p′ = p−K;

and

p̄′ = p−K ′; (35)

thus

(p′ +K ′) + (p̄′ +K) = 2p. (36)

It therefore follows from Eqs. (32) and (34) that

S1a + S1b =
1

2m
AA′

1

K2 −m2
H

1

K ′2 −m2
H

pα′′R(n′′). (37)

This expression is very nice: it means that

S1a + S1b + Pc = 0 (38)

where Pc is the contribution to P
(n)
j+1 coming from the diagram of Fig. 9. The

corresponding Qc is zero because there is no WϕHH four-vertex. This takes
care of all the S ′1s from Eqs. (27) and (29).

It remains to study the S2 as given by Eqs. (27) and (30). As seen from
Fig. 8, the diagrams to be studied are the two shown in Fig. 10. The diagrams
in this Fig. 10 differ from those of Fig. 8 in that it is a ϕ+ propagator with
momentum p′′ instead of a W+ propagator. For Figs. 10(a) and 10(b), the
Pd and Qd are given by

Pd =
pβ

m
A1

1

K2
1 −m2

H

1

2
(p′ −K1)β

1

p′2 − ξm2
A′1

1

K ′21 − ξm2
R

(n′)
d (39)
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Figure 9: Diagrams for another contribution, called Pc, to P
(n)
j+1.

Figure 10: Diagrams for some further contributions to P
(n)
j+1 and Q

(n)
j+1 (a) Pd and (b) Qd.

The diagrams (c) Pe and (d) Qe are obtained from (a) and (b) by exchanging two branches
with A, and A′1.
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and

Qd = A1
1

K2
1 −m2

H

(−1

2

m2
H

m
)

1

p′2 − ξm2
A′1

1

K ′21 −m2
H

R
(n′)
d . (40)

It follows from Eq. (26) that the difference Pd − Qd can be written as the
sum of three terms

Pd −Qd = T0 + T1 + T2 (41)

where

T0 = −CA1
1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

R
(n′)
d , (42)

T1 =
1

2m
A1

1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

R
(n′)
d , (43)

and

T2 = − 1

2m
A1

1

p′2 − ξm2
A′1

1

K ′21 −m2
H

R
(n′)
d . (44)

A comparison with Eqs. (27) - (30) shows that these T ′s are special case of
the S ′s Since it is S2 being studied, this T2 can be treated accordingly. It
therefore remains to consider the T1 of Eq. (43).

Figs. 8(c) and 8(d) are obtained from Figs. 8(a) and 8(b) by exchanging
two branches of the tree; entirely similarly, Figs. 10(c) and 10(d) are obtained
from Figs. 10(a) and 10(b) by the same exchange. In this way, Eq. (41) leads
to

Pe −Qe = T̂0 + T̂1 + T̂2, (45)

where theˆdenotes the exchange of the two branches, a generalization of the
notation already used in Eqs. (11) and (12). As seen from Eq. (43), however,
T1 is invariant under this exchange; therefore

T̂1 = T1. (46)

Moreover, there is a third similar contribution from the diagram of Fig. 11.
In this case, by the Feynman rule of Fig. 2, this Qf is given by

Qf = A1
1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

(
1

4

m2
H

m2
)(−1

2

m2
H

m
)−1R

(n′)
d . (47)
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Figure 11: Diagrams for another contribution, called Qf , to Q
(n)
j+1.

The corresponding Pf is zero again because there is no WϕHH four-vector.
A comparison of this expression with Eq. (43) shows immediately that

Qf = −T1. (48)

Together with Eq. (46), the result is

T1 + T̂1 −Qf = 3T1, (49)

where the minus sign before Qf comes from Pf −Qf = −Qf . It remains to
combine this result with the S2 given by Eq. (30). There are two distinct
situations to be studied, as decided at the end of Sec. 4B.

As seen from Fig. 11 and Eq. (47) for example, two Higgs internal lines,
with momenta K1 and K ′1, are attached to the W+/ϕ+ line. Therefore, for
the present purpose, Eq. (16) is to be used, not Eq. (17). Furthermore, the
identifications are

B = A1
1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

(50)

and

1

p′2 − ξm2
Q

(n′)
j′ = (−1

2

m2
H

m
)−1R

(n′)
d . (51)

With these Eqs. (50) and (51), the S2 of Eq. (30) takes the form

S2 = − 3

2m
A1

1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

R
(n′)
d , (52)

which leads to the cancellation, because of Eqs. (43) and (49),
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Figure 12: Diagrams that give contributions similar to the right-hand side of Eq. (55)
(a) Pg and (b) Qg. Cyclic permutation of (A1,K1), (A′1,K

′
1), (A′′1 ,K

′′
1 ) gives additional

contributions designated by Pg′ , Qg′ , Pg′′ , and Qg′′ .

S2 + T1 + T̂1 −Qf = 0. (53)

In the second situation Eq. (17) is to be used instead of Eq. (16), i.e.,
where the vertical line of Fig. 5(f) is attached to aHHHH four-vertex instead
of a HHH three-vertex. Therefore C consists of three factors of the form

C = A1
1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

A′′1
1

K ′′21 −m2
H

(54)

and

S2 = − 1

2m
A1

1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

A′′1
1

K ′′1 −m2
H

(
3

4

m2
H

m2
)

1

p′2 − ξm2
Q

(n′)
j′ .

(55)
Because of Figs. 9 and 11 together with Eqs. (38) and (48), the only di-
agrams that can give contributions similar to right-hand side of Eq. (55)
are that of Fig. 12 together with the two obtained by the cyclic permuta-
tion of (A1, K1), (A

′
1, K

′
1), (A

′′
1, K

′′
1 ). Let these three contributions be called

Pg, Qg;Pg′ , Qg′ ; and Pg′′ , Qg′′ , then it follow from Eqs. (41) and (43) that

Pg −Qg = T0g + T1g + T2g, (56)

where

T1g =
1

2m
A1

1

K2
1 −m2

H

A′1
1

K ′21 −m2
H

A′′1
1

K ′′21 −m2
H

R(n′)
g , (57)

while T0g and T2g can be treated as T0 and T2 without causing any difficulty.

Since, as seen from Fig. 12, R
(n′)
g are the factors that come from the rest
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of the diagram, it does not change when the three branches are permuted,
implying that

T1g = T1g′ = T1g′′ . (58)

In particular, for the present case of the HHHH four-vertex, the analog of
Eq. (49) is

T1g + T1g′ + T1g′′ = 3T1g. (59)

This is due to the fact that there is no term corresponding to the Qf coming
from the diagram of Fig. 11 because there is no five-vertex in the standard
model.

Together with Eq. (54), the identification

1

p′2 − ξm2
Q

(n′)
j′ = (

3

4

m2
H

m2
)−1R(n′)

g (60)

for the present case instead of Eq. (51) then gives the cancellation

S2 + T1g + T1g′ + T1g′′ = 0. (61)

In obtaining the cancellations of both Eq. (53) and Eq. (61), a factor of 3
plays a prominent role, a point already noted after Eq. (15)

This completes the treatment of the diagrams shown in Fig. 7.

E. Cancellations and recurrence relations
In the first case treated in Sec. 4C, the result is given by Eq. (22). In this

equation, the subscript j refers to a diagram, for either P or Q, consisting of
a branch on the left-hand side and the subscript j′ refers to the rest of the
diagram. If this branch is designated as br, then

j = (br, j′). (62)

The right-hand side of this Eq. (22) is a product of three factors: a C defined
by Eq. (23), a factor that depends on the branch br, and then a factor that
depends on the rest of the diagram. The superscripts refer to the number
of external Higgs lines, where n− n′ is the number of these lines for branch
br. Note that while P − Q is on the left-hand side of this equation, only P
appears on the right.

In contrast, the second case treated in Sec. 4D is much more complicated.
As seen from Eq. (27) there, the right-hand side consists not only the desired
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term S0, but also two additional terms S1, and S2. The cancellation of S1

terms is expressed by Eq. (38), where the appearance of the term Pc justifies
the factor 1

K2−m2
H

in Eq. (22) for the first case.

The corresponding cancellation of the S2 terms of Eq. (27) is much less
straightforward. The basic formulas are given by Eqs. (53) and (59). How-
ever, in order to get the cancellations of the S2 terms, these Eqs. (53) and (59)
need to be applied repeatedly. After the cancellation of both the S1 and the
S2 terms, only S0 remains and the resulting expression can be combined
with Eq. (22) of Sec. 4C. For the purpose of summing over j′, the following
notation is convenient

P
(n)
br =

∑
j′

P
(n)
j

and
Q

(n)
br =

∑
j′

Q
(n)
j , (63)

where the notation (62) has been used. It then follows from the result of
Secs. 4C and 4D that

P
(n)
br −Q

(n)
br = CA 1

K2 −m2
H

(P (n′) −Q(n′)), (64)

where A and K depend on the subscript br. Since

P (n) =
∑
br

P
(n)
br

Q(n) =
∑
br

Q
(n)
br , (65)

Eq. (64) gives

P (n) −Q(n) = C
∑
br

Abr
1

K2
br −m2

H

(P (n′) −Q(n′)), (66)

where, for clarity, the subscript br has been added back to A and K.
Because of Eq. (10) and the fact that there is at least one Higgs external

line in the branch br (i.e., n−n′ ≥ 1), mathematical induction can be applied
to Eq. (66) to give the desired result
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P (n) −Q(n) = 0 (67)

for all n.

F. Gauge invariance
Eq. (67) implies immediately that gauge invariance hold for the case under

consideration: matrix elements on the tree level with the two external W
bosons and any number of external Higgs bosons. The argument is as follows.

Eq. (67) implies that

P ′(n) −Q′(n) = 0 (68)

for all n. Let the number of external Higgs bosons be called N , then the
derivative with respect to ξ of this tree matrix element is a sum of terms
proportional to P (n)P ′(n

′) −Q(n)Q′(n
′) with n+ n′ = N . But

P (n)P ′(n
′) −Q(n)Q(n′) = 0 (69)

as a consequence of Eqs. (67) and (68). Therefore, this derivative with respect
to ξ is zero, and hence the matrix-element itself is a constant. Since this
matrix element is a rational function of ξ, this being a constant implies that
gauge invariance holds in this case; see the detailed discussion in Sec. 2.

5 Conclusion and discussions

In Ref. [1], it is shown that formal conclusion are not necessarily valid in
every case. Rather, such formal conclusions need to be checked by explicit
calculations. In that reference, two examples are given where gauge invari-
ance supported by formal arguments turns out to be violated. These two
example are for the decay processes (1) and (2).

In view of these two counter-examples, it is desirable to find significant
classes of non-trivial examples where formal argument and explicit calcula-
tion do lead to the same conclusion on the validity of gauge investigation.

The class of diagrams studied consists of tree diagrams with two external
W bosons and any number of external Higgs bosons. For this large class of
matrix elements, the explicit calculation, carried out through mathematical
induction on the number of external Higgs bosons, confirms the formal result
that gauge invariance does hold. This is the first time such a verification has
been accomplished for a large class of cases. These cases are non-trivial

23



because the expressions for the matrix elements are quite different in the Rξ

gauge and in the unitary gauge.
As expected for such a large class of complicated diagrams as seen from

Fig. 1 for example, the derivation of the results through explicit calculation
is quite lengthy. Nevertheless, the present derivation by induction involves
much less work than a brute force computation even for a moderate value
of the number of external Higgs bosons. Moreover, the present result gives
strong indication that there is no gauge non-invariance for all tree diagrams.

Combined with the result of Ref. [1] and also Ref. [7], the situation is as
follows: there is no violation of gauge invariance for tree diagrams but there
is for some one-loop diagrams. Thus the present paper may be considered
also as proposing the first step in the development of a systematic method to
calculate the difference between various gauges. This method, which has been
applied only to tree diagrams in the present paper, needs to be generalized
first to one-loop diagrams and then to multi-loop diagrams.

Let us conclude this paper by repeating the final sentence of Ref. [1]:
Yang-Mills non-Abelian gauge theory [8] in general and the stan-

dard model in particular are much more subtle than what has been
generally realized.
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