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To establish the BRST invariant functional variational method for the gauge field
theories in the covariant gauge, we have computed the Gaussian effective potential of the
Abelian Higgs model in the functional Schrédinger picture. We obtain the same result
as that of Ibaiiez-Meier, Stancu and Stevenson, but we have used the BRST invariant

variational procedures.
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The functional Schrddinger picture formulation of quantum field theories has been

1. Introduction

shown to provide a practical device in obtaiﬁing non-perturbative informations through
functional variational method[1]. It has also been proved to be especially convenient in
dealing with the gauge degrees of freedom in quantization of gauge field theories[2](3].
However, the application of the functional variational method to the gauge field theories has
not been succesful due to the difficulties in imposing the gauge fixing conditions properly[4].

Recently, Ibailez-Meier, Stancu and Stevenson have been able to compute the Gaussian
effective potential of the Abelian Higgs model by using the particle picture[5]. However,
they ignored the Faddeev-Popov ghost terms and had to make variation with respect to
the gauge parameter €. As a result, their trial wave functional does not satisfy the BRST
invariance condition, although their result is physically reasonable.

Although it is difficult to solve the BRST invariance condition for the state functional
directly, the decomposition of the state into the ghost part and the other part as, |¥ >=
|Ghost > lother >, simplifies the invariance condition[6]. One way to achieve this is
to choose the ghost part of the wave functional as a delta functional. This choice is,
however,too strm;g condition for non-Abelian gauge theories in that the ghost and the
ghost related terms must vanish. Another way is to make a transformation of field variables
so that the matrix elements of operators can easily be computed(2]. The purpose of this
paper is to estabilish the BRST invariant variational approximation method by using the
latter method .

In sec.2, we seek the vacuum wave functional that satisfies the BRST constr#illt equa-
tion and then evaluate the effective potential by the variational method in the functional
Schrédinger picture. In sec.d we renormalize the effective potential, and in the last section

the discussions on the relations with other results are given.
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2. Calculation of the effective potential
We consider the Abelian Higgs model described by the Lagrangian density,

1 . 1 , 1
L= ;(0“4)1 hast e-‘l;A¢2)2 + 3(011¢2 + e-‘lu(bl)- - :;'712.;3%%

2 1 L 1 TRV SO =
— Ag(¢ada)” ~ ZF""F‘ - -Zz(auA’ ¥ 4 i0*70um,

where ¢ =

(#1,62) are two real components of the charged scalar field, and (n,7) are
Faddev-Popov ghosts. From the Lagrangian (2.1) one obtains the Hamiltonian density of

the system,

1
H= 5 aTa + = 0 0a0iPa + m%qﬁaqsa + A8(Pada)®
‘; ‘1‘-4 Pada + 7\',\,77-\, + = B B, — m;0; 4o (2.2)
- §£"Ao7f.~\° + w4, 0idi — ip@E — ViV,

and the equal-time (anti)commutation relations,

[‘T,, d)l'( )] o=rh = _6ub6(3 - L_')

[‘IT,\“ )"4 (’E ]Io—f:, = —ig/wd(lz'— .E')

(2:3)
{n(2), 9"} ro=r, = —i6(F — )

{77('5)! g(‘cl)}u):ta = “16(5— -L—l),

where p and § are conjugate momenta to the ghost fields n and i, respectively. The equal-
time (anti)commutation relations(2.3) lead to the Schrédinger picture representations of

the quantum operators:

. . L8
Py — ’7’{1(-17)1 Mg — '—"w
4* — A"(x) Ta, — i—-§—
E . , Ay Tan
5 (2.4)
n — (), P — —LE;
_ _ _ L8
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D

One can easily show that the Lagrangian (2.1) is invariant under the BRST transfor-
mation

84, = (Oun)e,

o = iCG(,b¢b7]€,
1 . (2.3)
= Z(O,‘A )S,
én =0,
where ¢ is a Grassmann constant which anticommute with # and 7. This invariance can

be realized by imposing the BRST invariance condition on the physical states[T},

Q\Il(qblh"l“v’h ﬁlt) = 0 (2‘6)
where
. ) ) L)
=3 B e(n(0; —— — e€apPa—) — == ——|. 2.
Q L/( c[1(0 iL e€apd 45¢b) 57 6‘40] (2.7
Writing the wave functional appearing in Eq.(2.6) in the form
(o, A%, 1) = €7D B, A% ), (2:8)
the BRST invariance condition (2.6) can be written as the condition on ®:
) b _ &
i—— - ) e b n"‘tll Al 2-
Oir = o35~ D Bben 4458 =0 (29)
where D(x,z';t) = D(x',2;t). By using the change of variables
) = V- Ax) = DN = s ) VAL,
- 1,
s(e) =V - A(r) - EV'G(I), (2.10)

u(r) = aVv - A- I-)V"'H(.c) — D7 (& - 25 t)VEA (),
e

where a, b and ¢ are constant numbers such that @ = b —¢ # 0, the BRST invariance
condition (2.9) becomes
4#:¢) = 0.

]
—P{ @ : D)
o B, - (2.11)

This means that physical states must be independent of the variable u(z)[2].
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We now have to find the wave functional ¥ that satisfies both the functional
Schrédinger equation and the BRST invariance condition (2.11). One way to realize this
procedure is to solve the Schridinger equation for general wave functional ¥ and then

require the BRST invariance condition (2.11) when one computes the inner product,

<P, >= /DqSD.—anPﬁ&(u)‘Ill\Ilg‘ (2.12)

which guarantees that only the BRST invariant state functionals contribute to the physical
amplitudes. Eqs (2.10) and (2.12) imply that there exist infinitely many equivalent ways to
realize the covariant gauge quantization procedure. One can easily show, for example, that
when (a,b,¢) = (0,0,1) it is equivalent to the Weyl gauge, and when (a,b,c) = (1,0,0)
to the Coulomb gauge. And we can choose the values of a,b and ¢ conveniently for given
problems(2].

If we choose nonzero b, we must use the polar coordinates for the scalar fields, which
makes the problem complicated in the functional Schrédinger picture. For the gauge field
theoris, therefore, the computations become greatly simplified if one chooses (a,b¢) =
(1,0,~1). Then, for the functional variational approximation, we can choose Gaussian

trial wave functional,
U= ch Ped e [0 D) - AMDGIHE VA (2 = L da(2)=0a) F, =Mz ) (d(2)—es))

(2.13)
where G, and Fy; are 4 x 4 and 2 x 2 matrix functions, respectively. For this choice of

(a,b,¢) the inner product between two states {¥; > and |¥; > becomes

<[P, >= /’L”q’;DA,‘DqDﬁﬁ(V cA+ DTIVEAYT, . (2.14)

which guarantees the BRST invariance of the physical imformations. Given the trial wave

functional our problem is to minimize the energy expectation value,

E=<H>= /rl”.x/D(,),,'DA,"IJ:]'DﬁJ(IL)\TI’H\IL (2.15)
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In the momentum space, Eq.(2.13) can be written as,

1 1 2 2
<H >=;17123<Pc '\B‘r"c / uu ; /(1)- + "I“B)F"“(p)

+/\B[// (FaaFoo + )Ethab)+/()‘PLFaa+49’c a1881 Fas )]
l
5 A" Faa + ‘Pc) + (P Aii - p'pJ '] A (P)
1 -1 1 2 i 4 =1

- ,,,.Am. (P)Auo + 5= PPpilio — — p D~ (p)%o(p)
=Jp it r

1 _ 1 —1 2 1 -
—;/mAgwmm+;;/mmD‘rAu+;;/fD’@mAmm
14 = r = »

/A ' (p)

1 . - 5 1y
i (P*pipjAi; + 2ip* Mo D' = p" D% Ago)
"
=3 / (=p*pipjAi; D™ = 2ipp* D™ Ao + p* Ao DY)
14

4/wm+#wm+wﬂ*WL
p

(2.16)
where we have used the relations:
Ye EP1
13 q B - d 71
= [ =P o(u)=lime i [ den®
(2=)? o—0
p 1 (2.17)
A‘_“} = G;, ;[—6,'“5]",0,'01 + 5“55,,005D_lvz + 5‘,05,,,'0,'D—l v?
+ 6,,“6,0 V.',D_.') VZ].
Minimization of < H > with respect to D71, Ay and Ay leads to trivial results which are

@e-independent and can be ignored. Note that D{x,z';t) is the ghost field contribution
as can be seen from Eq.(2.8). This means that the ghost fields for the Abelian gauge
theory do not contribute to the effective potential. And if we choose = (0,0,p), A7}

diagonalized and A;‘), for p,v = 0,3, is determined. So we have only to determine the
1(i,j =1,2)and F;

diagonal part of Aj; 1. One can see from eq.( '2.16) that the off-diagonal

terms of F;! are also @, independent. Thus the condition, M < H >=0, leads to

. 1
FBle[/E.u'*'Y(]-_\ 2 "p b,] -—0

S =12 (2.18)



which can be written as
AP =4p + 4623[/ Fuo + Y. (2.19)
I)
The condition, 3-‘,,57; < H >=0, leads to

FRl=4p"+mb+ep / Ai)dus + s,\B[/('zl-}cb‘ub +4Fu) + 20260 + 402801001 (2:20)
P »

If we introduce A, and w defined by’

A = B (L(Q%) + L(w?) +97)

0% = m} +42p[310(Q%) + Lo(w?) + 3¢2] + 25 L(AY) (2.21)
w? = my + 4\ [L(Q) + 3L(w?) + 2] + 2651 (A?),
where Iy and I; denote the integrals
10(92)5/ LN — 11(92)5/-.(&.1 P+ Q2 (2.22)
(2r) 2 /p? + Q2 (27)3 2
the matrix functions can be written as
AT =407 + 87
FiP =40 + Q%) (2.23)

By inserting (2.19) and (2.23) back into {2.18) and (2.20), we obtain the effective potential
p 2 1, 2 2 .
Vers = J(Q°) + J(w?) + smpled + L(Q°) + I(w?))
+ AB[3IA(Q7) + 313w + 2L(Q) Lo(w?) + G L(Q7) + 202 Lo(w®) + @3] (2:24)
+ B L(ANI(Q?) + (W) + 97] + 2J(AY,

where J(a) = [|{a) — %(\2[(,((\-).

3. Renormalization

We first introduce another divergent integral:

dIy dPp 1 d*p 1
= D = —_— —
Iv==20 / (27)F 2w / 2r )t (p? + Q)2 (3-1)

where w, = /p? + Q2. Using this, we can obtain the following convenient relations be-

tween Iy and Iy:

2 4
L(Q%) = 1,(0) + %10(0) - %‘I—x(llz) + (0%

2
B(0%) = 10(0) = Ly (%) + 27 (2) (3.2)

2

2y ay 1 i}
I4(9%) = L) = gz o,

where f(Q%) = 6‘};, (ln %—: — 3] and £/(Q?) is the derivative of f with respect to Q2. The
theory contains two divergent integrals I_;(u?) and Ip(0). To absorb the divergences to

the physical parameters, we impose the renormalization conditions,

(IV,_H‘ _ m",";t
T = g
. R (3.3)
([ chf l _ 1
dQ2'™ T T2
as in the case of scalar ¢ theory.
From the first equation of (3.3), we obtain
7”28 1 o m'j:2
— + —(10/\3 + 282,)[0(0) = T, (3.4)
/\B /\3 /\R
and the second equation of (3.3} can be written as
([l V(-ff 11 A P ..
q(Q2)? I, = X(E - -1-51_] — A1) + finite terms. (3.5)
For the right hand side of eq.(3.3) to he finite, Ap must satisfy the condition
1 /\b 2 2
E): - 1—2'I_1 - ’\bI—l = 0. (3.6)
This equation has two solutions.
1 1 -
/\BI_[ :—E or E (3!)
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For the solution Agl_; = —1, the renormalization condition becomes
1 1
A ! AR (3.8)

gl = -11.2-, the renormalization condition becomes

1 1
—_— 12 = —
A 124 AR’ (39)

If we rewrite the gap equations (2.21) by using these conditions, we can see that we need
another renormalization condition for both case:
Al = Ap®?
\ ) \ (3.10)
egli(4°) = eh.
For the positive Ag, the second solution of (3.7), we obtain from the eqs.(3.4),(3.9)and
(3.10):
0o =I1(1")2%, Ap = r/I-1(s?),

' ' (3-11)
7”'23 = m;';/I_](;tl),

E .« . 9 . o . ..
where Ag,e% and m} are finite and 42 is a finite mass scale. This is the so-called "au-

eh = ei/I-1(1%),

tonomous’ renormalizition condition of Ibailez-Meier et al [5]. Dimensional regularization
can justify setting the scaleless integral Io(0) equal to zero. Setting Iy{0) = 0 and using

the formula (3.2), the gap equation Eq.(2.21) can be written as

, . 1 ., 1 ..
* A":e‘M‘I’f,—;Q'-—;w')+sAz

o 2 K 1 . 9 .
Q° = 4Ap(30; - ;QZ - ;w') - ehAz + &2 (3.12)

. s 1o, 3,0, .
W' = 4Ar(PF - 507 - W) = R 4 e,

where ¢ terms are infinitesimal, O(1/I_1) terms. Iguoring those terms, Eq.(3.12) can be

solved to yield
2 eR (I>2
T 1+ SAr - eR o
QO = 4Ar(3+ 16Ap) — eh(1 + SAp)
(L+4A\p)(1 +8Ap - e‘}‘)
4 \p — CR N

[} 34

(1 +4ARN1 +8Ag —e})

P2, (3.13)

[
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Total derivative of V, sy with respect to . becomes
dVes i OVeyy

do. Qo
= (0% = 8\ py?).

In order for V,¢s to be finite in terms of the rescaled field @, we must have a cancellation

= (,DC[THB + 4/\3(3.[0(9) + Iu(w') -+ Q ) + )EBIU(A)]
(3.14)

between the finite part of Q% and 8App? = SAr®%, which implies the constraint equation,
1-8Ar — 640%

ek =4\g T— 3% (3.15)
Using this constraint equation, Eq.(3.13) becomes

S - 32)%
o = Wt o0/,
Q% = 8Ag®2 4+ 0(1/1-), (3.16)

; 32)g

2 _ 2

=T+dis ——®, + O(1/1.y).

The renormalized effective potential is obtained from Eq.(3.14). With the leading divergent
terms cancelled in Eq.(3.14), one need to consider the infinitesimal parts, O(1/1-1) of Q2,
since they are multiplied by @, which is divergent, in order to obtain the finite part. Using
explicit form of £52,592 and <2, one can solve for the O(1/I_;) corrections to Q2 in

Eq.(3.16). One thus ol)t.aixw

dl/ef[ (IQ' ' 2 {
25, = 2Rl lb‘)f A)“zp’f(ﬂ) (zbzf( )+ Bem?.

Thus, by integrating Eq.(3.17) with respect to ®., one obtains the renormalized effective

(3.17)

potential

1
—m ‘I"

N+ + fle®) +

This can be conveniently reparametrized by vaciwun value @, defined as the position of

Vi = 2f(0 (3.18)

the minimum of Vs, as

I>;’ 142
Verr = KO} [lu(I), ——]+-— m?3? (1—_—(1)—2 (3.19)
where K = ’\"‘1+s’\"L:;?i’::;?fhw&h\ﬂ and m? = %ﬂ-mu This result is the same as

that of ref.[5].
For the case of negative Ag, we see that V.5 cannot be finite in terms of the rescaled
® g from (3.14). Therefore, for the case Ag is negative. we still need to find a consistent

renormalization method.



4. Discussions

The main difficulty in establishing the consistent variational approximation method
for the gauge field theories has been in finding the BRST invariant procedure for the
variational calculations. We have established the BRST invariant variational method by
transforming the field variables in such a way that the BRST invariance condition appears
as a simple delta functional in the inner product of the Hilbert sl)aée elements. In this
procedure it is natural to take the trial wave functional in a Gaussian form which includes
the ghost fields contributions. This clearly exhibits how the ghost fields contribute to
the effective potential in the functional Schrodinger picture. As has been shown, the
ghosts and the ghost related terms contribute only to the infinite constant terms in the
effective potential, and thus have no physical effects for the Abelian gauge theories. This
is the reason why Ibafiez-Meier, Stancu and Stevenson have obtained the correct result by
ignoring the ghost contribution{3]. For the nou-Abelian gauge theories, however, we have
to include the ghost terms in & BRST invariant way to obtain the correct results.

As has been explained in the introduction, there exists another way to achieve the
BRST invariance, i.e., by choosing the ghost part of the trial wave funtional as a delta
functional{6]. This gives the same result as that of ref.[5] for the Abelian theories. This
method, however, cannot be applied to the non-Abelian gauge theories since the ghost

contributions cannot be ignored for the non- Abelian cases.
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