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ABSTRACT. We consider the How of a gas in a channel whose walls are kept at fixed
(different) temperatures. There iz a constant external force pacaliel to the boundaries
which may themselves also be moving. The system is described by the stationary
Boltzmann equation to which are added Maxwellian boundary conditions with unit
accommodation coeflicient. We prove that when the temperature gap. the relative
velocity of the planes and the force are all sufficiently small, there is a solution which
converges, in the hydrodynamic limit, to a local Maxwellian with parameters given
by the stationary solution of the corresponding compressible Navier-Stokes equations
with no-slip houndary eanditions. Corrections to this Maxwellian are obtained in
powers of the Knudsen number with a controlled remainder

Keywords: Hydrodynamical limit, stationary Navier-Stokes equations, kinelic

theory.

1. INTRODUCTION.

The behavior of macroscopic svstets in steady nonequilibrium situations is
stibject of great. intrinsic and practical interest and one which was close to Onsager’s
heart [1]. The sitnplest cases are those which have some symmetries. These inchide
the uni-directional flow between parallel plates or coaxial cvlinders in which the
steady nonequilibrinn flow is miaintained by an external hody foree or pressure
gradient, and /or by translating the walls at sonie presevibed speed, s in e classical
Poiseille and Counette flows. The hydrodynamic deseription of such systems has heen
much studied and the stability properties of the flow [or small values of the control
parameters are known. The appearance of instabilities, for sone critical values of
the parameters, is also proven, at least for the lincarized equations [2].

While mnch less is known about these problems from the microscopic point. of
view. Onsager was able to use properties of the microscopic dynamics to derive
exact results about the symmetry properties of the transport coefficients appearing,

*Toappear in a special issue of Jour. of Stat. Phys honouring Onsager’'s 90th birthday

Typeset. by A STEX

GENEVA

i

CERN LIBRARIES,

in the linear hydrodynamic equations. To do this he had Lo make a very plausi-
ble assumption about the equivalence of transport of matter, heat, elc. resulting
from the regression of spontaneous fluctualions in an equilibrinm system and that
induced by macroscopic gradieuts or forces which obey linear laws. The validity
of these linear laws, such as Foutier's law of heat conduction, and of the hydrody-
namic description itself was then as now based on experiments rather than derived
from the more fundamental laws governing the motion of atoms or molecules. To
actually derive the hydrodynamic equations in a mathematical, rigorons way from
the underlying microscopic dynamics is a formidable task which is now in an active

but still early stage of development {3,4]. .

The study of these problems at the kinetic level of the Boltzmann equation is
an intermediate step in this program. It is useful {rom the conceptual point of
view because, while many of the features of the microscopic description survive,
the mathematical analysis is sipler than the fully microscopic one. In addition, it
is also of practical interest. in situations in which the fluid is sufficiently rarefied for
the Boltzmann equation to give an accurate description of the microscopic state.
The hydrodynamical behavior away from boundary layers or shocks is recovered
by expanding in the Knudsen nimber, the raiio of the mean [ree path to the scale
of macroscopic gradients. Such expansions have been extensively investigated, and
we refer to [5] and veferences quoted therein. The validity of such an expansion,
relative to the Euler behavior, in the time dependent case without boundaries, was
proven in {6, 7, 8. Oue of the difficulties in dealing with stationary problems is
dne to the fact that the bonndary is essential and in a thin layer (of the size of
the mean free path) near the houndary the space variations are not as slow as the
hivdrodynamical ones. Therefore one has to deal with a boundary layer expansion
too. In [9] the two inlertwined expansions are discussed in the case of the thermal

[aver.

In a recent paper [10], we considered the case of agas between Lwo walls stthject
to a force parallel to the walls. The walls were held at equal temperatures and there
where no-slip houndary conditions. We proved there, for a sufficientiy small force,
the validity of a truneated expansion in the Knudsen number, whose lowest order
is the local Maxwellian with parameters satislving the hydrodynamical equations
(the stationary compressible Navier-Stokes equations). The next orders involve
houndary layer corrections as well as kinetic corvections in the bulk;: the first order
kinetic corrections are actually responsible of the dissipative effects and determine
the form of the hydrodynamical equations. The prool in [10] used explicitly the

svmmetry between the two walls which prevents its direct application to more
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general situations. In this paper we extend the above results to the case in which
the two planes are at different temperatires and can move with respecl to each
other, provided that the difference in temperature and the relative velocity, as well
as the force, are small enough. In this more general sitnation we need to modify
the proof to take into account boundary terms which were absent in [10] hecause of
symmetry. This will be discussed in section 3 where we sketch the proof, pointing
out. the necessary modifications, while we vefer to [10] for details. A complete
formulation of the problem and a precise statement of the resulis is given in section
2.

We note here that the case of the fluid between two coaxial. non rotating cylin-
ders, at different temperatures and subject to an external force parallel to the axis.
can be reduced to a form very similar to the one discnssed in this paper, so that
our results apply also to this case. Not covered in this paper is the case of a chan-
nel with a force orthogonal to the walls or that of rotating cvlinders, that will be
presented in a forthcoming paper [11]. We note alas that the restriction of our re-
sult Lo the small values of the external driving parameters prevents its application
to the most interesting situations in which instabilities arise. Finally we mention
that, like for the hydrodynamical equations, explicit steady solutions [12-14] ave
available in some special cases for the BGK model and for the Boltzmanu equation
for Maxwell molecules. While such solutions are found for all Knudsen numbers
and also for large values of the external parameters, they arve only valid in the bulk.
Since they do not match the boundary conditions, their range of applicability is
effectively rediiced to the case of small Knudsen numbers. The stability of such

solutions is still an unexplored field.

2. FORMULATION AND RESULTS.

We consider the stationary Boltzmann eqnation for the distribution Tunction
SO on) on the space seale of the mean fvee path in the presence of ancexternal force

1.
I

0V GV = QUL ) (2.1)

The velocity of the particles,

1= (U, 0, 05) 08 in r* while the position 1’ is in a
three dimensional slab . = {(x'.9/.2) € R st {y| = =} 27 the size of the
hox in microscopic units, over which there ave significant variations in temperatire,
velocity, ete., will he the scaling parameter. ¥/ denotes the gradient swith respect
to (' g 2D QUL ) is the usual Boltzmann collision operator for a hard spheres

pas: we reler to [H0] Tor all defails. Since we are interested in Lhe solitions of (2.1)

in the Himit £ —+ 0, it is convenient Lo rewrite it in rescaled (macroscopic) space

coordinates (7,1, 2) = (2’ ¢/, 2’). In the new variables (2.1) becomes

R ] (2.2)

and the space domain becomes Q@ = {(r,y.2) € R* s.t. |y| < 1}. The walls (i.e. the
planes y = +1) are assumed to be at fixed temperatures Ty, say 1y > T, and to
move parallel to the xz-plane at speeds Uy. We model collisions with the walls via
Maxwell boundary conditions with unit accommodation coefficient, i.e. we assume
that the distribution of “incoming” velocities after a collision with the walls is given

by

f(=4 ) =a_ M _(v), v, >0, (2.3)
f(L,v) = a M (v), v, <0, (2.4)

with f(£1,7) = f(x, 41, 2,v) and

|

= U2y 25
’27r'l'ip ’ (2:5)

7\7*(17)
normalized so that [ . v, M o (v)dv = 1.
vy Y
The e+ depend on the distribution of “outgoeing” velocities in such a way that

the net current to the walls vanishes,
(v, ) = /! w f(ELv)dv =0 fory = £1, (2.6)
R
Condition (2.6) and the normalization of ATy, imply:
oy = :I:/ vy {1, v)dw (2.7)
1,20

Namely, a4 represent the outgoing (from the fluid to the walls) fluxes of mass in the
direction ». More general boundary conditions could be allowed (see for example
[5]), but we restrict ourselves Lo this case for the sake of concreteness.

In the following, as in [10}. we assume that the force field is in the r-direction
and has a strength of order €2, ie. (¢ = (¢21,0,0). We also assume that I is
constant in space. The scaling factor 2 for the force is required, as discussed in
(10}, Lo get stalionary solutions, Larger forces cannot in general be equilibrated by
the houndary dissipative mechanisms of the Boltzmanu fluid. We look for solutions
of (2.2) depending only on the y space coordinate. The Boltzmann equation then
hecomes

of | . Af

i
vy A e = QL)) (2:8)
y duvy €




with [ > 0 and
i
/ dy{f) =m (2.M
Joa

for some positive constant m. We use the notation (g) = [,. g(r)dv. Note that
the space variables o and z can be restricted to a square with periodic boundary

conditions, without any change in the ecuations.

All the result of this paper extend immediately to a case of a fluid between
two coaxial cylinders of macroscopic radii ay < a. In this case we use eyvlindrical
coordinates (r, ¢, &) and substitute v,.(0f/0r) for v, (3 f/dy) in (2.8). The boundary
conditions are now given for r = a; and r = ag, for v, > 0 and v, < 0 respectively.
Setting a; = 0, the condition for r = a; is replaced by the condition that the
solution on the axis be even in v,, a situation which resembles more the case

discussed in [10].

The hydrodynamical regime

When € is small the solution of the Boltzinann equation is expected to describe
behavior close to the hydrodynamical one, in the sense that, to the lowest order,
f is given by a local Maxwellian, with parameters determined by the solution of
a set of hiydrodynamical equations. At higher order in ¢ there are both bulk and
boundary layer corrections. The prool of this assertion for the boundary valne

problem (2.3)-(2.8) is the main result of this paper.

In [10] we considered the situation 7'y == T {7y == . This has the svinmetry
(y.vy) = (—y, —r,). which was used heavily in the proofs. In this paper we extend
the proof in [10] to the case where there is no such svmmetry. We prove that when
the foree; the difference of temperature and the relative velocity of the planes are
sulliciently small then it is possible. for small &, to conslmet a solution to (2.8) of

the form

6

=M+ " fu+ (2.11)

n=1

Heve M = M,y is the local Maxwellian with parameters 77 = T'(y). p = ply)

and U7 = (u{y).0,w:(y)) given by the solution of the stationary hydrodynamical

o

equations
i(rﬂ‘) =0 (2.11)
dy
%(n(ﬂ%) +pl'=10 (2.12)
L) =0 (219
R G + [+ () =0 (.11

These eciuations are Lo be solved with no-slip boundary conditions U(£1) = /x on
the thermal walls at temperatures 74 > 0 and we {ix f}l p(y)dy = m. The thermal
conductivity x(7') and the viscosity coellicient (1) are strictly positive functions
of the temperature, given by well known expressions for which we refer to [5].

We note that the transport coefficints are described by the term fi in (2.10),
which contains the main contribution to the heat flow and momentum dissipation.
Therefore they are of order £ at the microscopic level of the distribution function
f, but they are of finite size on the Navier-Stokes time scale. They are responsible
for the conversion of mechanical work into heat and of the transport of heal. Lo the
boundary. See Section 4 for more comments about, this point.

The corvections fn in (2.10) are the sum of three terms, f, = B. + b} + b5,
with B, describing f in the bulk while b give boundary layer corrections, sensibly
different from 0 only near the boundary. The bulk terms B, satisfy the following

set of equations, which correspond to a sort of Hilbert expansion: for n=1,....6

OB, - . o
v Olf” ! 4 F(_____z = LB" -+ Q(I{k‘v ”m)v (ZI))
Y
’ {)U (?1'1 km>t

kdm=n

where £f is the linearized Boltzmann operator defined as
£f =200 f), (2.16)

and we put B = A and I3 = 0.
The boundary layer terins are obtained by scaling back to microscopic coordi-

nates around y = &1, Setting y' = ¢ '(y + 1) and y" = &1 (1 = y), with both y'

and y’ varying iu [0, ‘25’1]. the boundary layer corrections near the wall y = —1,
b, have to satisfy, forn =1,....6
a . O . , _
11,,0—1/,/)" + F Wb" g = Loby + 2Q(AM_ b, _ )+
.. x
-~ . o (2.17)
3 [ZQ(U,-J)JH— Qb b7+ Q) b,
>l
ifj=n

6




where we put bi = l)f1 = 0. Morcover, My = M,y wen ey, Lof =
200My, f) and AMy = 7 Y(AM — My). The functions b} satisly an analogous
set. of eqquations near the boundary y = 1.

Equations (2.15) and (2.17) are linear, but. coupled together in a complicated
way by the boundary conditions which they have to satisfv. We will specify the
boundary conditions Jater on but note here that the houndary laver corrections
decay exponentially in the variables 3" and 3, in consequence of Proposition 2.1
below. So their effect in the bulk is negligible, and this justifies the interpretation
of the b} ‘s as boundary layer ternss.

A slightly different. version of above expansion was introduced in {9] Tor the
thermal layer problem. The one used here was introduced in [10]. Their solvability
is related 1o the existence of regular solutions of the hydrodynamical equations and
to the “dissipative™ properties of the linearized Boltzmann operator. Jn particular,
the boundary layer expansion (2.17) can be solved in terms of the solution of the

linear Milne problem, discnssed for example in {15].

The remainder

To complete the description of [ we have to discuss the vemainder [, which
contains the non-linearities of the problem, although in a weaker form. hecause it

is mnltiplied by » positive power of «. fp satislies the equation

) ) 1 '
"x/"ffﬁ + ,5/«‘,(7[15 = —Lfpd L' fr 4+ 2Q(fr fr) + <A (2.18)
dy ey E
with
I
Cr =200 <" "fu.fn) (2.19)
n—1

and A given by

.)’;; . () 3 , ‘) 5 ‘ V
A= -'ll'u(%l—-l <l "fr + T Lf“] F20(AM B F2Q(AM b))
Sy D, o, ,
Y T f) (2.20)
("»3 kom>|
by m>7

Bomndary conditions

It is quile easy to satisly (2.3) and (2.4) to zero order in e, beeanse M is alveady
a Maxwellian and the temperature and velocity field were chosen to fit with the
Maxwellians 37 1. Only the density has to he adjusted. Higher order terms are more
involved. In fact the 13, satisfy (2.15) which do not invelve boundary conditions.

So they do not reduce to o AT, on the boundary and one is forced to introduce

boundary layer corrections. The idea is thal one introduces at one of the boundaries,
say y = 1, the correction bf to so that B3, + b} is proportional to My for v, < 0.
"The samme has to be done at y = —1. "I'his changes again f; at y = 1 by non
Maxwellian terms. However, since by decays exponentially fast. the modification is
exponentially small in e, Therefore we impose on the f, the following boundary

conditions:

fn(-‘ L "') = (Y;l—ﬁ"(v) + ’77?5(”)' Uy >0

fnlh0) =M () -+ (v), v, <0 (2.21)
with v, (v) = bT (27 ¢) exponentially small in ! (see Proposition 2.1 below)
and we fix

af =4 / vy fal{£ v)dv (2.22)
S,z 0

Finally, to fulfill (2.3} and (2.4) we impose the following conditions on fg:

6
fr(=1v) = agM_(v) - ZE” 3'7,;6 vy, >0 (2.23)
n=|
6
fr(l,v) = ﬁﬁﬂ (v) — L e" '3'7,,'"5 vy <0 (2.24)
n=1
The normalization condition (2.9) requires
1
/ dy{fn) = O, n=1,...,6 (2.25)
g

t
/ dy(fr) =0 (2.26)
J—1

Results
The construction of the solution to the linear problems (2.15) and (2.17), with the
bhoundary conditions (2.21) and the normalization conditions (2.25) is not, straight-
forward, but the dillerences with the case disenssed in [10] are minor and we refer
to that paper for the proofs, see also [9] where a similar problem was considered for
the case of the thermal layer. llere we swnwmarize the properties of the f, which
are important in Proposition 2.1. To state them we define for any non negative
integer r the norm
[l = sup sup (1 o))"y, (2.27)

yel- 1) eer?
and we put.
q=max{{F[.{U/, ~U_|.|Ty —T.|}. (2.28)

sl




Proposition 2.1, Lel q be sufficienily small. Then there are unique smooth func-
ftons p. T', u and w satisfying (2.11)—(2.14), with derivatives of any order bounded
by Oq). Moreover it is possible 1o delermine uniquely the functions B, and b¥,
=1, 6 satisfying (2.15) and (2.17) so that [, = By 4+ b} + b, verifies (2.25)

and the condilion:
(v, ) =0 Joryel-1,1] (2.29)

and salisfies (2.21). Furthermore, for any positive v there is a constant ¢ such that:

Al 3B, < cq (2.30)

1
2

[AL, b;t (e ‘(1 ¥ ) expl-oe (1 T e <y (2.31)

Jor somne constant o > 0. Finally, the A in (2.18) salisfies

(Ay=0 foryel|-1.1] (2.32)
anmid
1 )
Aexpl=oprifly < eq, (2.33)

with p = SUPyep gy D)

To complete our pictire of the distribution function, it is necessary to get soln-
tions of the error equation (2.18) with the boundary conditions (2.23), (2.24) and

the normalization condition {2.26). By (2.29) and (2.6) we have the extra condition
(vyfr) =0 Torye|-1.1], (2.34)
Our main result is the following theorem, where we use the norm:

ho = sap sup (14 o) exp{@e?|} £y, m)]. (2.35)
uel- 1.1 vep?
Theorem 2.2, There are positive constants eq, Oy and qo such thal, if € < sy and
4 < qo, there is a solution to the boundary value problem (2.18), (£.23), (2.24),
(2.26) ond (2.34) having the property that for any positive infeger r there is a
constant ¢ > 0 such that

| frelrn < CF%]/HM (2.36)

Jorany 0 < Oy Moreover the solulion 1s unique in the class C; of functions { on
[=10) % R such that 5| f|,.q is bounded uniformly for small <, positive 0 < 6,

¢ - % and r e 7.

The proof of this theorem will be sketchied in next section. Here we make a fow

remarks about nniqueness: Theorenm (2.2) implies that there is a unique solution to

the Boltzinann equation in terms of a truncated expansion in g, i.e. a solution with
hydrodynamic behavior. But this is nol enough Lo prove uniqgueness of the solution
to the boundary value problem (2.3)-(2.8). Tn fact, our result sinply means that
we have uniqueness in the class €, of the functions f on [-1,1] x R? such that
(=3O f — e fy — €2 fo],4 is bounded uniformly for small e, positive 6 < 0y, ¢ < 1
and r € Z. We do nol expect to be able Lo get. uniqueness in a wider class with the
present methocds.

We also note that the uniqueness in C, does not exclude the possibility of solu-
tions of the Boltzmann equation (2.1) which depend also on the space coordinates
x and z. The estimates we have at the moment are not suflicient for that. We
expect however to be able to prove uniqueness in a class similar to C., with full

three dimensional space dependence allowed. This is work in progress.

3. OUTLINE OF THE PROOF.

We first discuss how to satisfy the conditions on fp. We can use the constants
agy and ag to satisfy conditions (2.26) and (2.34) on the reimander fn. Namely,
integrating (2.18) with respect to v, then, by {2.32) and the fact that (Q(f,g)) =0
for any [ and g, it follows that (2.34) is satislied for any y € [-1,1], once il is
satislied at one point, say y = I. We can then use ajfy to fulGll (2.34) at y = 1 and

ap to satisly (2.26). To be more explicit, we write fg as
fr=I1{RM+R (3.1)

with

1
H(R) = —m™! / r/y/ dvR(y,v), (3.2)
S JRr?
so that (2.20) is satisfied. Recalling that
pa (T 20 VAT (0} = M (1, 0). (3.3)

we choose ap = (T_/2nm) 2,07 VHRY. so that the Tunction R has to solve the

[ollowing boundary value problem:
g A

IR R

gy G = LI NEb22Q(RR) + A, (3.4)
Ri-10)=C¢" vy, >0, (3.5)
ROV, w) = BrAl () +¢P v, <0 (3.6)
(v, ) =0 foryel|-1,1], (3.7)

1




where the linear operator N7 is given by

4

- OM
Nit= R4 LR e gy 4+ Ly = s P 5] (3.8
J +1(7) L Lot Lhy = eF o (3.8)
nod :
The non linear term is given by
QURRY = QI R) 4 201(IVLR. (3.9)
and we have put. ¢F = — Z?_l eIyt and Bp=al - ap.

To get equation (3.1) we have used the fact thal QAL Al) = 0 and the relation
(2.15) with n = L. In this way there is no normalization condition on the function
R The quantity oy represents both the outgoing fAlux of fr in y = —1 and the
integral of It over y and v. This is possible because the impermeability condition
for fi at y = —1 is antomatically satislied once it is satislied at y = 1. Since A/
has vanishing ass flux in the direction i the constant 3 is determined so that I?

satisfies condition (3.7) at the point y = [, i.e.

Br = / Ty R(L )+ / I"r/(' . (3.10)
Sy, >0 g, <) )

In consequence of this 7 satislies (3.7) for all y e [ 1.1].

To construct. the solution of (3.4)-(3.7), we first consider the {ollowing linear
boundary vatue problem: given 12 on [=1.1] x R* and ¢ on {r € R¥s.4. 2, 7 0},
find R such that ) ol

p,,% F,(‘_)’I’L = ;LTI( YN 4£2D, (3.11)
with the conditions (3.5), (3.6) and (3.7) or, equivalently, (3.10). Once we get
estimates on the solition of this linear problem, it will be easy to solve the nonlinear
problem by simple Banach fixed point arguments. )

The linear problem presents some extra difficulties with respect. to the one consid-
eved in {10, One of them is the presence of the 35 term in the boundary conditions.
The other is related to the fact that with different temperatures it is no more true
that the infinnum of the temperatures is reached on Lthe boundary. This is tportant
becanse the terms b decay in velocities according to ‘”;It/Q (see equation (2.31) ).
Now there are y € [—1.1] such that A7y (¢) /M (y. 1) is imbounded. To control this
unhoundedness in velocities we need as in [10] to divide the solntion into high and
fow velocity parts and the decomposition has to be done more carefully to avoid
introducing new. undesived divergent terms. We make this decomposition using

mostly the same notation as in [10] to which we refer for more details.

1

The linear problem

Let T\ > p = sup,e gy () and
M, = (20T,) 2 exp{-v?/21.). (3.12)
Then we have M, > M for all (y,v) and some positive c. We look for a solution
of Eq.(3.11) in the form
R=VMg-+VM.h (3.13)
where the low velocity part. g and the high velociiy part, h are defined as the solwtions

of the following system of coupled equations, whose structure justifies the names:

dg L Oy
hy = F
Yy Ay te Juy

F ey =" g te x0T KL+ NG+ Ag,
(3.14)

a(1,v) = B My ()M 2 (L), v, < 0, (3.15)
g(—1,u) =0, vy, > 0. (3.16)
2 ol _ ,
v,,% + E]";)'—l— +el b (e Yo(§+ g2) =
: ay av,,
e w4 D 4 Noo(G 4 g2) + b+ [N § + AAG) + 2. (3.17)
hlovy = AYPIC ) 4+ B ()], v, <0, (3.18)
Bty = M0 @)y v, s 0 (3.19)

We summarize the notation used in the above equations:

Let e = M3 yi, 1 = 0,...,4 with v the collision invariants J,uI,'zvy,Uz,Uz/‘Z,
suitably normalized to make v, 7 = 0,...,4 an orthonormal set, in La(dv). We
decompose any [unction g into a hydrodynamic part g+ g, and a non hvdrodynamic

part § such thal

g=atar i with gy = pa(n)ia, 4= Y piy)iy (3.20)
j#2
The funclion y, (1) is the characteristic function of the set {v € R3s.0.]o| < v} and
Yy = 1 — x4 the complementary one.

The operalors L and L, are defined by
Lf=M7V2QMN MY [) = (—v 4 K)f (3.21)

Lof = M Y20Q(M MY [y = (v + KO (3.22)

and the decompositions in terms of 1, K and /K, are the nsual Grad decom-
position into an unbounded multiplication part. - and compact parts. We re-

fer to [16,7.10] for their properties. We choose 3, = fw.\“ dvoe, MY2(1,v) and

12




On = f,,.u>(, r[l}lryA1:/2/z(l, v .’;v.,<0 dvvy¢ T to make the y component of the mass
flow of g and h through the boundary y = 1 vanish. This is no more true at
y # 1 for g and h separately, but only for their combination (3.13). This is very
convenient for dealing with such terms.

The rest of the notation is:

i | ;o A
o= vy log ML = i lop Mgl = S0 o M., = ;\IL (3.23)
d=MPD0 b = bt (3.24)
Nof = MM (3.25)

[}
NP§ = m\/."'”{cg[ ST 2 (M2 4 1A 2 AD)] - 2/?‘,/1(1\/‘/’2,})‘\1}

n=2
(3.26)
N = 2a1 "‘/‘2{(,3[131, MY2g) 4 by (M2 + 1(/\/‘/?;,)1\[)}} (3.27)
Ag = MUy AR (MG I(MY23)An0) (3.28)
AN = ~0LP2Q b A M (M5 4 1M 2 3)A)] (3.20)

and A'M, = e~ V(ATV2 - M),

The wmain difference with respect to the similar decomposition nsed in [10] is
related 1o the term A (AY723), and is due to the problem mentioned above of the
speed of decay of b3 for large velocities. We recall that in {10} we obtained an
estimate for § which was =~ ! bigger than the estimate for the other terms and this
forced us to put this term in the equation for g instead of moving it to the equation
for h. Actually, the bad term is the one related to f; which has no extra factors
¢. Heuce, here we put the terms depending o f,,,n > 2, in the equation for h. to
deal with the equation for g one has to consider the Maxwellian A/ tith the true
temperature, and we have a term by M2 which may diverge for ladge velocities,
Therefore, we retain in the equation for g only the term Ag, which involves the
honnded term i;,": the rest. s AAG is put in the equation for h. This works becanse
AAG is uniformly bounded in £ by the exponential decay of b and the regularity
of the solution of the hydrodynamical equations.

We start with equations (3.14)-(3.16), considering h as a given function and try

to get estimates on g in tevms of . The norm we use is:
1

W= ( / dy dv(l & [ 2 (s v))ﬁ (3.30)

[--1.1)<pH

13

T'his problem is not. the usual boundary value problem, with prescribed incoming
flux on the boundary, because f, depends on the solition itself. It can be reduced
to the usual one, but this requires some care. Since the problem is linear, we can

write the solution g as g = ¢(¥) {be

+ ag¢) where the “bulk part” gt solves (3.14)-
(3.16) with g, = 0 and g'%¢) solves Lhe same problem, but with K,h = 0 and
the corresponding 3, = pY2(T/2m) 4, which means g (1,v) = A L (v)'7? for
vy < 0. The solutions to a suitable integral version of these two problems exist by

standard compactness arguinents (see for example [15], and we can use the constant

a to satisfy (v,gM"/?) = 0 at y = 1, or, equivalently, 8, = [, >0d1m,,]\[1/2g(l,v).
R - ' v N
To do this one has to check that
(g (L M2 (1, 0)) £ 0. (3.31)

The proof of (3.31), which requires most of the considerations necessary to estimate
g, and of Proposition 3.1 below are given in the Appendix.

We summarize the estimates on g in the following proposition:

Proposition 3.1. There exist posilive constants g, qo and Cy > 0 such that, for

e < eq and q < go the solutions lo Fq. (3.14) -(3.16) satisfy the bounds

jall < ey

k| (3.32)

lgll < e*C,

(]| (3.33)

llgal < C 1Al (3.34)

In order to find a solution to the “high velocity™ problem (3.17)-(3.19), for v, the
velocity cutoff, large enough one can use a siinple contraction fixed point argument.
We will only prove the estimate we need for i to get the bound for the solution of
(3.11).

Equation (3.17) differs from equation (5.4) of [10] because of the presence of
the term N*(z)f} and AA§. More relevant is the difference between the boundary
condition (3.18) and equation (5.11) of [10], which requires a more careful analysis.
In fact By depend on the value of i at the point y = 1 and cannot be controlled
immediately in terms of [jh|| which depends on the integral on the variable y.
To manage this part we have to use the integral representation already used in
[10] to get pointwise estimates. Our result on h are summarized in the following

proposition, whose proof is in the Appendix
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Proposition 3.2. Under the conditions of Proposition 3.1, if ~ is large enough,

there is ¢ > 0 5.1
[1h]] < el + o)) ]+ e 2 h )+ 10y [} (3.35)

This bonund, together with Proposition 3.1, implies:

U] < e2el(h -+ o)) Vdll] 4 e V24| 4 [h ] b (3.36)
Nt < )L+ Jel) ™ "dl] 4 e |+ by |} (3.37)
Hazll + Al < e¥ell(1 + o))~ ) 4 e Y2 { R | + | hy]) (3.38)

Once one has the Ly estimates for i and g, pointwise estimates can be obtained as
i Section 6 of {10}, nsing again the estimate (A.25) for gy and a similar one for 4,.
This provides finally the estimates for the solution R of the linear problem (3.11)

with conditions (3.5). (3.6) and (3.7):

FHEPES pet 1Dl v+ es 21T e ¢ |ral- (:3.39)

The nonlinear problem

The estimate (3.39) is all we need to deal with the non linear problem (3.4) -(3.7).

We replace the houndary value problem (3.4)-(3.7) with

IRy LORy 1 ~ .
Wk e e R e N R+ 2Q(Ri 1 R 1) 4 A,
Ay Dy £
(3.40)
Ri(=10)=¢ vy >0, (3.41)
(1, v) = B A () +¢h oy <0 (3.42)
(o, ) =0 for ye[-1,1]. (3.49)
, - X
for b > 1 and Ry = 0. Choose 1) = QR 4. s _y) + <A, The inequalily
AL RQUL v < ML IM Rl (3.41)
for any .f awd g (see [17]) and the estimate (3.39) imply
Wikl et fln + O %) (3.45)

uniformly in k& for ¢ small enough. The convergence of the sequence is oblained

by considering, for k > 1, Wy = Ry — I 1. The corresponding bonndary value

problem, for k >> 2 is:

Ay, oW, 1 . - .
EALLIY (AL —LWy + N1V 4 €20Q(Rie—y + Rz, Wiy} + %4,

A T T (3.46)
Wi(=Lv)y=¢" v, >0, (3.47)
Wl,v) = B, M, (v} +C¢Y v, <0 (3.48)
(V) =0 Tforye[-1,1], (3.49)

Putting [ = QURy_.y + Ri2,Wi_1) and using again (3.44) and (3.39), it follows
that
(Wile < e Wi_ilra, (3.50)

and this implies the convergence if ¢ is small enough. To prove the unigueness, let

IRy and Ry be two solutions of (3.4) +(3.7) and W = Ry — Ry. As above, we get:
[Wlo < s S[W] 0. (3.51)

Therefore. if ¢ < 1/2 we have uniqueness for £ small enongh. This concludes the
{ g

proof of Theorem 2.2.

4. COMMENTS.

A few comients are in order, to conclude our discussion.

Boundary conditions.

The assumption of Maxwell boundary conditions has been used in this paper, as
well as in [10] to simplify the proof, but we expect that with extra technical effort
one can generalize our resull to a wider class of boundary conditions, including
those described in [5]. The fundamental assumption on the b.c. we need is that
there is a unirque distribution invariant w.r.t. them and it is a Maxwellian. In this
way the non-slip b.c. for the hydrodynamical fields are guaranteed in the limit ¢
going to 0. For ¢ fixed there are slip correclions of order e. The crucial point of
our work is that the corresponding boundary layer corrections are of order € too.
Boundary layer corrections of order 1 would atise with more general slip boundary
conditions. They would be out of control because the linear theory is not sufficient

1o deal with thetn and the nonlinear theory is not available to our knowledge.

Time dependenl solutions
The stationary solulions to the rescaled Boltzmann equation ave supposedly the

limit, as { goes to infinity, of the time dependent solutions. Unfortunately, beyond
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the case of global equilibrium [18, 19], nothing is known about. convergence to
stationary solutions. Actually, even the existence of solutions globally in time is
far from obvious. Since we want to deal with the hydrodynamical limit we have
to consider also the limit as £ goes to zero and the order they have to be taken
is a delicate question. In fact, if we scale space and time according o the Euler
scaling and take the lim,_.q before the lim; ..., the latter one will not exist in
general, beeause the hydrodynamical limit, on this scale, destroys the dissipative
effects which drive the Huid to a stationary state. On the other hand, il we scale
space and time according to the Navier-Stokes limit, (@ — £ tr, t — ¢ 2t) the
limits are likely to be interchangeble. Therefore the right scaling lo discuss the
asymptotic behavior of the Boltzinann equation in the hydrodynamical limit is the
Navier-Stokes one. Ou this scale the time dependent analog of eq. (2.2) is
af 1

, Lo b ,
o PoVelt 56Vl = 5QU0L]) (1.1

The first problem one should be able to solve is to get solutions of (4.1) with initial
data near local equilibrium, bounded uniformly in < at least for fixed times. This
can be achieved at present only in special situations in which some kind of scaling

invariance is recovered.

The most, interesting case in which the above problem can be solved-is the incom-
pressible limit discussed in [20]. In that paper one scales @ as £* and the velocity
field at time zero as e, to guarantee that the velocity field al time 1 is still of order
£, restoring a scale invariant sitnation. In {20] only periodic houndary conditions
are considered, but a cotsbination of the ethod presented there and the ideas of
this paper shonld allow as {o extend the result to a slab with thermal walls, in the
presence of an external force parallel to the walls. The analysis of the stationary
behavior follows from the method employed to prove the resulls of this paper: the
velocity field is of order £ with a quadratic profile. We note that. iult‘his case one
experts the solution of the Boltzmmann equation for fixed < to converge to the global
ecquilibrinm as f -+ oo, but the interesting part of the solution, the correction of
order < is not under control.

The compressible case corresponds to assuming that (¢ = O(e?) aud non con-
servative (as we do in this paper). Much less is known about the time dependent
solntions in this case or even in simpler sitnations, c.f. [21]. The fact that the
stationary solution we obtain is ruled hy the stationary Navier-Stokes equation is
an indication that the Navier-Stokes scaling is the right one to discuss the long time

behavior in the hvdrodynamical limit.
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APPENDIX

Proofl of Proposition 3.1

The proofl follows along the same lines as in [10], so we point out only the

differences. We are going to use the following property of L:

1
/ dy / dof(y. ) LAy v) < —cillFIP (A1)
J-1 rR3

for a suilable positive ¢;. Note that in the r.h.s of (A.1) there is the non hydrody-
namical part, of f denoted by f. To take advantage of (A.1), we multiply (3.14) by

g and integrate on y and v. As in [10], we get

=L+ eglf® < iRl gl + ecqllgll gl + €*eallgh® (A.2)
where .
7= 5y’ (1L,0) = (n,g° (= L))} (A.3)

and we have estimated the term containing Ag as follows:

| [ [ avana| =] [ [ anail < 1iall 10+ 1) a
. Jpt . Jpr?

< callall Hlgll- (A
The first equality is due to the fact that (#,@Q(f,¢)) = 0 for o = 0,...,1 and any
[ and g. For the last step we use (see [22})

,|Q(\’mf-\//‘_[!])|2/ . Tl 2 A1+ el gl? ALS
/R3 l,-————‘——(l"{»lvlml < '/p“ To(1+ [eDif] ./ps Te(d+ Je])gi®, (A.D)

and the hound (2.31), which assures that [{b] || < eq. We also note that the cancel-
fation {p152) = 0, crucial in [10], is still true. Namely, it velies on the fact that g is
even in v, (becanse the part gy is taken away), while juis odd. This only depends
on the fact that there is no hydrodynamical ow in the direction y i.e. U7(y) has no
y-component. Thanks to this we have quadratic terms in ¢ in (A.2) only of order

=2 such a term with a lower power of € would be uncontrollable with our method.
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Another important step in {10] was the fact that I was a sum of two positive
terms due to the £1 boundaries. This was a consequence of the fact that the
outgoing flow was zero by syminetry on both walls. In the present case the oulgoing
flow is still zero on the lower plate y = —1, while, due Lo the presence of 3, # 0, a

proof is required of the positivity of the contribution coming from y = 1. We have:

<wﬂhm:/ mmﬁ@ﬂ~@/(ﬁ%ﬂﬁMM*wmr (A6)
Ju 0 Sy,

e

By the Schwartz inequality.

’ 2
/f_'f] = [/ ’l”(“"/l”(!'“])%(U‘éy(l'r))] < /
vy >0 b Ja

W0

dvr,g? (1) / der, A1)

o (A.T)

and nsing the refation between A7(1, 2) and AT and the normalization of 47, we
get (ryg%(1.m)) = 0.

In particular, this means that —{v,g%(—1,2)), which is positive. is estimated by

the r.h.s. of (A.2). Now we are in the same position as in [10] and, from this point

on, the estimate of g follows the same lines, so we do not repeat it.
Proof of (3.31)

It can be shown directly, but a simpler proof is obtained by reduction to ab-
surd. In fact, suppose the contrary. Then, since the term Kb is put equal to
zero, il follows that (v,g™ )y, m)AY2(1,0)) = 0 for all y € [~1,1]. Therefore,
f,‘”w dvv,g () = | = f‘,”(n dvlu,lg® (1, v), becanse fv-.,>0 dvju,tgtte)

(—1,v) = 0 and, by definition, [I <00'1|1,,|q("’ (L) = 1. Multiplying (3.14),

written for ¢ by g™ ) and integrating over y and v, for g and € small, we got.,

with the same argument used to estimate g, that. there is a posilive ¢ such that:

/ dery (g™ 2000y - »/ dvefe (P N2 0= 100 4 P < 0 (AR)
vy, 0 R

Sy <)

o
since [ ydvle, (g2 (0 v) = L We have also [ deey (¢ )2(1e) = 1. In
fact, it is nnl, bigger Hmn 1 by (A.R). On the other hand, by the Schwartz inequality,

— o\ 2 .
= [l < () (A.9)
Jo, 0 Jry<o

R

as before,

Henee, by (A.8), f,,”d) deli (g™ <2 (— 1, 0) = 0050 g™ (1, 0) = 0 for all n.
From (A.8) it also follows that [|§"¢]] = 0. Similarly one easily gets the vanishing
of the hydradynamical part and finally ¢! = 0. This contradicts the condition

g ey = AT () for vy < 0 and conelndes the argument,
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Proof of Proposition 3.2

The arginments of [10] provide the bound

1+ e NP g)) < eqllall. (A.10)

-

The estimate of AA§ is slightly more involved. From (A.5), with M = M,, we get
O+ 1))~ AAGH < Jall 11472 #5f &M . (A.11)

Tlie bounds on the hydrodynamical fields allow us to estimate Al 1“A’l\h. In

fact we have

1\[*'1/?|A1\1+(y/ v)|

) 9 v )
= “@ogp - 1711"'11—1—’ - 7—— 1" ( T ]| y"’ ln\p ”/\l‘ |
Oy ‘ dy 2 01/
< eqy” exp{—Av?}, (A.12)

with a suitable y* € [~1,y] and  the vector (vy—u, vy, v;) and A = (dp~ L= (dT2) !
Remember that y” = £71(1 - y), p is the sup of the temperatures and T, > p. The

estimates (2.31) and above imply that
L+ 1D ' AAG < eqlll].

Now we come to the bound for A3,. We recall the notation used in [10]: consider
the equation
af _Of

PRI AN 1 Y/ A3
1,,{,)!/}51 (')U_T+E vfi=¢ 7 ( )

with the boundary conditions

f('"l!r) = f,,, ”y>”; f 1, “) - f'ﬂ 1/< . (Ald)
Define
v el’
by = / dz v(z, 0 + —(2 — y), vy, v2), (A.15)
e Sy Uy
| Y , P 'I’y.y’
Upzn) = [y 20 vk S = e e [ - SEE (A1)
I 1y g1y
for v, >0 and
3 I : e T el ' 'y
U:Z(y.v) = — dy' Gy’ vy + : (' - !/)-v_.,,rf',)(‘w[-»—]- (A1T)
Sy Jy v Elly
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for v, < 0. Moreover, put

Vo = x(vy > 0O (g A (g 4+ DeF /oy vy m)exp | - '—l)—':l (A 1R)
e 1y,
. f
VA = (e, <O f (o + (- Bel /vy, vy, 15 ) exp [——Hl'y] (A.19)
ey

The solution of Eq. (A.13), (A.14) can be written as
f=Vrrt v Uz {(A.20)
We now write equation (3.17) for h as (A.13) with
7 = —<Pph4 (e )o(G -+ go) + e 'L h
+ No (4 g2) + )+ [N G + AAG) + £2d (A.21)
and the boundary conditions (3.18), (3.19).

Equation (1\.2()) allows to express f, in terms of 17,7 and the restriction of

H(—1,¢) to v, > 0. We have the estimate
|/ " AMPh(1 )] = |/ v MY Uh (vn + (g + DeF /o, vy.0,)

I .
exp | - ?'”—‘] FULZOL Y < b |+ ] / v, MU 7],
v Jue, 0

(A.22)
with by = CtALY? and [hel = sup, oo lhe(0)]
By (A.20) and (A.17), using the Schwartz inequality and
!
/ dylery) ™' v oexp{—(ev,) 'y ) < L, 1, >0, (A.23)
J

we get

) ) " ! 1172
|/ v MU, 7] < e’l/)’c/ |vy|1/21\1}/"‘[/ (11/:,/"121] (A.24)
Jry>0 Sy, >0 J =1 -

Finally, using again the Schwartz inequality and recalling the expression of ), we
get

i < e V2 ZI 4 o]+ Ry ) x (A.25)
Define 7 = {v,h2(1,v)) — {v,h?(~-1.v)}. Using the boundary conditions for h we

have

/ Jey R (=1, 0) + / o h2(1 ) < T +elB2 + [hy 2+ 1P (A20)
vy >0

u

By the bound (A.25) on 3, we conclude that
N L A E U S A (A.27)

Using the last hound and following the same procedure as in [10] we can get Propo-
sition 3.2
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