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ABSTRACT We show that the x-deformed Poincaré quantum algebra proposed for
elementary particle physics has the structure of bicrossproduct U(so(1,3))>«T". The
algebra is a semidirect product of the classical Lorentz group so(1, 3) acting in a de-
formed way on the momentum sector T'. The novel feature is that the coalgebra is also
semidirect, with a backreaction of the momentum sector on the Lorentz rotations.
Using this, we show that the x-Poincare acts covariantly on a k-Minkowski space,
which we introduce. It turns out necessarily to be deformed and non-commutative.
We also connect this algebra with a previous approach to Planck scale physics.

1 This is a note on the x-Poincare algebra as introduced in [1][2] and studied extensively with a
view to applications in elementary particle physics{3][4][5][6][7]. The idea behind this particular
deformation, which is obtained by contraction[8], is that it is one of the weakest possible defor-
mations of the usual Poincare group as a Hopf algebra. Hence it provides an ideal testing-ground

for possible applications in particle physics. The momenta remain commutative
[PLn Pu] =0 (1)

and the rotation part of the Lorentz sector is also not deformed. Because of the mildness of the

deformation, many particle constructions and predictions can be obtained easily.
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Here we want to argue that in spite of this success, any application of the s-Poincare group
to physics leads necessarily into non-commutative geometry. This is because until now it has not
been possible to define an algebra of Minkowski space co-ordinates {z,} on which the x-Poincare

acts as a Hopf algebra. Recall that when usual groups act on algebras, one has
go(ab) = (gra)(ged), gol=1 (2)
and the natural analogue of this for Hopf algebras is
he(ab) = (hpypa)(hipbd), hel =€e(h)l (3)

where Ah = huy®hay = 2 h1)i ® h(g); is the coproduct. Without such a covariant action,
one cannot make any products of the space-time generators z, in a x-Poincare invariant way.
This affects not only the many-particle theory but any expressions involving, for example, z2.
It means that until now, the actual coproduct structure has only been applied in connection
with momentum space and not spacetime itself . Since the coproduct of the k-Poincare is non-
cocommutative, one cannot expect that it acts on the usual commutative algebra of functions
on Minkowski space: it needs to be non-commutative or ‘quantum’.

Here we provide the correct notion of k-Minkowski space and the action of k-Poincare on
it. We also understand the structure of the x-Poincare as a deformation of the usual semidirect
product structure. This then makes tractable the problem of representing it covariantly on the
x-Minkowski.

The abstract structure of the x-Poincare turns out to be an example of a class of non-
commutative non-cocommutative Hopf algebras (quantum groups) introduced some years ago
by the first author in an algebraic approach to Planck-scale physics[9][10][11]. The context here
was quite different, namely the Hopf algebra of observables of a quantum system rather than
as a symmetry object. Thus we find in fact that the x-Poincare algebra Px has two different
physical interpretations, one as a quantum symmetry group and the other as a quantised phase
space. Thus, we find

P. = U(s0(1,3))0«T = U(so(1,3))r4C(X) (4)
where in the first picture T is the x-deformed enveloping algebra of the momentum sector of the
Poincare. In the second picture it is the algebra of functions of a classical but curved momentum
part X of phase space. This second point of view is recalled briefly in the last section of this

note.



2. The x-Poincare algebra P, (antihermitian generators of translations P, rotations M; and

boosts N;;  real; 4,7,k =1,2,3;p,v=10,1,2,3) is [2] :

[Pus P,] =0, [Mi, Mj] = € M, (5)

(M;, Pj] = €6 Px, [Mi, Po] =0, (6)

[Mi, Nj] = € Nk, (7)

(N Po) = Py [NiBj] = 6ijrsinh 2, (8)
[N, Nj] = —é€j5( My cosh % - ;?PkP - M). (9)

The coproducts are given by:

APy=Po®1+1®@P, AMi=M®1+10®M,, (10)
APi:Pi®e§g+e_?Pg®Pi, (1)

_ _ P P, _ s
AN; = N;Qe +e = @N, + %J’{—k(PjQOMke% +€—%Mj®Pk)- (12)

The starting point of our structure theorem is the observation that Py contains 7" = {P,}
as a sub-Hopf algebra and projects onto U(so(1,3)) also as a Hopf algebra map:

T P S U (s0(1,3)). (13)

The map 7 consists of setting P, = 0 and mapping M; and N; to their classical counterparts in

the Lorentz group. It is easy to see that ¢, 7 are classical counterparts as
m(M;) = M;, =(N;)=N,. (14)
To this, we add now the maps
TE P, LoU(s0(1,3)), moj=id, poi=id (15)
where j is an algebra homomorphism and p is a linear map which is a coalgebra homomorphism
(pR®p)oA=Aop, €op=c¢ (16)

Moreover,

(idRj)oA=(r®id)oAoj (17)



which says that j intertwines the coaction of U(so(1,3)) on itself by A and its coaction on Py
by (7 ®id) o A. Likewise
pla)t = p(ai(t)), a€ P,, teT (18)

which says that p intertwines the action of T on itself by right-multiplication, with its action on
P_ by i and multiplication in P,.

Indeed, we define

_ P iy P
N =N = Niews = ZEM P, (M) = M, (19)

which one can show to be an algebra homomorphism. The new generators N; have coproducts

€55k
K

AN = N;®@1+e % QN + Hhpest g u, (20)

after which (17) is clear. We also define p as the map that sets M; = N; = 0 and the properties
(16), (18) are then clear.

Now, the data (13)-(18) say precisely that P, is a Hopf algebra extension of U(so(1,3))
by T. The general theory of Hopf algebra extensions has been introduced in [11] [12] [13] (the
latter two covered the general case) and one knows that such extensions are semidirect products.
There is also the possibility of cocycles but these vanish when j is an algebra homomorphism
and p a coalgebra one, as in our case. We deduce from this theory that (a) the classical Lorentz

algebra acts on T from the right by
tah = j(Sh)tilhe), VLET, he Uso(1,3)) (21)
and (b) T coacts back on U(so(1,3)) from the left by
B(x(a)) = plag))Sp(ae) @ m(aw), Vr(a) € U(so(1,3)). (22)

In both formulae S denotes the appropriate antipode while A%a = a1y ® a2y ® agsy in the second
formula. In both cases, the formulae are not obviously well-defined, but t<h as stated necessarily
lies in (the image under 7 of ) T', while § does not depend on a € P, but only its image 7(a).

In our case we have
PoaM; =0, PiaM; = e;;uPy, PoaNi = —Pie~ 2% = — P, (23)

P
the generators P; = Pie—fﬁ' are quite natural here, and in terms of these the action becomes



K _2F 1 = 1
PiaM; = €k Pr, PiaN; = —52']'(5(1 —e€ _KQ) + ﬂp2) + ;Pipj (24)
as computed for other reasons in [14]. Our present point of view is not that this is the quantum

adjoint action in P, but simply that the classical U(so(1,3)) acts on the Hopf algebra 7" in this

way. Meanwhile, the coaction comes out as

P ..
BM)=1@M;, B(N;)=en N +£p @M (25)

K

on the generators. Here § is not an algebra homomorphism but its values on products of
generators can be computed too from (22).

Finally, the general extension theory says that our Py is built up in its structure from this
data (T, U(so(1,3)),<, ). Namely, its algebra is a semidirect product defined abstractly by i(T')

and j(U(so(1,3)) as subalgebras and cross relations
i(t)j(h) = j(hay)i(tahyy)), Yh e U(so(1,3)), teT. (26)
Its coalgebra is defined in a dual way as
Ad(t) = i(ta)) @it), AJ(R) = j(hu)(E® )0 Blha))- (27)

In our case the cross relations become

[Po, M;] = PoaM;, [Pi, M;] = PiaM;, [Po,N;] = PoaN;, [Pi, Nj] = PiaN; (28)

which, combined with 7, j above being algebra homomorphisms, gives our k-Poincare algebra

as
[Po,Pi] =0, [M;,M;]=e€;xMi, [Ni,N;]=—€ijuMy (29)
[Po, M;] =0, [Pi, M;] = €i;xPk (30)
2P 1 = 1
[Po,Ni] = =P, [P, N] = —%(g(l e R )+ EPQ) + —PiP; (31)

which is analagous to [14]. The coproducts become

AN, = Ni@ 1+ e ® QN + ?%@Mk, AM; = M; @1+ 1® M. (32)

In terms of P; the coproduct structure of T itself is

R
L3

APy = Po®1+1®P),, AP;=P;@l+e = QP (33)



Thus the new generators {Fy, P;, N;, M;} provide a natural description of P, as a Hopf
algebra bicrossproduct U{so(1,3))r«T according to the general construction introduced in [11].
The symbol o« denotes that one factor acts on the other and the other coacts back on the first.
Usually in the theory of groups and Hopf algebras one considers only an action or coaction, but
it was argued in [11] that in physics actions tend to have ‘reactions’ and this turns out to be the
case here when x < 0.

Indeed, in [9][15] one finds an example of the form U(su(2))-«T" where T is the Hopf algebra
of functions on R3 with a deformed coproduct corresponding to curvature from the point of view
there, and the action is a deformation of the usual rotations of R3, This was one of the first
non-trivial non-commutative non-cocommutative Hopf algebras, though not as widely known as
the celebrated Hopf algebras of Drinfeld and Jimbo. The P is quite similar to this but deformed

in the action of the boosts rather than of rotations.

3. We are now in a position to introduce a natural notion of x-Minkowski space on which our
P, acts covariantly. Indeed, since T is the enveloping algebra of translations, it is natural to
take for xk-Minkowski its dual 7= which will also be an algebra and on which T necessarily acts
covariantly as quantum vector fields. We then show that the whole of P, acts on it.

The structure of 7" is completely determined by the axioms of a Hopf algebra duality

<ty >=< 11y, T ><1p,y >, <18,r>=<1t,x4)>< 8,34 >, Vi,seT, z,yeT”
(34)
Indeed, since T is the (commutative limit) of the borel subalgebra U,(b_) of U,(suz) and, as is
well-known in that context, its dual is of the same form[16]. Thus, we take for T* the generators

z, and relations and coproduct
I
[z:,2;] =0, [zi,20] = : Az, =z,01+1Qz,. (35)

For T' we again prefer the generators P;, Py and then the duality pairing can be written compactly

as

< (P PO Wi 20) 5= Flps 7o) (0,0) (36)

where : 9¥(z;, z¢) : denotes a function 1 of the generators with all powers of zo to the right. One
can see [17] for the usefulness of this way of working with this kind of Hopf algebra. Apart from

this ordering, we see that the pairing is completely along the classical lines of the pairing of



the enveloping algebra of R* with the Hopf algebra of functions on R*, which is by letting the
translation generators act and evaluating at zero.

Now the canonical action of T on T is
or =< 2y, > Ty, Ve €T, teT (37)
which in our case works out as

7]
Pio Yz, x0) :=: 7— (&4, 20) :, FPov (2, 20) 1= a—i—(;w(:ci,zo) : (38)

Ox;

i.e. by the classical way but remembering the Wick-ordering.
Next, U(so(1,3) also acts on 7. This is because it acts from the right on 7" and this action

therefore dualises to an action from the left on T™:
<t hvz >=< t<h,z >, VteT, helU(so(1,3)), zeT" (39)
which computes in our case as
Mivz; = ¢jpxk, Mpzo=0, Npz;=—6jr9, Npzo=—2,. (40)

It is not obvious, but the general theory of bicrossproduct Hopf algebras ensures that the
canonical action of T on itself by multiplication and U(so(1,3)) by « generates an action of
the semidirect product algebra P, on 7. This therefore dualises to an action on T* generated
by the actions of these subalgebras. So Py, P; as above and M;, A acting like M;, N; in (40).
are a canonical representation of the P, on sx-Minkowski. Their extension to products of the
spacetime co-ordinates is via the covariance condition (3) using the coproducts AM;, AN etc.

from (32)—(33). Thus,

Mpbz; = €xzg, Mipzg =0, Npzo= -z, Nppz;= -6z, (41)
Niv(zj20) = —6;528 — z524, (42)

Niv(zoz;) = —(5ija:(2) —zz; + ééij:vo, (43)

Nio(zjz)) = =60k — 6ikzjTo + -3;(5%16]‘ — 8kTi), (44)
J\Qv(mg) = —Z;Tp — ToT; + %mi. (45)



The Lorentz-invariant metric turns out as

- 3
22— 7% 4 ~%o (46)

This covariant action of P. on k-Minkowski space T™ is our main result of this section. It
appears to be rather non-trivial to verify it directly. Note that covariance is always true for T
on T™ and since T is a subhopf algebra of P, it remains true as its translation sector. The
classical boosts do not act covariantly on T* but their coproduct is different in P, due to the
coaction 8. This modification of the coproduct is just what is needed for the construction to
work. The proof is straightforward using the abstract Hopf algebra theory of Section 2.

We therefore have the correct basis for wave-functions ¥ on k-Minkowski space and can
proceed with various constructions, retaining at all time covariance under P.. This will be

explored elsewhere.

4. Our structure theorem for the P, has many other consequences for the theory. The first of
them is that the theory of bicrossproducts is completely symmetric under the process of taking
duals (reversing the roles of products and coproducts). This remarkable ‘input-output’ symmetry
was the main physical motivation for the introduction of the bicrossproduct construction in
[11}{9][11] and several other papers by the first author.

Thus we can compute the function algebra dual to P, at once. It is the bicrossproduct
C(SO(1,3)) — T*»C(SO(1,3)) — T* (47)

where C(50(1,3)) is the usual commutative algebra of functions on the Lorentz group, and T* is
our algebra of functions on x-Minkowski. Thus, this Hopf algebra is a deformation of the algebra
of functions on the Poincare group. The maps and action/coaction for this dual construction

are given in [11] by dualising the above 3, « respectively according to
< h,zoA >=< B(h),z@A >, YV heU(so(1,3)), €T, A €C(50(1,3)) (48)

<t@h,f(x) >=<tah,z >, VteT, zeT" heclU(so(l,3)). (49)

The resulting x-Poincare function Hopf algebra will be developed in detail elsewhere. It can
perhaps be compared with a x-Poincare Hopf algebra proposed in another context in [18][19].

In our approach it necessarily comes with a duality pairing with P, given by (36), the usual



pairing between C(SO(1,3)) and U(so(1,3)), and the trivial pairing (provided by the counits)
between translation and Lorentz sectors.

We conclude with some remarks about the physical interpretation of bicrossproducts in [9]
as quantum systems. Returning to our enveloping algebra P, we can develop quite a different
physical picture. Namely, we think of T’ not as the enveloping algebra of deformed translations

but as the perfectly classical Hopf algebra of functions on a classical nonAbelian group X,
T=0CX) (50)

where X is the group given by exponentiating the Lie algebra E defined by

T

[IIIi,IIIo] = —Ki’ [‘szj] =0. (51)

These are just the relations of 7™ in Section 3 but we think of them no longer as generating
the co-ordinates of some non-commutative space but as generating a Lie algebra. It is easy
to exponentiate the Lie algebra to a group X described as a subset of R? with a s-deformed
(non-Abelian) addition law. In other words, x controls now the curvature of our space X. We
take this X as the position space (configuration space) of a quantum system.

Next, the Lie algebra E and the Lie algebra so(1,3) fit together to form a ‘matched pair’ of
Lie algebras. The concept (due to the first author in [11][9]) is that each Lie algebra acts on
the other in a matching way. In our case so(1,3) acts by >, say, on = via usual infinitesimal
Lorentz transformation and = acts back from the right by dualising § from (25) according to

the formula

Eaz, =< B(€),z,®id >, VEE€ s0(1,3), z, €E (52)

remember that the output of 8 has its first tensor factor in T, which we evaluate against the
generators ;, To using the pairing (36). The two actions fit together as required for a right-left

matched pair:
oz, z,) = [beuazu] + [zu,fbxu] + (Eazy oz, — (Eaz,)p, (53)

(€, naz, = [fazy,m] + (& naz,] + Ea(mpay) — na(épz,) (54)

for all £,m € s0(1,3). In our case, we can compute < explicitly as

1 1
M;azg =0, M;az; =0, N;azp= —;Ni, Niaz; = ;eijkMk (55)



and verify (53)-(54) directly for these Lie algebra representations », <. The N;, M; here are the
classical so(1,3) generators .

The theory of such Lie algebras acting one eachother in such a way is a rich one(11] and tells
us among other things that there is a Lie algebra double semidirect sum Zaso(1, 3) containing

=,s0(1,3) and cross relations
[€, T,] = Eoxy, + Eazy,. (56)

Moreover, there are theorems that, at least locally, the Lie algebra matched pair exponentiates
into a Lie group matched pair X, SO(1,3) acting on each other in a suitable way. The procedure
and general formulae (which are non-linear) have been introduced in [12]. There is also a double
cross product group XeaS0(1,3), at least locally.

Now, the action of SO(1,3) on X has orbits. Consider particles constrained to move on
such orbits. The position obervables are C(X ), the momentum observables are the Lie algebra
s0(1,3) since its elements generate the flows. The natural quantisation of particles on such ho-
mogeneous spaces according to the standard Mackey scheme[20][21] is the cross product algebra
U(so(1,3))><C(X ). This can be made precise using the theory of C*-algebras. The point is that
this cross product contains the algebra of so(1,3) and C(X), with cross-relations which are the
natural covariant form of Heisenberg’s commutation relations. Our P, is this quantum algebra
of observables.

Moreover, the dual of the bicrossproduct is also a bicrossproduct: it is the quantisation of
particles moving on the homogeneous spaces which are the orbits in SO(1, 3) under the action of
X, i.e. precisely with the roles of position and momentum reversed. Thus models of this class,
demonstrated here by Py exhibit a quantum version of Born reciprocity and are interesting for
this reason[9][11]. Moreover, this structure generally forces the action to be deformed, often
with event-horizon-like singularities. For example, it was shown in [9] that the extensions of
C(R x R) (the classical phase-space in one-dimensions) of this bicrossproduct type had just
two free parameters, which we identified heuristically as h and G, the gravitational coupling
constant. This work was perhaps one of the first serious attempts to apply Hopf algebras
and non-commutative geometry to Planck scale physics, and it is interesting that P, has an
interpretation in these terms as well as a symmetry in particle physics. This picture of the

k-Poincare algebra will be developed in detail elsewhere.
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