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Abstract

A phenomenological analysis of the experimental odd-even differences in the moments of
inertia, §J/J, of well-deformed rare-earth nuclei is reviewed, which reveals that there exist
large fluctuations in §J/J with the blocked levels in odd-A nuclei. Calculation using the
patticle-number conserving treatment shows that the odd-even difference in the moments
of inertia is a pure quantum mechanical interference effect and the experimental strong
fluctuations in 8J/J with the blocked level can be reproduced satisfactorily. The calculated
value of §J/J depends sensitively on the energetic location and Coriolis response of the
blocked level and the underlying physics is discussed. Particularly, §J/J is especially large
if the blocked orbital is a high-j intruder orbital near the Fermi surface. In contrast, if the
blocked orbital is of normal parity with low j and high Q (e.g., proton [404]7/2, (402]5/2),
§J/J almost vanishes. )

PACS numbers: 21.10Re, 27.70+4q, 21.60-n.

I. INTRODUCTION

One of the most striking discoveries in high-spin nuclear physics was the finding of almost
identical superdeformed (SD) bands in some neighboring nuclei [1-3]. Several explanations [3-5]
were put forward assuming the occurrence of such identical bands to be a specific properties of
the superdeformed rotational bands. All these explanations assume [6] that the main contribut-
ing factor to the odd-even difference in the moments of inertia, namely, the pairing interaction,
is substantially weakened for high-spin supeideformed states. Shortly afterwards, it was recog-
nized that identical bands are also present in normally deformed pairs of even- and odd-mass
nuclei at low spin [6, 7] and in normally deformed pairs of even-mass nuclei [8, 9), i.e., the oc-
currence of identical bands is not necessarily related to the phenomenon of superdeformation or
excitation of very high-spin states in nuclei. It is well-known that the pairing interaction plays a
substantial role in the description of collective motion of normally deformed nuclei at low-lying
excited states [10], e.g., the pairing interaction may be responsible for the observed reduction of
nuclear moments of inertia compared to that of a rigid rotor [11-15). However, according to the
conventional BCS approximation for treating the pairing interaction the moments of inertia as-
sociated with one quasiparticle states in odd-A nuclei stiould be larger than those of the ground
state configuration of adjacent even-even nuclei by a factor of ~ 15% [10]. Therefore, it was
asserted [6, 7] that the occurrence of identical bands in normally deformed pairs of even- and
odd-mass nuclei at low spin presents a serious challenge to the mean-field (BCS) approximation.

General considerations show that the BCS theory is very suitable for a system of large
number of particles. The question is, however, how reliable is the BCS approximation for
treating the eigenvalue problem of the cranked shell model (CSM) Hamiltonian (16, 17]. One of
the crucial problems is the number of nucleons in a nucleus (~ 10?), particularly the number of
valence nucleons (~ 10) which dominate the behavior of low-lying excited states, is very limited.
Therefore, the serious defects (particle-number non-conservation, spurious states, etc.) should
be considered seriously, and the conclusions drawn from the BCS approximation, particularly
the statement concerning the nuclear features which depend sensitively on the particle number,
need careful re-examination. To overcome the defect of particle number nonconservation in the
BCS approximation, there have been developed various methods, including the various types
of particle number projection method {18-27] and the generator coordinate method [28, 29],

and improved agreement with experiment compared to the simple BCS approximation was



obtained. Another crucial problem is the blocking eflect, which is responsible for various odd-
even differences in nuclear properties and is especially important for low-lying excited states.
The blocking effects on the moments of inertia were addressed in the BCS formalism in many
papers, e.g. refs. 10, 13, 17, 30, 31. However, while the defect of number non-conservation may
be partly remedied by various types of number-projection, the most serious defect of the BCS
treatment is that it is not able to treat the blocking effect properly [17). Just as Rowe has
emphasized [17], while the blocking effects are straightforward, it is very difficult to treat them in
the BCS formalism because they introduce different quasiparticle bases for different blocked levels
(see pp. 194-195 of ref. 17), which seems worth of much attention. The odd-even differences in
the moments of inertia §J/J ~ 15% is only a rough estimate based on the BCS approximation.
In fact, the observed odd-even differences in nuclear moments of inertia show large fluctuation
[10}, including the identical bands observed in normally deformed pairs of even- and odd-mass
nuclei at low spin, for which the conventional BCS treatment offers no satisfactory explanation.
Therefore, in this paper we prefer addressing this problem using a particle-number conserving
(PNC) method in which the blocking effects are taken into account exactly [32, 33].

The experimental odd-even differences in the moments of inertia of the rare-earth nuclei
have been analyzed in detail in refs. 6 and 7. In Sec. II we will give an additional analysis of
the variation of odd-even differences in the moments of inertia with the blocked level (see Figs.
1-3). Two kinds of dd-even differences in the moments of inertia (see eqs. {2) and (3)) are
compared and some distinctions are found between the odd-even differences for the odd-N and
odd-Z well-deformed rare-earth nuclei. In Sec. III the odd-even differences in the moments of
inertia of the rare-earth nuclei are calculated using the PNC treatment [32, 33} for the eigenvalue

problem of the CSM Hamiltonian
Hcsm = Ho+ Hp = Hya + He + Hp, (1)

where Hpyy is the Nilsson Hamiltonian, He = —w.J, is the Coriolis interaction and Hp the
pairing interaction. In the PNC approach the particle number is conserved from beginning to
end (unlike the number-projection technique). The moments of inertia of a lot of well-deformed
even-even rare-earth nuclei have been calculated in a previous paper [33] and the agreement
between the calculated and experimental results is satisfactory. In this paper we will show
that the odd-even difference in the moments of inertia is a pure quantum mechanical effect and

the experimental large fluctuations of the odd-even differences in moments of inertia with the

blocked level can be reproduced satisfactorily by the PNC calculation. The underlying physics

is discussed in detail. A brief summary is given in Sec. IV.
" II. PHENOMENOLOGICAL ANALYSIS

It has been known that the experimental moments of inertia of odd- A nuclei excced those
of the ground bands of adjacent even-even nuclei by amounts that are typically of order 20%,
but show large ftuctuations [10]. Particularly, the moment of inertia of an odd-A nucleus whose
unpaired nucleon occupying a high-j intruder orbit is systematically much larger than those of
the ground band moments of inertia of neighboring even-even nuclei [10]. For example, the
bandhead moment of inertia of the ground band [642]5/2 of %'Dy is 2J = 159.4 A2MeV~!
(determined by the two lowest observed energy levels), which is over twice as large as that of
180Dy (2J = 69.1 A2MeV~') and 92Dy (2J = 74.4 A?MeV~'). In sharply contrast to this, it was
recognized recently (6, 7] that the moments of inertia of some odd-Z nuclei are almost jdentical
to that of the seniority-zero configuration of the neighboring even-even nucleus with one proton
less. For example, the bandhead moment of inertia of the [404]5/2 band in '"'Lu (2J = 73.8
h*MeV~') is almost identical to that of the ground band in '7°Yb (2J = 71.2 A?MeV~-!), but
moderately larger than that of 72Hf (2J = 63.0 A?MeV~!). Therefore, it seems worthwhile to
make a systematic review of the variation of the odd-even differences in the moments of inertia
with the blocked level, '
Like the usual definition of the odd-even mass difference, the relative odd-even difference in
the moments of inertia may be defined as
§J1 _ J(A) = JlJo(A +1) + Jo(A - 1)]
e HI(A+ 1)+ Jo(A-1)]

(A 0dd) @)

where [Jo(A + 1) + Jo(A4 — 1)}/2, as a reference, is the average of the ground band moments
of inertia of neighboring even-even nuclei. As has been noted in ref. 6, the situation may be
different if one compare the moment of inertia of an odd-A nucleus with its neighboring even-even

nucleus having one less nucleon; i.e., we may define

8§ J(A) = Jo(A~1)
T “edd (3)

The isotonic variations of §J/J{|« and §J/J for the ground state bands of odd-N rare-earth

nuclei are displayed in Fig. 1. The isotopic variations of §.J/J|,, and §.//J for the rotational



bands of odd-Z nuclei are displayed in Figs. 2 and 3. From Figs. 1-3 several observations can
be made:

(a). For the rotational band whose unpaired nucleon occupying the high-j intruder orbital
(neutron N = 6, i1a/3; proton, N = 5, hyy2), the odd-even differences in the moments of inertia

are unusually large; e.g., for the ground band of the odd-N nuclei,

81Dy (642)5/2, 'S7Er [633]7/2, Y7°Hf [624]9/2
67/ oy 1.23, 0.51, 0.39

Similarly, for the rotational bands in the odd-Z nuclei,

161, {523]7/2, '"'Lu [514]9/2, '"'Lu® [541]1/2
671w 0.42, 0.32, 0.42

In contrast, for the rotational band whose unpaired particle occupying low-j and high-£ (strongly
deformation aligned) orbital , e.g., proton [404]7/2 (g7/2, @ = 7 = 7/2), [402]5/2 (ds/2, Q =
J = 5/2) etc., the value of §J/J,, is especially small (~ 0.10), which is displayed in Fig. 3. The
underlying physics will be illustrated in Sec. IIL. '

(b). For the odd-Z rare-earth nuclei, 6J/J is, in general, smaller than the corresponding

value of § J/J|a, (Figs. 2 and 3). As has been pointed out [6] that such systematics are counter

to the expectations of a paired system, which would require comparison with the average of

neighboring isotones. Tn particular, for the rotational bands building on the proton orbital
{404]7/2 or [402])5/2 (Fig. 3), the value of §J/J (< 6J/J|ay ~ 0.1) is nearly zero; i.e., the
moment of inertia of an odd-Z nuclei is almost equal to that of the neighboring even-even
nucleus having one less proton. In this case, identical bands in normally deformed pairs of even-
and odd-mass nuclei may emerge [6, 7}.

However, the situation is different for the odd-N rare-earth nuclei. The value of 6J/J is
usually a little larger than the corresponding value of 6§J/J |4, (except for a few cases). In fact,
for almost all the odd-N rare-earth well-deformed nuclei, the values of both §J/J|,, and 6J/J
are larger than 0.10; i.e., it is rarely found that the ground state band moment of inertia of an
odd- N nucleus is almost identical to those of the neighboring even-even nuclei.

The relation between the magnitudes of §J/J}{4, and §J/J mentioned above is partly con-
nected with the change in deformation of well-deformed rare-earth nuclei with proton or neutron
numbers. For examples, the variations in the quadruple deformation ¢; for some well-deformed

rare-earth nuclei {36] are as follows:

N=94 Dy 0.248, $2Er 0.245, '$4Yb 0.239, '6SHf 0.219
N=96 52Dy 0.261, '®*Er 0.258, '6Yb 0.246, ~18HIf 0.235
N=98 %Dy 0.267, '8Er 0.267, '8Yb 0.255, !S8Hf 0.245

N=100 68Fr 0.273, '7°Yb 0.265, 2H{ 0.254
N=102 YO0Fr 0.276, '2Yb 0.269, T*Hf 0.258
N=104 174Yh 0.266, '7SHf 0.256

It is seen that for these nuclei €3(Z, N) > ¢(Z + 2, N), which may partly responsible for the
fact that Jo(Z, N} > Jo(Z-+ 2, N, which implies §J/J < §J/J|ay, observed in odd-Z nuclei.
Similarly, €2(Z, N) > ¢(Z, N —2) for N < 104, which may partly account for the fact that
Jo(Z, N) > Jo(Z, N —-2), which implies §J/J > §J/J|a,, observed in odd-N nuclei. However, it
should be emphasized that the odd-even difference in the moments of inertia is a pure quantum
mechanical effect and depends intimately on the intrinsic configuration structure, which will be
discussed in Sec. III.

(c). The values of §J/J|, and §J/J vary in a rather wide range, but there exists no distinct
line of demarcation between the “identical” and non-identical bands. The results for some typical

(most B-stable) odd- A rare-earth nuclei are as follows:

rotational  [523]7/2 [514]9/2 [413]5/2 [411)3/2 ([411]1/2 [404]7/2 [402]5/2
bands (bugz)  (hup)  (gr72)  (dsp2)  (daj2)  (g772)  (dsp2)

0dd-Z nuclei !$}Ho lLu® YlEu 159Tb 187 Tm 1 Lu lLu”
§J /T aw 0.42 0.32 0.19 0.20 0.13 0.10 0.056
§J1J 0.31 0.24 0.16 0.14 0.08 0.037 -0.008

rotational  [642]5/2 [633]7/2 [624]9/2 [523)5/2 [521]3/2 [514]7/2 [512]5/2 [521]1/2
bands (f1372)  (iaaj2)  Ghsp2)  (frr2)  (hopa)  (frpa)  (hopa)  (pap2)

odd-N nuclei ®'Dygs '$"Ergg Hfigr '®*Erer %7Gdes ""Hfios *Ybygs "Ybygy
§J/J\av 1.23 0.51 0.39 0.30 0.29 0.21 0.15 0.13
§J1J 1.31 0.52 0.39 0.38 0.36 0.17 0.17 0.06

To display the variation in §J/J|,, with the neutron numbers and the Nilsson orbital oc-
cupied by the odd nucleon, in Fig. 4a are shown the experimental §J/J|,y by open circles for
the ground state bands of some typical (most f-stable} odd-N rare-earth nuclei. Similar plot

for odd-Z rare-earth nuclei is shown in Fig. 4b. We can see that strong fluctuations in §J/J},,



exhibit clearly in Fig. 4. Particularly, in Fig. 4a there exist three peaks of §.J/J|4, corresponding
to the blocked neutron orbitals [642]5/2, [633]7/2, and [624]9/2, respectively, which originate
from the high-j intruder spherical orbital i3,/2 having stong Coriolis response. Similarly, the
two peaks of §J/J|4y in Fig. 4b correspond to the proton ortibals [523]7/2 and {514])9/2, which
originate from the high-j intruder spherical orbital A11/2. On the contrary, there exists a valley
(6J/J < 0.1) in Fig. 4b near Z ~ 71, which is connected with the orbitals [404)7/2 and [402]5/2
having little Coriolis response. In fact, the majority of identical bands in normally deformed
nuclei at low spin occur in this region. For comparison, the calculated §J/J|q, using the PNC
treatment (Sec. III) are also shown in Fig. 4 by solid circles. The general tendency of the ex-
perimental variation of §J/J|s, with the blocked level is reproduced satisfactorily by the PNC
calculation. Considering no free parameters involved in the PNC calculation, the results seem

encouraging. The underlying physics will be discussed in Sec. IIL

III. MICROSCOPIC CALCULATION AND DISCUSSIONS

A. Sketch of the PNC formalism

A particle-number-conserving (PNC) method for calculating the low-lying eigenstates of
Hesum was developed {32}, in which the many-particle configuration (MPC) truncation is used
instead of the usual single-particle level truncation and the blocking effects are taken into ac-
count exactly. To reveal clearly the influence of pairing interaction on the moment of iner-
tia, an improved PNC approach was developed (33]; i.e., firstly, the one-body part of Hcsar,
Ho = Hyy ~— wlz = T; ho(i) is diagonalized exactly to obtain the cranked Nilsson (CN) or-
bitals, and then Hesar = Ho + Hp is diagonalized in a sufficiently large cranked many-particle
configuration (CMPC) space to obtain the accurate solutions of the low-lying eigenstates of
Hcsa. The moments of inertia of the ground bands in a series of well-deformed even-even
rare-earth nuclei have been calculated [33] using this approach. It is well-known that the BCS
theoretical moments of inertia of the ground bands in rare-earth and actinide even-even nuclei
are systematically smaller than the experimental ones by a factor of 10-40%, i.e., systematic
excessive reduction of the nuclear moments of inertia was found {10, 14]. Many efforts to reduce
the discrepancy between theory and experiment have not got decisive success {27, 34]. This long-

standing discrepancy disappears in the PNC calculation {33]. In this paper this PNC approach

is used to calculate the moments of inertia of odd- A rare-earth nuclei. The details of calculation
has been presented in ref. 33. For convenience, a sketch of the PNC formalism is given below.

Usually the Nilsson orbitals [35] are characterized by = (parity) and Q (eigenvalue of j;) and
are conventionally denoted by the asymptotic quantum numbers {Nn,AT]Q. Each Nilsson level
is two-fold degenerate (£Q). For the CN orbitals, j, is no longer conservative and the degeneracy
is removed. Each CN orbital is characterized by = and signature r = e™"* = ti(~ & = F1/2),
and denoted by |ia), corresponding to the energy eigenvalue €,,. Hereafter, |na) is often briefly
denoted by |u}. The CMPC of an n-particle system can be expressed as |1tz oo  Pin)y B1s B2, Hn
being the occupied CN orbitals. Each CMPC, simply labelled by i), i is characterized by Ei(=
T, €u;» configuration energy), parity and signature. When the pairing interaction is taken into
account, we may diagonalize Hcsy in 2 sufficiently large CMPC space (i.e., all the CMPC’s
with energies E; — Eo < E. are considered, Ep being the energy of the lowest CMPC and E.
the truncation energy) to obtain the solutions of the yrast and low-lying excited states. Assume
one low-lying excited state of Hcsas is expressed as |¥) = 37, Ciji}, the angular momentum
alignment is

(UIAE) = S ICHP L) + 2 C7C;(ilV:1d)- (4)

I i<y
Considering J, being a one-body operator, the matrix element (ilJ:|j) (i # 7) is non-zero

only when |i) and |j) differ by one particle occupation. After certain permutation of creation
operators, |i) and |j) are brought into the form |i) = (=)Misju ), 15} = (=)Wivjy--+), where
the ellipses stand for the same particle occupation and (—-)M» = £1, (=)Viv = %1, according
to the permutation is even or odd. Thus, the kinematic moment of inertia of the state |¥) can

be expressed in terms of the single—particle picture as follows

J = ‘I"J:l‘l’ ZJ‘“‘ + Z -quv
uly
Y = 3 Z(MJ’:lM)ZICaI’Pm = ;Z(pmlmnm ®)

In

Jyp = —(mmu)Z( —MiutNonCrCl, (w# )

i<y
where n, = ¥; |Ci|* P, is the particle occupation probability of the CN orbital |u) in the state
|¥) and Py, = 1, if |u) is occupied in [i), and F;, = 0 otherwise. If the pairing interaction is
missing, only one CMPC appears in |¥} and all the interference terms J,v vanish. When the

pairing interaction is taken into account, the diagonal part (X, Juu) changes only a little (see



Tables 2a, 3a, 4a, 5a), which can be understood from the slight change in particle occupation
due to pairing correlation. The reduction of the moments of inertia originates mainly from the
destructive interference (3, ¢, Ju < 0) due to the anti-alignment effect of pairing interaction.
The off-diagonal part (T, Ju) depends sensitively on the features and distribution of the
CN orbitals near the Fermi surface. Each J,,, (¢ # v) depends on the energetic location of the
CN orbital ¢, and ¢, and the magnitude of the matrix element (u|j:||v), which is especially
large for both 4 and v being the high-j intruder orbitals (the neutron 113/, orbitals and proton
hyy/2 orbitals for rare-earth nuclei). If u or v is far away from the Fermi surface, J,,, would be
negligibly small. Therefore, only when both u and v are near the Fermi surface, J,, would be
of importance (see Tables 2b, 3b, 4b, 5b). Also it should be noted that the contribution to the
moments of inertia from a harmonic oscillator closed major shell is zero. Therefore, for the rare-
earth nuclei, no contribution comes from N < 3 proton shells and N < 4 neutron shells, which
are closed for the low-lying excited bands at low spin. Similarly, the contributions from the
N > 6 proton shells and N > 7 neutron shells are very small, even when the pairing interaction
is taken into account, because these shells are completely vacant in the lowest configuration of
rare-earth nuclei. Therefore, almost all the contributions to the moments of inertia of rare-earth
nuclei come from the N = 4, 5 proton and N = 5, 6 neutron shells (see Tables 2a, 3a, 4a, 5a).

It is seen that the transitions between adjacent high-j intruder orbitals (AQ = *1) in the
vicinity of the Fermi surface play a decisive role in the contributions to the moments of inertia;
e.g., the neutron i1/ shell, [660]1/2 — [651]3/2 — [642]5/2 « [633]7/2 — [624]9/2 — [615]11/2,
(Tables 2b, 3b), and the proton hyyyz shell, {532]5/2 ~ [523]7/2 « (514]9/2, etc., (Tables 4b,
5b).

For odd-A nuclei, if a single-particle level vg is occupied by an odd nucleon, the pairing
correlation is reduced (blocking effect). Calculation shows that J,,, becomes positive, whose
magnitude depends on the energetic location and Coriolis response of the blocked level vy, hence

the calculated moments of inertia show large variation with the blocked level.
B. Calculated results and discussions

The moments of inertia of a series of well-deformed odd- A rare-earth nuclei were calculated
and the comparison between the calculated and experimental odd-even differences in the mo-
ments of inertia, §J/J |40, is displayed in Fig. 4. The experimental large fluctuations in §J/J|ay

are reproduced rather well by the PNC calculation.

As illustrative examples, the calculated results for the bandhead moments of inertia of four
groups of typical rare-earth nuclei are presented in Tables 1-5. The results for the other rare-
earth nuclei are similar. The comparison between the calculated and experimental moments
of inertia are given in Table 1 and the detailed analyses of the contributions to the momeunts
of inertia are shown in Tables 2-5. In the calculations the Nilsson parameters (€2, €4, K, j)
are taken from the Lund systematics [35, 36] and no change is made to improve the calculated
moments of inertia. The pairing interaction strength G, and G, are determined unambiguously

[33] by the experimental odd-even differences in binding energies 37}

Pv = 3B(Z,N)+B(Z,N +2)]- B(Z,N +1)

= Ey(Z,N +1) = }E,(Z,N) + Eo(Z,N +2))]
Pr = MB(Z,N)+B(Z+2,N)|- B(Z +1,N)

= Ey(Z+1,N) = ME,(2,N) + E(Z +2,N)],

where E, is the ground state energy of nucleus at w = 0. In the PNC calculation of E; of an

(6)

odd-A nucleus the blocking effect has been taken into account exactly. The values of G, and
G, thus obtained are listed in Table 1 of ref. 33. The CMPC truncation energy is chosen as
E. = 0.85hwq {e.g., for 170Yb, hwos = 7.837 MeV, huwo, = 6.966 MeV) and the accuracy of the
solutions of low-lying excited states has been discussed in ref. 33. From Table 1 it is seen that
the agreement between the calculated and experimental moments of inertia is satisfactory. Now
some discussions are given as follows.

From Table 1 it is seen that the calculated moments of inertia for even-even nuclei are
greatly reduced due to strong pairing correlation (anti-alignment effect). This is a pure quan-
tum mechanical effect. For example, the calculated 2J5(**®Dy)lg=0 = 187.6 A*MeV~! and
2J0(18?Dy)|g=0 = 160.6 A?MeV~! are reduced to 68.7 and 71.2 A?MeV ™!, respectively, which
are very close to the experimental results. The PNC calculation shows that the contribution
to the moments of inertia from the diagonal part (37, J,,) changes only a little due to pairing
correlation (see Table 2a) and the vast majority of the reduction of the moments of inertia of
180.1621)y comes from the negative off-diagonal part (¥, ., Juw < 0), which vanishes for G = 0.
Particularly, when both u and v are the high-j intruder orbitals in the vicinity of the Fermi
surface (e.g., [651]3/2, [642)5/2, [633]7/2, etc.), the value of J,, is especially large (but negative!
see Table 2b). These interference terms due to pairing play a decisive role in the reduction of
the moments of inertia.

As for ''Er and '®®Er, the experimental moments of inertia of '6Er (2Jo = 74.5 h?MeV~!)

10



is larger than that of '®4Er (2J = 65.7 A?MeV~!) by a factor of 13.4%, which is reproduced
rather well by the PNC calculation

Jeat(198Er) = Jeat(**Er)

T.i("9Er) = 12.6%

The reason is as follows. The calculation shows that the contributions to the moments of inertia
from protons are nearly the same for both '®Er and °®Er (see Table 1), but the contributions
from neutrons are rather different. For '¢Er (N = 98), there exists a large gap in the neutron
Nilsson level scheme immediately above the Fermi surface, which leads to a significant pairing
reduction, hence a larger moment of inertia of 16Er compared to that of 4Er.

In contrast, the experimental moments of inertia of '"2Hf (2Jy = 63.0 A?MeV~") is smaller
than that of '™Yb (2Jp = 71.2 A?MeV~!) by a factor of 13%, which is also approximately
reproduced by the PNC calculation

Jeat(1PHE) — Joai(172HE)
Jeat(172HI)

9%.

This is intimately connected with the moderate gap in the proton Nilsson level scheme at Z =
70, which leads to a weaker pairing correlation in '™Yb (Z = 70) than in '"2Hf (Z = 72),
hence the calculated J, for 10Yb (2J, = 25.46 A2MeV~! is larger than that for 721If (2J, =
21.7 A2MeV~!). The smaller difference in the calculated values of J, for 7"®Ybge and 72Hf g9
may partly comes from the small change in deformation (e; = 0.265 for !7°Yb, and 0.254 for
172HfY (36].

Now let us consider the moments of inertia of odd-A nuclei and the odd-even differences.

(a). First, we address the first group (**!'Dy [642]5/2 band, 5%162Dy g.s. bands) and try
to explain why the odd-even difference in the moments of inertia is so large. From Table 2b
we see that, unlike the even-even nuclei '**!62Dy, for the *' Dy [642]5/2 band the value of J,,
becomes positive for g or v = [642]5/2 (a = +1/2), due to the important blocking effect and
the strong Coriolis response of the [642]5/2 level, hence the reduction of the moments of inertia
due to pairing observed in !5%162Dy disappears in the '$'Dy [642]5/2 band. Therefore, it is
not surprising that the calculated neutron contribution to the moment of inertia for the '6'Dy
[642]5/2 band is greatly increased (2J, = 117.9 i?MeV~!) and close to the value for vanishing
pairing interaction (G, = 0, 2J, = 113.5 #2MeV~!). Similar argument may account for the
observed large odd-even differences in the moments of inertia for the [633]7/2 and {624]9/2 bands

in odd-N rare-earth nuclei.

11

(b) Second, we discuss the calculated moment of inertia for the %*Er [523]5/2 band. The
contribution to the moments of inertia from protons are almost the same for 16418Er and ®3Er
{523]5/2 band, so the odd-even difference mainly comes from the off-diagonal part of neutron
contribution (Tables 3a and 3b). However, the most important interference terms are those
concerning the high-j intruder orbitals ([660]1/2, [651]3/2, [642]5/2, [633]7/2, [624]9/2 etc.) and
the contribution to the moment of inertia from the normal parity orbitals ([523]5/2, [514]7/2,
etc.) are of minor importance. Therefore, the blocking effect of the orbital [523]5/2 only leads
to a moderate increase of moment of inertia of 1%*Er [523]5/2 band compared to the neighboring
even-even nuclei.

(c) Third, we investigate the '™ Lu [514]9/2 band. The observed moments of inertia of the
1711y [514]9/2 band (2J = 88.3 h*MeV ) exceed those of 1®Yb and '"2Hf by a factor of about
30%, which is reproduced satisfactorily by the PNC calculation (Tables 1 and 4), i.e.

experimental calculated
J(*™'Lu [514}9/2) — Jo(}"®Yb)

7o(TOYD) 24% 22%
J(1"'Lu [514]9/2) - Jo('"2Hf)
To (D) 40% - 33%

The reason is that the high-j inttuder proton orbital [514}9/2 plays an important role in the
contribution to the moments of inertia (Table 4b). The value of J,,, for u or v = [514]9/2 is
rather large (but negative) for the even-even nuclei, but becomes positive for the "' Lu {514]9/2
band due to the blocking effect, and then leads to a rather large odd-even difference in the
moments of inertia.

(d) Finally, we consider the ground state {404)7/2 band of ! Lu. Recently, it was recognized
{6, 7] that the moment of inertia of the '"'Lu [404]7/2 band (2J = 73.8 A?MeV ~!) is nearly equal
to that of the neighboring even-even nucleus having one less proton, }™Yb (2J = 71.2 A2MeV-1),
which was considered as an experimental evidence for identical bands in normally deformed
nuclei at low spin [6, 7). However, it was also noted that [6] the difference in the moments of
inertia between the !"'Lu [404]7/2 band and that of the neighboring even-even nucleus having
one more proton, '"2Hf (2J = 63.0 A2MeV 1) is so large that it is hard to consider the ground
band of Y"2Hf and the "'Lu {404]7/2 band as identical, which seems rather odd and hard
to understand. It is interesting to note that such feature of the moments of inertia can be

reproduced satisfactorily by the PNC calculation,

12



experimental calculated
J(*™Lu [404]7/2) - Jo(}™°Yb)

ATOD) 3.7% 3.7%
J(*'Lu [404]7/2) - Jo(172HI)
7o (D) 13% 17%

The reason is that the [404)7/2 orbital with low j and high 2 (g7/2, = j = 7/2) has a very
small Coriolis response and the contribution to the moments of inertia from the [404]7/2 orbital
is trifling (Table 5b), so the blocking effect of the [404]7/2 orbital is not worth mentioning.
Therefore, it is not surprising that the moment of inertia of the ground state band {404]7/2 in
1Ly is nearly equal to that of the ground band in Y°Yb. The reason why the moments of
inertia of 72Hf is much smaller than those of Y°Yb and "'Lu [404] band has been discussed

above, which is intimately connected with the gap in the proton Nilsson level scheme at Z = 70.
IV. SUMMARY

The variation of the odd-even differences in the moments of inertia of well-deformed rare-
earth nuclei with the blocked level was addressed both phenomenologically and microscopically.
The experimental large fluctuations in §J/J can be reproduced satisfactorily by the PNC cal-
culation. The underlying physics of such large variations in 6J/J is discussed in detail. It is
noted that treating the blocking effects properly is essential to account for the experimental
large fluctuations in §J/J. The calculated value of §J/J is especially large if the blocked or-
bital is a high-j intruder near the Fermi surface. In contrast, if the blocked orbital is of low-j
and high-Q (e.g., proton [404]7/2 and [402]5/2), the calculated §.//J almost vanishes. In this
case, the occurrence of identical bands in pairs of even- and odd-mass nuclei at low spin seems

understandable.
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Table Captions

Table 1 Comparison of the calculated and experimental bandhead mements of inertia of four

groups of rare-earth nuclei. Columns 2, 3, and 4 are the calculated contribution to the
moments of inertia for vanishing pairing (G» = G, = 0) from protons, neutrons, and their
sum, respectively. When the pairing interaction is taken into account, the corresponding
calculated results are given in columns 4, 5, and 6. The pairing strength (G, and G,), are
determined by the experimental odd-even mass differences {37] and the values of G, and
Gp are taken from ref. 33. The experimental bandhead moments of inertia {38] extracted

from the lowest two levels of each band are given in the final column.

Table 2 (a) Structure analysis of the neutron contributions from each major shell to the mo-

ments of inertia of the ground bands of '**62Dy and the [642]5/2 band in ¢!Dy. No
contribution comes from the neutron N = 0, 1, 2, 3 shells.

(b) The off-diagonal part of the contribution to the moments of inertia from neutrons.

Table 3 The same as Table 2, but for the ground bands of 64!6Er and the neutron [523]7/2

band of 85Fr.

Table 4 The same as Table 2, but for the ground bands of 7°Yb, 172Hf and the proton [514)9/2

band of Y"1Lu.

Table 5 The same as Table 2, but for the ground bands of 1"°Yb, 1"2Hf and the proton [404]7/2

band of ¥ Lu.
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Figure Captions

Fig. 1 The relative odd-even differences in the moments of inertia for odd-N well-deformed
rare-earth nuclei. §J/J (see eq. (3)) and §J/J|., (see eq. (2)) are denoted by solid and
open circles, respectively. The blocked neutron Nilsson level for each band is also indicated.

The experimental data of the bandhead moments of inertia are taken from ref. 38.
Fig. 2 The same as Fig. 1, but for the odd-Z well-deformed rare-earth nuclei.

Fig. 3 The same as Fig. 2, but for the 0dd-Z rare-earth nuclei, whose odd proton occupies the
[404)7/2, or [402)5/2 orbitals.

Fig. 4 The relative odd-even differences in the moments of inertia §J/J|,, (see eq. (2)) of

some typical (most §-stable) rare-earth nuclei versus the particle numbers and the the

corresponding Nilsson levels blocked by the odd particles. The experimental and calculated .

6J/J|ay are denoted by open and solid circles, respectively.

(a), odd-N nuclei. (b), odd-Z nuclei.

Table 1

2Jc (A*MeV™1)

Rotational Gy, Ga=0 Gp Ga#0 2Jexp
band (R*MeV-1)
proton neutron total proton neutron total
160Dy 61.26  126.32 187.58 2898  39.70  68.68 69.1
. oDy [642]5/2 60.18 113.54 173.82 28.66 117.92 146.58 159.4
162y 59.46  101.14 160.60 2066  41.56  71.22 74.4
1645, 44.16  106.74 150.90 23.82 4232  66.14 65.7
185pr [523)5/2 42,98  103.20 146.18 2486  60.62  85.48 90.6
166 pr 42.10 99.22 141.32 24.97 4955  74.50 74.5
170y} 41.66 80.26 121.92 2546  43.74  69.20 71.2
7y [514)9/2  35.08 81.98 117.06 40.20 4436  84.56 88.3
1124 37.86 84.08 121.94 21.70  41.92  63.62 63.0
170yh 41.66 80.26 121.92 2546  43.74  69.20 71.2
1y [404]7/2  39.74 81.98 121.72 2740 4436 71.76 73.8
124 37.86 84.08 121.94 21,70 41.92  63.62 63.0
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Table 2

(a)

(b)

18Dy,

6! Dyss
[642]5/2

tlsgzDY%

N=4
N=5
N=6

all shells
N=4
N=5
N=6

all shells
N=4
N=5
N=6

all shells

Gn=0
2), Jpu

42.45
83.87
126.32

41.93
71.61
113.54

41.68
59.45
101.14

Ga#0

2 . Jpp 2% e Iy

0.11
42.20
72.25
114.56

0.09
41.20
70.46
111.74

0.09
39.97
63.13
103.19

-0.02
-20.67
-54.17
-74.86

-0.01
-18.32

24.51

6.18

-0.05
-18.24
-43.34
-61.63

2Jncal

0.09
21.54
18.07
39.70

0.08
22.87
94.97

117.92

0.04

21.72

19.79

41.56

19

neutron orbitals
g o, v
(541] 1/2, [530] 1/2
(541] 1/2, [532} 3/2
514] 9/2, (505]11/2
[530] 1/2, [532] 3/2
[530] 1/2, {521) 3/2
(530] 1/2, [521] 1/2
[660] 1/2, [651] 3/2
[532] 3/2, [523] 5/2
(532 3/2, [521] 1/2
[651] 3/2, [642) 5/2
[521] 3/2, (523] 5/2
[521] 3/2, [512) 5/2
(642] 5/2, 633) 7/2
[523) 5/2, [514] 7/2
(633] 7/2, [624] 9/2
(512] 5/2, {503) 7/2
[660] 1/2, (642} 5/2
[521] 1/2, [510] 1/2
[521] 1/2, [512] 3/2
Total:

lGODy
a=} a=-}
-0.28 ~0.22
-0.25 -0.28
-0.37 -0.37
-0.05 -0.10
-2.05 -2.12
-0.29 -0.24
-2.81 -4.40
-2.88 -2.88
-0.30 -0.34
-14.57 -14.52
-0.70 -0.70
-2.09 -2.09
~-8.25 -8.25
~-0.88 -0.88
-0.62 -0.62
-0.05 -0.05
-0.10
~74.86

2J,. (A* MeV —1)
161Dy {642)5/2

a=} a=-}
-0.20 ~-0.16
-0.16 -0.19
-0.26 ~0.26
-0.97 -0.98
-0.27 -0.23
-1.48 -2.46
-2.72 -2.72
-0.29 -0.33

5.83 7.81
-1.00 -1.00
-2.14 -2.14

9.31 6.79
-0.97 -0.97
-0.67 ~-0.67

6.18

16’2Dy

a=} a=-}
-0.21 -0.17
-0.17  -0.19
-0.28  -0.28
-0.96  -0.97
-0.28  -0.23
T o164 -247
-241 -241
-0.30  -0.34
-6.08  -6.06
-0.83  -0.83
215 215
-1242  -12.42
-1.30 -1.30
-1.10  -1.10
-0.07  -0.07
-0.04

-0.07  -0.06
-0.05  -0.07

-61.63
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Table 3

(2)

ég" Ergﬂ

88 Erer

[523)7/2

166
68 El‘gg

N=4
N=5
N=6
all shells
N=4
N=§
N=6
all shells
N=4
N=3§
N=6
all shells

Ga=0
23, Jup

43.38
63.36
106.74

39.25
63.94
103.20

34.74
64.48
99.22

G, #0

2 Zu J“l" 2 ZA(V Jp,y

0.09
40.53
67.97
108.60

0.08
39.96
63.04
103.09

0.05
36.47
62.62
99.15

-0.01
-18.99
-47.29
-66.28

-0.07
-4.46
-37.95
-42.47
-0.01
-12.38

. -37.20
-49.59

2Jneal

0.08
21.54
20.68
42.32

0.02
35.50
25.10
60.62

0.04
24.09
25.42
49.55
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neutron orbitals
no, v
[541) 1/2, {530] 1/2
[541] 1/2, [532] 3/2
(514] 9/2, [505)11/2
(530} 1/2, [521} 3/2
[530] 1/2, [521) 1/2
{532] 3/2, [523] 5/2
[532] 3/2, [521] 1/2
{660] 1/2, [651] 3/2
[651) 3/2, [642] 5/2
[521] 3/2, [523] 5/2
(521} 3/2, [512] 5/2
(642] 5/2, [633] 7/2
[523] 5/2, [514]) 7/2
[633] 7/2, [624] 9/2
[521] 1/2, [510] 1/2
[521] 1/2, [512] 3/2
(512) 5/2, [503] 7/2
[530] 1/2, {532] 3/2
[660] 1/2, [642] 5/2
[624] 9/2, [615]11/2
Total:

(b}

IMEr
a=3 a=-]
-0.09  -0.07
-0.09  -0.10
-0.31  -031
-L14 -1L14
-031  -0.25
244 -2.44
-0.31  -0.37
-1.69  -3.15
-716  -7.11
-0.72 072
-225  -2.25
-1271 ~12.70
-1.56  -1.56
-1.33  -1.33
-0.09  -0.07
-0.06  -0.07
~0.07  -0.07
-0.05
~0.07

-66.28

2J,, (R? MeV —1)
165 [523]5/2

a=} a=-}
~-0.29 -0.29
-0.47 -0.47
-0.33 -0.26
0.45 0.60
-0.32 -0.38
-0.61 -1.09
-2.74 -2.72
0.47 0.31
-2.12 -2.12
-13.64 -13.64
1.02 0.52
-1.73 -1.73
-0.14 -0.12
-0.11 -0.13
-0.09 -0.09
-42.47

166,
a=} a=-}
-0.24 -0.24
-0.38 -0.38
-0.32 -0.25
-0.68 -0.67
~0.31 -0.37
-0.47 -1.03
-2.37 -2.36
-0.15 -0.15
-1.95 ~1.95

-13.30 -13.30
-1.71 -1.71
-2.07 -2.07
-0.18 -0.15
-0.13 -0.16
~0.10 -0.10
-0.08 ~-0.08

-49.59
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Table 4

(a)

Gp=0 Gp#0
2. Jun 28 Jun 2 0 Jv 2Jnen
10Ybige  N=4 15.39 14.44 -3.36 11.08
N=5 26.27 27.55 -13.23 14.32
N=6 0.00 3.12 -3.06 0.06
all shells -~ 41.66 45.11 -19.65 25.46
Wiy  N=4 15.62 14.53 -3.42 11.11
[514]9/2  N=5 19.46 21.79 7.32 29.11
N=6 0.00 2.75 -2.77 -0.02
all shells  35.08 39.08 1.12 40.20
172Hfjpp  N=4 10.43 11.85 -3.05 8.80
N=5 27.43 27.07 -13.83 13.24
N=6 0.00 5.99 -6.33 -0.34
all shells  37.86 449 -23.21 21.70
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proton orbitals
u o, v
[420] 1/2, [411] 3/2
[420] 1/2, [a11} 1/2
[541] 3/2, [532] 5/2
[532) 5/2, (523) 7/2
[413] 5/2, [404} 7/2
[411) 3/2, [402) 5/2
[523] 7/2, [514} 9/2
{411] 172, [402] 3/2
[404] 7/2, {402} 5/2
[514] 9/2, [505}11/2
[541] 1/2, [532] 3/2
[541) 1/2, [530} 1/2
[660] 1/2, [651] 3/2
[651] 3/2, [642] 5/2
[532] 3/2, [523) 5/2
[411] 1/2, [400] 1/2
[642) 5/2, [633] 7/2
Total:

(b)
170y},
a=} a=-}
-0.05 -0.05
-0.11 -0.10
-0.31 -0.31
-0.92 -0.92
-0.72 -0.72
-0.50 -0.50
-4.30 -4.30
-0.25 -0.29
-0.03 -0.03
-0.30 -0.30
-0.40 -0.48
-0.04 -0.08
-0.91 -1.61
-0.27 -0.27
-0.27 -0.27
-19.65

2J,, (A* MeV -1)
1714 [514]9/2

a=) a=-1
-0.06  -0.06
-0.08  -0.08
-041  -041
047 -047
-0.74  -0.74
-0.52  -0.52
359 617
-0.25  -0.30
0.15 0.1
-0.37  -0.44
-0.07

-0.83  -1.48
-0.23  -0.23

1.12

1724¢ -

a=j a=-}
-0.04 -0.04
-0.06 -0.06
-0.32 -0.32
-0.40 -0.40
-0.49 -0.49
-0.51 -0.51
-4.06 -4.06
-0.23 -0.27
-0.15 -0.15
-0.82 -0.82
-0.73 ~-0.90
-0.11 -0.13
-0.89 ~2.69
-0.59 -0.57
-0.38 -0.38
-0.05

-0.80 -0.80

-23.21
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Table 5

(a)

13°Ybioo

171
71 Lihoo

(404)7/2

13100

Z Zz Z
o
@ o

all shells
N=4
N=5
N=6

all shells
N=4
N=3
N=6

all shells

Gp=0
2 . Jnn
15.39
26.27
0.00
41.66
12.96
26.78
0.00
39.74
10.43
27.43
0.00
37.86

G, #0

2 I 28 . Jwv 2Jneal

14.44
27.55
3.12
45.11
12.67
27.50
2.75
42.01
11.85
27.07
5.99
4491

-3.36
-13.23
-3.06
-19.65
-1.21
-11.49
-2.80
-15.51
-3.05
-13.83
-6.33
-23.21

11.08
14.32

0.06 -

25.46
11.45
16.01
-0.06
27.40

8.80
13.24
-0.34
21.70
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proton orbitals
g o, v
[420] 1/2, [411) 3/2
[420] 1/2, [411] 1/2
(541] 3/2, (532) 5/2
[532] 5/2, [523] 7/2
[413] 5/2, (404] 7/2
[411] 3/2, [402] 5/2
[523] 7/2, [514] 9/2
{411} 172, [402] 3/2
[404] 7/2, [402] 5/2
(514] 9/2, [505)11/2
[541] 1/2, [532) 3/2
(541] 1/2, [530] 1/2
(660} 1/2, [651} 3/2
[651) 3/2, [642] 5/2
[532]) 3/2, [523] 5/2
[411] 1/2, [400] 1/2
(642) 5/2, (633) 7/2
Total:

(b)
170y},
a=} a=-3
~0.05 -0.05
-0.11 -0.10
-0.31 -0.31
-0.92 -0.92
-0.72 -0.72
~0.50 -0.50
-4.30 -4.30
-0.25 -0.29
-0.03 -0.03
-0.30 -0.30
-0.40 -0.48
-0.04 -0.08
-0.91 -1.61
-0.27 -0.27
-0.27 -0.27
-19.65

2J,, (A* MeV —1)
ML [404]7/2

a=} a=-}
-0.06 -0.06
-0.31 -0.31
~0.33 -0.33

0.26 0.10
-0.52 -0.52
-4.34 -4.34
-0.25 -0.29

0.07 0.05
-0.30 -0.30
-0.37 -0.45
-0.03 -0.07
-0.85 -1.51
-0.23 ~0.22

-15.51

124§

a=j a=-}
~0.04 -0.04
-0.06 -0.06
-0.32 -0.32
-0.40 -0.40
~0.49 -0.49
-0.51 -0.51
~4.06 -4.06
-0.23 -0.27
-0.15 -0.15
-0.82 -0.82
-0.73 -0.90
-0.11 -0.13
-0.89 -2.69
-0.59 -0.57
-0.38 -0.38
-0.05

-0.80 -0.80

-23.21
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odd—even differences in
the moments of inertia

odd-even differences in
the moments of inertia

2.0

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

2.0
1.8

1.6 |-

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

T T T ¥ T ¥ 1 T T T T T T T T ¥ T T T i
- —4— * . —— -]
- N=93 T o T N=97 + N=99
i + o, 1 1 / i
: + 14 1 / ]
A 1, 1 R i
- /. - . /- =

’ 0 /
L. /0 Jd. - 4 .
. N=95 R4
L - 1 L Lo LS 4
“i ..... i ..... | ..... L I“ ul ...... L ) 1 -i “l ...... L [ 1 l i >>>> l ..... L L l"
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