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Chapter 1

Introduction

Giant machines have been built to gain insight into the smallest pieces of nature. This is
driven by the fact that to resolve smaller sizes, more energy is needed. The real driving
force however is mankind’s passion for understanding the reality it finds itself in. In this
thesis but a small contribution is made to this struggle. It is a measurement of one of the
fundamental parameters of the theory called the “Standard Model of Particle Physics”.
This parameter is the mass of the particle known as the “top quark”. A better knowledge
of the parameters of the standard model might open the door to a better understanding
of nature or simply help making better prediction using that model.

After this introduction, in chapter 2 an overview of the standard model of particle
physics is given. It is the theory which describes with astonishing precision the structure
and interactions of all known matter. The emphasis on this chapter is put on the top
quark. With a mass of roughly a gold atom, it is the heaviest fundamental particle known
to date. Due to this high mass it is suspected to play an important role in the consistency
of the standard model and searches for physics beyond it. These implications are stronger
the higher the precision on the mass of the top quark is, motivating the analysis presented
in this thesis.

Any measurement wants the best possible knowledge of the detectors and techniques
it is using. The experiment used for this thesis is the ATLAS experiment. A description
of the detector and its capabilities are given in chapter 3.

The measurement of the mass of the top quark uses Monte-Carlo simulation techniques
to a very large extent. The simulation of a proton-proton interaction producing a pair
of top quarks is a complicated process. A short description of the basic concepts behind
these simulation techniques can be found in chapter 4.

The discussion of the current status of measurements of the mass of the top quark and
techniques for achieving that goal is presented in chapter 5. Focus is put on the template
method which will also be used in this thesis. Additionally that chapter describes the
limiting uncertainties on measuring the mass of the top quark. One of them is the “jet
energy scale uncertainty”, an uncertainty on the precision of measuring the energy of jets.

The description of the measurement done in this thesis starts in chapter 6. It explains
the variables used, the transverse decay length of bottom hadrons and the transverse
momentum of the lepton, both stemming from top quark decays. These variables have
been designed to be as insensitive as possible to the knowledge of the jet energy scale,
minimizing its impact on the measurement.

Finally, chapter 7 presents the actual measurement. It presents the selection of objects
and events used in the analysis. It also describes the application of the techniques described
in chapter 6 to the official ATLAS simulation. The largest part of the chapter is devoted
to the discussion of the systematic uncertainties affecting the measurement. After that
the full method is applied to the data taken by the ATLAS detector and the mass of the
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top quark is extracted.
After that the work is summed up in chapter 8. It puts the result of this thesis into

context and also discusses potential future steps.

1.1 Units and Conventions

This thesis uses natural units: This means that, for simplicity’s sake, the values of the
speed of light c and Plancks constant ~ have been set to unity: c = ~ = 1. As a con-
sequence, mass, m, momentum, p, and energy, E, all share the unit of energy. In high-
energy physics energy is typically quantified in electron volts, eV. One electron volt is
the energy an electron acquires when it is accelerated by a voltage of 1 V. This leads to
1 eV ≈ 1.602 · 10−19 J.

A few additional definitions are being used in this thesis: The coordinate system is
cartesic and right-handed. Its origin is located right at the center of the ATLAS detector
with the positive x-direction pointing towards the center of the LHC ring. The positive y-
direction points upwards, letting the z-direction be parallel to the beam pipe. From these
basic positions the following derived quantities can be derived and are more commonly
used:

• The transverse momentum, pT =
√
p2
x + p2

y, measuring the momentum perpendicu-

lar to the z-direction.

• The azimuthal angle, ϕ = arctan (px/py), indicating the arc between the y-axis and
the particle.

• The polar angle, θ = arccot
(
pz
pT

)
.

• The pseudorapidity, η = − ln
[
tan

(
θ
2

)]
, being a measure of how parallel to the beam-

pipe the object travelled.

The transverse momentum, the azimuthal angle and the pseudorapidity together fully
describe the three-vector of a particle. Together with the energy of it, the full four-vector
of it can be build. These quantities are used instead of the cartesic coordinates because
they take into account the rotational symmetry of the detector more natively.



Chapter 2

The Standard Model of Particle
Physics

The standard model of particle physics is a theory of particles and their interactions. It
describes with very high precision all known particles and forces except gravity. It was
majorly developed by Glashow [1] and later Weinberg [2] and Salam [3] in the 1960s.
Since then it has been extended by several new discoveries but the basic principles have
withstood experimental tests since then.

In this chapter an overview of the standard models constituents and interactions is
given. First the building blocks of all known matter is described. Afterwards the different
forces, their unification and the Higgs mechanism are discussed.

2.1 Building Blocks of Matter

All matter we experience in daily life consists out of three elementary particles: electrons,
up-quarks and down-quarks. However, there exists more particles which to current knowl-
edge are thought to be elementary. In this section an overview of the known building
blocks of matter is given. It is loosely oriented at the historical order of discovery. In-
cidentally this is caused by the increasing energy experiments where able to achive and
thus produce them in interactions. It is categorised by the type of particle: molecules and
atoms, quarks and leptons.

2.1.1 Molecules and Atoms

The body of an average human with a weight of m = 70 kg consists of roughly 1028 atoms.
Most of these atoms are bound in molecules like water and various carbohydrates. The
most abundant molecule in a human body is in fact water, making up 50% of all molecules
[4].

A water molecule is made of three atoms: Two hydrogen atoms and one oxygen atom.
The difference between the various atoms is the number of proton and neutrons in its core.
The number of protons Z determines the type of the atom, i.e. Z = 1 is a hydrogen atom
or Z = 12 a carbon atom.

Since protons are positively charged a core made only out of protons would be unstable
as the electromagnetic force would break it apart. In fact the core is held together by the
nuclear force which is related to the strong force. Its properties require there to be an
additional numbers of neutrons N in the core to make it stable. The sum of the number
of protons and neutrons in a core is called mass number A = Z +N .

Still, only certain combinations of Z and N are stable. The free neutron decays with
a halftime of about ten minutes into a proton, an electron and a neutrino [5], a decay via
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the weak nuclear force. In a core with similar number of protons and neutrons this decay
is not possible energetically, however in a core with many more neutrons than protons it
is and a neutron from this core decays, shifting the core towards more equal N and Z. A
similar effect happens in a core with many more protons than neutrons.

2.1.2 Quarks

Looking closer into these decays it is not the protons and neutrons themselves that decay.

Protons and neutrons are made out of up- and down-quarks: A proton consists out
of two up quarks and one down quark while the neutron consists out of one up and two
down quarks.

A quark is an elementary particle discovered in deep-inelastic scattering experiments
at the Stanford Linear Accelerator Complex (SLAC) in 1968 [6, 7]. They were earlier
proposed by Gell-Mann in 1964 [8, 9]. Further experiments found the properties of these
quarks: The up quark has a charge of Qu = +2/3 e with e being the elementary charge
and a mass of mu = 2.3+0.7

−0.5 MeV [5] in the MS scheme which will be of particular interest
later. The down quarks charge and mass were estimated to be Qd = −1/3 e and md =
4.8+0.7
−0.3 MeV[5]. The spin of both of these quarks was found to be 1/2.

The model proposed by Gell-Mann included a third quark, called the strange quark. It
was introduced to explain the plethora of additional particles discovered in the the years
from 1930 to 1950. Example for such particles are pions and kaons. Its properties share
some striking similarities with the ones from the down quark. It has the same charge
Qs = −1/3 e and same spin, the only difference seems to be its mass which in the MS
scheme is ms = 95± 5 MeV [5].

One interesting property of quarks is that they do not exist in isolation [10]. All known
quarks have been observed only in bound states of multiple quarks. This originates in the
properties of the strong force which will be discussed in the next section.

With the discovery of the J/ψ particle in 1974 an additional quark was discovered:
The charm quark. Like the up quark the charm quark has a charge of Qc = +2/3 e but its
mass is several orders of magnitude larger: mc = 1.28± 0.3 GeV [5].

These striking similarities between up and charm quark and respectively between down
and strange quark in that they share all properties but their mass hint to an underlying
symmetry. This lead to the characterisation of generations of matter. The up- and down
quark form the first generation while the charm- and strange quark form the second
generation of quark matter.

Using work from Cabibbo [11], Kobayashi and Maskawa predicted a third generation
of quarks [12]. This prediction was confirmed by experiment with the discovery of the
bottom quark in 1977 by the E288 experiment. The bottom quark has similar properties
to the down- and strange quarks in that its properties like the charge (Qb = −1/3 e) are
the same. Only its mass is different, which was estimated to be mb = 4.18± 0.03 GeV [5].

To complete this third generation of an additional quark is expected. It was named
the “top quark” and a search over several decades for it was made until its discovery at
the Tevatron collider in 1995 by the D0 and CDF experiments [13, 14]. As predicted the
top quark shares all its properties except its mass with the up quark. Its spin was found
to be 1/2 and its charge Qt = +2/3 e. In the MS scheme its mass was estimated to be

mMS
Top = 160+5

−4 GeV [5]. As the mass of the top quark is of big interest for this thesis
further discussion of the mass of the top quark will be given in chapter 5.

So far no additional generations of quarks has been found. If there are further gener-
ation of quarks in existence their mass must be larger than mt′ > 400− 680 GeV [5], the
limits depending on the assumptions made in the search.
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2.1.3 Mesons and Baryons

As pointed out in the previous section, no free quark has been observed yet. Instead they
only exist in bound states of a quark and an anti-quark or of either three quarks or three
anti-quarks. A state consisting out of a quark and an anti-quark is called “Meson”, the
one with three quarks “Baryon”. The proton and the neutron are examples of baryons,
the previously mentioned pions and kaons are examples of mesons. However there exist
many more mesons and baryons, with their properties depending on the content of quarks.
Basically all combinations of quarks have been found to build mesons, the top quark being
the one notably exception which will be discussed later.

As all quarks have a spin of 1/2 all mesons have to have either spin 0 or spin 1 meaning
that all mesons are bosons.

2.1.4 Leptons

In addition to quarks there exists another type of elementary particle building up all known
matter, the leptons. In fact the first elementary particles to be discovered is a lepton: the
electron. The electron also is the best studied elementary particle up to date, its properties
are measured to very high precision: Its mass is me = (0.510998928 ± 0.000000011) MeV
[5] and its charge was measured to be Qe = (1.602176565± 0.000000035)× 10−19 C ≡ 1e
[5]. As the quarks it is a fermion with spin of 1/2.

One production mechanism of electrons it the β-decay of unstable nuclei. Studying
these decays it was observed that they produce an additional particle which is not electri-
cally charged. Because of this it was called the neutrino or electron neutrino [15]. Its mass
is so small that it was first estimated to be consisted with 0. To fulfil the conservation
of angular momentum in the decay of the nuclei its spin also must be 1/2. Electron and
electron neutrino together are - similar to the up quark and down quark - called the first
generation of leptonic matter.

Similar to the quarks two additional generations of leptons exist: The muon is a
heavier version of the electron it has the same charge and spin but its mass is about 200
times larger than the one of the electron: mµ = (105.6583715± 0.0000035) MeV [5]. The
corresponding neutrino is called muon neutrino. The third generations charged lepton is
the tau lepton and the tau neutrino. The tau leptons mass is again larger than the one of
the muon: mτ = (1776.82± 0.16) MeV [5].

With the observation of neutrino oscillations [16] - one neutrino changing its flavour to
another one - the assumption of massless neutrinos turned out to be wrong. However, the
absolute scale of the neutrino masses is still unknown. From studying the decay of tritium
atoms it is known that the mass of the electron neutrino must be less than mνe < 2 eV [5].
Neutrino oscillation experiments can measure the difference between the neutrino masses
but not the absolute scale. They find that the difference of neutrino masses1 is of the
order of 10− 50 meV [5].

2.2 On Interactions

2.2.1 The Electromagnetic Force

The electromagnetic force is – together with gravity – the first force discovered by humans.
The first observations of it are most likely lightning or the magnetic effect of some minerals.
During the ancient, medieval and renaissance eras, the electronic and magnetic effects were
researched, but it was until the industrial age that a theory of electromagnetism describing
all the observed effects was developed: Based on the work by Gauss, Coulomb and Faraday

1Technically these experiments measure the difference between neutrino mass eigenstates.
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the british scientist Maxwell developed a set of equations which can describe all effects of
classical electromagnetism [17]. In differential form they read:

−→
∇ ·
−→
E =

ρ

ε0
(2.1)

−→
∇ ×

−→
E = −∂

−→
B

∂t
(2.2)

−→
∇ ·
−→
B = 0 (2.3)

−→
∇ ×

−→
B = µ0

−→
I + µ0ε0

∂
−→
E

∂t
(2.4)

−→
E and

−→
B are the field strength of the electric and magnetic fields, ρ and

−→
I are the charge

density and the electric current.
With the advent of quantum mechanics in the 20th century and the discovery that

electromagnetic waves also have particle properties Planck and Einstein introduced a par-
ticle for these waves. This particle was later named photon. This later lead to the concept
of the exchange particle which can be depicted the following way: A particle emits a pho-
ton and recoils against it. Later that photon hits another particle and this particle gets
pushed away. The behaviour is similar to two particles repelling each other. The analogy
breaks down as there is also an attractive force which would be a negative recoil in this
picture. The photon has a mass of 0 and carries no electric charge. It is a boson with a
spin of 1.

In the quantum field theory picture all interaction is described by a Lagrangian

LQED = iΨ /DΨ−mΨΨ− 1

4
FµνF

µν (2.5)

Ψ denotes the fermion field of the interacting particle and m its mass. F is the field
strength tensor and /D the gauge covariant derivative. It is needed to make the whole
equation gauge invariant under the gauge transformation of the electromagnetic force.
The beauty of this gauge covariant derivative is that it contains the interaction term:

/D = ∂µ − iQAµ (2.6)

with Aµ being the photon field. This means by just requiring the gauge invariance of the
Lagrangian one obtains the interaction term of the corresponding interaction. This alone
is the concept of the theory of gauge interactions. The strength of the coupling is giving by
the constant in front of the photon field - in case of the electromagnetic force this means
it couples to all particles having an non-zero electric charge.

2.2.2 The Weak Force

The weak force is the force which is the reason for the β decay of nuclei.
The charge of the weak force is called weak isospin I3. All quarks and leptons have a

weak isospin of either +1/2 or −1/2. The structure is that each generation has a particle
with a weak isospin of +1/2 and one with −1/2, i.e. the up quark has an isospin of +1/2

and the bottom quark has one of −1/2. All generations therefore can be organised in a
doublet of the form

(
u
d

)
where the upper particle has an isospin of 1 more than the lower

one.
The weak force manifests itself in two different types: One transforms a particle with

negative isospin to one with positive, like the weak decay of a down quark in a neutron to
an up quark, transforming the neutron to a proton. The resulting electron and electron
neutrino are again part of a weak isospin doublet. The weak isospin is a conserved quantity
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in all interactions. This means that the exchange particle of this manifestation has to carry
weak and electric charge. The corresponding particle is the W± boson. Unlike the photon
it is not massless, in fact its mass is with mW = 80.385± 0.015 GeV [5] quite large. This
also explains the relative weakness of this force in comparison to the electromagnetic force
- a muon with its comparatively low mass can not directly produce a W boson. The decay
has to involve a virtual W boson which in the language of quantum field theory suppresses
the interaction probability. The spin of the W boson is 1.

The other manifestation is in the form of neutral currents, e.g. meaning that an
electron scatters of an electron neutrino or pair-production of a weakly charged particle
and its antiparticle. This requires another exchange particle to be present in the weak
force. It is called the Z boson. It does carry neither electrical charge nor weak isospin.
Its mass is mZ = 91.1876± 0.0021 GeV [5].

The Lagrangian for the weak force is the following:

LW = iΨ /DΨ− 1

4
W aµνW a

µν (2.7)

The W a denote the three boson fields in the weak force and /D the gauge covariant deriva-
tive for the weak force.

One interesting feature of the weak force is that it couples differently to particles and
anti-particles: It only interacts with right-handed particles and left-handed antiparticles
[18]. The handedness of a particle is described by the projection of its spin to its direction
of movement: If they point into the same direction it is called right-handed, if they point
in opposite direction it is called left-handed.

The weak force was found to not couple to the quarks as they were described in
section 2.1.2. Instead there is a set of separate eigenstates, called weak eigenstates. The
eigenstates described in the previous section are called the mass eigenstates. By definition
the weak eigenstates for up, charm and top quark are the same as their mass eigenstates.
The transformation for down, strange and bottom quark is described by a matrix proposed
by Kobayashi and Maskawa when they predicted the existence of the bottom and top
quarks [12]. It has the following elements and absolute values [19]:

|VCKM | =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97425+0.00022
−0.00014 0.22543+0.00060

−0.00094 0.003490+0.000209
−0.000094

0.22529+0.00059
−0.00095 0.97344+0.00022

−0.00018 0.04077+0.00130
−0.00048

0.00851+0.00047
−0.00023 0.04002+0.00129

−0.00048 0.999142+0.000043
−0.000025


It is a complex unitary matrix. It is diagonal-dominant meaning that mostly the weak
eigenstates are the same as the mass eigenstates. However there is a small admixture of the
other mass eigenstates which makes changes of quarks between the generations possible,
e.g. a bottom quark can decay into a charm quark. The CKM-Matrix has a complex
phase which is not shown here. It leads to the possibility of CP violation in the standard
model.

A similar matrix exists for the three generation of leptons. Here the weak and mass
eigenstates are the same for the charged leptons and there exists a similar matrix for the
neutrino eigenstates, the PMNS-Matrix [20, 21]. For the neutrinos it is not possible to
observe the mass eigenstates directly - they only interact via the weak interaction. This
leads to the feature of neutrino oscillations - one flavor of neutrino changing its type to
another one.

2.2.3 The Strong Force

The strong force couples to another quantity of particles that is called colour. Unlike
charge and weak isospin where there is one type of charge, colour has three. They are
called red, blue and green. From the so far discussed particles, only quarks carry colour
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charge. This has the consequence that there are in fact more quarks than expected from
interactions of the previous forces: There is one type of quark for each colour, e.g. a red
up quark, a blue up quark, a green up-quark and the same for all the other quarks. This
makes the interaction strength of the other forces seem stronger to quarks than it actually
is. The Lagrangian of the strong force reads:

L = iΨ /DΨ− 1

4
GaµνGaµν (2.8)

As for the other colours there are an exchange particles for the strong force. In the above
equation their fields are denoted Ga. They are called gluons and carry a colour charge
as well. It is of the form colour/anticolor (e.g. red/anti-green). This again leads to the
possibility of self-interaction of gluons. In total there are eight different combinations of
that form which leads to the existence of eight different gluons.

The interaction strength of the strong force can become so large that the theory be-
comes non-pertubative. In these cases other approaches for describing the interactions
need to be used.

2.3 The Standard Model of Particle Physics

The Standard Model of Particle Physics is a model to describe all known particles and
their interactions. It contains in total 24 elementary particles: 18 quarks (six for each
colour) and 6 leptons. In addition there are the exchange particles of the three forces of
the standard model: Electromagnetic Force, Weak Force and Strong Force. The Standard
Model unifies the electromagnetic force and the weak force together to the Electroweak
force: In the Electroweak force there are four bosons, W1,W2,W3 and B. The three W
bosons still couple to the weak isospin, however the B boson couples to the hypercharge
Y . These charges are related to each other in the following way:

Y = 2(Q− I3) (2.9)

The Z boson and the photon are linear combinations of the W3 and the B boson in the
way that the photon does only couple to charged particles.

2.3.1 The Higgs Mechanism and Boson

One final piece exists in the standard model: The Higgs boson. It is a consequence of
the Higgs field which is added to the standard model to describe the behaviour of mass
terms. A simple mass current in the Lagrangian mΨΨ is not renormalizable. However
its coupling with a scalar boson field ΦΨΨ is. Such a coupling is introduced with the
Higgs field. The masses of all particles are therefore generated by their interaction with
the Higgs field and are proportional to their interaction strength.

The interaction of the Higgs field with itself has an additional consequence: The exis-
tence of another boson, the Higgs boson [22, 23]. This has been on of the major predictions
of the standard model. A boson with similar properties as the standard models Higgs bo-
son was discovered in 2012 by the ATLAS and CMS collaborations at the LHC [24, 25].
First estimations of the mass are in the 125 GeV region [24, 25].

2.4 The Top Quark

With its very high mass the top quark plays a special role in the standard model. It is
the only known particle which can decay into a real W boson, as it has a higher mass
than the latter. This leads to the consequence that the average lifetime of a top quark is
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τt = 0.5 × 10−24 s [26]. This has the interesting consequence that the top quark decays
before it forms mesons or baryons with other quarks – for this very short time the top acts
as a free quark. Since the CKM-Matrix element Vtb is very close to unity the top quark is
expected to almost always decay into a bottom quark and a W boson t→ bW .

The very high mass also makes the top quarks mass a very important parameter in the
standard-model. There exist predictions for the Higgs mass depending mostly on the W
boson mass and the top mass. An example is shown in Figure 2.1. The green areas denote
the measured values for the masses W boson and top quark. Where they intersect, the
allowed region for the mass of the Higgs boson by these measurements exists. The dashed
diagonal lines are the allowed diagonals for a given mass of the Higgs boson. The blue- and
grey-shaded areas are best-fit values for the Higgs boson using various input parameters.
Excellent agreement is observed, thus the mass of the top quark is a important parameter
for the consistency of the standard model.
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Figure 2.1: Prediction of the Higgs mass based on W boson mass and top quark mass
measurements together with the measurement of the Higgs boson mass assuming that it
is the standard models Higgs boson. The correlation between top and W boson mass is
neglected in this figure [27].
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Chapter 3

The ATLAS Experiment

3.1 CERN and LHC

Located at the Swiss-french border near Geneva, CERN is the worlds largest center for
research in particle physics. It houses several experiments, present and past. At CERN
several thousand scientists and engineers from a multitude of nations work together on
answering the fundamental questions of the universe. The discovery of the W - and Z-
bosons in 1983 and the discovery of a boson with consistent properties as the standard
models Higgs boson in 2012 belong to its long list of discoveries.

Figure 3.1: An overview of the accelerator complex at CERN. It includes the whole chain
from the extraction of protons in LINAC2 its way through the BOOSTER, PS and SPS
until they finally arrive in the LHC. It also includes several additional accelerator and
storage rings and other experiments, i.e. CNGS, a neutrino beam travelling from CERN
to the LNGS facility in Italy [28].

Figure 3.1 shows a sketch of the of the accelerator complex at CERN. It includes
several accelerators and experiments, like the anti-proton decelerator. It also shows the
Large Hadron Collider and its four big experiments.
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3.1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the most powerful particle accelerator built until
today. In it protons have been accelerated up to

√
s = 8 TeV. In the future it will be

possible to increase that energy up to
√
s = 14 TeV. It houses four big and two small

experiments:

• ALICE (A Large Ion Colliding Experiment) mainly studies the collisions of lead ions
which also can be accelerated in the LHC

• CMS (Central Muon Solenoid) is one of the two general-purpose experiments.

• LHCb was built to do precision measurements of the decays and properties of B-
Hadrons

• ATLAS (A Toroidal LHC Apparatus) is the other general-purpose experiment. Like
CMS the main goals are the discovery and study of the Higgs Boson, precision
measurements of top quark properties and the general search for new phenomena

• TOTEM (Total Elastic and Diffractive Cross-Section Measurement) is one of the
smaller experiments. It wants to measure the total cross-section of proton-proton
interactions

• LHCf studies ultra-forward parton showers to enhance the performance of cosmic-ray
simulation programs.

The LHC is designed to deliver a luminosity of L = 1034 1/cm2s at
√
s = 14 TeV. In its√

s = 7 TeV runs in 2010 and 2011 and its
√
s = 8 TeV run in 2012 the peak luminosity

to ATLAS was around Lpeak ≈ 8 · 1033 1/cm2s (cp. Figure 3.2).

Figure 3.2: The peak luminosity delivered to the ATLAS experiment versus the time of
the runs in 2010-2012. The luminosity was steadily increased in 2011 and levelled out
early in the 2012 run [29].

This high luminosity leads to the effect that multiple interactions happen during each
crossing of two bunches. This effect is called “pileup”. A measure for it is the average
number of interactions per bunch-crossing, 〈µ〉. Figure 3.3 shows the distribution of 〈µ〉
in the 2011 and 2012 runs of the LHC.
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Figure 3.3: The mean number of interactions per bunch-crossing as observed by the AT-
LAS experiment for the 2011 and 2012 runs. [29].

3.2 The ATLAS Detector

The ATLAS detector is one of the four large experiments operating at the LHC. It is
the largest particle physics detector ever built at a particle accelerator. Its dimensions
are 44 m in length and 22 m in height. In total it has approximately one hundred million
readout channels. It has been built and is operated by an international collaboration of
around four thousand scientists.

The main goals of the ATLAS experiment are the discovery and study of the standard
model Higgs boson, precision measurement of properties of the standard model, particu-
larly the top quark, and a broad search for physics beyond the standard model.

Figure 3.4 shows a sketch of the detector. It contains roughly out of the inner detector,
calorimeters, the muon system and a system of magnetic fields. Additionally each of these
components plays a part in the trigger decision. A description of all of these parts will be
given in the following sections.

3.2.1 Inner Detector

The inner detector of ATLAS consists out of a series of tracking systems inside a solenoidal
magnetic field with a field strength of BID = 2 T [30]. The tracking detectors detect the
passing of electromagnetically charged particles. This allows the reconstruction of tracks
by combining the hits in the several detectors. Charged particles are bent by the magnetic
field which makes their momentum and sign of charge measurable by the curvature the
reconstructed track.

The pixel detector

By far the most readout channels of the ATLAS detector are concentrated in the pixel
detector. Having its first layer, the b-layer, at only 50.5 mm radial distance from the
interaction point the amount of cells needed to obtain sufficient resolution needs to be
very high. A typical pixel has a size of 50µm × 400µm in the ϕ-z-plane. The pixel
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Figure 3.4: A sketch of the ATLAS detector. From the innermost layer to the outer-
most it consists out of the PIXEL detector, the semiconductor tracker (SCT), the transi-
tion radiation tracker (TRT), followed by the electromagnetic calorimeter (LAr) and the
hadronic calorimeter (TILE). The outermost part is the muon system consisting out of
thin gap chambers (TGC), monitored drift tubes (MDT), resistive plate chambers (RPC)
and cathode strip chambers (CSC). Between the inner detector (PIXEL, SCT, TRT) and
the electromagnetic calorimeter is a solenoid magnet. The muon system is inside a toroidal
magnet field generated by the large coils visible in the sketch [30].

Figure 3.5: The inner detector of the ATLAS experiment. At R = 50.5 mm, R = 88.5 mm
and R = 122.5 mm are the three layers of the PIXEL sub-detector. The SCT has layers
at R = 299 mm, R = 371 mm, R = 443 mm and R = 514 mm. The volume of the TRT is
between R = 554 mm and R = 1082 mm [30].
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detector is a silicon-based semiconductor detector. A passing charged particle will create
electron-hole pairs which form a current if sufficient voltage is applied to the sensor. The
presence of this current can then be interpreted as a hit in that pixel. The size of the
current is proportional to the energy loss of the charged particle in the sensor. As a typical
track will pass multiple pixels a resolution of 10µm can be achieved in the ϕ-direction
[30].

Apart from the b-layer there are two more pixel layers, layer 1 at R = 88.5 mm and
layer 2 at R = 122.5 mm. Each of the layers spans 400.5 mm in both directions in z.
Additionally there are two sets of three disks perpendicular to the beam on each side of
the other layers. Their positions in z are 495 mm, 580 mm and 650 mm. In total the pixel
detector consists out of 1744 modules, 286 in the b-layer, 494 in layer 1, 676 in layer to
and 48 in each of the 6 disks. Each module has a size of 19 mm× 63 mm and consists out
of 46080 read-out channels.

The semiconductor tracker

The semiconductor tracker is another silicon-based tracking detector. Other then the pixel
detector it does not contain out of single pixels but out of 12 cm long strips. Two of these
strips form one of the in total 4088 modules. To retain resolution perpendicular to the
strip the two modules on a strip are inclined at an angle of 2.29◦. Thus, a resolution of
580µm in the z-direction is achieved. The size of the strip in the R-ϕ-direction is 80µm
resulting in a resolution of 17µm .

There are four barrels of SCT modules, they exist at R = 299 mm, R = 371 mm,
R = 443 mm and R = 514 mm. Additionally there are – similar to the pixel – end-caps at
various directions in z [30].

The transition radiation tracker

The transition radiation tracker uses a different technology to detect passing charged
particles. It consists out of straws filled with an admixture of xenon and carbon dioxide.
A passing charged particle will emit transition radiation at the boundary. That radiation
is then ionising the gas thereby creating free electrons. Electrons are collected at an anode
inside the straw. The current generated by these electrons can be used to generate a hit
in that straw. Additionally, as the number of electrons generated is proportional to the
γ-factor the TRT can be used to identify the type of the particle.

A single straw consists out of a 35µm thick layer of films: the base is a 25µm thick
polyimide film. Inside that film is – after a thin 0.2µm Al layer a 6µm thick film of
graphite-polyimide. On the other side of that film is a 5µm thick layer made out of
polyurethane. The whole TRT spans the area between R = 554 mm and R = 1082 mm.
In total it has 73 layers of straws in the barrel and additional 160 planes in the end-cap
[30].

3.2.2 The Calorimeters

Calorimeters are used to absorb all of the energy of passing particles. This is done by
putting large amounts of absorber materials in the direction of flight of these particles.
This will result in the generation of particle showers inside the calorimeter. The energy of
these showers then can be measured by measuring the energy the shower particles deposit
inside the calorimeter.

The ATLAS experiments employs two different calorimeters – an electromagnetic one
and a hadronic one. Both of them are sampling calorimeters, i.e. they consist out of a
material where the particles shower and another one which actually measures the deposited
energy. The electromagnetic calorimeter uses lead as the showering material and liquid
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argon as the absorber. The hadronic calorimeter uses different technologies in the barrel
and the end-cap.

Figure 3. Cut-away view of the ATLAS calorimeter system.

1.375 < |! |< 2.5, and an inner wheel covering the region 2.5< |! | < 3.2. The EM calorimeter is

a lead-LAr detector with accordion-shaped kapton electrodes and lead absorber plates over its full

coverage. The accordion geometry provides complete " symmetry without azimuthal cracks. The1385

lead thickness in the absorber plates has been optimised as a function of ! in terms of EM calorime-

ter performance in energy resolution. Over the region devoted to precision physics (|! | < 2.5), the

EM calorimeter is segmented into three longitudinal sections. For the end-cap inner wheel, the

calorimeter is segmented in two longitudinal sections and has a coarser lateral granularity than for

the rest of the acceptance.1390

In the region of |! | < 1.8, a presampler detector is used to correct for the energy lost by

electrons and photons upstream of the calorimeter. The presampler consists of an active LAr layer

of thickness 1.1 cm (0.5 cm) in the barrel (end-cap) region.

1.4.2 Hadronic calorimeters

Tile calorimeter The tile calorimeter is placed directly outside the EM calorimeter envelope.1395

Its barrel covers the region |! | < 1.0, and its two extended barrels the range 0.8 < |! | < 1.7. It is

a sampling calorimeter using steel as the absorber and scintillating tiles as the active material. The

barrel and extended barrels are divided azimuthally into 64 modules. Radially, the tile calorimeter

extends from an inner radius of 2.28 m to an outer radius of 4.25 m. It is longitudinally segmented in

three layers approximately 1.5, 4.1 and 1.8 interaction lengths thick for the barrel and 1.5, 2.6, and1400

3.3 # for the extended barrel. The total detector thickness at the outer edge of the tile-instrumented

region is 9.7 # at ! = 0. The tiles are 3 mm thick and the total thickness of the steel plates in

one period is 14 mm. Two sides of the scintillating tiles are read out by wavelength shifting fibres

– 38 –

Figure 3.6: A sketch of the calorimeters of the ATLAS detector. It consists out of the
LAr electromagnetic calorimeter and the Tile hadronic calorimeter. The LAr calorimeter
consists out of a barrel and two forward calorimeters while the Tile consists out of barrel
and an extended barrel. Additionally the LAr calorimeter has a electromagnetic and a
hadronic end-cap, resting inside the Tile extended barrel [30].

The electromagnetic calorimeter

The electromagnetic calorimeter of ATLAS uses liquid argon as the active material. Hence,
it is referred to as the LAr calorimeter. Passing electromagnetically interacting particles,
particularly electrons and photons, interact with the lead absorber and generate a shower
of secondary electromagnetic particles. The energy of these particles is then measured
inside the active material, and thus the energy of the original particle can be measured.
Depending on the pseudorapidity of the particle it consists of 25-45 radiation lengths of
material.

The LAr calorimeter barrel is built in three layers with various cell sizes: The first one
ranges from X0 = 1.7 − 4.3, the second from there until X0 = 20.3. After that there is
a trigger tower with a radiation length of X0 = 2. The LAr cells are constructed in an
accordion-like structure. Additionally they are structured into cells of various sizes: In
layer 1 they are strips of 147.3 mm × 4.69 mm. Layer 2 consists out of square cells and
layer three out of towers [30].

Additionally there is an end-cap for the electromagnetic calorimeter. It employs similar
geometry as the barrel but spans a larger amount of pseudorapidity. In between the barrel
and the end-cap there is the so-called “crack-region” where no calorimeter material exists.
It spans from 1.37 < |η| < 1.52.

The hadronic calorimeters

The hadronic calorimeter of ATLAS consists out of three parts: The Tile calorimeter,
which makes up the bulk of the hadronic calorimeters, the LAr hadronic end-cap and the
LAr forward calorimeter. Each of the three parts overlaps with at least one of the others
to eliminate gaps in the coverage.

The tile calorimeter is a sampling calorimeter. Other than the LAr calorimeters it
uses steel as the absorbers and scintillating tiles as the active material. It consists out
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of a barrel spanning up to a pseudorapidity of |η| < 1.0 and two extended barrels in the
0.8 < |η| < 1.7 region. Both types of barrels are segmented into three layers with various
radiation lengths, in total 7.4 independent of the barrel type [30].

The LAr hadronic end-cap – as the electromagnetic calorimeter – uses liquid argon
as the active material. Copper is used as the showering material. The hadronic end-cap
spans from |η| = 1.5 until |η| = 3.2 and is built out of two wheels per side [30].

Finally there is a hadronic LAr calorimeter, consisting out of several absorbers: One
layer of copper and two layers of tungsten, again using liquid argon as the active material.
It has approximately 10 radiation lengths and covers a pseudorapidity of up to |η| = 4.5,
starting at |η| = 3.1 [30].

3.2.3 Muon System

The ATLAS muon spectrometer is another series of tracking stations. Located behind the
calorimeters muons are basically the only charged particles which will travel until there.
The muon system consists out of four different components. Two have finer granularity
and are used for the actual reconstruction, while the other two are less granular but much
faster and are mainly used in the trigger system.

Figure 3.7: A sketch of the ATLAS muon system. The special toroid magnets are depicted
in yellow, while the various parts of the system are shown in blue.[30].

The monitored drift tubes make up the bulk of the precision tracking channels. A
passing charged particle will interact with the argon-carbon-dioxide gas inside the cham-
ber. The produced electrons drift towards a wire inside the chamber, generating a current.
In total there are 1150 chambers with a total of 354,000 channels. They are arranged in
three layers at R = 5 m, R = 7.5 m and R = 10 m. They cover a η-region up to 2.7 (2.0
in the first layer). Monitored drift tubes are also used in the big wheels. They provide a
resolution varying from 50µm to 300µm depending on the impact parameter of the track
w.r.t. to the wire [30].

In the small wheels a different technology is used: They consist out of cathode strip
chambers. They are multiwire proportional chambers. They reach a resolution of around
60µm. Each passing track passes through at least three chambers providing sufficient
amount of information for momentum and charge reconstruction [30].
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The detectors used for the trigger system are called resistive plate chambers and thin-
gap chambers. The former are mainly used in the barrel region while the latter in the
wheels. The resistive plate chambers consist out of two parallel plates with a gas filled
inside them. A passing particle will generate secondary particles which then can again be
measured as a current at the plates. The thin-gap chambers are multiwire proportional
chambers like the CSCs. The difference between the RPCs/TGCs with respect to the
MDTs/CSCs is that the size of the chambers is much smaller. Therefore the time until
the signal reaches the electrodes is much shorter. This allows them to be fast enough for
the triggering decision.

The muon system is filled with an air-cored toroidal magnet field with a varying field
strength. This will still bend a muon with momentum of more then 1 TeV on a trajectory
sufficient for momentum and charge reconstruction.

3.2.4 The Trigger

Without a trigger system the amount of data the ATLAS detector would have to store
is gigantic. The unfiltered data rate would be in the order of PByte/s [31]. In 2007 the
worlds total ability to store data was estimated to be around 290 EByte [32]. If all data of
ATLAS would be stored the worlds present ability to store it would run out after about
80 days1. Even with the rapid increase in computing technology an efficient system to
reduce the data rate is therefore imperative. The most likely interactions when to protons
collide have been thoroughly studied at previous experiments. Thus, they can safely be
discarded. The trigger system of the ATLAS detector is designed to achieve just that: It
rapidly decides whether an event contains a interesting signature and otherwise discards
it.

Figure 3.8: Schematic view of the ATLAS trigger system[30].

The ATLAS trigger chain has three big components: level 1 (L1), level 2 (L2) and
the event filter. In each step the amount of information used and the processing time

1This of course neglects the increase in storage capability since then.
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increase. While L1 must make a decision within 2.5µs, the event filter may take up to
several seconds to decide whether an event is kept or not [30].

The level 1 trigger is seeded by the calorimeters and the trigger-specific parts of the
muon system. The electromagnetic and hadronic calorimeters look for the deposition
of large amounts of energy in a small, but less granular, region. Several thresholds are
programmable for the amount of energy, allowing it to be tuned to the instantaneous
luminosity. Triggers for jets, electrons, photons and tau leptons are in place. The second
layer of RPCs is used to seed muon triggers in the barrel. From there a line to the
interaction point is defined and a hit in the first RPC layer is searched. The deviation
of that point from the line is a measure for the transverse momentum of the muon. For
high transverse momentum muons additionally the third layer of RPC is used. A similar
technique is used in the endcap, but here the third plane of TGC is the pivot plane.

If an event is selected by a level 1 trigger the information is passed to level 2. This in-
formation includes a ’region of interest’, the physical location of the object which fired the
trigger. The information of all sub-detectors is stored in so-called read-out-buffers. First,
the level 2 trigger verifies the level 1 trigger object in the region of interest, using more
sophisticated information. For example, in the muon system a simple circular fit is per-
formed to measure the transverse momentum of the object. If the verification is successful
additional information of other sub-detectors is used. At this level also information of the
inner detector can be used, allowing the use of triggers identifying jets originating from
bottom-quarks. The event filter is the last step of the trigger chain. It fully reconstructs
the event allowing for a large variety of possible selections.

3.2.5 The Analysis Chain

An event which passes the even filter trigger requirement is then stored on disk. The
computing chain starts at “Tier0”, a large computing farm at CERN. At this stage the
data is in byte-stream form. At Tier0 the byte stream is converted into the “RAW” format,
which is basically a compressed byte stream. On Tier0 the data is then reconstructed
within 24 to 48 h after the run. The reconstructed data is stored as “Event Summary
Data” (ESD). This format contains the basic information of all sub detectors, enough
to potentially rerun the reconstruction. Another output is the “Analysis Object Data”
(AOD). They only contain reconstructed objects like tracks, electrons or jets and are
intended to have all the necessary information for any analysis. For more specific analysis
needs the D3PD format exists. It contains a tree in the ROOT-format [33] including only
the information the performance or physics group in question needs. Specific analysis
teams usually define even smaller ROOT-trees for their specific analyses. These usually
apply the final calibrations and perform a very basic event selection.

3.2.6 Data Quality

The detector will not at all times perform in perfect conditions. Even though the operation
team of the detector is working at all times, hardware or software failures will happen from
time to time. Also at the beginning or end of each run parts of the detector may still be
ramping their high-voltage before they actually take data. The data from these times may
not be usable for data analysis. This depends on the needs of the analysis and the severity
of the defect. In ATLAS, each subsystem and reconstruction group flags all the data,
adding so-called “defects” to them. A defect may be that the high-voltage of the PIXEL
detector is off for the first minutes of data-taking or that there is a hot-spot somewhere
in the calorimeter. The granularity in time for these defects is called a “luminosity-block”
and is typically one minute long. Each physics analysis creates a list of defects they deem
as intolerable for their analysis. The result is a new list, called “good runs list” (GRL)
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which contains a list of run numbers and luminosity blocks which are usable for their
analysis.

3.2.7 Simulation

Many physics processes are simulated to estimate their contributions to various analysis.
For this, a Monte-Carlo generator amongst other software is used. The details of this will
be discussed in chapter 4. The detector response of the simulated events also needs to be
simulated. A common tool for this is the Geant4-package [34]. It simulates the interaction
of matter with detector material. It is used in the simulation of the response of the ATLAS
detector to simulated events. Two modes of operation are used in this simulation:

• Full Simulation. This does simulate the whole particle interactions with detector
elements in the optimal way of the toolkit. The simulation of the interaction in the
calorimeters uses a large amount of time.

• Fast Simulation. This replaces the full calorimeter shower interaction with presim-
ulated showers. It is considerably faster then the full simulation but slightly less
accurate.

The output of the Geant4-simulation is very similar to the RAW data format of the real
detector. It also contains information about the truth input of the generator. It can be
fed into the default analysis chain as if it was taken by the real detector.

3.3 Reconstruction of Physics Objects

The information of the detector needs to be interpreted as physical objects: A muon will
leave hits in the inner detector, deposit very little energy in the calorimeters and then
leave hits in the muon chambers. However, the information one obtains from the detector
is backwards: One has a couple of hits in the inner detector and in the muon spectrometer
in vaguely the same region of the detector and a small deposition in the calorimeter.
This information now needs to be combined to reconstruct the original muon. This must
be done while there are several additional physics objects leaving their signatures in the
detector. Even more challenging, there are objects which will show a very similar signature
as a muon but are in fact something else. An example would be a charged kaon which will
leave hits in the tracker and deposit energy in the calorimeter. There it may decay into
an actual muon which will leave hits in the muon system. Any reconstruction algorithm
must be able to discriminate as much as possible between the desired physics object and
the background sources while retaining a high reconstruction efficiency.

3.3.1 Tracking

Tracking is the reconstruction of the traces of charged particles. This is used for the
reconstruction of the actual interaction points, as all particles from a single interaction
must originate from the point of that interaction. Tracking is also used in the identification
of higher-level objects, for instance electrons and photons have similar signatures except
that electrons are charged and therefore leave a track while photons do not.

The actual tracking starts from the hits in the pixel and SCT. These are combined into
’clusters’ inside a single layer. These clusters exist because a particle will not always pass
a pixel/SCT plane perpendicularly. The tracking uses these clusters as seeds for tracks
and extends them to the TRT information [35]. After all tracks have been found they are
combined to find the primary vertex of the event. Because of pileup there may be more
than one primary vertex and by association of physics objects with the signal primary
vertex background from pileup can be suppressed.
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Figure 3.9: The track reconstruction efficiency as a function of track η and pT . The more
central a track is and the higher its momentum is, the higher its reconstruction efficiency
is [35].

A very important quantity is the reconstruction efficiency of tracks. This efficiency
may depend on the pseudorapidity of the track, as the particle will pass through different
parts of the detector. Also it will depend on the transverse momentum of the track, if it is
too low the particle will not escape the magnetic field. The track reconstruction efficiency
using simulated data is shown in Figure 3.9. A track with pT > 1 GeV has, in general, a
reconstruction efficiency of larger than 80%. Also, the more central it is, the higher its
reconstruction efficiency is.

Figure 3.10: The impact parameter distributions for various average number of interactions
〈µ〉 measured by the ATLAS collaboration in 2011 high-luminosity data. left: transverse
impact parameter, right: longitudinal impact parameter [36].

Figure 3.10 shows the impact parameter distributions of tracks reconstructed with the
ATLAS inner detector. An impact parameter is the minimum distance between the track
and its primary vertex, the width of the distribution is a measure for the tracking resolu-
tion. The figure shows the impact parameter distributions for various number of average
proton-proton-interactions per bunch-crossing 〈µ〉 which is a measure for the amount of
pileup. The transverse impact parameter distribution is very stable against the amount
of pileup which is as desired. The longitudinal impact parameter distribution becomes
slightly broader with increasing pile-up, the effect is small though [35].

Another important part of tracking is the efficiency of primary vertex reconstruction,
i.e. the probability to find a primary vertex if it exists. The efficiency as a function of
number of tracks in the beamspot is shown in Figure 3.11. In general the efficiency is very
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high, being basically unity for more than three tracks [35].

Figure 3.11: The vertex reconstruction efficiency of the ATLAS detector as a function of
number of tracks in the beamspot [35].

3.3.2 Electrons

Electrons are a higher-order object than tracks. While tracks may be any charged par-
ticle, for the identification of electrons, more information needs to be combined. The
reconstruction of an electron starts with a seed in the electromagnetic calorimeter. From
there a matching track in the inner detector is tried to be matched. If no track is matched,
or the matched tracks matches the profile of a photon conversion, the candidate is dis-
carded. The resolution of the pseudorapidity and azimuthal angle of the inner detector
track is better for the inner detector track, therefore that information is used for these
two variables, while the energy resolution of the calorimeter is better and is used there.

Additionally reconstructed electrons are classified into three categories: loose, medium
and tight [37]:

• Loose electrons need to satisfy a loose matching cut between the inner detector track
and the calorimeter shower, as well as a few simple shower-shape cuts

• Medium electrons, on top of the loose cuts, tighten the cuts on the inner detector
track and add more sophisticated shower-shape cuts

• Tight electrons add a tighter matching cut by explicitly requiring a hit in the inner-
most pixel layer, and also cutting on information from the TRT

The electron reconstruction efficiency depends on the applied set of cuts. It can be easily
measured using Z → ee events: One requires at least one tight electron in the event. This
electron is called the “tag” electron. Then a second electron is searched for, which, when
combined with the tag electron has an invariant mass close to the one of the Z boson.
This electron is called the “probe” electron. The background is very small, if such a match
can be found, therefore one can easily measure the efficiencies for the various set of cuts
for the probe electron. For low energy electrons a similar tag-and-probe-measurement can
be done, using instead the J/ψ resonance instead of the Z resonance. Results of these
measurements, for various values of pseudorapidity and transverse energy are shown in
Figure 3.12 for medium electrons and in Figure 3.13 for tight electrons. The reconstruction
efficiency for tight electrons is clearly lower than for medium electrons. Tight electrons
have a better rejection of backgrounds, which mainly stems from misidentified jets and
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Figure 3.12: The reconstruction efficiency for medium electrons for data and simulation
in various bins of pseudorapidity (left) and transverse energy (right) [37].

Figure 3.13: The reconstruction efficiency for tight electrons for data and simulation in
various bins of pseudorapidity (left) and transverse energy (right) [37].
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from photons. In general, the jet rejection of the tight cuts is about a factor of 40 times
better than the medium cuts [31].

Another important quantity is the energy resolution for electrons. The energy resolu-
tion depends mostly on the resolution of the calorimeter. It ranges from ∼ 1% for high
pT and low η up to ∼ 5% at low pT and high η [31].

3.3.3 Photons

The photon reconstruction starts in a similar way as the electron reconstruction. A seed
from the electromagnetic calorimeter is extrapolated to the inner detector. If it does not
match to a track there, or the matched track passes as a photon conversion, the object
becomes a photon candidate. On top of that there is a similar selection as for the “tight”
electrons. The cuts rejecting photons for electrons have been inverted to instead select
photons. The performance of the photon reconstruction is similar as for the electron
reconstruction as well as in resolution [31, 38].

3.3.4 Muons

In general, the signature of the muon is a track in the muon spectrometer. Basically any
other particle – with the exception of neutrinos which will not leave a track – will be
stopped by either the electromagnetic or the hadronic calorimeter. The muon reconstruc-
tion therefore begins by the reconstruction of a track in the muon spectrometer. This
track is then either taken standalone or combined with a track in the inner detector. The
respective muons are therefore called “standalone” or “combined” muon. There are two
analysis chains of combining the inner detector and the muon spectrometer tracks. One
does a statistical combination of the two tracks while the other one uses the full covari-
ance matrix to build a combined track. Additionally for the rejection of background from
hadrons there are additional cuts, like calorimeter isolation or hit requirements in the
inner detector – similar to the electrons – which are applied [39].

Figure 3.14: Combined dimuon mass resolution for various ranges of pseudorapidity in
data and simulation. The resolution is slightly worse for the actual data [39].

Figure 3.14 shows the mass resolution of combined dimuons in 2011 data. The invariant
mass was cut to be at a window around the Z-boson mass. In general the resolution in
the data is around 2.5%, while the resolution in simulation is a bit better. The difference
is caused by the residual misalignment of the detector and the simulation needs to be
corrected to match the one in data [39].
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Figure 3.15: Reconstruction efficiency measured by the ATLAS collaboration in 2011 data
for Chain1 (left) and Chain2 (right), depending on the pseudorapidity of the muon [39].

The reconstruction efficiency of muons is displayed in Figure 3.15. In general, the
reconstruction efficiency of muons is very high, close to unity. There are gaps in the
reconstruction efficiency at η = 0 for both chains as there is a gap for detector services in
this region. The simulation describes the muon reconstruction efficiency very well [39].

3.3.5 Jets

Jets are – other than the other discussed objects – not single high energy particles, but
instead a spray of particles. Usually they originate from a single high-energy-particle, a
quark or gluon, which due to the nature of QCD creates a plethora of secondary particles.
Depending on the initial momentum of the original particle, the spray will have a wider
or lower opening angle. The created particles deposit their energy in the calorimeters.
A jet algorithm starts by taking all clusters of energy in the calorimeter. The particular
algorithm used is called “anti-kt” [40] jet algorithm.

The anti-kt algorithm works in the following way. It calculates the kt distance for each
pair of particles:

dij = min
(
k2
ti, k

2
tj

)
∆R2

ij/R
2 (3.1)

kti denotes the transverse momentum of the particle i, and ∆R is the distance in the
rapidity-phi-plane. R is related to the jet-radius and is a parameter of the algorithm.
Typical values in ATLAS are R = 0.4 or R = 0.6. Additionally, for each particle the
so-called beam distance, diB, is calculated:

diB =
1

k2
ti

(3.2)

When this procedure has finished for each pair of particles, all dij and diB are sorted
into a list and the minimum element is considered. If it is a dij , the particles i and j are
merged and all distances are recalculated. If it is instead a diB, the particle i is considered
a final jet and removed from the considered particles. This procedure is repeated until
there are only final jets left in the event.

The calibration of jet energies is challenging as they are the most complex objects
in the detector. Energy might be lost due to some particles escaping the calorimeter.
Another source of uncertainty is particles never reaching the calorimeter due or their too
low momenta. The calibration of jet energies usually involves the balance of momentum
of a jet and a easier to measure particle, like photons or leptons. Two main sources of
uncertainties remain: The “jet energy scale” (JES), the scale of jet energy measurements,
and the “jet energy resolution” (JER), the resolution. Figure 3.16 shows the jet energy
scale uncertainty for various values of pT and η. Depending on the values of these variables,
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Figure 3.16: The components of the jet energy scale uncertainty. Top: As a function of
the transverse momentum of the jet for η = 0.5 (left), and for η = 2.0 (right). Bottom:
As a function of the pseudorapidity for pjetT = 25 GeV (left), and for pjetT = 25 GeV (right)
[41].

the jet energy scale uncertainty is between 2% and 6% [41]. The jet energy resolution
uncertainty for various calibration schemes is shown in Figure 3.17. Depending on the
transverse momentum on the jet, the resolution can be up to 20% [42].

The jet energy scale uncertainty shown neglects one component which only applies to
bottom quark jets. Bottom quarks can decay into a lepton-neutrino pair. Neither of these
particles deposit much (or any) of their energy in the hadronic calorimeter. This effect
needs to be separately addressed and leads to an additional term in the jet energy scale
uncertainty when dealing with jets originating from bottom quarks.

3.3.6 Missing Transverse Energy

Neutrinos interact very rarely with the detector material. Therefore they will leave the
detector almost undetected and the information about their kinematics is lost. However
one can exploit the conservation of energy to gain information about the neutrino: The
colliding partons have very small momentum transverse to the beam axis. The sum of
transverse momenta of all the final state objects from a parton-parton collision is therefore
very close to 0. Using that, information about the transverse momentum of a neutrino
can be extracted. If more than one neutrino is present, only the combined momentum
can be extracted. This reconstruction method would also be able to find new particles
which do not interact with the detector more than a neutrino would. As one reconstructs
the energy which is missing for the conservation of energy, the object is called “Missing
Transverse Energy”.

The reconstruction of missing energy takes all reconstructed physics objects. Addi-
tionally it considers objects like soft jets or unclustered energy in the calorimeter. It then
builds the negative sum of all objects, taking the direction information into account. The
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Figure 3.17: The jet energy resolution as measured by the ATLAS calibration in 2010
data for various jet calibration schemes [42].

information is very dependent on the resolution of all the input objects. A good quantity
to measure the performance of the missing energy is the missing energy resolution.

Figure 3.18: The missing energy resolution in data (left) and various simulations (right)
against the total amount of transverse energy in the event. The fit is a function of the
form k

√∑
ET . k denotes the free parameter in the fit. Its fit values are printed in the

Figures [43].

Figure 3.18 shows the resolution of missing energy for various values of total transverse
energy in the event. In general the resolution gets worse for more total energy. The values
have been fit with a root function for a smoother description. The fit results show that
the resolution of missing energy is well-described for Z → µµ and Z → ee events [43].

3.3.7 Flavor Tagging

Flavour tagging is the technique of identifying jets which originate from bottom quarks.
Because of the structure of the CKM-Matrix (compare chapter 2), a bottom quark would
basically all the time decay into a top quark – a decay which is forbidden because of the
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higher mass of the top quark. Thus the suppressed, but allowed decay to a charm quark
is the most likely decay of a bottom quark. This suppression leads to a significant lifetime
of hadrons containing at least one bottom quark: They are able to travel up to several
centimetres in the detector. In the reconstruction this leads to tracks originating not from
the primary vertex, but instead from a secondary vertex. The properties of these tracks
can be exploited to identify these jets. This is a powerful technique to separate signatures
which are similar except for the presence of bottom quark jets, like the W+jets signature
and the tt signature.

In praxis more information than the presence of a secondary vertex is used: The impact
parameter of the tracks from bottom quarks is larger than the one from lighter quarks.
The reconstructed mass of the tracks at the secondary vertex or the amount of charged
particles in the jet are other examples of variables which are sensitive to the flavor of the
originating particle. Several algorithms have been developed to identify bottom quark
jets. The most performant one for 2011 data is called “MV1”. It is a neuronal network
combining the output of several other algorithms: “SV1” and “JetFitter” [44] which use
the properties of secondary vertices and the IP3D [44] which uses the impact parameters
of tracks.

Figure 3.19: The light-jet (left) and charm-jet (right) rejection against the b-jet tagging
efficiency for various algorithms. The used sample is a tt-sample [45].

Figure 3.19 shows the performance of some of these algorithms. It is quantified as
the rejection of light or charm quark jets at a given bottom quark jets tagging efficiency.
Typically a fixed efficiency is chosen which corresponds to a cut on the output distributions
of the algorithm. By changing this cut, looser or tighter selections can be chosen.

The efficiency and fake rate of these algorithms have been measured in data [46].
Two approaches have been applied by the ATLAS calibration: One is to exploit the fact,
that muons from a bottom hadron decay will have a significant transverse momentum
with respect to the jet axis. This transverse momentum is called prelT . Its distribution
is displayed in Figure 3.20. This transverse momentum stems from the high mass of the
bottom quark.

Another important fact is that the prelT variable is uncorrelated to the bottom quark
tagging algorithms described earlier. Therefore a template fit to the number of jets before
and after the tagging requirement will yield the total number of bottom quark jets, N total

b

as well as the number of tagged bottom quark jets, N tagged
b , in the sample. The efficiency,
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Figure 3.20: The distribution of the prelT variable for various flavors of jets [46].

εb can then simply be extracted in the following way:

εb =
N tagged
b

N total
b

(3.3)

The measurement has been applied to data containing dijet events. In order to increase
the number of bottom quark jets in the sample a tag-and-probe approach has been used:
One jet has been tagged by a tight cut value of a bottom tagging algorithm. The other jet,
if it contains a muon, is used for the analysis. Since the bottom quark tagging efficiency
depends on the transverse momentum of the jet, the measurement has been done in several
bins of it. Figure 3.21 shows the fit results for one of the bins of jet transverse momentum.
Only jets with 40 GeV < pjetT < 50 GeV have been used in this figure.

Figure 3.21: Example fits to the data for the inclusive sample (left) and the sample tagged
by the MV1 tagger at 70% nominal efficiency (right). The transverse momentum of the
jets has been between 40 GeV and 50 GeV [45].
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Figure 3.22: The results of the prelT analysis: The fitted efficiency for the data and the
simulation tagging efficiency (left) and the scale factor needed to correct the simulation
(right) [45].

Figure 3.22 shows the result of the analysis. On the left the tagging efficiency of the
simulation and the measured efficiency in data for the various jet transverse momentum

bins is displayed. On the right, the ratio of the two, κb =
εdatab

εMC
b

, called “scale factor” is

shown. It is needed to correct the simulation to match the performance in the data. In
general the scale factor is a bit lower than one, indicating that the algorithms perform
slightly worse in the data than in the simulation.

Figure 3.23: The scale factors measured by several tt based calibration methods as well
as measured with the prelT based measurement. While the tt scale factors tend to be a bit
higher than the prelT based ones, good agreement is observed within uncertainties [47]

One important note for the prelT analysis is that it can only measure the tagging effi-
ciency for the subset of bottom quark jets where a decay into a muon happened[46]. The
largest systematic uncertainty of the measurement is the extrapolation uncertainty to the
inclusive sample.

Other measurements of the bottom quark tagging efficiency do not have that limitation.
For instance, the decay of the top quarks can be used to measure the bottom jet tagging
efficiency. The dileptonic tt has a very clean signature even when not requiring bottom
jet tagging. Therefore this signature can be used to measure the tagging efficiency by
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counting how often the jets in the final state are tagged. This, and more sophisticated
techniques, have been applied to this decay channel and the semileptonic tt decay channel.
The results are displayed in Figure 3.23. The figure also shows the combination of the
prelT measurement combined with another measurement which exploits the prelT variable in
a different way, called “System8“ [45]. In general, good agreement within uncertainties is
observed between all measurements of the bottom jet tagging efficiency.

Additionally the fake rate needs to be measured. This must be done separately for
jets originating from charm quark and light quarks as the performance of the bottom jet
tagging algorithms differs between them.

For charm jets the D∗ meson from the charm decay has been fully reconstructed to
select a very pure sample of charm jets. The number of charm jets before and after
applying the bottom jet tagging algorithm is extracted in a fit. The results of this analysis
are shown in Figure 3.24.

Figure 3.24: The measured efficiency (left) and scaling factor (right) for jets originating
from charm quarks in bins of transverse momentum of the jet [48].

The light jet fake rate has been measured by two methods. One does fits to the
invariant mass at the vertex, similar to the prelT analysis. The other measurement exploits
that the properties of light jets are almost symmetrical with respect to the primary vertex.
Therefore by inverting e.g. the impact parameters of the tracks, one can measure the
negative tag rate, and extrapolate that to the positive tag rate. The result of the latter
measurement is shown in 3.25.

Figure 3.25: The measured efficiency (left) and scaling factor (right) for jets originating
from light quarks in bins of transverse momentum of the jet. Only jets with |η| < 1.2 have
been considered in this Figure [49].
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Chapter 4

Simulation of Top-Quark
Production and Decay

4.1 Simulation of a Hadron-Hadron Interaction

An interaction at the LHC is not an easy thing to describe theoretically. Since the colliding
protons are not elementary the actual interactions are done by partons which will not carry
the full energy and momentum of the proton. Since the protons consist of more than one
of these partons there may also be additional hard interactions. The fact that most of
the processes are governed by the strong force does not make the task easier. Instead,
there are additional hurdles like the flow of the colour charge that need to be taken into
account. Also, whilst the hard process most of the time can be described pertubatively
the hadronization and the following parton shower cannot.

Figure 4.1: A sketch of a hadron-hadron interaction. The signal process is depicted in red,
the additional hard interactions in pink. The parton shower is shown by the green blobs
and line while the yellow lines represent additional radiations [50].

However, there exists a theorem that states that each of these terms can be factored
out and described separately: The factorisation theorem [51]. All current simulation tools
for hadron-hadron interactions use this to simulate the interactions. It is usually split up
into the following categories:

Parton Distribution Functions (PDFs) The parton density functions give the prob-
ability of finding a parton (gluon or quark) in a hadron parametrized in the energy
of the hadron and the fraction of momentum the parton carries.

39
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Hard Process The actual signal interaction. The hard process only considers the matrix
element of the parton-parton interaction to a given final state.

Hadronization and Parton Shower These cover the formation of hadrons from the
particles in the final state and their decay. They may also simulate the additional
interactions and final state radiations.

Each of these steps will now be described in more detail.

4.1.1 On Perturbation Theory

The creation of a top-antitop-quark-pair is dominantly a process governed by the strong
force. The interaction Lagrangian can be written as a perturbation series in order of αs:

L = αsA1 + α2
sA2 + α3

sA3 + α4
sA4 +O

(
α5
s

)
(4.1)

It is obvious that this perturbation series only converges for αs < 1. As the value of
αs depends on the interaction energy this is only given for certain interaction energies.

Figure 4.2: The running coupling of the strong force. For lower interaction energy Q the
value of the interaction increases and will eventually reach value larger than one [5].

Figure 4.2 shows the dependence of the strong coupling constant αs on the interac-
tion strength Q. For higher interaction energy the coupling strength decreases while for
lower interaction energies the interaction strength will reach values larger than one. This
effectively means that in these regions the approach of perturbation theory is not viable,
instead other descriptions need to be found.

4.1.2 Parton Distribution Functions

As stated in chapter 2 a proton is not elementary. It consists out of two up-quarks and a
down quark. Additionally there is a “sea” of additional quarks and gluons. With increasing
energy of the proton the amount of sea quarks and gluons increases. A single constituent
of the proton therefore will never carry the full energy of the proton. To correctly describe
an interaction involving at least one proton the probability to find a constituent with a
given energy Ep must therefore be known. This is done by parton distribution functions.
Based on a set of measurements of the momentum fractions of hadrons they give the
probability to find a parton of a given type and momentum fraction x [52].
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The parton distribution functions were measured to good precision at several fixed-
target experiments and at the HERA collider where a beam of electrons with an energy of
27.5 GeV was brought into collision with a proton beam accelerated to 920 GeV [53, 54].
These measurements must then be extrapolated to the energy of the collision in question.

Several groups attempt to fit the input data: The CTEQ groups parametrizes the
input parton distribution functions with the following functional form [55]:

xf (x, µ) = A0x
A1(1− x)A2eA3x

(
1 + eA4x

)A5
(4.2)

for each of the different flavors. µ is the scale at which the PDF is to be evaluated.
In total the CTEQ group quotes 20 different parameters. The uncertainties on them are
transformed to a set of independent eigenvectors to be able to vary them in an uncorrelated
way. Additional input parameters are the masses of the quarks in question and the value
of the strong interaction strength αs. The CTEQ group provides them in several different
versions, i.e. the CTEQ6M set uses the quark masses in the MS scheme. Also there exist
versions where the strength of αs is also extracted from the fit. The most recent result of
the CTEQ collaboration is the CT10 PDF set. It contains in total 52 eigenvector sets to
be evaluated. The default values of the PDF at µ = 85 GeV is shown in Figure 4.3.
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Figure 4.3: The parton distribution functions as provided by the CTEQ collaboration at
a µ of 85 GeV[56].

In addition there are other groups providing PDF sets. One example of them is the
MSTW collaboration. They differ in the CTEQ group mainly in choice of the parametriza-
tion of the input PDF [57]:

xf (x, µ) = A(1− x)η(1 + εx0.5 + γx)xδ (4.3)

This also leads to a different number of eigendirections which parametrise the uncer-
tainties.

4.1.3 Matrix Element

The matrix element is the calculation of the cross-section for the actual interaction, say
two gluons fusing to a single gluon which then form a pair of top quarks. These interactions
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happen at scales where the strong coupling constant can be described by a perturbation
series. It is therefore possible to calculate the value of the matrix element up to a certain
order of αs and neglect the other orders as their contributions will be small.

Figure 4.4 shows the two lowest order Feynman diagrams contributing to the strong
creation of tt pairs. As there are two strong interaction vertices it is of the order of α2

s.
Figure 4.5 shows some examples for higher order diagrams of tt pair creation. All of them
show additional strong vertices meaning that they are suppressed by additional factors of
αs.
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Figure 4.4: Leading order processes for the generation of tt events
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Figure 4.5: Example higher order processes for the generation of tt events

Two ways of calculating the matrix elements are in use in the high energy physics
community:

• Tree level element generators which calculate the matrix elements of the style in
Figure 4.4. Additionally they may include additional radiations (like the middle of
Figure 4.5)

• So-called NLO generators which generate the matrix element up to one loop (for
instance the right one in Figure 4.5)

The advantage of the tree-level is that they are easier to calculate up to high number
of final state objects while the NLO one generally gives better results.

4.1.4 Parton Shower

The final step of the simulation of the tt interaction is the parton shower. It is the emission
of soft gluons from final state objects. Depending on the energy and angle of the emission
there exist divergences in QCD (called soft and collinear) which can not be calculated
with perturbation theory. At this stage the parton shower approximation is used.



CHAPTER 4. SIMULATION OF TOP-QUARK PRODUCTION AND DECAY 43

It considers all emissions down to a certain scale value q0 which is called the cutoff.
Emissions below the cutoff are not considered by the parton shower approximation. The
probability for an emission can be calculated to be

P (Φrad)dΦrad =
αsq

π

dq

q
P (z)

dφ

2π
(4.4)

with P (z) being the so-called splitting function [51].
It follows for the probability of no emission below the cutoff between two scales

q1, q2, q2 > q1:

∆s(q1, q2) = exp

− q1∫
q2

αsq

π

dq

q

1∫
z0

P (z)dz

 (4.5)

This is the so-called Sudakov form factor and plays a very important role in the techni-
cal implementation of the parton shower approximation: Each parton in the final state can
emit additional partons at a scale q1 which is chosen by generating a random number R1

for ∆s(Q, q1) (Q being the initial scale) and then solving for q1. This process is repeated
for a new scale q2 which has to be lower than q1 until one reaches the cutoff. The result
is a shower of partons with properties near the chosen cutoff.

The choice of scale variable is usually either the angle of emission (the first emission
has the biggest emission angle) or energy (the first emission has the highest energy).

Usually the fragmentation and the simulation of additional interactions is also done
during this step of simulation even though they are not directly related to the parton
shower approximation.

4.2 Simulation Techniques for Top Interactions

4.2.1 Tree Level: AcerMC and ALPGEN

Tree level event generator have the advantage that they can generate many events in rather
short time. They lack the high precision of the next- to-leading-order event generators
but their data-description can still be excellent.

AcerMC provides the matrix element for several processes involving top quarks either
in pair production or in single top production [58].

Alpgen is specialised for generating heavy quarks or vector bosons in association with
many additional partons in the matrix element [59].

4.2.2 Next-to Leading Order Matrix Element: POWHEG and MC@NLO

The main challenge when designing next-to-leading-order event generators is the matching
with the parton shower: There is an overlap in that the emission of an additional parton
is simulated in both steps. The present next-to-leading-order matrix element generators
use different approaches to resolve this overlap.

The Mc@nlo [60] framework extends the matrix-element calculation by an additional
term with negative sign. This term is constructed in a way to generate the overlapping
events. With the negative sign these events are subtracted from the original matrix ele-
ment which results in a matrix element which does not overlap with the parton shower
anymore. However the Mc@nlo framework does require the exact knowledge of the form
of the following parton shower. Interfacing it with a new parton shower generator requires
significant change to the calculation.

A different approach is used by the Powheg method [61]. Here the idea is to generate
the hardest emission of an additional parton in the matrix element and then let the parton
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shower take over for the following emissions. This only requires a general way of telling
the parton shower what has been done in the matrix element. A general interface for this
exists in the Les Houches Interface [62] and the commonly used parton shower algorithms
support it. An additional advantage of the Powheg method is that there is no negative
term in the matrix element which would otherwise lead to negatively weighted events
which are hard to interpret physically.

4.2.3 Parton Shower Generators: Herwig and Pythia

Two packages are commonly used for handling the simulation of the parton shower: Her-
wig [63] and Pythia [64].

The main difference between the two is that Herwig is an angular-ordered shower,
meaning that the scale variable chosen for the evaluation is the emission angle, while
Pythia is a pT -ordered shower, emitting the hardest radiation first.



Chapter 5

Techniques for measuring the
Mass of the Top Quark

5.1 The Template Method

The basic idea behind the template method is to find a distribution which is sensitive to
the observable one is interested in and then fit that distribution with an analytic function.
The fit result will then depend on the observable and can be used to extract the observable.
In praxis one uses simulation with varied values of the observables to study the dependence
of the distribution and uses that to calibrate the function one uses to fit the distribution.

For example one can consider the following model: The observable in question would
be the mean µ of a Gaussian distribution:

f(x) =
N√
2π

exp

(
(x− µ)2

2σ2

)
(5.1)

Due to experimental effects one measures the mean shifted by +0.2 of its true value.
Additionally the width of the Gaussian is proportional to the inverse mean: σ ∼ 1/µ and
the normalisation depends exponentially on it: N ∼ exp(−µ).
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Figure 5.1: Distributions for various values of µ for a toy Gaussian simulation
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The template method would now generate templates of that distribution for various
values of µ. Figure 5.1 shows the distributions of these templates. The shift in the
distribution towards higher values is clearly visible as well as the additional dependence
of norm and width of the Gaussian on its mean. Each of these distributions would now
be fit with a Gaussian and its parameters correlated with the true mean. These resulting
graphs for each of these three are shown in Figure 5.2.
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Figure 5.2: Calibration curves for the norm (top left), mean (top right) and sigma (bottom)
of the toy Gaussian models for the calibration of the underlying mean

These graphs are then fit with a parametrization (usually a linear function) which can
then be used to predict the observable distribution for any value of µ. This allows the
performance of a likelihood fit with the data distribution which does only depend on the
assumed µ. The resulting value and uncertainty from this likelihood fit is the result of the
measurement in data.

The advantages of the template method are clear. While it would be possible to fit a
Gaussian distribution to data and correct the resulting mean by the experimental effects
the template method uses the additional information of the other parameters as well. An
additional feature of the template method is the easy addition of more sensitive variables
to the likelihood fit. This is done by calibrating their behaviour as well and then simply
adding them to the likelihood expression. In the same manner more than one observable
can be extracted from the data. However, the template method requires a good description
of the data by the simulation, but this is true for almost all of the techniques presented
in this thesis.

5.2 The Calibration Curve Approach

Another approach similar to the template method approach is the calibration curve ap-
proach. It uses a variable which is sensitive to the property to be measured. However
instead of trying to find a full parametrization of it it uses more simple quantities of the
distribution, e.g. its mean value as a single parameter.

The dependence of this parameter is parametrized versus the property. This parametriza-
tion is called calibration curve. Since it is a single parameter, simply calculating that
parameter is enough to get an estimate of the property: The calibration curve can directly
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top quark mass

observable

Figure 5.3: A sketch showing the calibration curve technique. The black line is the
calibration curve, parametrizing the behaviour of the observable against the top quark
mass. The green colour shows the approach for extracting the mass: The observable is
taken from the data and the calibration curve used to extract the top quark mass.

be used to get the value and its uncertainty.

While using less information than a full template analysis the calibration curve tech-
nique can be used in situations where an analytic description of the observable is hard to
find, thus allowing also the use of such observables.

5.3 The Matrix Method

The matrix method was designed to measure the top quark in the presence of limited
statistics. For each event it calculates the probability Ptt that the event is a top quark
pair production event in the given selection and an assumed top mass:

P (x,mTop) = A(x)
1

σ(mTop)

∫
dσ(y,mTop)dq1dq2f(q1)f(q2)×W (y, x) (5.2)

In this formula x represent the measured objects in the detector (i.e. jets or leptons).
A(x) is the acceptance of these events which is independent of the top quarks mass.

W (x, y) are transfer functions which transfer the measured objects to the partonic
(i.e. quarks) objects. The integral calculates the partonic cross-section depending on
the top quark mass. Typically, these integrals are solved using Monte-Carlo integration
techniques. Depending on the number of final state objects this integral can become very
CPU-intense to solve.

Additionally the probability for the event being a background event needs to be cal-
culated as well. A maximum likelihood fit is then performed, thus finding the value of the
top quark mass which gives the overall maximum probability.

The big advantage of the matrix method is that well-measured events will contribute
more to the final likelihood than badly measured events. This leads to better statistical
accuracy than the template method. However, in situations with many final state objects
the calculation of the cross-sections will use very large amounts of computing time.

5.4 Direct Measurement of the Mass of the Top Quark from
the its Cross-Section

Any method which requires simulation to measure the top quark mass faces an additional
issue: The term of mass is not well-defined for a strongly-interacting particle as the top
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quark. Higher order corrections and their divergences of QCD impact the value of the top
quark mass as it is implemented in the simulation.

There are two big definitions of the top quark mass which are stable against the
divergences of the mass of the top quark: The MS-mass and the pole mass. In the MS-
scheme the infinities are absorbed into the value of the mass, while the pole mass is the
point where the cross-section is maximal for the production of the top quark.

One possible way to measure the mass of the top quark in an unambiguous way is
to exploit the dependence of the top cross-section on the top mass: The higher the top
mass the lower the top cross-section is. This theoretical dependence is known with very
high precision so if one measures the top cross-section the top mass can be inferred. Also
this dependence can easily be parametrized in the MS mass thereby directly extracting a
stable top mass.

top quark mass

top quark
cross-section

theory dependence

experimental 
dependence

measured mass

Figure 5.4: A sketch explaining the technique for measuring the top mass from the top
cross-section. The black lines show the theory dependence of the top cross-section on
the top quark mass (dashed) and its uncertainty (solid), the green lines the experimental
dependence. The measured mass is where the dashed lines intersect, the uncertainty the
area spanned by the solid lines around it.

Any real measurement of the top cross-section will also have a slight dependence of
the top quark mass: It will use properties of the top events which can change with the top
mass. This must also be parametrized and will give another curve of mTop vs. σTop. This
is sketched in Figure 5.4. The two parametrizations intersect at one point which gives
the extracted top mass. Both lines also have their uncertainties (theory and experimental
ones) which will span an area. This area gives the uncertainty on the extracted top mass
using this technique.

5.5 Previous Measurements of the Mass of the Top Quark

5.5.1 Reconstruction of the Top Quark

Before one can attempt to measure the mass of the top quark one must identify a mode
of production and observables to be used for the measurement.

Semileptonic Channel

Typically measurements of the mass of the top quark are done in the channel where one
top quark decays hadronically and one decays leptonically. This allows to reconstruct the
invariant mass of top and anti-top quark from their respective decay products.

This is sketched in Figure 5.5: The final state consists out of four jets, two of them
originating from b-hadrons, a charged lepton and a neutrino. Events containing τ -leptons
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Figure 5.5: A sketch of top quark pair production and subsequent semileptonic decay.
Both produced top quarks decay into a B-Jet and a W boson. One of the two W bosons
decays into a lepton and neutrino, while the other one decays into two light jets.

are usually discarded for this decay channel due to their complicated decay modes.
This channel has the need of reconstruction of the top quark, an assignment of jets to

the top quarks must be made. Typically this uses the invariant mass of the W to assign
two of the four jets to the hadronic top quark. After this there are several options to find
the hadronic b-jet: A simple example is maximising the pT of the top quark candidate.
On can also use the known W mass for constraining the longitudinal momentum of the
neutrino. Then one can assign the b-jets to top quarks by using the one of the two
possibilities which gives the smallest difference in mass of both quarks.

Dileptonic Channel

The full reconstruction of the invariant mass in the dileptonic channel is not possible. This
is due to the ambiguity of the two neutrinos in this state: It consists out of two b-jets,
two charged leptons and two neutrinos. From the latter one can only measure the sum of
transverse momentum. The two three-vectors have in total six free parameters. Two of
them can be constrained by requiring that the sum of the x- and y- components have to
be the observed missing energy values in x- and y-direction. Two more can be constrained
by using the mass of the W boson. This makes it impossible to exactly reconstruct the
invariant mass of the two top quarks and one has to find other variables to measure the
top quark mass.

All-hadronic Channel

In the all-hadronic channel the final state consists out of six jets, two of them b-jets. The
reconstruction of the top quarks in the all-hadronic channel is done in a similar way as in
the semileptonic channel. One can use the well known mass of the W to assign 2 pairs of
jets to the the W bosons and then use some other algorithm to assign the b-jets.

5.5.2 1D-Template Method

Using the invariant mass of the two top quark candidates in the semileptonic channel one
can directly apply a template method to extract the top quark mass. Another example of
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a 1D-Template method is the measurement of the top quark mass in the dilepton decay
modes. As in this mode the invariant mass of the top quarks can not be fully reconstructed,
different observables need to be used: For instance one could associate leptons to b-jets
and then use the invariant mass of the two objects. Another popular choice is called
neutrino weighting. Here, one tries to recover the neutrino momenta by scanning over the
possible phase-space of neutrino momenta and calculating a likelihood. The combination
with the highest likelihood is taken and the invariant mass of the top quarks is built.
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Figure 5.6: Reconstructed invariant mass of the dileptonic top quark candidates in data of
the CMS collaboration together with the template fit to extract the top quark mass. The
background is shown in the gray filled area. The figure in the top right shows the likelihood
curves for various selections depending on the type of the leptons and the number of b-tags
as well as their combination [65].

This approach was used by the CMS collaborationL Their reconstructed events are
shown in Figure 5.6. This figure also shows the one-dimensional template fit and the
likelihood for various top quark masses. They quote: mTop = (172.5±0.4stat.±1.5syst.) GeV
[65]. An overview of the systematic uncertainties estimated is shown in Table 5.1. The
dominant uncertainties are stemming from the calibration of the jet energies. Sizeable
contributions are made by theory uncertainties like the choice of renormalization and
factorisation scales.

5.5.3 2D-Template Method

The typical template method in use is a two-dimensional template method. It expands
the number of observables by another one, typically the invariant mass of the W boson
decaying into jets. The mass of the W boson has been measured to very high precision [66]
so it can be used to in-situ calibrate the jet energy measurement. This gained knowledge
can be propagated to the invariant mass of the hadronic top quark(s). The jet calibration
is reduced to one global parameter, called “Jet Scale Factor” and is also determined in
data. The advantage of this procedure is that the jet scale factor absorbs large parts of
the uncertainties on the jet calibration thus reducing their effect on the top quark mass.
However, this procedure increases the statistical uncertainty on the measurement as more



CHAPTER 5. TECHNIQUES 51

Table 5.1: An overview of the systematic uncertainties as quoted by the CMS collaboration
of their measurement of the top quark mass in the dilepton channel using a neutrino
weighting technique [65].

Source ∆mTop[GeV]

jet energy scale +0.90
−0.97

b-jet energy scale +0.76
−0.66

jet energy resolution ±0.14
lepton energy scale ±0.14
unclustered missing energy ±0.12
b-tagging efficiency ±0.05
mistag rate ±0.08
fit calibration ±0.40
background normalisation ±0.05
matching scale ±0.19
renormalization an factorisation scale ±0.55
pileup ±0.11
PDFs ±0.09
underlying event ±0.26
colour reconnection ±0.13
Monte-Carlo generator ±0.04

total ±1.48

information is extracted from the same amount of data.

An example for a 2D-Template measurement is the measurement of the top quark
mass from CDF done using 8.7 fb−1 data [67]. They simultaneously fit the invariant
mass distributions of the top as well as the invariant mass of the W boson. To enhance
the statistical accuracy of the measurement they not only use the best assignment of
jets to partons for reconstruction of the top quark mass but also the second-best, denoted
mTop(2). They extract the top quark mass to be (mTop = 172.85±0.71stat.±0.85syst.) GeV
[67]. Example fits to the three observable in events containing at least one b-tag are shown
in Figure 5.7. Their systematic uncertainties on the measurement are overviewed in Table
5.2.

5.5.4 3D-Template Method

ATLAS has measured the mass of the top quark using a three-dimensional template anal-
ysis. The additional dimension is used to additionally constrain the additional term in
the jet energy scale, called the b-jet energy scale. It stems from the fact that jets origi-
nating from b-quarks are harder to measure. This is due to the fact, that some amount
of b-quarks decay into a lepton and a neutrino. To also constrain this variable a third
observable, sensitive to the b-jet energy scale is added: It is the ratio of the transverse

momenta of the two light- and the two b-jets: Rlb =
pl1T +pl2T
pb1T +pb2T

. This allows the introduction

of a b-jet scale factor and thus a constraint on the b-jet energy scale. They find that the
top mass is mTop = (172.31 ± 0.75stat. + JSF + bJSF ± 1.34syst.) GeV [68]. The fits to the
three observable is shown in Figure 5.8 and the systematic uncertainties break down to the
ones shown in Table 5.3. In this analysis one of the biggest uncertainty is the calibration
of the b-tagging efficiency. This stems from a special sensitivity the Rlb variable has to the
calibration of the b-tagging algorithms. Other big contributions arise from the residual
jet energy scale and the amount of initial and final state radiation.
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Figure 5.7: Invariant mass distributions of the best (top left) and second-best (top right)
assignment of jets to top quark candidates and the invariant mass of the two jets assigned
to hadronically decaying W boson (bottom). The template fit to each of the distributions
is also shown [67].

Table 5.2: Systematic uncertainties on the top quark mass as determined by the CDF
collaboration. [67].

Source ∆mTop[GeV]

residual jet energy scale ±0.52
signal modelling ±0.57
b-jet energy scale ±0.18
b-tagging efficiency ±0.03
ISR/FSR ±0.06
PDFs ±0.08
gluon fusion fraction ±0.03
lepton energy scale ±0.03
background shape ±0.20
multiple hadron interaction ±0.07
colour reconnection ±0.21
mc statistics ±0.05

total ±0.85
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Figure 5.8: The distribution of the invariant mass of the top quark candidate (top left), the
hadronically decaying W candidate (top right) and the Rlb variable (bottom) as found by
the ATLAS collaboration in 4.7 fb−1 of data. The template fits to each of the distributions
is shown as well [68].
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Table 5.3: Systematic uncertainties on the top quark mass as estimated by ATLAS for
their 3D template fit [68].

Source ∆mTop[GeV]

jet energy scale factor ±0.27
b-jet energy scale factor ±0.67
method calibration ±0.13
signal mc generator ±0.19
hadronization ±0.27
underlying event ±0.12
colour reconnection ±0.32
ISR/FSR ±0.45
PDFs ±0.17
single top normalisation ±0.00
W+jets background ±0.03
QCD multijet background ±0.10
jet energy scale ±0.79
b-jet energy scale ±0.08
jet energy resolution ±0.22
jet reconstruction efficiency ±0.05
b-tagging efficiency and mistag rate ±0.81
lepton energy scale ±0.04
missing transverse momentum ±0.03
pile-up ±0.03

total ±1.35

5.5.5 Matrix Method

So far the matrix method has only been applied by the CDF and D0 collaborations at the
Tevatron collider. This is due to the lower center of mass energy at the Tevatron. There,
top quarks are mainly produced at rest which substantially simplifies the calculations
needed to be done for solving the matrix elements.

An example is the application of the matrix method is the measurement done by D0
using 2.6 fb−1 of data. Similar as in the 2D-Template method they extend the matrix
method by another observable to constrain the jet energy scale. Equation (5.2) can
be expanded to measure more than one quantity. P does then not only depend on
the top quark mass but also on a jet scale factor. Doing that D0 finds that mTop =
(176.01 ± 1.01stat. ± 0.79JES ± 1.02syst.) GeV [69]. The observed likelihoods for the top
quark mass and the jet scale factor are shown in Figure 5.9. A breakdown of the sys-
tematic uncertainties is displayed in Table 5.4. Dominant uncertainties are the jet energy
scale and modelling related uncertainties like the hadronization and underlying event. The
result also demonstrates the power of the matrix method — while using only a third of the
data compared to the 2D-template measurement the statistical uncertainty is only 50%
larger.

5.6 Dominating Uncertainties on present Measurements of
the Mass of the Top Quark

The measurements presented in the previous section show similar dominating uncertain-
ties: They are limited by the jet energy scale and the modelling of the top-antitop in the
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Figure 5.9: Projections of the observed data likelihoods for the top quark mass (left) and
the jet scale factor (right) in the D0 application of the matrix method to measure the top
quark mass [69].

Table 5.4: An overview of the systematic uncertainties as quoted by the D0 collaboration
for their application of the matrix method to 2.6 fb−1 of data [69].

Source ∆mTop[GeV]

higher-order effects ±0.25
ISR/FSR ±0.26
hadronization an underlying event ±0.58
colour reconnection ±0.28
multiple pp interactions ±0.07
modelling of background ±0.16
W+jets heavy-flavour scale factor ±0.07
modelling of b-jets ±0.09
choice of PDF ±0.24
residual jet energy scale ±0.21
data-mc jet response difference ±0.28
b-tagging efficiency ±0.08
trigger efficiency ±0.01
lepton momentum scale ±0.17
jet energy resolution ±0.32
jet id efficiency ±0.26
multijet contamination ±0.14
signal fraction ±0.10
mc calibration ±0.20

total ±1.02
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simulation. These analyses are typical in that almost all measurements of the top quark
mass have them as their limiting uncertainties.

The reasons for the uncertainties originating from the jet energy scale are simple: All
described methods directly use the energies of the reconstructed jets in building their
observables (in case of the template methods) or for the likelihood. As clearly visible in
the one-dimensional template analysis by CMS (cp. Table 5.1) in that case the jet energy
scale easily dominates the total uncertainty on the top quark mass measurement. This
also explains the introduction of the two- and three-dimensional analyses by the various
experiments. However, these multidimensional analyses will not completely marginalise
the jet energy scale uncertainty.

The cause of the modelling-related uncertainties depend to a large extend on the
individual analysis. As an example the uncertainty ATLAS calls hadronization in Table
5.3 is the difference between using Pythia and Herwig as the showering algorithm. The
effect is caused by the dependence of the jet energies on the hadronization model. Normally
that would be included in the jet energy scale uncertainty, but as that measurement does
an in-situ calibration an additional effect on the top quark mass is introduced. Another
example is the matrix method, as it uses the matrix element of the tt process naturally has
a strong dependence on the choice of the parton distribution function (cp. Equation 5.2).
These uncertainties can be controlled by using sensitive observables for the parameter in
question and use data to tune the simulation.



Chapter 6

Development of a Template
Method for the Transverse Decay
Length and Momentum of the
Lepton

The analysis of this thesis is a measurement of the mass of the top quark. The observables
used have been designed to be as independent as possible on the jet energy scale. This will
be explained in detail in this chapter. They are the transverse decay length of B Hadrons,
Lxy, and the transverse momentum of the lepton from the top decay, pLep

T .

6.1 Observables with a small Dependence on the Jet Energy
Scale

6.1.1 The Decay Length

In a top-antitop event there are typically two jets originating from bottom quarks. As
discussed earlier, because of the structure of the CKM-Matrix, a hadron containing a
bottom quark will travel up to several centimetres in the detector, a distance which can be
measured very well. The reconstruction of this distance does not require any information
from the calorimeter, therefore the variable will have a very small dependence on the
jet energy scale. This distance is also called the “decay length” of the bottom hadron.
Typically only the components perpendicular to the beam direction are considered for this
variable due to the better tracking resolution. This variable is then called the “transverse
decay length”, Lxy. A sketch explaining the decay length variable is shown in Figure 6.1.

The decay length of bottom hadrons in top quark events depends on the mass of the
top quark. This is due to the higher lorentz-factor, γB, the hadron receives if the mass of
the top quark is larger. The lorentz-factor is defined in the following way:

γB =
EB
mB

(6.1)

EB and mB denote the energy and mass of the bottom hadron. EB can be further
expressed by using the information of the two-body decay of the top quark into the bottom
quark and the W boson:

pb · pt =
1

2

(
m2
t −m2

W +m2
b

)
(6.2)

= 2 (EtEb − |~pt||~pb| cos(θtb)) (6.3)
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Figure 6.1: A sketch of the decay length variable. The protons interact at the primary
vertex. The bottom hadron travels the distance to the secondary vertex. The total decay
length is the three-dimensional distance, Lxyz, while for the analysis only the transverse
decay length, Lxy is used [70].

mt, mW and mb are the respective masses of the top quark, W boson and bottom quark,
Et and Eb the energies of the top and bottom quarks, ~pt and ~pb the three-vectors of them
and θtb the angle between these vectors.

Figure 6.2: Feynman diagram of the top quark decay into a bottom quark and a W boson.
The W boson may further decay into a lepton-neutrino- or a quark-anti-quark-pair.

This formula can be simplified by exploiting the following assumptions:

1. The mass of the top quark is much larger than the mass of the bottom quark, leading
top |~pb| ≈ Eb. With mTop ≈ 175 GeV and mBottom ≈ 5 GeV this condition is easily
fulfilled.

2. The angle between the top and the bottom quark is relatively large, meaning cos(θtb) ≈
1. This has been studied in previous work and found to be true [71].

3. The momentum of the top quark is relatively slow, meaning that Et ≈ mTop +
1
2
|~pTop|2
mTop

. This is valid for top momenta up to roughly 200 GeV (compare Figure 6.3).

At a center of mass energy of 7 TeV this is given for most of the produced top quarks.
Also, this assumption is only made for simplicity purposes, since the dependence on
the mass of the top quark is not diminished by its invalidity.

Using all these approximations, after a straightforward calculation one obtains:

γB =
EB
mB
≈ 1

2

mTop + |~ptop|
mB

(
1−

(
mW

mTop

)
+

(
mB

mTop

))
(6.4)

The lorentz factor of the bottom hadron therefore is directly dependent on the mass
of the top quark. The higher the mass of the top quark is, the higher the resulting lorentz
factor will be. Due to special relativity this will directly lead to a larger travel distance
of the bottom hadron in the detector frame of reference. Thus, by measuring the decay
length it is possible to extract information about the mass of the top quark.
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Figure 6.3: Approximate formula of assumption 3 in the text against the exact value. The
assumed mass of the top quark has been 172.5 GeV. The approximation holds up to top
quark momenta of about 200 GeV.
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with Pythia.



60

This is further shown in Figure 6.4. It shows the distribution of decay lengths in
ATLAS simulation. The used Monte-Carlo generator was Powheg [61]. The dependence
of the decay length distribution is clearly visible: The higher the mass of the top quark,
the higher the average decay length will be.

Figure 6.5: Feynman diagram of the tt initial (a) and final (b) state radiation processes.

The decay length distribution also has other dependencies. As seen in Equation (6.4),
a different momentum of the top quark will yield different observed decay lengths. A good
modelling of the momentum of the top quark is therefore imperative for the application
of this method. Additionally, the variable is very sensitive to QCD final state radiation:
If the bottom quark radiates a gluon before decaying its kinematics will be changed. In
general, the more radiation occurs, the shorter the average decay length will be [72]. This
is shown in Figure 6.6. This sensitivity is so strong, that the decay length would not be
usable for a top quark mass measurement: If one would naively calculate the systematic
effects of final state radiation on the transverse decay length the uncertainty would be
about ∆FSRmTop ≈ 5 GeV.
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Figure 6.6: The decay length distribution in simulation for various assumed amounts
of QCD final state radiation. The used Monte-Carlo generator for all these samples is
AcerMC, interfaced with Pythia. The top quark mass for both samples was assumed
to be 172.5 GeV.

However that sensitivity can be reduce by treating that systematic effect as a so-called
“nuisance parameter”, similarly to the JSF parameters mentioned in chapter 5. Thus the
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data is used to also fit the effects of that systematic uncertainty. This will increase the
statistical uncertainty on the measurement as more information is extracted but greatly
reduces the uncertainty on the effects of final state radiation.

6.1.2 The transverse Momentum of the Lepton

Another variable which uses only very little calorimeter information is the transverse
momentum of the lepton(s), pLep

T from the tt decay. The reasoning behind the dependence
of the transverse momentum is similar to the one of the transverse decay length: The
higher the mass of the top quark, the higher the energy which is distributed on its decay
products.

The transverse momentum has some advantages: As has been described in chapter 3,
electrons and muons can be calibrated with very high accuracy due to the very precisely
known mass of the Z boson. The energy scales of leptons should therefore impact the
uncertainty on the mass of the top quark much less than the jet energy scale would if
one would use a variable like the transverse momentum of the leading jet for the mass
measurement.

As with the transverse decay length, the transverse momentum of the lepton does not
depend on the top quarks mass as strongly as the invariant mass of its decay products
would. A large amount of data is needed to acquire a similar precision as the analyses
described in the previous chapter. Fortunately the LHC is able to provide this amount of
data.

Figure 6.7 shows the dependence of the lepton transverse momentum distribution on
the mass of the top quark. Only the contributions from electrons and muons have been
considered in the creation of the figure. A good dependence of the distribution on the
mass of the top quark is visible. Again, the higher the mass of the top quark, the higher
the average momentum of the lepton will be.
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Figure 6.7: The lepton transverse momentum distribution in simulation for various as-
sumed top quark masses. The used Monte-Carlo generator for all these samples is
Powheg, interfaced with Pythia.
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The transverse momentum of the lepton has a similar dependence as the transverse
decay length on the initial momentum of its mother top quark. As will be shown later this
may introduce dependencies on modelling parameters, like the parton shower, which seem
to be contra-intuitive. However, the dependence on the final state radiation modelling is
very low. As there is little to none final state radiation from the mother top quark, and
neither W boson nor the lepton are subject to QCD final state radiation this is expected.
Figure 6.8 shows this effect. In comparison to Figure 6.6 the effect is very small.
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Figure 6.8: The lepton transverse momentum distribution in simulation for various as-
sumed amounts of QCD final state radiation. The used Monte-Carlo generator for all
these samples is AcerMC, interfaced with Pythia. The top quark mass for both sam-
ples was assumed to be 172.5 GeV.

6.1.3 Residual Jet Energy Dependence of the Parameters

In principle, both the transverse decay length and the transverse momentum of the lepton
can be measured without using energy information of the hadronic calorimeter. In praxis,
a small dependence on the jet energy scale remains. It originates in the impacts of the
event selection which any analysis needs to apply in order to select tt events.

For the transverse decay length the effect comes from the correlation of the transverse
momentum of the jet with the decay length of the bottom hadron it is associated with.
This correlation is shown in Figure 6.9. Clearly, the higher the transverse momentum
of the jet, the higher the transverse decay length will be. When there is a cut on the
minimum transverse momentum of the jets in the event selection, varying the jet energy
scale causes events to pass (not pass) the cut which did not (did) before. This changes
the sample of used jets and, via the described correlation, changes the decay length and
therefore introduces a dependence on the jet energy scale into this method.

This effect is displayed in Figure 6.10. It shows the default leading jet transverse
momentum spectrum together with an upward- and a downward-variation of the jet energy
scale. The total number of events changes from 18054 (default) to 17969 (downwards) and
18111 (upwards).
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Figure 6.9: Correlation between the transverse momentum of the jet and the transverse
decay length [71].

A similar effect exists for the transverse momentum of the lepton in the event. The
effect is of a higher order than for the transverse decay length: Both the transverse mo-
mentum of the lepton and the transverse momenta of the jets are used in the calculation
of the missing energy. A cut on the missing energy therefore impacts the transverse mo-
mentum of the lepton. Both these effects are rather small in impact and do not spoil the
initial goal of having a very insensitive measurement of the mass of the top quark to the
jet energy scale. They are important to mention though as they explain the small effects
which will be exposed later.

6.2 Final State Radiation as a Nuisance Parameter

As mentioned in section 6.1.1, in order to use the information of the transverse decay
length for the analysis, a special treatment of the effects of final state radiation is needed.
It will be treated as a nuisance parameter. This means that the fit wich will be described
in the next section will be extended by another observable called the FSR strength, SF .

In the simulation, the final state radiation is modelled by the Pythia hadronization
software. The strength of final state radiation is a parameter of the simulation which
governs the strength of the QCD coupling when calculating the probability of another
emission in the parton shower. This is governed by the PARP(72) parameter in the Pythia
showering algorithm [64]. This parameter is the value of ΛQCD in that calculation. Thus,
a higher value of PARP(72) will yield more emissions in the parton shower. There exist two
more parameters which have been changed in the ATLAS samples for ISR/FSR evaluation.
They change the strength of initial state radiation: PARP(64) is a scale multiplier to ΛQCD

for parton emission in the initial state. Contrary to PARP(72) a larger value of it means
less parton emission. The third parameter, PARP(67) is a starting scale multiplier for
emission in the initial state.

From the values of these parameters, the FSR strength has been defined to be SF = +1
for the current ATLAS upwards variation and SF = −1 for the downwards variation. For
the construction of the calibration also templates with SF = ±0.5 have been constructed.
The exact values are shown in Table 6.1. The samples used in the ATLAS variation also
have variation on the initial state radiation. Their effect on the analysis is small, especially
because they have been constrained by a separate analysis [73]. For completeness sake
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Figure 6.10: Display of migration effects when doing a variation of the jet energy scale.
The number of events as well as the shape of the jet transverse momentum spectrum
changes.

these variations are also shown in Table 6.1. In total there are four samples for the
parametrization of the final state radiation, with FSR strengths of +1, +1

2 , −1
2 and -1.

assigned FSR strength
Parameter Description 1 0.5 0 -0.5 -1

PARP(67) starting scale multiplier for ISR 1.40 1.20 1 0.80 0.60
PARP(64) scale multiplier for ΛQCD in ISR 0.90 0.95 1 2.25 3.50
PARP(72) value of ΛQCD in FSR 0.37 0.315 0.26 0.185 0.11

Table 6.1: Parameter variations for the amount of radiation. The two parameters which
affect the scale parameter of the QCD, ΛQCD act in the following way. The multiplier
PARP(64) decreases the value of the strong coupling constant, αs as it is multiplied to the
scale. Thus, a higher value for it reduces the amount of ISR showers. Contrary, PARP(72)
increases the amount of FSR as it is the actual value used for the scale.

6.3 A Template Fit for the transverse Momentum of the
Lepton and the transverse Decay Length

6.3.1 Motivation

Earlier attempts of using the transverse decay length [70] or the transverse momentum of
the lepton [74] have used the mean value of the respective distributions. This attempt has
some serious flaws, as the mean value of the distribution is suspect to strong fluctuations
as will be shown in the following.

Figure 6.11 shows two times the same distribution of 10000 random numbers, drawn
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Figure 6.11: Distribution of random numbers, drawn from an exponential function. Left:
without distortion, Right: with an additional distortion. The mean value of the distribu-
tion changes by 0.2%

from the following exponential function:

f(x) = exp(−0.5x) (6.5)

The mean value of the left distribution is 2.044, very close to the actual mean of 2.010.
For the right distribution, an additional “event” with value of 24 has been added as a
distortion. This changes the mean value to 2.048. The change is about 0.2%, which seems
small at first but if compared to the achieved precision of the mass of the top quark is quite
large. This effect gets in fact blown up when translating the mean value of the observed
distribution to an actual mass value.

This effect can be offset a bit by using a more stable location parameter for a dis-
tribution like the median of the distribution. Still, reducing a whole distribution to a
single parameter has some disadvantages as is displayed in Figure 6.12. It shows three
distributions, a Gaussian, an exponential and a breit-wigner function, all with the same
mean value of 2.010. Also, one is limited to a calibration curve approach for estimating
the mass of the top quark. All in all, the use of a template method to describe both the
transverse decay length and the lepton transverse momentum is highly desired and shall
be developed in the next section.

x [a.u.]
0 5 10 15 20 25

y 
[a

.u
.]

1

10

210

310

410

510

610 Exponential,
Gaussian,
Breit-Wigner,
Mean Value

Mean Value: 2.010
Mean Value: 2.010
Mean Value: 2.010

Figure 6.12: Distribution of random numbers, drawn from an exponential, a Gaussian and
a breit wigner function. All functions have been constructed to have the same mean value.
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6.3.2 Signal Parametrization

For any template method, analytic parametrization of the input distributions need to be
found. In [75], the convolution of a fermi function with a gamma function was proposed
as a proper description for the lepton transverse momentum distribution. The gamma
function is supposed to model the falling end of the spectrum at high values of lepton
transverse momentum and the fermi function the sharp decline at low values. Using this
work as a suggestion, it was found that for both, the transverse momentum of the lepton
and the transverse decay length, the sum of a fermi function and a gamma function does
describe the distributions as well. The functional form, with the free parameters pi, i ∈ N0

is the following:

f(x) =
1

exp ((x+ p1) /p0) /p2 + 1
+

(
x−p4
p5

)p3−1
exp

(
−x−p4

p5

)
p5Γ(p3)

(6.6)

Both functions have three free parameters. To note is, that the parameter called p2 is not
part of a normal fermi function. It is necessary for the description of the transverse decay
length distribution. In fact, for the lepton transverse momentum analysis this parameter
has been fixed, as it does not depend on either the mass of the top quark. The same is
true for parameters 0 and 3. For similar reasons, parameters 1, 2 and 3 are also fixed for
the transverse decay length parametrization. Table 6.2 shows the values these parameters
were fixed to. These fixed values of these parameters govern the general shape of the
distribution and do depend slightly on the event selection (e.g. the minimum cut on the
lepton transverse momentum). They need to be estimated in a separate step.

parameter Lxy fixed value pLep
T fixed value

p0 n/a (31.3± 0.1) GeV
p1 (199± 1) mm n/a
p2 −0.30± 0.01 1
p3 0.45± 0.01 22.7± 0.1
p4 n/a n/a
p5 n/a n/a

Table 6.2: Values for the fixed parameters of Equation 6.6.

The resulting functions do describe the distribution of transverse decay length and
lepton momentum very well. Figure 6.13 shows example fits to simulation samples. The
fit range had to be limited to be between 0.5 mm and 25 mm for the transverse decay
length distribution. Decay lengths with less than half a milimeter are hard to reconstruct,
therefore they had to be excluded. At the range of more than 25 mm the influence of
the beam pipe starts to affect the shape of the distribution. This is very well modelled
by the simulation, but hard to take into account in an analytic formula. The fit range
of the lepton transverse momentum has been restricted from 28 GeV to 150 GeV. The
lower bound is the minimum possible value for an accurate description of the distribution.
Lower values are too close to the cut value of 25 GeV for electrons. The upper cut value
was chosen because of a known modelling issue of the simulation for leptons in that energy
range.
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Figure 6.13: Example fits of the transverse decay length (top) and lepton transverse
momentum (bottom). These fits have been done to the ’default’ Powheg+Pythia sample
with an assumed top quark mass of 172.5 GeV (left), and to the AcerMC+Pythia sample
with 50% more final state radiation and the same assumed top quark mass (right).
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6.3.3 Removing Correlation between the Parameters

The fit parameters of the parametrization in Equation 6.6 are correlated. This can be
expressed as the correlation matrix of the parameters:

VLxy =

 1. 0.68 0.09
0.68 1. 0.06
0.09 0.06 1.

 (6.7)

for the transverse decay length, and

V
pLep
T

=

 1.0 0.01 0.19
0.01 1.0 0.58
0.19 0.58 1.0

 (6.8)

for the transverse momentum of the lepton. This correlation in fact spoils the sensitivity
of the method. If parameters have a high correlation, both of them can be changed in a
way that the fit quality is unchanged. The correlation should therefore be removed. The
simplest way is to transform the parameters to a parameter space where all parameter
are uncorrelated. For that the information of the covariance matrix can be used. The
used technique is called the “Cholesky decomposition” [76]. It is a way to construct a
transformation matrix to the linear independent parameter space. The final transforma-
tion matrix gives new fit parameters ai which relate to the original parameters pi in the
following way:

p0

p4

p5

 =

 0.015 mm 0 0
−0.021 mm 0.0143 mm 0
0.002 mm < 0.0001 mm 0.0019 mm

 ·
a0

a1

a2

 , (6.9)

where the ai denote the actually calibrated parameters. The matrix for the lepton trans-
verse momentum parameters is:p1

p4

p5

 =

0.8342 GeV 0 0
0.0005 GeV 0.0055 GeV 0
0.0472 GeV −0.0876 GeV 0.0447 GeV

 ·
a0

a1

a2

 (6.10)

These parameters ai are the final parameters which let the templates depend on the mass
of the top quark and the amount of QCD final state radiation. Simulation samples with
various values for both observables are fit and the dependence of each parameter of them is
fit with a function. This is called calibration will be further described in the next chapter
when the actual analysis is discussed. The calibration can then be used to generate
templates which do only depend on the mass of the top quark and the amount of final
state radiation. This can than be used to maximise a likelihood between the observed data
and these two observables to extract values and uncertainties for them. The algorithm
used to perform the minimization is called Migrad. It is part of the Minuit[77] package.
The actual implementation in this theses is called pyMinuit [78].

6.3.4 Correlation between the Resulting Variables

Figure 6.14 shows the correlation between the estimated top quark mass and the estimated
FSR strength. A correlation between the two quantities is visible – for a higher FSR
strength the estimated mass is lower. This is due to the fact that the transverse decay
length also has some sensitivity to the top quark mass.
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Figure 6.14: The correlation between the estimated top mass and the estimated FSR
strength in the sample with an assumed top mass of 172.5 GeV. It is anti correlated with
a correlation coefficient of −0.43. The fit has been done using a likelihood fit to the lepton
pT and transverse decay length distributions.

6.3.5 Background Treatment

Any analysis will have a fraction of background events in their data sample. This back-
ground needs to be taken into account in some way in the parametrization. One possible
approach is to also find a template description for the background. The parameters of
these templates will not depend on the mass of the top quark or the amount of final
state radiation. In fact, they could be fixed by fitting only to the estimated background
distributions. The fit would have an additional parameter which governs the fraction of
background events, but it could also be fixed to the background estimation. Another
options is to use the estimated shape directly as histogram templates. This approach is
used here. In data the estimated background shape is subtracted from the data to get a
’signal-only’ fit.
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Chapter 7

Measurement of the Mass of the
Top Quark with the Transverse
Decay Length and Momentum of
the Lepton

This chapter describes the actual measurement performed. It begins by describing the
selection cuts used for identifying the physics objects. After that, the event selection
cuts for selecting signal and control regions are described. After that the calibration of
the templates is discussed. The the considered systematic uncertainties and their causes
are described. Finally the method is applied to data and the mass of the top quark is
measured.

This analysis uses the entire
√
s = 7 TeV dataset collected by the ATLAS detector in

2011. In total it amounts to an integrated luminosity of
∫
Ldt = 4.7 fb−1.

7.1 Object and Event Selection

7.1.1 Object Definitions

This analysis makes use of jets, electrons, muons, missing energy and flavour tagging. The
selection criteria applied for the reconstruction of each of them will now be described in
more detail.

Jet definition

Jets have been reconstructed with the AntiKt algorithm (R = 0.4). They have been
calibrated using the EM+JES calibration scheme. To reject electrons faking a jet, the
closest jet to a selected electron (see below) is removed if it is within ∆R < 0.2 of it.
Pileup jets are rejected by applying a cut on the momentum-weighted fraction of tracks
which are associated to this jet and the primary vertex. If that fraction, called “jet vertex
fraction” is larger than 75% the jet is accepted.

Electron definition

Electrons need to fulfil the “tight++” electron identification criteria (cp. section 3.3.2).
Their absolute pseudorapidity must be between 0 < |η| < 2.47 with the window of 1.37 <
|η| < 1.52 excluded. Additionally, any electron which is within a ∆R < 0.4 to any jet
with pT > 25 GeV is removed. Electrons with hadronic calorimeter activity in their flight
direction are also rejected. These cuts are applied on the total transverse momentum
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and energy in the hadronic calorimeter in a cone with size of ∆R < 0.3 for the transverse
momentum and ∆R < 0.2 for the energy. The exact cuts depend on the selection efficiency
for isolated electrons. The cuts have been chosen to have a signal efficiency of 90%.

Muon definition

Muons have to be combined muons with tight selection criterion. Algorithm chain 2 has
been used (see section 3.3.4). Their absolute pseudorapidity has to be less than 2.5. To
select muons from the correct primary interaction, a cut of z0 < 2.0 mm on the longitudinal
impact parameter is in place. Additionally, there are hit requirements for the various
tracking layers: Muons need to have a hit in the b-layer, at least one hit in the other two
pixel layers and at least 6 hits in the SCT. The cut requirements on the TRT depend on
the pseudorapidity: For |η| < 1.9 there have to be at least 5 hits. Also, the fraction of
outliers must be less than 10%. If the absolute pseudorapidity is higher than that value,
the cut on the fraction of outliers is only applied if the track has at least 5 TRT hits
associated to it. If the muon candidate passes a dead sensor in one of the semiconductor
detectors, a hit is assumed for all of these requirements. To reject fake leptons from jets,
muons within a cone of ∆R < 0.4 of any jet are removed from the event, and they need
to be isolated with similar cone variables as for the electrons. The exact cut values are:

• The calorimeter pT in a cone with size of R < 0.3 around the muons is pcone
T <

2.5 GeV

• The calorimeter E in a cone with size of R < 0.2 around the muons is Econe
T < 4 GeV

Missing Energy definition

The missing energy, Emiss
T , is, as described in section 3.3.6 the negative sum of all other

objects found in the event. The missing transverse energy depends slightly on the selection
criteria for these objects as stated above. The used definition of missing transverse energy
is consistent with the above definition of objects. In addition to the objects discussed
above, unclustered energy in calorimeter cells is also included in the calculation. When
the four-vectors of any object are changed by a systematic uncertainty the changes are
propagated to the missing transverse energy as well.

Flavour tagging

The MV1 b-tagging algorithm is used for the identification of bottom quark jets. For this
analysis the operating point with 70% nominal efficiency is used. It corresponds to a cut
value of wMV1 > 0.60173 for a jet to be considered tagged. As described in chapter 3
the MV1 algorithm is a neuronal net combining the output of several other flavor tagging
algorithms, two of which use secondary vertex information (JetFitter and SV1) and one
using track impact parameter information (IP3D).

7.1.2 Common Preselection

All signal and control regions share a common preselection. It reads the following:

1. A primary vertex with at least four tracks associated to it is present in the event

2. The event has been triggered by an appropriate single lepton trigger:

(a) For electrons this is, depending on the run period the trigger called “EF e20 medium”
(periods B-J), “EF e22 medium” (period K) or either “EF e22vh medium1” or
“EF e45 medium1” trigger (periods L and M);-
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(b) For muons two different triggers were in place depending on the run period: It is
either the trigger “EF mu18” (periods B through I) or the trigger “EF mu18 medium”
(periods J to M).

This is also summarised in Table 7.1

3. There is exactly one isolated lepton (electron or muon) with transverse momentum
of at least 25 GeV if it is an electron or at least 20 GeV if it is a muon

4. This lepton was the one which fired the trigger

5. Quality cuts on the event: There is no electron which is overlapping with a muon or
vice versa; No noise in the LAr calorimeter

6. There are at least three jets with transverse momentum of more than 25 GeV in the
event.

Table 7.1: Used muon and electron triggers in the various periods of data-taking.

Data Period Muon Trigger Electron Trigger

B-I EF mu18 EF e20 medium
J EF mu18 medium EF e20 medium
K EF mu18 medium EF e22 medium
L-M EF mu18 medium EF e22vh medium1

Additionally, there is a requirement which is only present in the data: The event must
not be rejected by the data quality flags. A GoodRunList (see section 3.2.6) is applied.
All detector elements needed to be in good condition for an event to be accepted.

This common preselection allows to select regions where either signal or the two larger
background components (W+jets or QCD fakes) are dominant.

7.1.3 Background Estimation

The amount of background needs to be estimated. This is especially important for the
larger backgrounds. The smaller backgrounds, Z+jets production, single top production
and diboson production, do not impact the analysis very much. Their yield has been esti-
mated by the theoretical cross-section for the respective cross-sections. The cut efficiency
and the shape for these processes has been taken from MC simulation. Table 7.2 shows
an overview of the various processes and their estimated cross-sections.

Table 7.2: Used cross-sections for the smaller backgrounds.

Process cross-section [pb]

Single Top 84 [79, 80, 81]
Z+Jets 3256.64[82]
Diboson 4.69 [82]

For the other two considered backgrounds, W+jets production and QCD fakes an
accurate description of both the yield and the shape is necessary.
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7.1.4 QCD Fakes Estimation

A fake lepton is called an object which is either no lepton (e.g. a jet) or a lepton from
the cascade of decays in a jet which passes the lepton selection criterion. The probability
for this happening is in general very low (� 1%), but the cross-section for QCD multijet
production cross-section is several orders of magnitude larger than the tt cross-section.
A small amount of QCD multijet events with fake leptons will pass the event selection.

While the QCD multijet process can be simulated with reasonable description of the
data, it is unrealistic to use Monte-Carlo to describe the QCD fakes. Due to the very
low fake efficiency one would have to simulate a very large number of events to obtain
sufficient statistics of simulated events for an accurate background shape.

Another way is possible by using a data-driven technique to extract the fake rate and
shape. The technique is called the “matrix method”. It makes use of two groups of events,
one called “loose” events, the other one called “tight” events. Tight events must always
also be loose events for the method to work as presented here. The criterion itself does
not have very strong requirements: The efficiency for the fake events, εf , must be very
different from the efficiency for real events, εr. The total number of fake events which pass
the the tight selection, N t

f can then be calculated from the total number of tight events,

N t, the total number of loose events Nf and the efficiencies for loose and tight events in
the following way:

N t
f =

εf
εr − εf

(N l
fεr −N t) (7.1)

For QCD fakes one is interested in the probability that a QCD multijet event fakes a
tight lepton. Therefore, lepton criteria are good choices for the selection criterion. In this
analysis three different criterions are used, two for muons and one for electrons:

• Both muon analysis use the isolation requirement of the muon as the criterion. A
fake muon from QCD multijet production is likely produced inside or close to a jet,
therefore its fake efficiency is rather low. For a tt lepton this is not the case, it
is produced from an isolated W boson. The tight selection is identical to the one
described earlier this selection. The fake selection drops the following two cuts:

– The calorimeter pT in a cone with size of R < 0.3 around the muons is pcone
T <

2.5 GeV

– The calorimeter E in a cone with size of R < 0.2 around the muons is Econe
T <

4 GeV

The two methods differ in the way of parametrization the efficiencies as functions of
the event topology.

• The electron matrix method tight definition is the same as the electron selection
earlier in this section. The loose selection drops the b-layer hit requirement for the
track associated to the electron and the isolation criteria.

The formula given in Equation (7.1) can be generalised to obtain shapes of distribu-
tions. Instead of calculating the total number of events in the selection, one can separate
the events into several bins of the distribution one is interested in. Then one applies
Equation (7.1) for each of these bins and obtains the number of tight fake events for that
bin. The obtained histogram is the distribution of fake events. The uncertainty on the
QCD fakes estimation is dominated by the uncertainties on the measurement of the fake
and real efficiency. It is ±50% on the number of fake events which pass the tight selection.
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7.1.5 W+Jets Estimation

The production of W+jets has a similar signature as the tt process: It involves an isolated
lepton, missing energy and additional jets. The amount of bottom quark jets is in general
lower though, so flavour tagging is a viable way of reducing that background. Still the
amount of W+jets events which pass the final selection can be up to 10-20%. An accurate
description of it is therefore necessary. The theoretical cross-section for the W +n partons
process is hard to calculate for a large number of partons, n. However, the ratio of
positively charged to negatively charged W bosons is much easier to calculate and is
therefore better modelled by the simulation. The ratio is not 0.5 as one would naively
expect. This is due to the initial state at the LHC which is not charge-symmetric. In fact,
the ratio R = N+/N− is larger than one. If the ratio of simulation RM and data RD is the
same, the total number of W+jets events, D = D+ +D− can be estimated from RM , and
the difference of D+ −D− in the following way:

D = D+ +D− (7.2)

= D+ +D−

(
D+ −D−
D+ −D−

)
(7.3)

= (D+ −D−)

(
D+ +D−
D+ −D−

)
(7.4)

= (D+ −D−)

(
D+/D− + 1
D+/D− − 1

)
(7.5)

= (D+ −D−)

(
RD + 1

RD − 1

)
(7.6)

= (D+ −D−)

(
RM + 1

RM − 1

)
. (7.7)

The last line uses that RM equals RD. This method assumes that all other contributions
to the data, especially the tt process is charge-symmetric. For the single top quark
and diboson contribution a small asymmetry exists. Their simulated contributions are
subtracted from the data before applying Equation (7.7). Thus the remainder which
yields D+ and D− only consists out of W+jets events.

The shape of the W+jets process is taken from the simulation. Control regions have
been used to verify that the modelling of the simulation is adequate. One aspect still needs
to be corrected for. The production rates of different heavy flavour in association with
a W boson may vary from the simulation fractions. For that several groups of W+ jets
production are defined: W+light flavour, W +bb (two bottom quarks), W +cc (two charm
quarks), and W + c (one charm quark). Correction scale factors have been measured to
change the relative fractions of these four components, but not the overall yield.

7.1.6 Signal and Control Regions

Starting from the common base selection described in Section 7.1.2, two control and one
signal region have been defined. Both control regions are separated from the signal region
by the cut on the number of jets in the event and the flavour tagging requirement: The
signal region requires four or more jets while the control regions both require exactly three
jets in the event. Both control regions cut on no flavour tagged jet in the event, while in
the signal region one or more jets must be tagged. All three regions also have cuts on the
transverse mass of the W boson, mW

T
1, and the missing energy. Both variables are very

powerful in discriminating between QCD fakes and events with real W bosons. The QCD
fake region requires Emiss

T < 30 GeV and mW
T < 30 GeV, the W+jets region and the signal

1mW
T = Emiss

T plepT

(
1 − cos

(
∆φlep, E

miss
T

))
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region Emiss
T > 40 GeV and mT

W > 30 GeV. Finally, the signal region rejects events where
any two jets are closer to each other than ∆R = 0.8. Table 7.3 shows an overview over
the cuts which define the various regions.

Table 7.3: Additional cut defining the QCD Fakes and W+jets control regions and the
signal region.

Cut QCD Fakes region W+jets region Signal region

Number of jets Njets = 3 Njets = 3 Njets >= 4
Number of b-tagged jets Ntags = 0 Ntags = 0 Ntags >= 1

Missing Energy Emiss
T < 30 GeV Emiss

T > 40 GeV Emiss
T > 40 GeV

Transverse W mass mT
W < 30 GeV mT

W > 30 GeV mT
W > 30 GeV

Miscellaneous n/a n/a min(∆Rjet,jet) > 0.8

Figures 7.1 shows the transverse momentum of the lepton and the transverse momen-
tum of the jet with the highest transverse momentum (also called the “leading jet”) in
data together with various signal and background components. The used selection in this
plot is the QCD fakes control region selection. The figure also shows the result of the
fake lepton contribution as described in Section 7.1.4. For the muon channel there are
little other contributions then the QCD fakes estimate, in the electron channel there is
a sizeable contribution from the amount of Z+jets production. The shown uncertainties
on these plots are the uncertainty on the fake lepton contribution. These stem from the
uncertainties on the measurements on the real and fake efficiencies. Within these uncer-
tainties, both distributions are well described by the estimation. The two methods of the
muon channel have been averaged in the subfigures in the muon channel. All in all the
description of the data is very good showing that the QCD fake estimate is working well.

Figure 7.2 shows the same distributions as Figure 7.1 but for the W+jets control region.
Clearly, this control region is dominate by W+jets production. The shown uncertainty
includes the uncertainty on the estimate on the W+ jets yield as described in Section 7.1.5.
The description of the data by the simulation, combined with the yield estimate is very
good. However, in the lepton transverse momentum spectrum there is some disagreement
between the data and the simulation for events where the transverse momentum of the
lepton is larger than 150 GeV. This disagreement is the reason why the fit range was
chosen to stop at that value.

Table 7.4 shows the expected amount of tt signal and the various background processes
as well as the observed numbers of events in data in the signal regions. The used cross-
section of top-antitop quark pair production is σtt = 177+10

−11 pb. It has been calculated for
a mass of the top quark of mTop = 172.5 GeV. The matrix element has been calculated
at next-to-next-to-leading order (NNLO) with next-to-next-to-leading logarithmic resum-
mation [40, 83, 84, 85, 86, 87]. This region is clearly dominated by the amount of the tt
process. Dominant background is the W+jets process, followed by the single top process.
All in all the remaining background fraction is 19%.

Figures 7.3 through 7.5 show various distributions in the signal region. Figure 7.3
shows the leading jets transverse momentum and pseudorapidity. Both distributions are
well-modelled by the simulation. In Figure 7.4 distributions of the missing transverse
energy and the transverse mass of the W boson are shown. These two distributions are
sensitive to various background components (especially) QCD fakes and the fact that they
are well-modelled shows again that the background has been correctly estimated.

Finally in Figure 7.5 distributions of the number of tagged events by the used flavour
tagging algorithm and the minimum distance between any two jets in the event are shown.
Both distributions – as the transverse mass of the W boson and the missing transverse
energy – are used in the event selection and should be well-modelled by the simulation.
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Figure 7.1: The transverse momenta of the lepton (left) and the leading jet (right) in the
QCD fakes region. Top: If the lepton is a muon, Bottom: if it is an electron. The shown
uncertainty includes the uncertainty on the fake estimate.
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Figure 7.2: The transverse momenta of the lepton (left) and the leading jet (right) in the
W + jets region. Top: If the lepton is a muon, Bottom: if it is an electron. The shown
uncertainty includes the uncertainty on the W+jets yield estimate.
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Figure 7.3: The transverse momenta (left) and the pseudorapidity (right) of the leading
jet in the signal region.
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Figure 7.4: The transverse momenta (left) and the pseudorapidity (right) of the leading
jet in the signal region.

Table 7.4: Number of expected events for the signal and various background processes as
well as obtained number of events in data.

Process Electron Channel Muon Channel

QCD 140.2± 70.1 182.9± 91.5
Single Top 567.6± 7.0 799.7± 8.2
Diboson 18.3± 0.8 25.5± 1.0
W+jets 956.5± 124.4 1567.0± 219.4
Z+jets 128.1± 6.1 70.2± 5.2
tt (172.5) 8141.8± 19.5 11 246.6± 22.9

Total MC 9952.4± 144.4 13 891.8± 239.0

Data 10 017.0± 100.1 14 146.0± 118.9
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This is true for both distributions. The number of b-tagged jets is slightly mismodelled
but this is covered by the uncertainty on the flavour tagging calibration.
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Figure 7.5: Number of b-tagged jets (left) and the minimum distance between any two
jets in the event (right) in the signal region.

7.2 The Calibration Curves

The parametrization described in section 6.3.2 needs to be calibrated. That means, that
the dependence of the fit parameters on the mass of the top quark and the strength of
QCD final state radiation is fit. These fits for the various parameters ai are shown in
Figures 7.6 and 7.7.

The values of the ai must be transformed with the matrices shown in Equations (6.9)
and (6.10) to be the parameters shown in Equation (6.6). The sensitivity of the parameters
on the mass of the top quark and the amount of final state radiation can be best judged
by the relative size of the error bars on the various mass and final state radiation values:
As the amount of events is the same for each point between the various ai, a smaller
shown error bar means a stronger dependence on that ai than on another one with larger
shown error bars. As expected, the parameters of the transverse decay length distribution
depend on both, the mass of the top quark and the amount of final state radiation. The
parameters for the transverse momentum of the lepton do not depend as strongly on
the final state radiation strength as on the mass of the top quark. This allows a proper
extraction of both of the observables.

Another thing to note is that for parameters 1 and 2 of the transverse decay length,
the slope of the calibration is positive for both, the mass of the top quark and the amount
of final state radiation. For parameter 0 this is not the case. This means that by adding
the information of the transverse decay length to the fit the accuracy on the mass of the
top quark is increased compared by using only the transverse momentum of the lepton.

7.2.1 Extraction of the Mass of the Top Quark

The following procedure has been applied to extract the mass of the top quark: For an

assumed pair of
(
m
′
Top, S

′
F

)
the values of the top mass calibration curves M (mTop) have

been used to get an initial set of template parameter values

Xi = M
(
m
′
Top

)
, (7.8)

where Xi is the i-th template parameter. The calibration for the assumed value of the final
state radiation is then added, assuming that the SF calibration and the top quark mass
calibration are independent of each other. By construction SF = 0 denotes the nominal
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Figure 7.6: The calibration fits for the various parameters for the Lxy-template. Left:
against the mass of the top quark, Right: against the amount of final state radiation. The
parameters have no dimension by construction. They are applied to the parametrization
of Equation (6.6) after applying the transformation matrix in Equation (6.9).
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Figure 7.7: The calibration fits for the various parameters for the pLep
T -template. Left:

against the mass of the top quark, Right: against the amount of final state radiation. The
parameters have no dimension by construction. They are applied to the parametrization
of Equation (6.6) after applying the transformation matrix in Equation (6.9).
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amount of final state radiation. Thus, an offset for a given S
′
F value can be calculated in

the following way using the FSR strength calibration:

∆Xi = F
(
S
′
F

)
− F (0) (7.9)

Combining this information yields the parameter values for a pair of
(
m
′
Top, S

′
F

)
:

Xfinal
i

(
m
′
Top, S

′
F

)
= Xi + ∆Xi = M

(
m
′
Top

)
+ F

(
S
′
F

)
− F (0) (7.10)

These values are then used to construct the templates for the lepton pT and decay
length distributions and a binned likelihood is performed to find the values for (mTop, SF )
which maximises this likelihood with respect to the data.

7.2.2 Constructed Templates

Figures 7.8 and 7.9 demonstrate how the templates change when varying the input mass
of the top quark and amount of final state radiation. The template for the transverse
decay length – as expected – changes with both input values. The parametrization of the
transverse momentum of the lepton does also show the expected behaviour. It depends
strongly on the mass of the top quark but is almost independent on the value of the final
state radiation parametrization.
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bution with changing mass of the top quark and constant final state radiation strength
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7.3 Expected Sensitivity and Fit Bias

The correctness of the calibration and the technique itself must be verified. This is done
by doing pseudoexperiments. From a given transverse decay length and lepton transverse
momentum distribution N random events are drawn each, where N is a random number
from a Poisson distribution with mean value µ:

P (N) =
µN exp(−µ)

N !
. (7.11)

µ is set to the expected number of events in data. This lets the number of events in
the distribution fluctuate around the expected value µ to mimic the effect the statistical
fluctuation of the data events. After the proper number of events are drawn, both distri-
butions are fit with the technique described in the previous sections. This fit yields values
for the mass of the top quark and the strength of final state radiation as well as their
errors. This procedure is repeated 2000 times.

The obtained values for the mass of the top quark and the amount of final state
radiation can than be histogrammed. The results are shown in Figure 7.10 for an assumed
mass of the top quark of 175.0 GeV. The assumed strength of final state radiation is
0. Another result of the pseudoexperiments is the expected statistical uncertainty. This
is shown in Figure 7.11 for the same set of pseudoexperiments as the ones in Figure
7.10. From the distribution of these values several quantities can be calculated which give
information about the fit procedures correctness and power.

One important fact is that, in total, more events are generated to be used in the
pseudoexperiments than there are in the generation of the underlying distribution. This
leads to the fact that a single event of the underlying distribution will be used in more
than one pseudoexperiment. Because of this, the uncertainty on the various values which
will be used in the following are not simply the mean error of their respective distributions.
Instead the root mean square, modified by the Barlow correction factor, RB, needs to be
used[88]. For pseudoevents drawn from the same distribution, where an event may be
used more than once in the generation it reads:

RB =

√
1

Npseudo
+
n

m
. (7.12)

In this equation Npseudo denotes the number of pseudoexperiments generated, n the av-
erage number of generated events in each pseudoexperiment and m the total number of
events used in the underlying distribution. Clearly, for a small number of pseudoexperi-
ments this number depends on Npseudo, but for a large number if converges against n

m as
no more information can be gained from the original distribution. For the following series
of plots Npseudo is 2000, n = µ = 25000 (for an assumed mass of the top quark of 175 GeV)
and m = 320265, Rb is 0.28.

7.3.1 Bias of the Method

A bias in the method means that the fit results would differ from the true result in any
way. For instance, the result could be shifted by a constant value into any direction. To
identify these values, the difference between the assumed and the fitted value for each
quantity, for the mass of the top quark:

∆mTop = massumed
Top −mi

Top (7.13)

massumed
Top is the assumed mass in the sample which has been used for the generation of

the pseudodata, and mi
Top is the result of pseudoexperiment i. This is done for a various
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Figure 7.10: Distribution of fitted top mass values (left) and the FSR strength values
(right) in 2000 pseudoexperiments. The basis for the pseudodata has been the sample
with mTop = 175.0 GeV and SF = 0.
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number of assumed values. The result of these pseudoexperiment is put into a graph
against the assumed value of the parameter. If the fit is unbiased, the values will fluctuate
around 0. If a bias would be present, either a constant offset or some other systematic
trend would be visible in the figure.

For this analysis the result of this validity check are shown in Figure 7.12. Both, the
difference in the mass of the top quark and the strength of final state radiation fluctuate
around 0. Also, the graph has been fit with a constant function. The black line is the
result and the red shaded area the uncertainty. The exact values are:

∆mTop = 0.01± 0.12 GeV (7.14)

∆SF = 0.00± 0.02 (7.15)

The fit is therefore free of any bias.
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Figure 7.12: Bias of the technique for estimating the top mass (left) and the FSR strength
(right) as a function of the assumed mass of the top quark.

7.3.2 Expected Statistical Uncertainty

The fit also gives information about the expected error on the mass of the top quark. As
the fit is constructed in the way that the number of events fluctuates around the number of
expected data events, the distribution of the error on the mass of the top quark should, on
average, be the expected error on the respective observable. The spread of this distribution
gives the precision on this value. Also, as the cross-section of the tt -process depends on
the mass on the top quark, the statistical error will change with changing mass of the top
quark. This effect is demonstrated in Figure 7.13. The expected uncertainty on the mass
of the top quark slightly increases with the assumed mass of the top quark. The expected
error at a mass of the top quark of 175 GeV is:

merror
Top = 1.2 GeV (7.16)

7.3.3 Pull Width

Another important quantity is the distribution of pulls. The pull is a quantity which is the
bias of an individual pseudoexperiment divided by the error of that pseudoexperiment:

Pi =
massumed

Top −mi
Top

merror,i
Top

(7.17)
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Figure 7.13: Expected error of the technique for estimating the top mass as a function of
the assumed mass of the top quark.

As with the bias distribution if the fit is unbiased the mean value of this distribution should
be 0. The pull distributions for same set of pseudoexperiments as in Figure 7.10 is shown
in Figure 7.14. No new information is gained by the mean value of these distributions.
The important quantity of this distribution is the RMS of it. If the error on the fit result
has been estimated correctly the RMS of this distribution should be equal to 1. This
must also be true independently of the assumed mass of the top quark. This is shown for
various masses of the top quark in Figure 7.15. A fit with a straight line yields:

PmTop = 0.99± 0.01 (7.18)

The error on the fit is therefore correctly estimated.

7.4 Systematic Uncertainties

There are several effects which may influence the measurement. They can be roughly
separated into two categories:

• Reconstruction related uncertainties: These are uncertainties on the calibration or
reconstruction efficiencies of the physics objects used in the analysis

• Modelling related uncertainties: The simulation has various assumptions which are
motivated from other measurements. This leaves some uncertainty on the exact
values of the simulation parameters.

The possible effects on the distributions needs to be evaluated and possible shifts taken
into account when calculating a final uncertainty.

The procedure to evaluate the effects of these systematic uncertainties in this analysis
is the following. Say, mdefault

Top is the result of 2000 pseudo-experiments using the nominal
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sample. A systematic uncertainty would then be evaluated by changing one of the pa-
rameters in question and then using that modified sample as the basis for another 2000
pseudo-experiments, yielding a mshifted

Top . The systematic uncertainty for that parameter
would then be:

∆systematicmTop = |mdefault
Top −mshifted

Top | (7.19)

Some systematic shifts provide an upward and downward variation. In the presence of this,
individually 2000 pseudoexperiments are done for the upward and downward variation,
resulting in a mupward

Top and mdownward
Top . The uncertainty in that case is evaluated in this

way:

∆systematicmTop =
|mupward

Top −mdownward
Top |

2
(7.20)

For all systematic variations their effect on the estimated strength of final state radi-
ation is also estimated by the fit. A systematic variation may impact SF in a different
way as it impacts the mass of the top quark. This typically indicates different sensitiv-
ities of the transverse momentum of the lepton and the transverse decay length to that
systematic variation. Thus, for all systematic variations its change to SF is also quoted.
The above considerations (Equations (7.19) and (7.20)) are analogously applied for the
resulting strength of final state radiation.

7.4.1 Reconstruction Related Uncertainties

The calibration of all physics objects as well as their reconstruction efficiency measure-
ments are all measurements themselves and have associated uncertainties. When per-
forming the default analysis the default results of these measurements, which have been
explained in more detail in chapter 3, have been applied. The uncertainties on these
measurements need to be propagated to the signal distributions.

Jet Energy Scale

The effect of the jet energy scale on this measurement has already been explained in
detail in section 6.1.3. The jet energy scale has various components of uncertainties,
some of which are displayed in Figure 3.16. Within the ATLAS experiment, two possible
treatments of the jet energy scale uncertainty are considered:

• For measurements where the jet energy scale is not a dominant systematic uncer-
tainty, the quadratic sum of all components can be used for a single upwards and a
single downwards shift.

• If the jet energy scale is a dominant systematic uncertainty it is recommended to
vary groups of the individual components and then take the quadratic sum of the
individual uncertainties.

Even though the jet energy scale is not a dominant uncertainty on this analysis by
construction, in order to be compatible with other ATLAS measurements of the mass of
the top quark, the latter approach has been used. In detail, the various components have
been split into the following groups:

• Statistical uncertainty.

• Detector knowledge uncertainty.

• Modelling related uncertainties.

• The b-jet energy scale uncertainty.
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• Pileup related uncertainties.

• Uncertainties on the intercalibration of various regions of pseudorapidity.

• A component of a high-transverse momentum single particle forming a jet .

• The effects of close-by jets.

• Uncertainties on the flavor composition and response.

• Other (called “Mixed” uncertainties).

In total there are 21 components which need to be taken into account. All of the
variations have an upwards and a downwards variation, thus Equation (7.20) has been
used for the calculation of the uncertainties. The resulting uncertainties are summarised
in Table 7.5. As constructed, the jet energy scale uncertainty on this measurement is very
small. In total the jet energy scale uncertainty is ∆JESmTop = 0.30 GeV on the mass of the
top quark and ∆JESSF = 0.09 on the strength of the final state radiation. This compares
very well with the measurements presented in chapter 5.

Table 7.5: Breakdown of the jet energy scale systematic uncertainties of the top quark
mass and FSR strength determination.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

B-Jet Energy Scale 0.04 0.05 0.01 0.06 0.06 0.05
Detector Component 1 0.08 0.03 0.06 0.02 0.10 0.03
Detector Component 2 0.01 0.01 0.00 0.01 0.02 0.01
Mixed Component 1 0.02 0.01 0.01 0.01 0.03 0.01
Mixed Component 2 0.04 0.01 0.07 0.01 0.02 0.01
Modelling Component 1 0.11 0.05 0.13 0.05 0.10 0.04
Modelling Component 2 0.07 0.00 0.08 0.00 0.06 0.00
Modelling Component 3 0.06 0.00 0.06 0.00 0.05 0.00
Modelling Component 4 0.01 0.00 0.01 0.00 0.02 0.01
Statistical Component 1 0.10 0.02 0.14 0.02 0.07 0.02
Statistical Component 2 0.02 0.00 0.02 0.00 0.02 0.00
Statistical Component 3 0.03 0.01 0.02 0.01 0.04 0.01
η Intercalibration – Theory 0.09 0.05 0.06 0.05 0.11 0.04
η Intercalibration – Statistical 0.04 0.01 0.06 0.01 0.02 0.01
Pileup Offset µ Component 0.01 0.01 0.01 0.00 0.00 0.02
Pileup Offset NPV Component 0.01 0.00 0.01 0.00 0.02 0.01
Relative Non-Closure Component 0.00 0.00 0.00 0.00 0.00 0.00
High-pT Single Particle Component 0.00 0.00 0.00 0.00 0.00 0.00
Close-by Jets Component 0.19 0.00 0.21 0.00 0.20 0.01
Flavor Composition Component 0.02 0.00 0.03 0.00 0.01 0.01
Flavor Response Component 0.04 0.00 0.01 0.00 0.07 0.01

Total 0.30 0.09 0.33 0.10 0.31 0.09

Jet Energy Resolution and Missing Energy

In section 6.1.3 it has been claimed that the impact of the jet energy resolution on the
transverse momentum of the lepton stems mostly from its impact on the missing energy.
This is shown in Figure 7.16. The figure shows the impact of the jet energy resolution
on the missing energy, together with the impact of one jet energy scale component. The
jet energy resolutions impact is much stronger than the impact of the jet energy scale
component. This impacts the lepton transverse momentum as shown in Figure 7.17. When
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changing the jet energy resolution the lepton transverse momentum is greatly changed
when cutting on the missing transverse energy. When omitting the cut the uncertainty
becomes negligible. Not cutting on the missing energy is not feasible though, as it limits
the impact of the QCD fakes background. Additionally the missing energy calibration
has two uncertainty components. Together with the impact of the jet energy resolution
they are displayed in Table 7.6. The effect of the jet energy resolution dominates these
uncertainties, with an uncertainty of ∆JERmTop = 0.71 GeV on the mass of the top quark
and ∆JERSF = 0.03 on the strength of final state radiation. It is one of the largest
uncertainties on the measurement.
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Figure 7.16: Distribution of the missing energy for the default selection (“Default”), the
jet energy resolution systematic (“JER”) and one direction of the flavor composition com-
ponent of the jet energy scale uncertainty (“JES”).

Table 7.6: Breakdown of the missing energy related systematic uncertainties of the top
quark mass and FSR strength determination.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

MET Cell Term 0.11 0.01 0.08 0.02 0.12 0.00
MET Pileup Term 0.05 0.00 0.02 0.01 0.07 0.00
Jet Energy Resolution 0.71 0.03 0.65 0.03 0.70 0.03

Total 0.72 0.03 0.66 0.04 0.72 0.03

Flavour Tagging Uncertainties

The calibration of the flavour tagging algorithm has been extensively described in section
3.3.7. As with the jet energy scale uncertainties they have been split up into various
components. Other than with the jet energy scale uncertainty their uncertainty has not
been grouped into categories. Instead, the full covariance matrix between the various bins
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of jet transverse momentum has been built and then decomposed into eigenvectors. As
it is a 10 × 10 matrix there are 10 eigendirections. For each eigendirection there is a
component of uncertainties to be evaluated, each with an upward and a downward fluctu-
ation. The resulting uncertainties are summarised in Table 7.7. In total the uncertainty
on the mass of the top quark is ∆flavour taggingmTop = 0.21 GeV and on the FSR strength
∆flavour taggingSF = 0.07. Additionally also the measurement of the charm-jet and light-jet
fake tagging rates uncertainties have been propagated to the final result. They yield in a
small uncertainty.

Table 7.7: Breakdown of the b-tagging efficiency systematic uncertainties of the top quark
mass and FSR strength determination.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

B-Tagging Efficiency 1 0.02 0.01 0.03 0.01 0.00 0.01
B-Tagging Efficiency 2 0.02 0.00 0.05 0.00 0.01 0.00
B-Tagging Efficiency 3 0.01 0.01 0.00 0.00 0.02 0.00
B-Tagging Efficiency 4 0.02 0.00 0.04 0.01 0.03 0.01
B-Tagging Efficiency 5 0.02 0.02 0.05 0.02 0.04 0.03
B-Tagging Efficiency 6 0.09 0.01 0.10 0.01 0.06 0.02
B-Tagging Efficiency 7 0.06 0.00 0.10 0.01 0.06 0.01
B-Tagging Efficiency 8 0.06 0.04 0.09 0.03 0.05 0.04
B-Tagging Efficiency 9 0.04 0.02 0.02 0.01 0.03 0.01
B-Tagging Efficiency 10 0.16 0.05 0.16 0.05 0.15 0.06

Total 0.21 0.07 0.21 0.07 0.19 0.08

Lepton Energy Scales and Reconstruction Efficiencies

The uncertainties on the reconstruction efficiency and energy resolution of leptons are
not expected to have a strong impact on the measurement as they are known to a very
precise level. However, they directly impact the lepton transverse momentum and therefore
impact the measurement. The reconstruction efficiencies for the leptons have been varied
within their uncertainties and as expected have a small impact on the measurement. The
exact results are shown in Table 7.8. The resulting uncertainty of ∆leptonmTop = 0.36 GeV
and ∆leptonSF = 0.04 is about the same size as the uncertainty of the jet energy scale,
demonstrating how the quantities of leptons can be measured with much higher precision
than the quantities of jets.

Table 7.8: Breakdown of the lepton related systematic uncertainties of the top quark mass
and FSR strength determination.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

Electron Energy Resolution 0.00 0.00 0.00 0.01 0.00 0.00
Electron Energy Scale 0.31 0.03 0.67 0.07 0.00 0.00
Lepton ID Efficiency 0.08 0.01 0.08 0.01 0.00 0.00
Lepton Reconstruction Efficiency 0.02 0.00 0.01 0.00 0.01 0.00
Lepton Trigger Efficiency 0.03 0.00 0.01 0.00 0.02 0.00
Muon Energy Resolution 0.02 0.00 0.00 0.00 0.02 0.01
Muon Energy Scale 0.14 0.01 0.00 0.00 0.27 0.02

Total 0.36 0.04 0.67 0.07 0.27 0.03
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Other Reconstruction Related Uncertainties

Two additional uncertainties related to the reconstruction have been considered. One
is the reconstruction efficiency for jets. It has been published by the collaboration [89].
The systematic is applied by randomly removing jets from event according to the jet
reconstruction inefficiency, which is about 1%. The other uncertainty is the cut effi-
ciency on the jet vertex fraction cut. Scale factors have been measured and applied and
their uncertainty is evaluated. Both effects lead to very small systematic uncertainties
(∆mTop < 50 MeV/∆SF < 0.01).

7.4.2 Simulation Related Uncertainties

There are several sources of simulation related uncertainties. Most of them originate
from the fact, that the parameters of the simulation have been tuned to match various
measurements from either ATLAS or other experiments. Naturally, these measurements
also have uncertainties. The parameters of the simulation can only be tuned to a best-fit
central value and a band of uncertainty around it. If a measurement depends on the
effects of the change of parameters, these uncertainties need to be considered for a proper
estimation of its own uncertainties. A description of the considered simulation related
uncertainties will be given in the following.

Monte-Carlo Generator Uncertainties

The default Monte-Carlo generator for this analysis is Powheg [61]. Other Monte-Carlo
generators, like Mc@nlo [60] or Alpgen [59] describe the data equally well within the
uncertainties of the data. As such, no generator can be strictly preferred over the other.
Thus, if the different generators predict different shapes for either observable, none of
them can be deemed the “correct” one.
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Figure 7.18: The transverse momentum of the lepton (left) and the transverse decay length
(right) for the Powheg, Mc@nlo and Alpgen Monte-Carlo generators. The selection
is a loose semileptonic tt selection to increase the statistical accuracy.

Figure 7.18 shows the transverse momentum of the lepton and the transverse decay
length for the three mentioned Monte-Carlo generators. For better comparison, all of
them have been showered with Herwig and simulated using fast simulation. The event
selection requirements regarding the missing transverse energy and the transverse mass of
the W boson have been dropped for this figure to enhance the statistical accuracy. The
three Monte-Carlo generators indeed predict different shapes for the observables. This can
be traced back to the prediction of different momenta of the top quark. As mentioned in
chapter 6, the transverse momentum of the top quark also impacts both observables. This
is also shown in Figure 7.19. It shows the truth spectrum of the transverse momentum of
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the top quark and the truth momentum of the lepton for all three generators. The same
trend as in Figure 7.18 can be seen. Also, the transverse momentum of the top quark
shows the same effects. This explains the effects seen on the shapes. The full difference
of the predictions from the various generators is taken as a systematic uncertainty.
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Figure 7.19: The truth transverse momentum of the top quark (left) and the lepton (right)
for the Powheg, Mc@nlo and Alpgen Monte-Carlo generators. The selection is a very
loose semileptonic tt selection to increase the statistical accuracy.

Hadronization

Similarly as there is no Monte-Carlo generator to prefer over the other, none of the two
considered hadronization models, Pythia and Herwig can be a priori preferred over the
other. The impact of the hadronization model on the transverse decay length is easy
to understand. Both hadronization models implement different variants of fragmentation
models. This governs the momentum fraction the bottom hadron receives from the original
bottom quark. This translates into a different transverse decay length when using either
fragmentation model.

The effect of the hadronization on the transverse momentum of the lepton is harder to
understand. In first order the hadronization only impacts the momenta of quark and gluon
jets, not the properties of leptons. The explanation is again the effect the hadronization
has on the transverse momentum of the top quark. The changes the parton shower does
to the momenta of the initial state objects are propagated to the momentum of the top
quark. Thus, different parton shower models may predict different transverse momenta of
the top quarks and thus of the transverse momentum of the lepton in the event. Figure
7.20 shows that this is the case for this analysis and impacts the analysis. The effect of
this can be lowered by cutting on the minimum distance between the jets in the event.
This removes events with a large amount of initial state radiation thus limiting the effects.

Parton Distribution Functions

As mentioned in chapter 4, the Parton Distribution Functions are a vital ingredient for the
simulation. Typically they are a global fit to a large amount of measurements by various
experiments. Several groups have performed global fits to the data and the resulting
parameters have been extrapolated to the LHC energy. For this measurement several
PDF sets have been considered. Besides the default Ct10 [56], the central values of the
Mstw [90], Nnpdf [91] and Herapdf [92] groups have been calculated. All of these
groups also give a list of variations which represent the uncertainties. These have also
been varied. The maximum difference is the one of the central values between Nnpdf and
Ct10 with ∆PDFmTop = 0.58 GeV and ∆SF = 0.04.
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Figure 7.20: The truth transverse momentum of the top quark for the Herwig and
Pythia parton shower simulations. The selection is a very loose semileptonic tt selection
to increase the statistical accuracy.

Other Modelling Uncertainties

There are other sources of modelling related uncertainties: The renormalization and fac-
torisation scales have been varied within their uncertainties. A small effect on this mea-
surement was found. Also the effects of colour reconnection, another ad-hoc source of
modelling which had to be introduced into the simulation to properly model the data has
measured parameters with uncertainties. Finally the initial and final state radiation has
been varied. As these are the same variations which have been done when calibrating the
templates, the effect should be very close to zero. The result is that this is the case. Also,
the effect on the FSR strength should be equal to one as this is the way the quantity has
been defined.

All resulting uncertainties from the modelling have been summarised in Table 7.9.
Leading effects are the uncertainties from hadronization, the Monte-Carlo generator and
the Parton Distributon Functions.

Table 7.9: Breakdown of the modelling related systematic uncertainties of the top quark
mass and FSR strength determination.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

Colour Reconnection 0.07 0.04 0.12 0.02 0.31 0.07
Hadronization 1.14 0.36 1.23 0.42 1.00 0.30
MC Generator 1.62 0.76 1.86 0.85 1.85 0.68
muR/muF variation 0.02 0.04 0.15 0.01 0.17 0.08
ISR/FSR 0.15 n/a 0.26 n/a 0.02 n/a
PDF, inter Nnpdf/Ct10 0.58 0.04 0.62 0.01 0.63 0.08
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7.4.3 Background

Additionally to the so far mentioned uncertainties there are a couple of other systematic
influences on the measurement. These are all related to the treatment of the background.
The estimation of the background has uncertainties. They lead to a small uncertainty
in case of the W+jets estimation and a medium uncertainty for the QCD estimation.
Additionally there are shape uncertainties which lead to negligible effects. Finally a special
treatment for the single top background is neede. regarding the single top background.
The mass of the top quark does change the shape of the single top background. However,
the current treatment of the background does not allow to take this into account. An
additional systematic, has been introduced for this negligence. The analysis has been
repeated by subtracting the difference in shape between the default single top background
with mTop = 172.5 GeV and two samples with ±7.5 GeV. This gives an upward and a
downward variation which has been treated in the usual way. Table 7.10 shows the exact
values for these systematics.

Table 7.10: Breakdown of the background related systematic uncertainties of the top quark
mass and FSR strength determination.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

QCD Normalisation 0.27 0.00 0.51 0.01 0.16 0.00
Single Top Mass 0.33 0.05 0.28 0.03 0.39 0.05
W+HF Fractions 0.00 0.00 0.00 0.00 0.00 0.00
W+Jets Normalisation 0.01 0.10 0.32 0.12 0.04 0.10

7.5 Result

The observed distributions of the transverse decay length and the transverse momentum
of the lepton together with the expected predicted simulation distributions is shown in
Figure 7.21. Good agreement between data and simulation is observed, even though the
assumed mass of the top quark in the tt contribution is 172.5 GeV and the assumed FSR
strength is 0.
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Figure 7.21: The observed data distributions for the transverse decay length (left) and the
transverse momentum of the lepton (right). The filled areas are the various background
estimations. Good agreement between the data and the simulation is observed. The
assumed mass of the top quark in this figure is 172.5 GeV and the assumed FSR strength
0.
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The template fitting procedure has been applied to the background-subtracted data.
The distributions for both observables after subtracting the background is shown in Figure
7.22. This Figure also shows the templates with the best-fit values. The χ2 per degree of
freedom values are 1.031 for the transverse decay length and 0.991 for the transverse mo-
mentum of the lepton, indicating a good description of the data by the fit. The resulting
mass of the top quark is:

mTop = 170.4± 1.1 GeV (7.21)
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Figure 7.22: The observed background-subtracted data distributions for the transverse
decay length (left) and the transverse momentum of the lepton (right). The black line is
the parametrization with the best fitting values. The χ2/dof for both distributions is close
to 1.

Together with the systematic uncertainties, of which a total overview is shown in Table
7.11, this yields the following result:

mTop = 170.4± 1.1stat. ± 2.3syst. GeV (7.22)

The observed mass of the top quark is in very good agreement with the previous mea-
surements described in 5. The measurement is dominated by systematic uncertainties,
especially by the estimation of the Monte-Carlo generator uncertainty. The result for SF
is 0.42± 0.22, indicating more radiation in the data than in the default simulation.
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Table 7.11: Systematic uncertainties of the top quark mass and FSR strength determina-
tion.

Combined Electron channel Muon channel
Systematic ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF ∆mTop[GeV] ∆SF

B-Tagging Efficiency 0.21 0.07 0.28 0.07 0.19 0.08
C-Tagging Mistag Rate 0.00 0.00 0.00 0.00 0.00 0.00
Jet Vertex Fraction 0.00 0.00 0.00 0.00 0.00 0.00
Light-Tagging Mistag Rate 0.00 0.00 0.00 0.00 0.00 0.00
MET Cell Term 0.11 0.01 0.08 0.02 0.12 0.00
MET Pileup Term 0.05 0.00 0.02 0.01 0.07 0.00
QCD Normalisation 0.27 0.00 0.51 0.01 0.16 0.00
Single Top Mass 0.33 0.05 0.28 0.03 0.39 0.05
W+HF Fractions 0.00 0.00 0.00 0.00 0.00 0.00
W+Jets Norm 0.01 0.10 0.32 0.12 0.04 0.10
Jet Energy Resolution 0.71 0.03 0.65 0.03 0.70 0.03
Jet Reconstruction Efficiency 0.02 0.00 0.02 0.00 0.02 0.00
Jet Energy Scale 0.30 0.09 0.33 0.10 0.31 0.09
Electron Energy Resolution 0.00 0.00 0.00 0.01 0.00 0.00
Electron Energy Scale 0.31 0.03 0.67 0.07 0.00 0.00
Lepton ID Efficiency 0.08 0.01 0.08 0.01 0.00 0.00
Lepton Reconstruction Efficiency 0.02 0.00 0.01 0.00 0.01 0.00
Lepton Trigger Efficiency 0.03 0.00 0.01 0.00 0.02 0.00
Muon Energy Resolution 0.02 0.00 0.00 0.00 0.02 0.01
Muon Energy Scale 0.14 0.01 0.00 0.00 0.27 0.02
Colour Reconnection 0.07 0.04 0.12 0.02 0.31 0.07
Hadronization 1.14 0.36 1.23 0.42 1.00 0.30
MC Generator 1.62 0.76 1.86 0.85 1.85 0.68
muR/muF variation 0.02 0.04 0.15 0.01 0.17 0.08
ISR/FSR 0.15 n/a 0.26 n/a 0.02 n/a
PDF, inter Nnpdf/Ct10 0.58 0.04 0.62 0.01 0.63 0.08

Total 2.32 0.86 2.63 0.97 2.43 0.77
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Summary and Conclusion

A measurement of the mass of the top quark using the transverse momentum of the lepton
and decay length of the B-Hadron has been presented. The result is

mTop = (170.4± 1.1stat. ± 2.3syst.) GeV (8.1)

This is compatible with previous measurements of the mass of the top quark, done
by either the ATLAS collaboration or other experiments. An overview of the result on
the mass of the top quark including this result and various others is shown in Figure 8.1.
The total uncertainty on the result of this analysis, ∆totalmTop = 2.6 GeV is larger than
results by other measurements. However, with an jet energy scale uncertainty of only
∆JESmTop = 0.3 GeV it has one of the smallest uncertainties caused by this source. In
a combination of results this will help reducing the total uncertainty on the mass of the
top quark. The value of 0.42 on the strength on final state radiation indicates that the
simulation underestimates the strength of final state radiation. There is currently work
ongoing aiming to publish the results found in this thesis in the context of an official
ATLAS publication.

Additionally the uncertainties can be compared with those one would obtain by us-
ing only one of the two variables. If one considers only the transverse decay length, a
statistical error of ∆mstat.

Top = 1.7 GeV and a systematic uncertainty of ∆msyst.
Top = 7.8 GeV

is obtained, dominated by the uncertainty on initial and final state radiation. The sta-
tistical uncertainty obtained by using the transverse momentum of the lepton is with
∆mstat.

Top = 1.4 GeV a bit lower than the one obtained by the transverse decay length alone
but still larger than the one of the presented measurement. The systematic uncertainty
obtained is ∆msyst.

Top = 2.7 GeV. Combining the two variables is therefore worthwhile com-
pared with using only the transverse momentum of the lepton alone.

The dominant uncertainties on the measurement are caused by imperfect knowledge
of the simulation parameters, especially the choice of Monte-Carlo generator. Other large
components are the choice of a hadronization model. With the advent of more accurate
Monte-Carlo simulation programs like aMc@nlo or Sherpa 2.0, and hadronization sim-
ulations like Herwig++ and Pythia 8 as well as more accurate tunes these uncertainties
may decrease significantly in the future.

One large uncertainty on the measurement is also the statistical uncertainty. It can
be reduced significantly be applying the technique to the

√
s = 8 TeV 2012 data set of

ATLAS. It does not only consist out of more than four times as much integrated luminosity
(20.7 fb−1) but the higher center-of-mass energy increases the cross-section from 177.3 pb
to 252.9 pb. In total this gives a data set which is six times larger than the one used in this
analysis. This will not only reduce the statistical uncertainty but will also allow further
optimisation of the event and object selection for additional reduction of the systematic
uncertainties.
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Appendix A

Mathematical Appendix

A.1 The Cholesky Decomposition

The Cholesky Decomposition is a procedure to decompose a hermitian matrix M into a
lower and an upper triangular matrix:

M = LU (A.1)

Special about is, that the upper triangular matrix is the transposition of the lower trian-
gular matrix:

L = UT (A.2)

The important feature of this analysis is that if M is the covariance matrix of a system
with correlated variables, a vector of uncorrelated variables ~u can be transformed to a
vector with the correlation of the system ~c simply by multiplying it with L [95]:

~c = L~u (A.3)

The decomposition works in the following way: Let mij and lij denote the element in
the i-th row and the j-th column of M and L. One starts with j = 1 and calculates

ljj =

√√√√mjj −
j−1∑
k=1

l2jk. (A.4)

For j = 1 this is simply
√
mjj . This is repeated for j = 2. In the next step, for all j > i,

the first off-diagonal element is calculated:

lij =
1

ljj

(
mij −

j−1∑
k=1

likljk

)
. (A.5)

For j < i, lij is 0 as the algorithm calculates a triangular matrix. j is increased again and
Equations (A.4) and (A.5) are applied until all elements of L have been computed. If the
matrix is not hermitian, the square root in Equation (A.4) will be negative or the division
in (A.5) will be a division by zero. The algorithm can therefore also be used to check if a
matrix is hermitian.

An example for the algorithm: For

M =

(
2 1
2 4

)
, (A.6)

L is:

L =

(√
2 0

1√
2

√
3.5

)
. (A.7)
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LLT is equal to M which can be verified easily.
The implementation used is from LAPACK[96], interfaced through the python exten-

sion scipy/numpy [97].

A.2 Fermi- and Gamma-Distributions

A.2.1 The Fermi Distribution

The fermi distribution originates in statistical mechanics. It describes the average occu-
pation number n of a system of fermions with temperature T :

n(E) =
1

exp
(
E−µ
kT

)
+ 1

(A.8)

k is Boltzmann’s konstant and µ the chemical potential of the system. The distribution
depends on E, the energy of the state in question. µ and T are free parameters of the
system. The shape of the distribution mainly depends of the ratio of µ and T . Figure A.1
shows several fermi distributions for different values of that ratio.
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Figure A.1: Example for several fermi distributions for different ratios of µ and T .

A.2.2 The Gamma Distribution

The gamma distribution is a mathematical function:

G(x) =

(
x−γ
β

)α−1
exp

(
−x−γ

β

)
βΓ(α)

(A.9)

α, β and γ are free parameters. The classic version of the gamma distribution does not
include the parameter γ, it is a constant offset to x. Figure A.2 shows different versions
of the gamma function for various values of the three free parameters.
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Figure A.2: Example for several fermi distributions for different values of α, β and γ.


