
ABSTRACT ID #398

1

Abstract— In 2019, the LHCb experiment at CERN will

undergo a major upgrade where its detector electronics and the

entire readout system will be replaced. The goal is to read-out all

events at the full LHC frequency of 40 MHz, reaching a total data

rate of ~40 Tb/s. In this context, a new timing, trigger and readout

control system has been developed: its main tasks are to distribute

centrally the clock, the timing information and to synchronize all

elements in the readout system: from the very last Front-End

ASIC to the building of events to be stored. The heart of the timing

and readout control system is a VHDL firmware core that is now

finalized and currently in use in test-benches and test-beams by

the upgraded sub-detectors, for their initial commissioning phase.

Such firmware core is able to generate all necessary processes to

keep the synchronization of all readout elements with the LHC

bunch crossing as well as it is able to generate asynchronous

commands for calibration or test purposes. It is also able to

accommodate for specific recipes to handle varying running

conditions, by using a generic and fully configurable approach. In

this paper, the philosophy and the implementation behind such

firmware are described in details, posing particular emphasis to

the real-time logical processes that were developed in order to

satisfy the requirements of synchronization and readout control of

the upgraded LHCb detector.

Index Terms—High energy physics instrumentation computing,

Field programmable gate arrays, Supervisory control

I. INTRODUCTION

HE LHCb experiment at CERN [1] is devoted to the search

for New Physics by precisely measuring its effects in CP

violation and rare decays. By applying an indirect approach,

LHCb is able to probe effects which are strongly suppressed by

the Standard Model, such as those mediated by loop diagrams

and involving flavor changing neutral currents. In the proton-

proton collision mode, the LHC is to a large extent a heavy

flavor factory producing over 100,000 bb-pairs every second at
the nominal LHCb design luminosity of 2 × 1032 cm−2 s−1.

Given that bb-pairs are predominantly produced in the forward

or backward direction, the LHCb detector was designed as a

forward spectrometer with the detector elements installed along

the main LHC beam line, covering a pseudo-rapidity range of 2

< η < 5 well complementing the other LHC detectors ranges.

F. Alessio and P. Durante are with CERN, Rue de Meyrin, 1211 Geneva,

Switzerland (e-mail: federico.alessio@cern.ch).

G. Vouters is with LAPP, BP 110, Annecy-le-Vieux, 74941 Annecy Cedex,

France

LHCb proved excellent performance in terms of data taking

[2] and detector performance over the period 2010-2017

accumulating about 7 fb−1 of data and it is foreseen to

accumulate another ~2 fb−1 over the final year 2018. The high

efficiency (> 90%) and real-time solutions implemented during

the data taking make the possibility of increasing the physics

yield very attractive for the LHCb experiment. In fact, the
LHCb detector is limited by design in terms of data bandwidth

- 1 MHz instead of the LHC bunch crossing frequency of 40

MHz - and physics yield for hadronic channels at the hardware

trigger. Therefore, a Letter Of Intent [3], a Framework TDR [4]

and a Trigger and Online TDR [5] document the plans for an

upgraded detector which will enable LHCb to increase its

physics yield in the decays with muons by a factor of 10, the

yield for hadronic channels by a factor 20 and to collect about

50 fb−1 at a leveled constant luminosity of up to 2 × 1033 cm−2

s−1. This corresponds to ten times the current design luminosity

and increased pileup of a factor 5. The upgrade is foreseen to
actually take place in the years 2019-2020.

Fig. 1: The LHCb upgraded detector at CERN. The detector is built to perform

precise vertexing, tracking, particle identification, calorimetry and muon

detection. In the upgrade the entire Front-End and Back-End electronics will be

changed to cope with a trigger-less readout and ~90% of detector channels will

be changed as well. The detector will be majorly upgraded to increase its

physics yields by a factor 10-20.

The Readout Supervisor Firmware for

Controlling the Upgraded LHCb Detector

and Readout System

Federico Alessio, Paolo Durante, Guillaume Vouters

T

ABSTRACT ID #398

2

II. THE UPGRADED READOUT ARCHITECTURE

In order to remove the main design limitations of the current

LHCb detector, the strategy for the upgrade of the LHCb

experiment essentially consists of ultimately removing the first-

level hardware trigger entirely, hence to run the detector fully

trigger-less. By removing the first-level hardware trigger, LHC

events are recorded and transmitted from the Front-End

electronics (FE) to the readout network at the full LHC bunch

crossing rate of 40 MHz, resulting in a 40 Tb/s DAQ network.

All events will therefore be available at the processing farm

where a fully flexible software trigger will perform selection on

events, with an overall output of about 20 kHz of events to disk.

Such approach will allow maximizing signal efficiencies at
high event rates. The direct consequences of this approach are

that some of the LHCb sub-detectors will need to be completely

redesigned to cope with a higher average luminosity of 2×1033

cm−2 s−1 and the whole LHCb detector will be equipped with

completely new trigger-less FE electronics (Fig. 1). In addition,

the entire readout architecture must be redesigned in order to

cope with the upgraded multi-Tb/s bandwidth and a full 40

MHz dataflow [6]. A view of the upgraded LHCb readout

architecture can be seen in Fig. 2.

Fig. 2: The scheme of the upgraded LHCb readout architecture.

III. THE UPGRADED LHCB READOUT CONTROL AND TIMING

SYSTEM

In this context, a new central system for timing distribution,

readout control and event management for such upgraded

readout system has been developed as well. It will replace the

current readout control system, which will not be compatible in

the scope of the upgrade of the LHCb experiment both in terms

of hardware and in terms of specifications. In short, the

upgraded readout control system is based on a single central

Readout Supervisor that is responsible for:

 synchronizing and distributing the main bunch clock from

the LHC, including its timing signals

 generating and distributing synchronous and asynchronous
commands to all the Readout Boards and all the trigger-

less FE, for a total of ~15000 destinations

 rate regulating the system and the rate at which events are

sent to the farm by taking into account possible back-

pressure from the event filter farm or by applying dedicated

triggering/throttling logic to perform a central rejection of

events based on predefined complex matrices of
conditions.

More details about the specifications of the upgraded readout

control system can be found in [7] and a scheme of the system

can be seen in Fig. 3. The readout control system comprises:

 a single Readout Supervisor SODIN, in charge of centrally

managing the readout architecture

 a set of Interface Boards (SOL40s) which will act as a fan-

out for timing and readout control and as an interface board

between the LHCb slow control and the FE electronics.

The communication with the various sub-systems in the

architecture is ensured by a network of bidirectional optical
links, up to ~2500 of them, and by usage of commercial FPGA

technology and specific rad-hard ASICs. In addition, a custom-

made PCIe card was developed in LHCb [8] to be the hardware

backbone of the Data Acquisition system: the card is equipped

with a powerful FPGA (Altera ARRIA 10), 48 bidirectional

optical links qualified for up to 10 Gb/s, a 100 Gb/s PCIe Gen3

bus and a set of electrical interfaces. Such card will be widely

used in LHCb and it will take the role of a Readout Board,

should it be programmed with the Readout Board firmware, or

the role of the Readout Supervisor, should it be programmed

with the Readout Supervisor firmware. Each of these cards are

coupled with a powerful server PC, for control of the FPGA and
for interface to the upgraded readout system network.

Fig. 3: The scheme of the upgraded LHCb readout control system.

Specifically, one of these PCIe cards will act as the single

central Readout Supervisor of the final upgraded LHCb

detector. It will be connected to a set of Interface Cards, which

will have the role to fan-out the fast control information to the

Front-End electronics and the Readout Boards, in order to reach

all of the ~2500 destinations. A total of ~40 Interface Cards
each equipped with 48 bidirectional links running at ~3.2 Gb/s

Interface boards

SOL40
Interface boards

SOL40

Front-Ends

GBTs
GBT-

SCAs

Front-Ends

GBTs
GBT-

SCAs
Readout Boards

PCIe40

Readout Boards

PCIe40

Readout

Supervisors

SODIN

Readout Boards

TELL40

LHC Interfaces

TFC

TFC + ECS TFC

DAQ

ECS (FE)

ECS

100 Gb/s

3.2 Gb/s

4.8 Gb/s 3.2 Gb/s

40 MHz

clock

Front-Ends

GBTs
GBT-

SCAs

Interface boards

SOL40

ABSTRACT ID #398

3

are necessary to cover the full readout control network,

including the use of optical splitters to the Readout Boards.

Therefore, only a single FPGA will host the firmware code that

contains the logic to satisfy the aforementioned specifications

and to (fast) control the readout system. At the time of the
abstract submission, such firmware has reached its first final

version and it is currently widely used by every upgraded sub-

detector in the LHCb experiment in test-beams and lab test-

benches, for the pre-commissioning of the developed

electronics and it is being fine-tuned for the final global

commissioning of the upgraded detector, that is to start in 2019.

IV. THE READOUT SUPERVISOR FIRMWARE

Since the beginning, the Readout Supervisor firmware for the
upgraded LHCb detector was built and developed targeting

already its final implementation, due to the very tight time

constraint of the LHCb upgrade and in order to enforce global

specifications of the full readout system, starting early on with

the Front-End design phase. It has been done in a generic and

programmable way, by using independent, parallel and generic

processes, in order to satisfy the global requirements as

specified above. At the same time, the firmware has been

designed to satisfy specific extra-requirements that may arise

during the pre-commissioning or commissioning of the

upgraded sub-systems, should it be deemed necessary, without
the need of having to produce different firmware versions at

every ad-hoc request. It is also programmable and controllable

at real-time, and it also handles external electrical input or

software input from the control system. A simplified logical

scheme of the firmware is shown in Fig. 4.

Fig. 4: Simplified logical scheme of the LHCb Upgraded Readout Supervisor

firmware.

The main features of the Readout Supervisor firmware are
individually described in the following sections.

A. Synchronization with the global LHC clock.

The LHC clock is an electrical input to the LHCb PCIe card

and it is the main clock of the system, used for the user logic

and to clock the transceivers for optical distribution of the

timing commands. In the PCIe card, the clock is first input to

an external PLL (SI5345), cleaned and re-driven with the same

exact LHC frequency and then transmitted to the FPGA as an

input.

In addition, an LHC orbit signal is also received – through

the same array of electrical inputs – and such orbit pulse is the

signal used to reset the Bunch ID counter to identify events.
Based on this signal, the firmware generates a Bunch ID counter

reset signal which is part of the array of commands distributed

to the entire readout electronics. In this way, every element in

the system can reset their local Bunch ID counter based on an

offset corresponding to the local delay. The Bunch ID is the

unique identifier of an event and it is used in the Back-End (BE)

to ultimately pack a full event from the individual fragments

sent from the FE.

B. Triggers generation

Even though the FE electronics runs fully trigger-less, a

centralized trigger is generated in case rate regulation is needed

(i.e. reduce the amount of accepted events). The trigger is not

based on physics decisions, but on a predefined set of recipes

and instructions loaded at real-time by the central control

system and it is only distributed to the BE without any

constraints on latency – although once the first trigger is
generated, all subsequent triggers arrive at a fixed latency due

to the synchronous nature of the timing and readout control

system.

While in the final system, the triggering mechanism will be

mostly unused, such technique is already playing a major role

in the commissioning phase of the detector: to illustrate the

concept with an example, the central firmware can in fact

generate a calibration command and choose whether the data

association to that calibration command should be accepted as

an event or not. Should it be accepted, a trigger bit is associated

to it to communicate to the BE boards to actually pack the

fragments and send them out to the rest of the Data Acquisition
System rather than rejecting the event. Also, for test-benches

where there is no possibility of storing 40 MHz of events for

many hours, a much lower trigger rate must be used.

The generation of a trigger can be associated with:

- internal processes like internal periodic trigger

generators with specific configuration (like rate and

location of the trigger)

- external electrical inputs, especially useful for test-beam

or test-benches

- specific data taking modes

- individual asynchronous triggers triggered by the slow
control

The firmware also implements a throttle mechanism that is

the possibility of rejecting a possible accepted trigger due to a

specific data taking reason. An example of this can be seen in

the FE Reset procedure: when the central firmware generates an

asynchronous FE Reset command for the entire FE electronics,

it must also wait that the FE electronics is ready to transmit

proper data again – making sure that the FE Reset procedure

completed. In this sense, all triggers following the generation of

the FE Reset and before a programmable waiting time are

rejected, hence throttled away. This is only one example of the

procedures, but such technique is widely used throughout the
firmware in order to keep a centralized synchronicity with the

full readout architecture.

Trigger

Manager

Multi-

Triggered

Alignment

Event

(TAE)

Handler

TFC

E
x
t C

lo
c
k
 &

L
H

C
 tim

in
g

in
fo

 (L
H

C
)

ECS

TO FARM

LHCb upgraded

Readout Supervisor firmware

Throttle

Handler

F
R

O
M

R
e

a
d

o
u
t

B
o

a
rd

Multi-

Event

Packet

(MEP)

Handler

M
E

P

In
te

rn
a

l

Internal

Triggers Trg

BXID

B
X

T
Y

P
E

E
x
te

rn
a

l

T
rg

 In
p

u
t

TFC TFC

R
e
s
e

ts

TFC

In
fo

TFC bank

Monitoring

counters
Status

Registers

Error

Registers

Config

Registers

TFC

O
th

e
r

c
o

m
m

a
n

d
s

To FE/Readout

Boards

O
th

e
r

R
u
n

 I
n

fo

Buffer to

absorb

latency

Buffer to

absorb

final

latency

F
R

O
M

F
A

R
M

Filling Scheme

RAM (224 x 32b)

FIXED LATENCY

Asynch

commands

Synch

commands Cmd

E
x
te

rn
a

l
C

o
m

m
a

n
d

s

ABSTRACT ID #398

4

C. Generation of synchronous and asynchronous commands

Probably the most important aspect in the Readout

Supervisor firmware is the generation of centralized

synchronous and asynchronous commands. Such commands

are used by the FE and the BE electronics to perform specific

actions or trigger specific processes, based on the global

specifications.

The generation of synchronous commands is based on

programmable processes and they can be triggered internally in

the firmware – from another process for example – or externally

from an electrical input for example. The generation of
asynchronous commands is instead triggered via slow control

(see section F).

An example of the way in which commands are generated,

managed and then distributed can be seen in Fig. 5. This

example describes a “start-of-run” synchronization mechanism.

Such mechanism is used to synchronize the data stream of the

FE to the input decoding block of the BE, such that the BE

synchronize on the correct BXID for each individual link. This

mechanism is done centrally in the Readout Supervisor and

distributed to every individual FE chip (~2500) such that they

perform a “synchronization mechanism” with the
corresponding link in the BE card. The mechanism follows

these steps:

1- the ECS sends a start of run command to the Readout

Supervisor

2- the Readout Supervisor edge detects such command and

generate a FE Reset and a BE Reset. These resets are one

clock signal long.

3- the Readout Supervisor subsequently starts sending a

command (Header Only) whose aim is to keep the FE idle.

The length of the transmission of this command is

programmable.

4- when the first Bunch Identifier Reset arrives after the first
FE Reset, the Readout Supervisor releases the Header Only

command and sends a Synch (synchronization) command,

to have the FE start sending a synchronization pattern with

the corresponding Bunch Identifier on which the BE will

synchronize

5- the length of the Synch command is programmable and it

may or may not be followed by another Header Only

should some FE chip need to remain idle during the

procedure.

6- once the procedure is done, all FE links are now

synchronized with the BE and the Readout Supervisor can
release the veto on the trigger, i.e. data can be accepted.

Fig. 5: Example of a start-of-run synchronization mechanism highlighting the

interplay between synchronous and asynchronous commands, clock and

specific processes.

A procedure of this kind can be repeated every time the

control system sends a start of run command or even if it sends

a FE Reset command, even asynchronously.

D. Usage of programmable pipelines to ensure fixed latency
transmission of commands

In order to allow for variable and real-time triggering/throttle

mechanisms due to varying running conditions while keeping

the transmission of commands to the FE at a fixed latency, a set

of programmable pipelines is used. In Fig. 4, two major

pipelines are highlighted: the output pipeline for final latency

adjustment and a middle pipeline which is used to generically

compensate for specific data taking modes. An example of such

specific data taking modes is the Timing Alignment Event

(TAE) mode: in this mode – mostly used for calibration and
commissioning purposes – a window of triggers and/or

commands are generated around a central trigger in order to

extend the window of the accepted events. In this case, triggers

“in the past” must be modified in order to allow for the full

window to be modified in the same way and this can easily be

done with a fixed latency pipeline and modify the signals at the

input of the pipeline. The current firmware allows for a full

window up to 65 events.

E. Generation of a centralized event data bank

The generation of a centralized data bank containing the

unique information of a selected event, such as timestamp,

event type and sources and destination was deemed to be

necessary and it is implemented in the firmware. As the

Readout Supervisor is the only element in the system to

centrally decide whether an event should be kept or not, it is

also the only element in the system able to know the origin and

the source of such event. Such information are:
- Bunch Identifier (BXID)

- Crossing Type based on the LHC filling scheme (beam-

beam, beam-gas, empty-emtpy crossing types)

- Origin of trigger (calibration, TAE, random, etc.)

- A trigger mask that identifies if another command was

associated to the accepted event (for example if the Front-

End was requested to send data Non-Zero Suppressed –

NZS).

- In case of a scan, the number of the step in the scan

- In addition, the bank is used to timestamp the event by

uniquely identifying the event with an Orbit number – i.e.

the number of orbit pulses since the beginning of a run –
and the UTC timestamp as the number of 40 MHz clock

cycles since the beginning of a run.

F. Real-time interface to the central LHCb control system

An important aspect of the central Readout Supervision is the

ability to control and monitor the readout system in a fully real-
time fashion. This is done partly by firmware processes as

described in the previous sections, but it is also done by the

software control part. In fact, the software control part is in

charge of configuring the firmware, passing the most important

parameters (such as programmable trigger rate, the masking of

such triggers, the generation of commands, the initial

timestamp, etc.) but also to generate asynchronous commands:

for example, as described in section C, at the start of a run, an

asynchronous FE Reset is generated and following such reset a

start-of-run synchronization mechanism is done in firmware.

However, the FE Reset is issued from control system,

immediately after the start of run command and such
synchronization mechanism will not take place until the central

Clock

FE Reset

Header Only

Synch

Programmable length. To allow

Front-End to recover from Reset

Start of run synchronization mechanism

Other cmds

BXID Reset

Programmable length. Synch pattern to allow Readout

Board to synch with Front-End stream

BE Reset

Trigger Veto

Programmable length, enable/disable

ABSTRACT ID #398

5

software system decides to send to. This is only one example,

given here to indicate the way the interplay between control

system and the firmware is done. It also highlights the high-

level of control that the system can apply on the central readout

modes: it can be chosen to be fast and synchronous for certain
processes or routines, while it can be chosen to be asynchronous

and slower for other routines, in case the start of run

synchronization has to wait for another task to be finished

before issuing a start of run.

The software control part is implement within the global

LHCb Experiment Control System (ECS) framework [9].

G. Monitoring registers and counters

An important aspect of the central Readout Supervision is

also the ability to monitor all the previously described

processes. A choice was made to have a set of counters which

are free-running and a set of counters which are “latched” to a

specific update: such update is issued by control system and all

counters are updated at the exact same clock cycle, such that the

system can get a uniform and consistent update of the counters.

For example, in this way, by comparing the number of

calibration triggers and the number of orbits, as they are

updated on the same clock cycles, the ratio of the two can be
used to determine a frequency, very precisely and consistently.

H. Amount of FPGA logical resources

The firmware previously described has been fully

implemented for an Altera Arria 10 FPGA and it is currently

taking up to 3% of the Combinatorial ALUTs (tot of 8870) and

2% of the logic registers (7710) as well as 4% if the available
memory bits (~70 kB).

The low amount of logical resources and memory resources

are needed to satisfy the requirements in order to keep the

FPGA routing simple and protected against timing issues as

well as allowing to have many of such cores running in parallel

in the same FPGA for partitioning purposes.

V. CONCLUSION

In this paper, the firmware for the central Readout Supervisor

of the LHCb upgraded readout system was presented. This

firmware is currently being used for sub-detector

commissioning, for test-beams and test-benches.
It is done in a generic, flexible and programmable way and

in this paper the mechanisms behind the way synchronous and

asynchronous commands, timing and procedures are generated

is highlighted. This is also shown in relation to the fact that such

commands should be distributed at a fixed latency and in

relation to the interplay between the firmware and the software

slow control.

Such firmware will be in production for the commissioning

phase of the upgraded LHCb detector starting from the end of

2018 when the first sub-detector will start their commissioning

and assembly and it will see its very final version for the first
data taking at the LHC few years afterwards.

REFERENCES
[1] The LHCb Collaboration, “The LHCb Detector at the LHC”, 2008 JINST

3 S08005.

[2] F. Alessio on behalf of the LHCb Collaboration, “A true real-time success

story: the case of collection beauty-ful data at the LHCb experiment”, this

conference.

[3] The LHCb Collaboration, “Letter of Intent for the LHCb Upgrade”,

CERN-LHCC-2011-001, 2011.

[4] The LHCb Collaboration, “Framework TDR for the LHCb Upgrade”,

CERN-LHCC-2012-007, 2012.

[5] The LHCb Collaboration, “LHCb Trigger and Online Upgrade Technical

Design Report”, CERN-LHCC-2014-016, 2014.

[6] F. Alessio et al., “Trigger-less readout architecture for the upgrade of the

LHCb experiment at CERN”, 2013 JINST 8 C12019

[7] F. Alessio and R. Jacobsson, “A new readout control system for the LHCb

upgrade at CERN”, 2012 JINST 7 C11010

[8] JP Cachemiche et al, “The PCIe-based readout system for the LHCb

experiment”, 2016 JINST 11 P02013

[9] C. Gaspar et al., “The LHCb experiment control system: on the path to

full automation”, 13th International Conference on Accelerator and Large

Experimental Physics Control Systems (ICALEPCS2011). Joint

Accelerator Conference Website, 2011, pp. 20-23.

