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Abstract

The reaction pp — 7d is studied in a relativistic meson rescattering model. For
1.3 < Ty < 2.4 GeV the differential cross section and the asymmetry are calculated and
compared to experiment. The model introduces simple form factors for the leading # N
partial waves which depend on the virtuality of the exchanged mesons, 7 and p. All
remaining input is derived from experimental constraints. The data can be described by
energy independent form factors. The asymmetries are sensitive to pp distortion factors
and further details of the model.



1 Introduction

We are studying the reaction pp — n*d in the energy range 1.3 < T}, < 2.4 GeV where good
data on cross sections and asymmetries have become available recently(l]. Pion production has
been studied earlier in the A energy range where an almost complete set of spin observables
has been determined experimentally. Extensive calculations in the frame of coupled channel
formalisms[2] and in relativistic effective perturbation theory[3, 4] have been confronted with
the data. The description is in general good, with the exception of notoriously sensitive quan-
tities like the asymmetry A, and the vector polarization ¢t;;. At A energies pion rescattering
is the dominating physical mechanism as is visible from the energy dependence of the cross
section which clearly displays the resonance. Single nucleon exchange is fairly small in the A
resonance regime and entirely negligible for the multi-GeV range considered here.

We shall extend the relativistic rescattering model of [3] to the GeV range. At these energies
many 7N resonances exist as reflected by the well measured total and differential 7V cross
sections. The two body nature of the reaction pp — =*d forces medium large momentum
transfers onto the deuteron vertex and requires fairly large virtualities of the exchanged meson
and nucleon. In 3, 4] a Rarita-Schwinger formalism has been used off the mass-shell for the A
resonance. For the higher 7 N partial waves a simple off-shell recipe consisted of continuing the
projectors and equating the partial wave amplitudes off and on the mass shell. At the higher
energies which are considered here a special field theoretic description of each of the many 7N
resonances is not feasible. In this paper we shall introduce simple effective off-shell form factors
for the dominating partial waves with parameters derived from data.

In section 2 we describe the model and the sources of input. Section 3 gives the results of
the basic model and some of its variations while section 4 contains a summary.

2 The model

2.1 Helicity amplitudes from meson rescattering

The pion rescattering diagram of Fig. 1 corresponds to the amplitudes [3, 4]
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where Ag, A1, A, are the deuteron and proton helicities and the four vectors are defined in
Fig. 1. The pion and nucleon masses are denoted by m, and m, respectively. The # N invariant
amplitudes A and B, the pion vertex function V;xn and the deuteron vertex functions G, are
described below. The relation to the c.m. cross section is
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where

Y= Z |M:\Sd,,\1,,\2|2 (3)

AdsA1,22

and the amplitude M5 , ,, is symmetrized in the proton labels. The momenta k and p are
defined in Eq. (5) below. For the spin observables and further details see [3].

The energy integration in Eq. (1) is discussed in [3]. The propagator singularities lead to
three contributions. The first one corresponds to the spectator contribution where the nucleon 7
is on-shell, the relativistic impulse approzimation. The pion propagator and the second nucleon
propagator lead to antiparticle contributions which have been evaluated in [3] and found to be
small. In this paper, as in [4], we shall retain only the relativistic impulse approximation. The
remaining three dimensional integral is calculated numerically using the following input.

2.2 The deuteron vertex functions

For the deuteron vertex functions we use the invariant expansion from the formalism in [5].
In [6] the S-state and D-state form factors have been fitted separately to modern electron
scattering data on the deuteron for momentum transfers up to 2.5 (GeV/c)?. The vertex
functions from [6] are therefore rather directly constrained by accurate data. In these fits certain
relativistic corrections [7] and additional vertex functions arising when the second nucleon is
off mass shell [8] are not included explicitly. The vertex functions deduced therefore include
these effects effectively.

2.3 The invariant 7N amplitudes off the mass shell

The #N invariant amplitudes A and B are constructed from the Karlsruhe-Helsinki partial
waves [9]. It will be necessary to define an off-mass shell extrapolation. It is important to
note that the virtualities imposed by the two body kinematics are large. Table 1 shows the
virtualities for the meson, z = ¢g%/m2, and the nucleon, zxy = p%/m?, for the A resonance
regime, while table 2 shows the kinematics at 7, = 2.0 GeV. The loop three momentum |7
has been restricted to 0 < |] < |7euat| Where || corresponds to s,x = (m + m.)%. As in [4]
we shall restrict the integration to this range. In this way we avoid amplitudes deeply below

threshold which are not known. The kinematic dependence of the # N variables can be seen
from!

s:v = (1 +98)° = (2E —mo)* - 77, (4)
Uy = (p1 — 9)* = m? + m* — 2EE, + 2kpcos?, (5)
ten = (p1—pa)®. (6)

Note that no = /772 + m? in the impulse approximation. We work in the overall c.m. with
total energy 2E and external pion scattering angle §. The three momenta of the external pion

!The definitions of ¢, and urn in [3] have to be interchanged.



and proton are k and p respectively. The virtualities of the meson and nucleon are

2
q 1 7
I = —Tn—Ez.- :;z—z(m2+772'—2E770_2p|77|C08077) (7)
and 0 1
N = % = W[mﬁ + 0% — 2E4mo — 2|7]k(sin @ sin §, cos ¢, + cos § cos 8,)] (8)

respectively. Recall that 2 = m? in the impulse approximation. In the tables 1 and 2 we have
frozen the loop angles for the purpose of illustration in the coplanar approximation

(;5,,:7('. (9)

which has been shown to be a good approximation for the integral at the A resonance [3]. In
this approximation, the virtualities of the meson and nucleon are simplified to

2
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In the actual evaluation we shall not make any such approximation. In [3, 4] analytic techniques
and a factorization approximation reduced the evaluation of the amplitudes to one dimensional
numerical integration. Modern computers allow to do the three dimensional integral over 7
completely numerically. At the same time the Dirac algebra corresponding to Eq. (1) has now
been done on the computer. The results of [3] for the amplitudes have been reproduced to
better than 5% for the same input. For the present code a set of amplitudes for six scattering
angles at one energy takes 2 minutes of CPU time on a VAX6630. We thus have an efficient
basis for studying variation of the input. In particular the present paper extensively explores
different prescriptions for the off-shell behaviour of the meson rescattering amplitudes. We
work with explicit spinors on the level of helicity amplitudes as in [3] which is by far the most
effective way for calculating any desired spin observables.

For the GeV range the following procedure has been implemented to define the off mass
shell extrapolations for all partial waves (contrary to [3] where the 17 and 2~ waves have
been treated differently). The projectors in the 7N partial wave expansion for the invariant
amplitudes are calculated with full off-shell kinematics while the partial waves Tj.(s,n) are
identified off and on the mass shell with s,y from Eq. (4).
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where ¢. . is the modulus of the final ? state 3-momentum |ps| in # N c.m., see Eq. (15) below.
Es =1/¢?, + P’ is the c.m. energy of the final nucleon calculated from the virtual mass /p%

and 8 is the c.m. off-shell 7N scattering angle. The kinematical variables in the off-shell ¢.m. of
7N are
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where Ex = +/|p;|? + m? and E, = /|p]? + m2.

In the approach of [3] the off-shell definition of the invariant amplitudes A and B was
completed by setting Fji(z,zx) = 1 for waves higher than 2~ while the 1* and 2~ waves
were calculated from the Rarita-Schwinger formalism. In the present paper we introduce a
Lorentzian form factor for each partial wave. In the simplest version Fj. will depend only on
the meson virtuality £ and not on the nucleon virtuality zn

1+ad?,
L+ (o - 52)°

This form guarantees damping for large z and allows rising or falling form factors for z < 1.

Fli(l') = (17)

The lowest four partial waves get separate form factors while a common factor is used for
partial waves higher than 2.

At the pion absorption vertex a Ferrari-Selleri form factor with range parameter w is in-
troduced

Vonn = g(m2 — w?)/(g5 — w?) (18)

with g?/4n = 14.28. The range parameter will be fitted. It is the parameter which essentially
controls the size of the cross section.

?In the calculation [3] the final state momentum has been used as well, contrary to the text in its Appendix.



2.4 Distortion factors

To complete the description of the model we briefly describe the Sopkovich distortion factors
[10] which represent higher order rescattering diagrams [11]. The helicity amplitudes of Eq. (1)

are replaced by
M7 — \/S{M7\/S] (19)

For each J an L-S decomposition is implicit, for details see the appendix of [3]. For J < 7
the projections M7 are calculated numerically. Higher waves remain unchanged. At resonance
[3] pion distortion is the dominant effect. As the elastic #d cross section falls steeply with
energy, md distortion gets correspondingly less important in the GeV region. For our energies
we have calculated 7d phases from the full spin relativistic impulse approximation developed
in [12]. At T, ~ 300 MeV these phases match the Faddeev calculations from [13], compare
also [2]. The pp distortion reduces the size of the pp — 7d cross section considerably at the
energies considered here. The shapes of the pp — =wd cross section and asymmetry are less
sensitive. The information on pp amplitudes and phases is far from complete in the T, range
of 1 to 3 GeV. To test the sensitivity we have used two rather different sets of pp amplitudes.
In one set we have calculated pp phases ourselves from the coupled channels formalism {14].
In the second set the phases are taken from the direct VPI phase shift analysis[15]. For the
purpose of illustration the pp cross section at T, = 1.3 GeV for these two sets are shown in
Fig. 2. For 1.7 GeV and higher energies the forward pp cross sections for the theoretical phases
corresponding to [14] are too big. However, since the inelasticities in the two sets of pp phases
are comparable no significant changes are observed in the pp — =d cross sections (compare
Fig. 3). Even for the asymmetries pp distortion is not as important as one could expect. We
have also calculated all the other spin observables (not shown) and found a sensitivity similar
to that of the asymmetry. For the asymmetries in pp — wd the phases calculated from coupled
channels [14] do slightly better, see Fig. 3.

3 Results

3.1 Energy independent fit

In this section we show a fit to the data at six energies using energy independent form factors.
Fig. 3 shows the fit for cross sections and asymmetries. Table 3 shows the parameters for the
form factors F(z), Eq. (17) where w? = 0.57 GeV%. The four lowest waves have been fitted
separately, the higher waves (h) from the 2+ wave up have been fitted with a common form
factor. The fit requires only a weak x-dependence for these higher waves. Including the vertex
range parameter w in Eq. (18), the total number of parameters is 11. A MINUIT search in
this parameter space converges in about two hours of CPU time. The meson M in Fig. 1
stands not only for 7+ and #° exchange but also for p exchange since the leading operator in
the nonrelativistic limit differs only by a sign. The form factors Eq. (17) and (18) represent



these meson exchange diagrams effectively. On the whole the calculated cross sections of Fig. 3
describe the data quite well. At 1.88 and 2.1 GeV the calculation shows slightly too much
forward dipping, while at 1.3 GeV the cross section is too flat with respect to modern data[l].
These deviations may be due to the presence of fairly strong resonances at these energies which
are not well described by average form factors, compare section 3.4 below.

The asymmetries are also described surprisingly well. Note that the calculation is including
distortion factors for the initial pp and final 7d states (see section 2.4). In the GeV range nd
distortion is not important (in contrast to the A resonance range). The pp distortion affects
mostly the overall size of the cross section. Remaining sensitivities are illustrated by the solid
and dashed lines. The solid lines contain pp phases from [15] while the dashed lines use pp
phase shifts which have been calculated from the coupled channel formalism[14] for the present
purpose. The backward peak seen in the asymmetries at medium energies does not seem to be
related to ambiguities in the distortion factors.

3.2 Energy dependent analysis

Using the procedure described above we have also fitted the form factors Eq. (17) for each
energy separately. The fit for cross section and asymmetry is shown in Fig. 4. The parameters
in table 4 show a fair degree of stability. No simple solution has been found which describes
the backward peaks for the asymmetries. The cross section at 1.3 GeV is well described by
a moderate change for the 1* wave and by a fairly flat form factor (large width Aj) for the
higher # N partial waves.

3.3 Alternative parametrizations of form factors

At resonance the Rarita-Schwinger form factors of [3] used for the dominant 1* 7N wave
amount to practically linear form factors both in z and zy as we have checked. The 1%
contribution to the invariant # N amplitudes A and B can thus be approximated by

A = ST TR(Es + m)(Vaw — m)P|(cos ) Folz, o)
(B = m)(y/5zy +m)Pj(cos B) Fi (2, 2) (20)
B = — 2T T{(Es+m)P(cosh)Fo(a, zn) — (Ea - m)Py(cosD) Fi(z,zn)]  (21)

where
Fo(z,zn5) = fol2) [ (2n) (22)

with a similar expression for Fy(z,zx). The functions f; are linear (z = 0,1):
fz(:t) = a; + (1 — ai)x, (23)

flew) =a¥ + (1~ al)en. (24)



The same form factors are used for A and B.

The presence of the meson and deuteron vertex functions guarantees convergence of the
integral even without any cutoff in |7j]. The resulting observables from a minimization of the
linear approximation at 7, = 0.578 GeV are shown in Fig. 5. The corresponding parameters for
the linear form factors are shown in Table 5 for the free fit where also the linear approximation
for the Rarita-Schwinger expression in [3] is shown.

Since the linear approximation reproduces the results of [3] at T, = 0.578 GeV very ac-
curately we have extended this procedure to T, = 1.5 GeV. In this case we use a product of
linear vertex functions for all j = [+ waves simultaneously and we use the same form factors
also for the j = I— waves, generalizing Egs. (20-24). The result from fitting the parameters in
Eq. (22) to the cross section and asymmetry at 1.5 GeV are shown in Fig. 7, the corresponding
form factors in Table 6. The fit is not convincing. Attempting simultaneous minimization of
the remaining energies in the GeV region does not lead to good fits with stable parameters
either. We have therefore abandoned this approach. It could of course be too restrictive to use
the same form factors for the j = [+ and 7 = [— waves.

We mentioned in the introduction that many spin observables have been measured in the
A resonance regime, in particular the Cartesian spin parameters A;;. In [16] a procedure has
been formulated which is capable of explaining the finer details of the spin observables. It
consists in extrapolating the spin-flip and spin-nonflip parts of the # N amplitudes differently.
A difference of 13% for z ~ —10 where the integrand peaks, is enough to obtain a very good fit
to the data at resonance. This amounts to introducing separate form factors for the invariant
amplitudes A and B.

Since the only spin observable measured in the GeV range is the asymmetry we have not
introduced this procedure here. Not surprisingly, preliminary tests in the GeV range have
shown a fair amount of sensitivity to this degree of freedom.

3.4 The role of strong local 7V resonances

We already noticed the forward dip in the global fit to the cross sections at T, = 2.1 and
1.88 GeV in Fig. 3 at least in comparison with the recent data from {1]. We have therefore
explored the possible role of several = N resonances for the energy T, = 2.1 GeV. We found that
the N(1680) Fy5 resonance in particular can affect the cross section significantly. Fig. 7 shows
the corresponding cross section. For the figure we have replaced in the isospin 1/2 channel
the overall form factor F5_ in Eq. (12) and (13) by two separate form factors which multiply
the terms containing P, and P;. On the amplitude level the modification of the forward
cross section shown amounts to 50% increase in the P, term and 50% decrease in the P,
term. The result seems to confirm the importance of local resonance effects. In the absence of
convincing constraints for all these resonance form factors we refrain, however, from introducing
these new parameters into the fit. We must also remember that with increasing energy the
%N resonances couple to 7w N states with increasing strength. This is particularly true for



A(1600) Py, A(1620) S3y, A(1700) D33, A(1905) F35, A(1910) Py, A(1950) Fa7, N(1440) Py,
N(1520) D3, N(1675) Dys5, N(1680) Fi5, N(1720) P13, N(2190) Gy7 [17]. Note that the 7z N
and other decay channels are of course reflected in the total # N cross section on shell by the
unitarity relation and are thus already partly contained in the normalization of our calculation
at each energy. Two-meson exchange diagrams could be introduced into our model explicitly
for the price of a considerable number of new parameters. We think this is presently neither
practical nor warranted. It is however clear that the form factors of tables 3 and 4 effectively
also represent these effects.

4 Summary and Conclusion

Our model calculation has shown that meson rescattering is capable of describing the elemen-
tary pp — wd reaction also in the GeV range. One of the most important physics ingredients
is the off-mass shell behaviour of the exchanged mesons. Fairly simple energy independent
effective form factors for the leading meson-nucleon partial waves are able to describe cross
sections and asymmetries in a semiquantitative way. The simplest model leading to a global
fit contains no explicit form factors for the virtual nucleon. These would represent corrections
to the deuteron vertex function and additional off-shell effects for the meson-nucleon ampli-
tude. The deuteron vertex corrections are included effectively in the parametrization used (see
section 2.2) but the importance of the nucleon virtuality zx in the meson-nucleon amplitude
is not known. The spectral function in the nucleon mass variable starts at m + m. and is
generally considered to be weak. Moreover, for our process pp — wd the range of zy is fairly
restricted(see tables 1 and 2). At the A resonance (see section 3.3) a fit to the data requires
some zx dependence, however. Despite of that we believe that the remaining discrepancies in
the GeV range considered in this paper are most likely due to the effects of local resonances and
to the exchange of several pions and further meson resonances beyond the level already present
implicitly in our calculation. We also expect that the finer details of the spin observables in the
GeV range which are not measured yet, will require separate extrapolations for the invariant
7N amplitudes A and B, as was shown to be necessary [16] in A resonance range.



10

References

[1] J. Yonnet, et al., Nucl. Phys. A562, 352 (1993).

[2] H. Garcilazo, and T. Mizutani, “x NN systems”, World Scientific 1990.

[3] W. Grein, A. Kénig, P. Kroll, M.P. Locher, and A. Svarc, Ann. Phys. 153, 301 (1984).
[4] M.P. Locher, and A. Svarc, J. Phys. G11, 183 (1985).

[5] M. Gourdin et al., Nuovo Cimento 37 524 (1965).

[6] M. P. Locher, and A. Svarc, Z. Phys. A338, 89 (1991) and Fizika 22, 549 (1990).

[7] R.G. Arnold, C.E. Carlson and F. Gross, Phys. Rev. C21, 1426 (1980); R.S. Bhalerao
and S.A. Gurvitz, Phys. Rev. Lett. 47, 1815 (1981).

[8] F. Gross, Phys. Rev. D10, 223 (1974).

[9] G. Hohler, Pion Nucleon Scattering, Landolt-Bérnstein Vol. I/9b 1 & 2, Springer-Verlag
(1983).

[10] N.J. Sopkovich, Nuovo Cimento 34, 186 (1962).
[11] L. Durand III, and Yam Tsi Chiu, Phys. Rev. 139, B646 (1965).
[12] K. Kubodera, and M. P. Locher, Phys. Lett. B87, 169 (1979).

[13] H. Garcilazo, Phys. Rev. Lett. 45, 780 (1980); Phys. Rev. C35, 1804 (1987) and private
communication. N. Girard, C. Fayard and G. H. Lamot, Phys. Rev. C21, 1959 (1980).

[14] T.-S.H. Lee, Phys. Rev. C29, 195 (1984).

[15] R.A. Arndt et al., Phys. Rev. D28, 93 (1983); VPI phase shifts for pp are obtained from
the SAID program.

[16] M. P. Locher and A. Svarc, Few-Body Systems 5, 59 (1988).
[17] Particle Data Group, K. Hikasa et al., Phys. Rev. D45, S1 (1992).

[18] M. Akemoto et al., Phys. Lett. B149, 321 (1984); R.M. Heinz, O.E. Overseth, D.E. Pellett
and M.L. Perl, Phys. Rev. 167, 1232 (1968); D. Dekkers et al., Phys. Lett. 11, 161 (1964);
N.W. Reay et al., Phys. Rev. 142, 918 (1966).

[19] J. Hoftiezer et al., Nucl. Phys. A402 429 (1983); Nucl. Phys. A412, 286 (1984);
Nucl. Phys. A412, 273 (1984).

[20] E. Aprile, Nucl. Phys. A379, 369 (1982).



11

[21] R.M. Heinz et al., Phys. Rev. 167, 1232 (1968).

[22] R. Bertini et al., Phys. Lett. B152, 77 (1985); R. Bertini et al., Phys. Lett. B203, 18
(1988).



12

indep. of ¢ =0 6 =m/2 f=rx
|77] SrN TN z teN z t-N z 29
0.0 1.459 | 0.969 | -13.9 | -0.529 | -13.9 | -0.303 | -13.9 | -0.077
|7eae]/2 | 1.383 | 0.983 | -5.5 | -0.287 | -16.0 | -0.252 | -26.5 | -0.218
|Fewe] | 1.162 1 0.853 | -1.1 | -0.100 | -22.1 | -0.257 | -43.0 | -0.413

Table 1: Kinematic ranges at T, = 0.578 GeV for s, (GeV?), t.n (GeV?), z and zx (dimen-
sionless) in the coplanar approximation as a function of the loop three-momentum |7] and the
external angle 8. See Egs. (4-11). Note that s,y and zy are independent of § in the coplanar
approximation. The cutoff loop momentum |fus| = 0.367 GeV is defined preceeding Eq. (4).

indep. of 4 6=0 8=x/2 6=nm
|71 SrN TN z trn x taN z trN
0.0 3.094 | 0.737 | -42.3 | -2.654 | -42.3 | -1.325 | —42.3 | 0.004
|Teue) /2 | 2.548 | 0.974 | -9.67 | -1.305 | -57.3 | —0.842 -105 | -0.380
|Teut] | 1162 | 0.507 | -0.15 | -0.158 | -95.3 | -0.562 -191 | -0.966

Table 2: Kinematic ranges for s,n, t.n,  and zy at T, = 2.0 GeV and |few| = 0.895 GeV/c.
See Table 1 for further notation.

0+ | 1- 1t 2= | h
a [064)0.73 | -0.4710.74 |04
Al 771314 3.0 |145] 25

Table 3: The parameters of the Lorentzian form factors Eq. (17) for the x N partial waves
from the energy independent analysis. Note a and A are dimensionless.
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T, (GeV)

1.3 1.6 1.7 {188 2.1 2.4

w? (GeV?) | 0.65 0.6 06 | 06 |082]| 0.6
Aot -0.052 1.05 | 0.23 |1.22|0.89 | -1.07
Aoy 5.0 5.1 144 | 6.64 | 897 28.8
ai- 1.53 1.08 | 098 {097 |0.66 | 0.77
A 104 15.2 16.8 | 16.2 | 22.1 | 20.8
aye -5.0 |-0.034-0.231041]0.30| 0.38
Ay 4.6 4.0 4.0 | 40 | 40 | 4.0

a, -4.9 1.11 1.43 |1.36 1094 | 0.34

Ay 100 5.0 50 | 5.0 |8.03 | 22.0

Table 4:

The parameters of the Lorentzian form factors Eq. (17) for the # N partial waves
from the energy dependent analysis. Note a and A are dimensionless.

ag ay () a{v
Rarita-Schwinger | 1.004 | 1.04 | -1.0 | -0.5
Fit 0.948 | 1.06 | -1.68 | -1.35

Table 5:

Parameters for the linear form factors at T, = 0.578 GeV used in Fig. 5. Both
the fit and the linear approximation to the Rarita-Schwinger formalism[3] for the A resonance

contribution are shown. See section 3.3 for more details.

Qg ay aév CL{V
0.974 ) 0.911 | -0.30 | -1.65

Table 6: Parameters for the form factors at 7, = 1.5 GeV from the fit. Compare section 3.3

and Fig. 6.
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Fig. 1: The meson rescattering diagram.

30 L0 S5 SO T N D B N BN N S S A R SR S SN N S SN B B S B B [N SR I N SN R S N B

95 Tp =13 GeV

20

15¢

L S S

Fig. 2: Elastic pp differential cross section at T, = 1.3 GeV. The dashed line is from the
coupled channels calculation [14] and the solid line is from the VPI phase shift analysis [15].
Experimental data are taken from the VPI compilation(15].
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Fig. 3: Energy independent analysis: a) The c.m. differential cross section for pp — 7d as a
function of the proton kinetic lab energy T,. b) The asymmetry parameter. The data from the
recent Saclay measurement [1] are indicated by solid triangles while previous measurements at
nearby energies [18] are indicated by open circles. The dashed curves are for the pp distortion
factors from the coupled channel model [14] while the the solid curves are the results for the
pp phase shifts from VPI[15]. See Table 3 for the parameters of the fit.
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Fig. 4: Energy dependent analysis. See Fig. 3 for notation and Table 4 for the parameters
of the fit.
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Fig. 5: Differential cross section and asymmetry for pp — =d at T, = 0.578 GeV with linear
form factors. Experimental data are from [19, 20]. See section 3.3.
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Fig. 6:
form factors. Data are from [21, 22]. See section 3.3.
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Fig. 7: Differential cross section for pp — nd at T, = 2.1 GeV with resonance effect shown in
dashed line. The solid line is the energy independent fit shown in Fig. 3 with VPI pp phases.
Data from [1].



