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Abstract

We present the results of our QCD analysis of the recent CCFR data for the structure

function xF3(x, Q2) of the deep-inelastic neutrino–nucleon scattering. The analysis is based

on the Jacobi polynomials expansion of the structure functions. The concrete results for the

parameter Λ
(4)

MS
and the shape of quark distributions are determined. At the reference scale

|Q2
0|=3 GeV 2 our results are in satisfactory agreement with the ones obtained by the CCFR

group with the help of another method. The Q2
0-dependence of the experimental data for the

Gross–Llewellyn Smith sum rule is extracted in the wide region of high-momentum transfer.

Within systematical experimental uncertainties the results obtained are consistent with the

perturbative QCD predictions. We reveal the effect of the discrepancy between our results

and the analysed perturbative QCD predictions at the level of the statistical error bars.

The importance of taking account, in our procedure, of a still unknown next-next-to-leading

approximation of the moments of the structure function xF3(x, Q2) is stressed.
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1. Introduction

The deep-inelastic lepton–nucleon scattering is the source of important information about

the nucleons structure. In the last years the accuracy of the obtained experimental data

became large enough to study in detail the status of the comparison of the available data

with the theoretical predictions of QCD in the different regions of momentum transfer [1].

The most precise data for the structure function (SF) xF3(x, Q2) was recently obtained

by the CCFR collaboration at the FERMILAB collider [2]–[4] (for a detailed description

see Refs. [5]). The theoretical analysis of the obtained experimental data for the process

of nucleon destruction by the charged currents was made by the members of the CCFR

collaboration, with the help of the computer program developed in Ref. [6] and based on

the direct integration of the Altarelli–Parisi equation [7]. The fits to the data [2]–[4] were

only made where perturbative QCD is expected to be valid. The results of a next-to-leading

order (NLO) fit of the non-singlet SF xF3(x, Q2) were obtained for the different values of

the Q2 cut. In particular in the case of the cut |Q2| > 10 GeV 2 the CCFR collaboration got

the following value of the QCD scale parameter Λ
(4)

MS
(see [4]) :

Λ
(4)

MS
= 171 ± 32(stat.) ± 54(syst) MeV , (1)

which corresponds to f = 4 numbers of active flavours. Notice that the former cut allows

one to neglect the effects of the high-twist (HT) contribution and the target mass (TM)

corrections to xF3(x, Q2).

Another important characteristic of the deep-inelastic neutrino–nucleon scattering is the

Gross–Llewellyn Smith (GLS) sum rule [8]

GLS(Q2) =
1

2

∫ 1

0

xF νp+νp
3 (x, Q2)

x
dx. (2)

In the work of Ref. [3], the following result of the measurement of the GLS sum at the scale

|Q2
0| = 3 GeV 2 was reported :

GLS(|Q2
0| = 3 GeV 2) = 2.50 ± 0.018(stat) ± 0.078(syst). (3)

This result has been obtained by a special procedure of either interpolation or extrapolation

of the xF3(x, Q2) data with the help of the best fit of the Q2-dependence and taking into

account the logarithmic Q2-dependence as predicted by QCD [3, 5]. Equation 3 was already

used as the bases of the NLO QCD analysis [9, 10] by taking into account the NLO pertur-

bative QCD corrections to the GLS sum rule [11] (which were confirmed in [12]) and the

corresponding HT corrections [13] estimated by the QCD sum rules method in Refs. [14, 10].

However, it should be stressed that the explicit Q2
0-dependence of the CCFR data for the

GLS sum rule remained non-investigated.

In this work this important problem is studied with the help of the method of the SF

reconstruction over their Mellin moments, which is based on the expansion of the SF over
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the Jacobi polynomials [15]. This method was developed [16, 17] (see also [18]), discussed

[19] and previously used by the BCDMS collaboration in concrete physical applications [20]

(see also [21]).

2. The Method of the QCD Analysis of SF

We first recall the basic steps of the method used in this work to reconstruct of SF in

the x-representation over their Mellin moments.

Let us define the Mellin moments for the non-singlet SF xF3(x, Q2) :

MNS
n (Q2) =

∫ 1

0
xn−1F3(x, Q2)dx, (4)

where n =2, 3, 4, ... .4 The Q2-evolution of the moments is given by the solution of the

corresponding renormalization-group equation. In the NLO approximation of perturbative

QCD it can be presented in the following form [22]:

MNS
n (Q2) =

[

αs (Q2
0)

αs (Q2)

]dn

Hn

(

Q2
0, Q

2
)

MNS
n (Q2

0), (5)

where dn = −γ0
NS/2β0 and

Hn

(

Q2
0, Q

2
)

=
1 + C1

NS(n)
αs(Q2)

4π

1 + C1
NS(n)

αs(Q2
0)

4π







1 + β1
αs(Q2)
4πβ0

1 + β1
αs(Q2

0)
4πβ0







p(n)

(6)

p(n) =
1

2





γ
(1)
NS

β1

−
γ

(0)
NS

β0



 . (7)

The NLO approximation of the QCD coupling constant αs(Q
2) can be expressed through

the scale parameter ΛMS as

αs(Q
2)

4π
=

1

β0 ln(Q2/Λ2
MS

)
−

β1 ln ln(Q2/Λ2
MS

)

β3
0 ln2(Q2/Λ2

MS
)

(8)

where β0 and β1, namely

β0 = 11 −
2

3
f and β1 = 102 −

38

3
f, (9)

are the leading-order (LO) and NLO coefficients of the QCD β-function, which was originally

calculated at the next-next-to-leading order (NNLO) level [23] and confirmed in Ref. [24].

The analytic expressions for the LO coefficient γ
(0)
NS of the anomalous dimension function

of the non-singlet operator and the corresponding expression for the NLO coefficient γ
(1)
NS

can be found, e.g. in the textbook of Ref. [22]. For the neutrino–nucleon deep-inelastic

4Note that the first moment MNS
1

(Q2) is nothing more than the GLS sum rule defined in Eq. (2).
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scattering, the NLO coefficient C1
NS(n) of the coefficient function is known from the results

of Ref. [25].

Following the methods of [15]-[18], one can expand the SF in the set over Jacobi polyno-

mials Θα,β
n (x) :

xF Nmax

3 (x, Q2) = xα(1 − x)β
Nmax
∑

n=0

an(Q2)Θα,β
n (x), (10)

where Nmax is the number of polynomials and an(Q2) are the coefficients of the corresponding

expansion.

The Jacobi polynomials Θα,β
n (x) obey the orthogonality relation

∫ 1

0
dxxα(1 − x)βΘα,β

k (x)Θα,β
l (x) = δk,l , (11)

and can be expressed as the series in powers of x:

Θα,β
n (x) =

n
∑

j=0

c
(n)
j (α, β)xj, (12)

where c
(n)
j (α, β) are the coefficients that expressed through Γ-functions.

Using now Eqs. (11), (12) and (4), one can relate the SF with its Mellin moments

xF Nmax

3 (x, Q2) = xα(1 − x)β
Nmax
∑

n=0

Θ
α, (x)

∑n

j=0
c
(n)
j

(α,β)MNS
n (Q2),n=2,3,...(13)

n

The relations of Eqs. (5), (6) and (13) form the basis of the computer program created by

the authors of Ref. [17]. It was previously tested and used by the members of the BCDMS

collaboration in the course of detailed QCD analysis of the experimental data for the SF of

the deep-inelastic muon–nucleon scattering [20, 19].

3. The Procedure of the QCD Fit of xF3 Data

In accordance with the original non-singlet fit of the CCFR collaboration [3, 5] in the

proces of the studies of their experimental data, we choose the parametrization of the parton

distributions at fixed momentum transfer Q2
0 in the simplest form :

xF3(x, Q2
0) = Axb(1 − x)c, (14)

which was originally used by the CCFR collaboration to get the result of Eq. (3) for the

GLS sum rule.

The constants A, b, c in Eq. (14) and the QCD scale parameter Λ are considered as

free parameters, which should be determined for concrete values of Q2
0. The values of the

parameters A, b and c depend on the value of Q2
0. In order to avoid the influence of the HT

effects and the TM corrections, we use the experimental points of the concrete CCFR data

[5] in the plane (x, Q2) with 0.015 < x < 0.65 and 10 GeV 2 < |Q2| < 501 GeV 2.
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It should be stressed that for deep-inelastic processes with charged currents, which were

dealt with in the CCFR experiment, the former region of momentum transfer implies that

there are four active flavours and that we have to use f = 4 in formulae (5),(6) and (8). In

view of this fact we will not take threshold effects into account in the process of the present

analysis.

We are now ready to discuss the main steps of our analysis :

• The parametrization of Eq. (14) allows us to calculate the concrete expression for

the Mellin moments through Γ-functions that depend on the parameters A, b and c,

namely the expression MNS
n (Q2

0, A, b, c). As was estimated in [17], in order to get the

accuracy better then 10−3 in the procedure of the SF reconstructions, it is sufficient to

use in Eq. (10) Nmax = 10. However to make the analysis even more reliable we will

use Nmax = 12.

• The next step is to use the QCD theoretical evolution of Eqs. (5) and (6) for the calcu-

lation of each Mellin moment at Q2 values that corresponds to concrete experimental

points Q2
exp for the SF xF3(x, Q2). At this stage the essential dependence of the Mellin

moments from the QCD scale parameter Λ appears :

MNS
n (Q2

0, A, b, c)
QCD
→ MNS

n (Q2
exp, A, b, c, Λ), (15)

• Using now Eq. (13) we can reconstruct the theoretical expression for the SF xF3(x, Q2),

namely xF
(Nmax=12)
3 (x, Q2, A, b, c, Λ) for all experimental points (xexp, Q

2
exp).

• The numerical values of the parameters α and β which define the corresponding Jacobi

polynomials Θα,β
n (x), can be choosen such as to achieve the fastest convergence of the

series in the r.h.s. of Eq. (10). This procedure was discussed in Ref. [17]. In accordance

with the results of Ref. [17] we use α = 0.12 and β = 2.0.

• The determination of the free parameters of the fit (namely A, b, c and Λ) from the

CCFR experimental data for xF3(xexp, Q
2
exp) is made by minimization of χ2 by the MI-

NUIT program, which automatically calculates the statistical errors of the parameters

also.

• The obtained values of the parameters A, b and c depend on the reference scale Q2
0,

which enters into the expression for MNS
n (Q2

exp, A, b, c, Λ) (and thus for

xF
(Nmax=12)
3 (x, Q2, A, b, c, Λ)) through Eqs. (5) and (6)).

• In order to evaluate the numerical value of the GLS sum rule at the reference scale Q2
0,

it is necessary now to substitute A(Q2
0), b(Q2

0) and c(Q2
0) for their concrete values in

Eq. (14) and to calculate the integral of Eq. (2).
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• Repeating the above procedure for the different values of Q2
0, we determine the exper-

imental dependence of the GLS sum rule from the momentum transfer.

• The described fit will be made both in the LO and NLO of perturbative QCD. In the

process of the LO fit we will use the LO approximations of the anomalous dimension

function, coefficient function and the QCD coupling constant αs defined through the

corresponding scale parameter ΛLO as αs(Q
2) = 4π/β0 ln(Q2/Λ2

LO).

4. The Results of the QCD Fit of the CCFR xF3 Data

The fitting procedure discussed in Section 3 was applied by us to the analysis of the

CCFR data for the non-singlet SF measured in the neutrino deep-inelastic scattering [5].

The results of the fit at different values of Q2
0 are presented in Table 1.

Several comments are in order:

• The stable value of Λ for fits with different Q2
0 both for LO and NLO indicates the

stability and the self-consistence of the method used.

• It is easy to see from Table 1, that within the statistical errors, the results of our NLO

fit of the parameter Λ
(4)

MS
in the wide region of Q2

0 are in agreement with the result

(1), obtained by the CCFR group with a little bit more complicated parametrization

of the SF xF3(x, Q2
0) = Axb(1 − x)c + Dxe, in the same kinematic region (see ref.[5]).

The estimation of the systematic error in Eq. (1) remains true for our results.

• Our results for Λ
(4)

MS
are in exact agreement with the outcome of the combined non-

singlet fit of the CCFR data for the xF3(x, Q2) and F2(x, Q2) SFs [4, 5], namely

Λ
(4)

MS
= 210 ± 28(stat) ± 41(syst) MeV .

• The inequality χ
2(LO)
d.f. > χ

2(NLO)
d.f. indicates that the NLO is preferable, for the descrip-

tion of the experimental data. Notice, that even if HT-effects and the TM corrections

have been neglected, χ2
d.f. is rather good in the wide region of Q2

0, which includes even

low momentum transfer.

• The results of our fit for the parameters of quark distributions can be compared with

the results obtained by the CCFR group with the help of another program [6] at the

reference scale |Q2
0| = 3 GeV 2. This comparison is presented in Table 2. One can see

that the agreement between the NLO results is satisfactory.

5. The Q2-Dependence of the GLS Sum Rule VS Experiment

We consider the results of Table 1 for the GLS sum rule as the experimental points in the

wide region of Q2
0. The corresponding statistical errors can be estimated using the statistical

errors of the parameters A, b and c of quark distributions as presented in the second column
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of Table 2. Using the concrete expression for the first Mellin moment through the quark

distributions of Eq. (14), we find that the statistical errors for the GLS sum rule are within

4%–5%. The systematical uncertainty was determined by the CCFR group itself [3, 5] (see

Eq. (3)).

Taking into account these estimates of the statistical and experimental uncertainties of

the experimental outcomes of our NLO fit, we get the following value for the GLS sum rule

at the scale |Q2
0| = 3 GeV 2 :

GLS(|Q2
0| = 3 GeV 2) = 2.446 ± 0.100(stat) ± 0.078(syst) (16)

which is in agreement with the result (3) obtained by the CCFR group. The smaller statis-

tical error of the CCFR result of Eq. (3) comes from their more refined analysis of this type

of experimental uncertainties.

Let us now compare the experimental behaviour of the GLS sum rule with the corre-

sponding perturbative QCD predictions for the first Mellin moment, which determines the

theoretical expression for the GLS sum rule. The result we are interested in has the form

GLSQCD(Q2) = 3

[

1 −
αs(Q

2)

π
+ O(α2

s(Q
2)) + O(

1

Q2
)

]

. (17)

The estimates of the HT corrections are presented in Refs. [14, 10] and the NLO corrections of

order O(α2
s(Q

2)) and the NNLO corrections of order O(α3
s(Q

2)) were analytically calculated

in [11, 12] and [26], respectively.

It is worth emphasizing that putting n = 1 in the LO QCD expression for the moment

MNS
n (Q2) we obtain the quark–parton prediction for the GLS sum rule. In order to obtain

LO and NLO expressions for the GLS sum rule one should consider the NLO and NNLO

approximations of the moments MNS
n (Q2) correspondingly. Therefore, in order to make a

self-consistent study of the results of Table 1 for the GLS sum rule within the framework of

perturbative QCD, it is necessary to compare the results of the LO fit with the quark–parton

expression of the GLS sum rule and the results of the NLO fit with the LO expression of the

GLS sum rule, but with the coupling constant αs defined through Eq. (8), with Λ
(4)

MS
taken

from the results of the NLO fit.

Figures 1 demonstrate the experimental results for the GLS sum rule for both LO and

NLO fits (see Table 1) with the statistical experimental errors discussed above. On the same

Figures we present the quark–parton and LO theoretical expressions for the GLS sum rule

(17). In this work we are neglecting the contributions of the HT corrections (which are

known to be quite important for the analysis of the GLS sum rules results in the low-energy

region [14, 9, 10]) since in the process of both our fit and of the one made by the CCFR group

itself these corrections were not taken into account in the expression for the SF xF3(x, Q2).
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The values of the parameter Λ
(4)

MS
in the LO perturbative QCD predictions depicted in

Fig. 1b, namely

Λ
(4)

MS
= 213 ± 31(stat) ± 54(syst) MeV (18)

are taken in accordance with the results of our analysis of the CCFR data for the SF xF3 at

the reference point |Q2
0| = 3 GeV 2 (see Table 1 and discussions beyond it). The statistical

errors in Eq. (18) determine the corresponding errors bars of the theoretical GLS sum rule

predictions (see Figs. 1).

It should be stressed that for the NLO fit the experimental values of the GLS sum rule

tend slowly to 3 from below, in qualitative agreement with the theoretical expectations

(see Fig. 1b). Moreover, within the systematical experimental uncertainties our results are

consistent with the analysed perturbative QCD predictions.

However, at the quantitative level the tendency is toward the manifestation of a certain

disagreement between the perturbative QCD predictions and the experimental results of

Table 1 obtained by us:

1. The results of Fig. 1a demonstrate the slight Q2-dependence of the experimental data

for the GLS sum rule obtained in the process of the LO fit. The obtained results lie

below the quark–parton prediction GLS = 3.

2. The NLO fit minimizes the disagreement presented at Fig. 1a . However, even in this

case the discrepancy between the results of the NLO fit and the LO QCD prediction

for the GLS is surviving (see Fig. 1b) 5. The most surprising fact is that the minor

discrepancy takes place in the perturbative QCD region |Q2
0| > 10 GeV 2

where we can safely follow our approximation of neglecting the effects of the HT con-

tributions and TM corrections.

6. Discussion

It seems to us that at the level of the statistical error bars the results depicted in Fig. 1b

reveal certain problems of the explanation of the experimental data for the GLS sum rule

within the framework of the analysed QCD predictions. Indeed, the LO theoretical QCD

expression of Eq. (17) is approaching the asymptotic value GLSAs = 3 (which corresponds

to the number of valence quarks inside nucleon) somehow faster than the results of our NLO

fit of the the CCFR experimental data. In view of this conclusion it is necessary to make

several comments:

1. It seems problematic to describe the deviation that we observed between theoretical

and experimental results by taking into account threshold effects, e.g. following the

5We have checked that this disagreement does not disappear even after the brute-force inclusion of the

NLO corrections into the theoretical expression for the GLS sum rule.
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lines of the results of recent studies [27]. In the case of charged currents, radiated by

neutrinos, the thresholds of production of new flavours manifest themselves in genera-

tions. Indeed, the production of the s-quark is mainly accompanied by the production

of the c-quark in the whole region of momentum transfer. Therefore we are taking f = 4

in this region. The mixing with the quarks from the third generation are damped by

the small values of the Kobayashi–Maskawa matrix elements Vsb, Vcb and Vct.

2. In accordance with the discussions presented above, b- and t-quarks appear simulta-

neously in the processes with charged currents. In the neutrino–nucleon deep-inelastic

scattering, their contributions should be studied in the region of very high Q2.

3. The deviation of the experimental result (3), the corresponding statistical uncertainties

taken into account, from the pure perturbative QCD predictions for the GLS sum rule,

with Λ
(4)

MS
defined by Eq. (1), was previously noticed even at the scale |Q2

0| = 3 GeV 2

in the process of phenomenological [3, 5] and theoretical [9] studies. We confirm this

observation and stress that a similar inconsistency takes place in a wide region of

momentum transfer (see Figs. 1).

4. We can try to avoid this descrepancy by choosing Λ
(4)

MS
as the free parameter and

making a fit of the experimental data presented in Fig. 1b on the GLS sum rule

for |Q2
0| < 10 GeV 2. In this case we can describe the Q2-behaviour of the obtained

experimental data satisfactorily using Λ
(4)

MS
= 724 ± 153 MeV , which is too large to

support this procedure.

5. Notice once more that taking the HT contributions into account [14, 10] in the analysis

can improve the agreement with the theoretical predictions for the GLS sum rule at low

Q2
0 [9, 10]. However, at |Q2

0| > 10 GeV 2 these corrections cannot remove the observed

deviation between the experimental and theoretical results for the GLS sum rule.

6. It should be noted that in the region of small values of x (x < 0.015) not considered in

the CCFR experiment, the more-complicated parametrization of the SF can be used.

The extrapolation of our simplest parametrization (14) to this region can be a source

of errors on the experimental values of the GLS sum rule as calculated by us.

7. It is worth mentioning that the results of the NLO fits of the CCFR data for Λ
(4)

MS
, made

with the help of the Altarelli–Parisi equation (see Eq. (1)) and using Mellin moments

(see Eq. (18)), are in exact agreement with the central values from the results of

analogous fits of the xF3(x, Q2) less precise data obtained at Protvino [28]: Λ
(4)

MS
=

170 ± 60(stat) ± 120(syst) MeV (AP) and Λ
(4)

MS
= 230 ± 40(stat) ± 100(syst) MeV

(Moments).
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7. Conclusions

In conclusion we would like to stress several points.

1. Our NLO result (18) for Λ
(4)

MS
is in agreement with the world average value of this

parameter extracted from the deep-inelastic scattering data [1].

2. The obtained experimental Q2-behaviour of the GLS sum rule is consistent with the

analysed perturbative QCD predictions, within systematical experimental uncertain-

ties. However at the level of the statistical experimental uncertainties there is a certain

discrepancy between theory and experiment.

3. We do not exclude the possibility that taking into account, in our procedure, of the

effects of the different QCD corrections, namely of the α2
s corrections to the coefficient

function of xF3(x, Q2) [12], the NNLO coefficients of the even anomalous dimensions

[29], still unknown NNLO coefficients of odd anomalous dimensions and of odd and even

moments of xF3, might remove the discrepancy we found between the experimental

data for the GLS sum rule and the corresponding theoretical prediction in the region

of high-momentum transfer. We hope that our work will push ahead the necessary

calculations and studies.

4. The third important problem is related to the necessity of experimental studies of the

behaviour of the xF3(x, Q2) SF in the region of small x: x < 0.015. Hopefully this

problem can be studied in the future at HERA, where it is planned to reach the region

x ≈ 10−4.
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[9] J. Chýla and A. L. Kataev , Phys.Lett. B297 (1992) 385.

[10] G. G. Ross and R. G. Roberts, Rutherford Appleton Preprint RAL-93-092 (1993).

[11] S. G. Gorishny and S. A. Larin, Phys. Lett. B172 (1986) 109.

[12] E. B. Zijstra and W. L. van Neerven, Phys. Lett. B297 (1992) 377.

[13] R. L. Jaffe and M. Soldate, Phys. Rev. D26 (1982) 49;

E. V. Shuryak and A. I. Vainshtein, Nucl. Phys. B199 (1982) 951;

R. K. Ellis, W. Furmanski and R. Petronzio, Nucl. Phys. B207 (1982) 1; B212 (1983)

29.

[14] V. M. Braun and A. V. Kolesnichenko, Nucl. Phys. B283 (1987) 723.

[15] G. Parisi and N. Sourlas, Nucl. Phys. B151 (1979) 421;

I. S. Barker, C. B. Langensiepen and G. Shaw, Nucl. Phys. B186 (1981) 61.

[16] I. S. Barker, B. R. Martin and G. Shaw, Z. Phys. C19 (1983) 147;

I. S. Barker and B. R. Martin, Z. Phys. C24 (1984) 255;

S. P. Kurlovich, A. V. Sidorov and N. B. Skachkov, JINR Report E2-89-655, Dubna,

1989.

10



[17] V. G. Krivokhizhin, S. P. Kurlovich, V. V. Sanadze, I. A. Savin, A. V. Sidorov and

N. B. Skachkov, Z. Phys. C36 (1987) 51;

V. G. Krivokhizhin, S. P. Kurlovich, R. Lednicky, S. Nemecek, V. V. Sanadze,

I. A. Savin, A. V. Sidorov and N. B. Skachkov, Z. Phys. C48 (1990) 347.
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NLO LO

|Q2
0| Λ

(4)

MS
χ2

d.f. GLS Λ
(4)
LO χ2

d.f. GLS

[GeV 2] [MeV ] sum rule [MeV ] sum rule

2 209 ±32 71.5/62 2.401 154 ±16 87.6/62 2.515

3 213 ±31 71.5/62 2.446 154 ±29 87.7/62 2.525

5 215 ±32 71.8/62 2.496 154 ±28 88.0/62 2.537

7 215 ±34 72.2/62 2.525 155 ±27 88.3/62 2.549

10 215 ±35 72.6/62 2.553 154 ±29 88.5/62 2.558

15 215 ±34 73.2/62 2.583 155 ±28 88.8/62 2.569

25 214 ±31 74.1/62 2.618 155 ±17 89.2/62 2.583

50 213 ±33 75.4/62 2.661 155 ±27 90.2/62 2.603

70 212 ±34 76.1/62 2.680 155 ±26 90.3/62 2.614

100 211 ±33 76.8/62 2.699 154 ±29 90.7/62 2.623

150 210 ±34 77.6/62 2.720 154 ±29 91.2/62 2.635

200 209 ±33 78.2/62 2.735 154 ±29 91.5/62 2.643

300 209 ±33 79.0/62 2.755 153 ±29 92.0/62 2.655

500 207 ±35 80.1/62 2.779 153 ±29 92.7/62 2.664

Table 1. The results of the LO and NLO QCD fit of the CCFR xF3

SF data for f = 4, |Q2| > 10 GeV 2, Nmax = 12 with the corresponding

statistical errors. χ2
d.f. is the χ2 parameter normalized to the degree of

freedom d.f.

Our analysis CCFR [3, 5]

LO NLO NLO

A 6.86 ±0.09 6.423 ±0.088 5.976 ±0.148

b 0.795 ±0.008 0.794 ±0.012 0.766 ±0.010

c 3.38 ±0.03 3.218 ±0.035 3.101 ±0.036

Table 2. The parameters of quark distributions

xF3(x, Q2
0) = Axb(1 − x)c at |Q2

0| = 3 GeV 2.
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Figure captions

Fig. 1a: The comparison of the results of the LO fit of the Q2 evaluation of the GLS sum

rule with the statistical error bars taken into account with the quark–parton prediction.

Fig. 1b: The comparison of the result of the NLO fit of the Q2 evaluation of the GLS

sum rule with the statistical error bars taken into account with the LO perturbative QCD

prediction.
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