

BIHEP-CR-94-01 84. 9408

ON THE MASS AND THE MATTER STATE OF THE HDM NEUTRINOS

Huang Wuliang

Institute of High Energy Physics, Academia Sinica, Beijing, China

Abstract

If there does not exist a low energy phase transition (LEPT) during the evolution process of the universe, the HDM (hot dark matter) neutrinos will be near by a degenerate state, on the contrary, they will be near by a high temperature state. In all of these two states, the neutrino mass is $10^{-1} - 10^{-2}$ eV, and the absolute value of the neutrino chemical potential is $10^{-5} - 10^{-4}$ eV.

1 Premises

(1) Proceed from the measurement results of COBE

From the measurement results ^{[1]-[3]} of COBE satellite about the large angular anisotropy of the cosmic microwave background, it is declared that there exists a hot composition in cosmic dark matter, which portion is about 30% of the recent critical density ρ_c of the universe; but the main candidate of HDM is neutrino ν , so, if the neutrino mass $m_{\nu} \neq 0$, then $\Omega_{\nu} = \frac{\rho_{\nu}}{\rho_c} = 0.3$, where ρ_{ν} is the recent average density of HDM neutrinos. From now on, all physical quantities will adopt the recent values unless there are any declares. (2) Non-relativistic approximation

Since there exists the large scale structure in the universe, the recent HDM neutrinos can not be in a relativistic state, or else the large scale structure will be broken by the free stream. So, we arrange that the average thermal velocity of neutrinos is less than 0.1c ($\bar{v} < 0.1c$).

$$\bar{v} = \sqrt{\frac{2kT_{\nu}}{m_{\nu}}} \cdot \int_0^\infty \frac{ZdZ}{exp(Z-\gamma)+1} / \int_0^\infty \frac{\sqrt{Z}dZ}{exp(Z-\gamma)+1}, \qquad (1)$$

where $\gamma \equiv \frac{\mu_{\nu}}{kT_{\nu}}$, and T_{ν} is neutrino temperature, and μ_{ν} is neutrino chemical potential; but the sound velocity v_s in ν medium is

$$v_{s} = \sqrt{\frac{10}{9} \frac{kT_{\nu}}{m_{\nu}}} \cdot \int_{0}^{\infty} \frac{Z^{\frac{3}{2}} dZ}{exp(Z-\gamma)+1} / \int_{0}^{\infty} \frac{\sqrt{Z} dZ}{exp(Z-\gamma)+1}.$$
 (2)

From calculations we know that $\frac{v}{v_s} \sim 1$, so $v_s < 0.1c$.

(3) Consider the superstructure of the universe

From the observations [4]-[7] of superstructures, we know the scale of that has being been 1% - 10% of horizon, it will be as well to adopt that $v_s = 0.01c - 0.1c$.

(4) Do not consider the LEFT for the moment

In Ref[8], the mass and the matter state of ν had been preliminarily discussed under a LEFT during evolution; but in this paper, we abandon such restrain for the moment, so T_{ν} can be estimated as follows

$$T_{\nu} = \frac{kT_{\nu\sigma}T_{\gamma\sigma}}{m_{\nu}c^2 + kT_{\gamma\sigma}},\tag{3}$$

in which $T_{\gamma o}$ is the microwave background temperature, $T_{\gamma o} = 2.7^{\circ}K$; $T_{\nu o}$ is the neutrino temperature (as $m_{\nu} = 0$), $T_{\nu o} = 1.9^{\circ}K$. When $m_{\nu}c^2 \gg kT_{\gamma o}$,

$$T_{\nu} \doteq \frac{k T_{\nu o} T_{\gamma o}}{m_{\nu} c^2}.$$
 (4)

2 Deduction

For the average density of ν , it can be expressed as

$$\rho_{\nu} = \frac{g m_{\nu}^{\frac{2}{2}} (kT_{\nu})^{\frac{3}{2}}}{2^{\frac{1}{2}} \pi^2 \hbar^3} \cdot \int_0^\infty \frac{\sqrt{Z} dZ}{exp(Z-\gamma)+1},$$
(5)

where g is the number of neutrino helicity states. If $\rho_c = \frac{3H_{100}^2}{8\pi G}$, $H_{100} = 100 km \cdot sec^{-1} \cdot Mpc^{-1}$, then

$$\rho_{\nu} = \Omega_{\nu} \rho_c h^2, \tag{6}$$

where $h = \frac{H_o}{100}$, H_o is the Hubble constant. Make

$$J_a \equiv \int_0^\infty \frac{Z^a dZ}{exp(Z-\gamma)+1},\tag{7}$$

from eqs(4),(5),(6), get

$$m_{\nu} = \frac{\Omega_{\nu}h^2}{J_{\frac{1}{2}}g} \cdot \frac{2^{\frac{1}{2}}\pi^2\hbar^3 c^3 \rho_c}{k^3 (T_{\nu o}T_{\gamma o})^{\frac{3}{2}}};$$
(8)

from eqs(2),(4), get

$$m_{\nu}v_{\bullet} = \sqrt{\frac{10}{9} \frac{T_{\nu \sigma} T_{\gamma \sigma} J_{\frac{3}{2}}}{J_{\frac{1}{2}}} \cdot \frac{k}{c}}.$$
 (9)

From eqs(8),(9),(4), we know, after giving the values of $T_{\nu\sigma}$ and γ , the values of m_{ν} (from Eq(8)), v_{\bullet} (from Eq(9)), T_{ν} (from Eq(4)), and μ_{ν} (from γ) can be deduced. The influence of Ω_{ν} , h, g on m_{ν} and etc. can be synthetically considered in a factor w, $w \equiv \frac{q}{\Omega_{\nu}h^2}$. If g=1, $\Omega_{\nu} = 1$, h=1, then w=1; if g=6, $\Omega_{\nu} = 0.3$, h=0.5, then w=80, therefore we shall be discussing in a range of w=1-80.

2

3 Discussion

(1) The matter state of neutrinos

Taking $T_{\nu o} = 1.9^{\circ} K$, the calculated results are as follows

w	v_{\bullet}/c	$m_ u(eV)$	$T_{ u}({}^{o}K)$	$\mu_ u(eV)$	γ
1	0.01	0.17	$2.5 imes 10^{-3}$	$2.6 imes 10^{-5}$	1 2 0
1	0.1	0.031	1.4×10^{-2}	$4.7 imes 10^{-4}$	380
40	0.01	0.069	6.4×10^{-3}	$1.1 imes 10^{-5}$	19
40	0.1	0.012	$3.6 imes 10^{-2}$	$1.9 imes 10^{-4}$	60
80	0.01	0.057	$7.7 imes 10^{-3}$	0.9×10^{-5}	13.5
80	0.1	0.010	$4.4 imes 10^{-2}$	1.6×10^{-4}	43

From the values of γ , it is indicated that HDM ν are in a degenerate state as the whole, and m_{ν} is about $10^{-1} - 10^{-2} eV$, and μ_{ν} is about $10^{-5} - 10^{-4} eV$. (2) The value of μ_{ν} during evolution

According to the isoentropic hypothesis in the evolution of the universe, the entropy per neutrino (S/N) is a constant:

$$S/N = \frac{k}{3} \cdot \left\{ \int_0^\infty Z^{\frac{3}{2}} \left(Z + \frac{2m_\nu c^2}{kT_\nu} \right)^{\frac{3}{2}} \frac{dZ}{exp(Z-\gamma)+1} \right. \\ \left. + 3 \int_0^\infty \left(Z + \frac{m_\nu c^2}{kT_\nu} \right) \sqrt{Z(Z + \frac{2m_\nu c^2}{kT_\nu})} \frac{(Z-\gamma)dZ}{exp(Z-\gamma)+1} \right\} \div \\ \left. \int_0^\infty \frac{dZ}{exp(Z-\gamma)+1} \cdot \left(Z + \frac{m_\nu c^2}{kT_\nu} \right) \sqrt{Z(Z + \frac{2m_\nu c^2}{kT_\nu})} \right].$$

Under the relativistic condition, $S/N = \frac{k}{3} \cdot \frac{4J_3 - 3J_2\gamma}{J_2}$; under the non-relativistic condition, $S/N = \frac{k}{3} \cdot \frac{5J_3 - 3J_4\gamma}{J_4}$. It is obvious that under the relativistic condition there are two situations for μ_{ν} : the first is $\gamma \longrightarrow \infty$ (degenerate state), in this time there only exist either neutrinos or antineutrinos $\bar{\nu}$; the second is $\gamma = 0$, then the particle number of ν is equal to that of $\bar{\nu}$. From calculations we know for $\gamma \longrightarrow \infty$ the non-relativistic fermions deduced from relativistic particles will still be in a degenerate state; but for $\gamma = 0$, it will translate to $\gamma = -1.62$ after the deducing. The results for $T_{\nu o} = 1.9^{\circ}K$ and $\gamma = -1.62$ are as follows

3

\boldsymbol{w}	v_s/c	$m_ u(eV)$	$T_{\nu}(^{o}K)$	$\mu_{m u}(eV)$
1	2.8×10^{-7}	926		-6.7×10^{-11}
80	$2.2 imes 10^{-5}$	11.6	3.8×10^{-5}	$-5.3 imes 10^{-9}$

Since the values of v_s/c are too small, it suggests that there may exist LEPT, for example the photon cooling process in Ref[9].

(3) LEPT

The LEPT can be described by $T_{\nu\sigma} > 1.9^{\circ}K$ and $T_{\gamma\sigma} = (\frac{11}{4})^{\frac{1}{3}} \cdot T_{\nu\sigma}$, for $\gamma = -1.62$ the calculated results are as follows

\boldsymbol{w}	v_s/c	$m_{ u}(eV)$	$T_{\nu}(^{\circ}K)$	$\mu_ u(eV)$	$T_{\nu o}(^{o}K)$
1	0.01	0.34	0.25	$-3.5 imes10^{-5}$	27
1	0.1	0.062	4.3	$-6.0 imes10^{-4}$	47
80	0.01	0.12	0.083	$-1.2 imes10^{-5}$	9
80	0.1	0.021	1.5	$-2.0 imes 10^{-4}$	16

In this situation, ν is near by a high temperature state, and m_{ν} is still about $10^{-1} - 10^{-2}eV$, and the absolute value of μ_{ν} is still about $10^{-5} - 10^{-4}eV$.

References

- [1] G.F.Smoot et al, Astrophys.J.Lett., 396(1992), L1.
- [2] R.K.Schaefer et al, Phys.Rev., 47(1993), 1333.
- [3] D.O.Coldwell et al, Phys.Rev., 48(1993), 3259.
- [4] R.B.Tully, Ap.J., 303(1986), 25.
- [5] R.B.Tully, Ap.J., 323(1986), 1.
- [6] M.J.Geller et al, Science, 246(1989), 897.
- [7] T.J.Broadhurst et al, Nature, 343(1990), 726.
- [8] W.L.Huang, High Energy Physics and Nuclear Physics (Beijing, China), 15(1991), 1135.
- [9] J.G.Bartlett et al, Phys.Rev.Lett., 66(1991), 541.

4

٠

.