

 8408 $BIHEP-CR-94-01$

THE HDM NEUTRINOS ON THE MASS AND THE MATTER STATE OF

Huang Wuliang

Institute of High Energy Physics, Academia Sinica, Beijing, China

Abstract

neutrino chemical potential is $10^{-5} - 10^{-4}$ eV. the neutrino mass is $10^{-1} - 10^{-2}$ eV, and the absolute value of the will be near by a high temperature state. In all of these two states, neutrinos will be near by a degenerate state, on the contrary, they the evolution process of the universe, the HDM (hot dark matter) If there does not exist a low energy phase transition (LEPT) during

1 Premises

(1) Proceed from the measurement results of COBE

(2) Non-relativistic approximation physical quantities will adopt the recent values unless there are any declares. where ρ_{ν} is the recent average density of HDM neutrinos. From now on, all HDM is neutrino ν , so, if the neutrino mass $m_{\nu} \neq 0$, then $\Omega_{\nu} = \frac{\rho_{\nu}}{\rho_{c}} = 0.3$, of the recent critical density ρ_c of the universe; but the main candidate of exists a hot composition in cosmic dark matter, which portion is about 30% lar anisotropy of the cosmic microwave background, it is declared that there From the measurement results $[1]-[3]$ of COBE satellite about the large angu-

velocity of neutrinos is less than 0.1c (\bar{v} < 0.1c). will be broken by the free stream. So, we arrange that the average thermal neutrinos can not be in a relativistic state, or else the large scale structure Since there exists the large scale structure in the universe, the recent HDM

$$
\bar{v} = \sqrt{\frac{2kT_{\nu}}{m_{\nu}}} \cdot \int_0^{\infty} \frac{ZdZ}{\exp(Z-\gamma)+1} / \int_0^{\infty} \frac{\sqrt{Z}dZ}{\exp(Z-\gamma)+1}, \qquad (1)
$$

potential; but the sound velocity v_s in ν medium is where $\gamma \equiv \frac{\mu_{\nu}}{kT}$, and T_{ν} is neutrino temperature, and μ_{ν} is neutrino chemical

$$
v_s = \sqrt{\frac{10 kT_{\nu}}{9 m_{\nu}} \cdot \int_0^{\infty} \frac{Z^{\frac{3}{2}} dZ}{exp(Z - \gamma) + 1}} / \int_0^{\infty} \frac{\sqrt{Z} dZ}{exp(Z - \gamma) + 1}.
$$
 (2)

From calculations we know that $\frac{\theta}{v_a} \sim 1$, so $v_s < 0.1c$.

(3) Consider the superstructure of the universe

 $0.01c - 0.1c$. has being been $1\% - 10\%$ of horizon, it will be as well to adopt that $v_s =$ From the observations $[4]$ - $[7]$ of superstructures, we know the scale of that

(4) Do not consider the LEFT for the moment

for the moment, so T_{ν} can be estimated as follows under a LEFT during evolution; but in this paper, we abandon such restrain In Ref[8], the mass and the matter state of ν had been preliminarily discussed

$$
T_{\nu} = \frac{kT_{\nu o}T_{\gamma o}}{m_{\nu}c^2 + kT_{\gamma o}},\tag{3}
$$

the neutrino temperature (as $m_{\nu} = 0$), $T_{\nu 0} = 1.9$ °K. When $m_{\nu}c^2 \gg kT_{\gamma 0}$, in which $T_{\gamma o}$ is the microwave background temperature, $T_{\gamma o} = 2.7$ °K; $T_{\nu o}$ is

$$
T_{\nu} \doteq \frac{kT_{\nu\sigma}T_{\gamma\sigma}}{m_{\nu}c^2}.
$$
 (4)

2 Deduction

For the average density of ν , it can be expressed as

$$
\rho_{\nu} = \frac{gm_{\nu}^{\frac{2}{2}}(kT_{\nu})^{\frac{1}{2}}}{2^{\frac{1}{2}}\pi^{2}\hbar^{3}} \cdot \int_{0}^{\infty} \frac{\sqrt{Z}dZ}{exp(Z-\gamma)+1},
$$
(5)

 $100km \cdot sec^{-1} \cdot Mpc^{-1}$, then where g is the number of neutrino helicity states. If $\rho_c = \frac{3H_{100}^2}{8\pi G}$, H_{100} =

$$
\rho_{\nu} = \Omega_{\nu} \rho_{\rm c} h^2, \qquad (6)
$$

where $h = \frac{H_o}{100}$, H_o is the Hubble constant. Make

$$
J_a \equiv \int_0^\infty \frac{Z^a dZ}{\exp(Z-\gamma)+1},\tag{7}
$$

from eqs (4) , (5) , (6) , get

$$
m_{\nu} = \frac{\Omega_{\nu}h^2}{J_{\frac{1}{2}}g} \cdot \frac{2^{\frac{1}{2}}\pi^2\hbar^3 c^3 \rho_c}{k^3 (T_{\nu o} T_{\gamma o})^{\frac{3}{2}}};
$$
\n(8)

from $eqs(2),(4)$, get

$$
m_{\nu}v_{\nu} = \sqrt{\frac{10}{9} \frac{T_{\nu\sigma}T_{\gamma\sigma}J_{\frac{3}{2}}}{J_{\frac{1}{2}}}} \cdot \frac{k}{c}.
$$
 (9)

 $w=1-80$. $\Omega_{\nu} = 0.3$, h=0.5, then w=80, therefore we shall be discussing in a range of considered in a factor w, $w \equiv \frac{\rho}{\Omega_{\nu} h^2}$. If $g=1$, $\Omega_{\nu}=1$, h=1, then w=1; if $g=6$, can be deduced. The influence of Ω_{ν} , h, g on m_{ν} and etc. can be synthetically values of m_{ν} (from Eq(8)), v_{ν} (from Eq(9)), T_{ν} (from Eq(4)), and μ_{ν} (from γ) From eqs(8),(9),(4), we know, after giving the values of $T_{\nu o}$ and γ , the

 $\mathbf{2}$

3 Discussion

(1) The matter state of neutrinos

Taking $T_{\nu o} = 1.9^{\circ} K$, the calculated results are as follows

(2) The value of μ_{ν} during evolution the whole, and m_{ν} is about $10^{-1} - 10^{-2} eV$, and μ_{ν} is about $10^{-5} - 10^{-4} eV$. From the values of γ , it is indicated that HDM ν are in a degenerate state as

entropy per neutrino (S/N) is a constant: According to the isoentropic hypothesis in the evolution of the universe, the

$$
S/N = \frac{k}{3} \cdot \left\{ \int_0^\infty Z^{\frac{3}{2}} (Z + \frac{2m_\nu c^2}{kT_\nu})^{\frac{3}{2}} \frac{dZ}{\exp(Z - \gamma) + 1} + 3 \int_0^\infty (Z + \frac{m_\nu c^2}{kT_\nu}) \sqrt{Z(Z + \frac{2m_\nu c^2}{kT_\nu})} \frac{(Z - \gamma) dZ}{\exp(Z - \gamma) + 1} + \int_0^\infty \frac{dZ}{\exp(Z - \gamma) + 1} \cdot (Z + \frac{m_\nu c^2}{kT_\nu}) \sqrt{Z(Z + \frac{2m_\nu c^2}{kT_\nu})}.
$$

are as follows $\gamma = -1.62$ after the deducing. The results for $T_{\nu\rho} = 1.9$ °K and $\gamma = -1.62$ particles will still be in a degenerate state; but for $\gamma = 0$, it will translate to we know for $\gamma \longrightarrow \infty$ the non-relativistic fermions deduced from relativistic $\gamma = 0$, then the particle number of ν is equal to that of $\bar{\nu}$. From calculations in this time there only exist either neutrinos or antineutrinos $\bar{\nu}$; the second is tion there are two situations for μ_{ν} : the first is $\gamma \longrightarrow \infty$ (degenerate state), condition, $S/N = \frac{k}{3} \cdot \frac{5J_1-3J_1\gamma}{J_1}$. It is obvious that under the relativistic condi-Under the relativistic condition, $S/N = \frac{k}{3} \cdot \frac{4J_3 - 3J_2\gamma}{J_2}$; under the non-relativistic

3

Since the values of v_s/c are too small, it suggests that there may exist LEPT, for example the photon cooling process in Ref[9].

 (3) LEPT

The LEPT can be described by $T_{\nu o} > 1.9^{\circ} K$ and $T_{\gamma o} = (\frac{11}{4})^{\frac{1}{3}} \cdot T_{\nu o}$, for $\gamma = -1.62$ the calculated results are as follows

In this situation, ν is near by a high temperature state, and m_{ν} is still about $10^{-1} - 10^{-2} eV$, and the absolute value of μ_{ν} is still about $10^{-5} - 10^{-4} eV$.

References

- [1] G.F.Smoot et al, Astrophys.J.Lett., 396(1992), L1.
- [2] R.K.Schaefer et al, Phys.Rev., 47(1993), 1333.
- [3] D.O.Coldwell et al, Phys.Rev., 48(1993), 3259.
- [4] R.B.Tully, Ap.J., 303(1986), 25.
- [5] R.B.Tully, Ap.J., 323(1986), 1.
- [6] M.J.Geller et al, Science, 246(1989), 897.
- [7] T.J.Broadhurst et al, Nature, 343(1990), 726.
- [8] W.L.Huang, High Energy Physics and Nuclear Physics (Beijing, China), $15(1991), 1135.$
- [9] J.G.Bartlett et al, Phys.Rev.Lett., 66(1991), 541.

$\overline{\mathbf{4}}$

 $\ddot{}$

 $\mathcal{L}(\mathcal{A})$ and $\mathcal{L}(\mathcal{A})$. $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2}d\mu\left(\frac{1}{\sqrt{2\pi}}\right)\frac{d\mu}{d\mu}d\mu\left(\frac{1}{\sqrt{2\pi}}\right).$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$ $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$