CERN LIBRARIES, GENEVA TRI-PP-93-66

LTI ——

CM-P00068482
Supersymmetric b — sy with Large Chargino Contributions

R. Garisto and J. N. Ng
TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C., V6T 249, Canada

Abstract

Supersymmetric (SUSY) theories are often thought to give large branching ratios
for b — sy from charged Higgs loops. We show that in many cases chargino loop
contributions can cancel those of the Higgs, and SUSY can give B(b — s7) at or
below the Standard Model prediction. We show this occurs because the large stop
mass splittings usually found in SUSY break a GIM mechanism suppression. These
effects are strongly enhanced by large tan 3, so that B(b — sv) is very sensitive
to the value of tan 3, contrary to what has been claimed. We also note that the

supergravity relation By = Ag — 1 is somewhat disfavored over the general case.

(submitted to Physics Letters B)
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There has been much interest in the decay b — sy because of new results from
the CLEO collaboration which bound the inclusive branching ratio, B(b — sv),
below 5.4 x 107 at the 95% confidence level, and give a non-zero branching ratio
for the exclusive decay B — L'*y of about 5 x 10~3[1]. One expects this exclusive
channel to make up 5% —40% of the inclusive rate [2], so B(b — sv) must be greater
than about 107%. The Standard Model (SM) contribution depends slowly on the
top quark mass and is of order 4 x 10~* for m, of 140 GeV. Given this, some recent
works [3, 4] claim that the charged Higgs (H*) masses in supersymmetric theories
[5] must be very large to avoid exceeding the upper bound on B(b — sv). We
show that this is not always the case—that chargino (x*) loop contributions can
cancel the H* contributions and give B(b — s7) near or below the SM prediction.
In particular, we show that such destructive interference effects are important for
large tan B (which is the ratio of Higgs vacuum expectation values), and when there
is a large stop mass splitting. We show that the latter effect is due to the breaking
of a GIM cancellation.

The sign of certain mixing angles is also important because one needs the
chargino contribution to interfere destructively, rather than constructively. From
this one can obtain an approximate condition on the soft SUSY breaking parame-
ters A and B, which may have implications for supergravity theories (for a review
see [9]).

Calculations for B(b — sv) in SUSY can be found in the literature (6, 7).
Bertolini et al. [6] perform a thorough but very constrained analysis which im-
poses radiative breaking, in the minimal model, with By = Ag — 1. They also do
not consider large tan 3, where chargino effects can become much more important.
Barbieri and Giudice 7] make the important point that B(b — sv) vanishes in
the exact supersymmetric limit. However, the scenarios they consider (which are
indeed close to the SUSY limit) with gaugino mass (m,) and Higgs mixing mass
() set to zero, are not phenomenologically viable because they give chargino and
neutralino masses which are too small (one of the higgsinos is even massless in this
case). These approaches are understandable since there are many parameters in
SUSY theories. Our approach is to concentrate on those parameters which tend to
make the chargino contribution large and destructively interfering, so as to make
qualitative statements about what areas of parameter space are favored. We show
that one cannot neglect the chargino contributions and that there are large areas
of parameter space where B(b — sv) in SUSY is at or below the SM prediction.
Contrary to what is claimed in (7], we find that B(b — sv) is very sensitive to
tan #, and one can even find regions for large tan # where the chargino destructive
interference is too larse [8].

The inclusive decay b — sy comes from the operator 5,0*“brF,,. When
one runs the scale from Mz to m,, this operator mixes with the gluon operator
5.0 T*brGY,, as well as four quark operators. We use the notation of [7] through-
out, up to an overall sign in the amplitude. They define the coefficients of the
photon (and gluon) operators as Gr(a/873)/2V;Viymy A, (and A, — A,;). We
will concentrate on the photon coefficient A, because the gluon coefficient contri-
bution is relatively suppressed by QCD factors [10], as can be seen from the ratio
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[signp |UraVai| (cos6; Afy + sin®6; A fy)
+signé; p |U12Vig sin 6; cos ;] % (Afi - Af)). (12)

This allows one to understand the gross behavior of the sum. For moderate to large
stop splittings, |6;| ~ 45°, 1, will be less than i, and my, will be greater than
or of order 7 [12]. One sees that the chargino contribution tends to have a large
destructive interference with the W+ and H+ pieces if {, is light (i.e. there is a large
stop mass splitting), tan 3 is large, and if 6; 4 > 0, i.e.

p<0,6; <0, or p>0,6; >0. (13)

The p > 0 case gives a smaller B(b — sv) because both pieces in (12) help to reduce
the overall amplitude. One can show that signf; = —sign(Amg — u cot B), so that
Ap < 0 implies that 6; 4 > 0 (though the converse is not necessarily true). Finally
we note that the sign of 4 is just the sign of B-one rotates the Higgs fields so as to
make the Higgs potential coefficient p}, positive, and then signu equals the signB
before that rotation [13]. Thus AB < 0 implies 6; 4 > 0, which is the favorable
region for destructive interference from the chargino loops. If |Amg|tan 8 > |y, the
converse is also true.

In the simplest SUGRA theories, one has the relation at the Planck scale By =
Ao — 1 [9]. Onme can show using general properties of the renormalization group
equations that this relation implies one cannot have A < 0 and B > 0 at the weak
scale, which is the most favored region for small B(b — sv). If my+ and tan 8 were
found experimentally to be small, it might be possible to rule out minimal SUSY
models which satisfy By = 4y — 1.

To illustrate these results, we consider some supersymmetric scenarios. In Fig-
ure 1, we consider the heuristic parameters Ar, and 6;. We see that for the given
choice of parameters with 6; u < 0, B(b — sv) is always greater than the CLEOQ
bound (in the region allowed by LEP, above the unlabeled curves). The case Ou>0
has lower B(b — s7), especially for the 4 > 0 case, and there are regions where the
CLEO bound is satisfied. Increasing A, lowers B(b — s7) in the 8; 4 > 0 regions
because As(x*) + A4(x*) becomes more important. Radiative corrections lower
both 772, and my, relative to 1 [12], so we take (1, — )/ A, to be —2/3 and 1/3,
respectively. If one raises (lowers) 1, while holding 7, constant, the difference
between the ¢ > 0 and g < 0 regions tends to become less (more) pronounced.

Figures 2-4 show more realistic scenarios where one inputs A instead of A,
and sign;. Increasing tan  will increase m?%,, so that large tan 8 gives smaller
B(b — sv) just by suppressing the H* loop contribution. To examine the different
values for tan 8 on equal footing, we have taken |B| = 1.5/tan so that mi, is
about the same in each graph (mpy+ ~ 260 GeV at |u| = 400). Even so, B(b — $7)
gets much smaller in the AB < 0 (i.e. Ap < 0) regions as tan 3 increases, again
because A3(x*)+ As(x*) becomes more important. Larger |4 also reduces B(b —
57) in those regions. For A < 0, B > 0 (which is not allowed if By = Ag — 1) and
tan 8 > 10, there are even regions where the chargino contribution flips the sign

5

of the amplitude—cancelling the H*, W* and C contributions—so that certain
regions of parameter space are ruled out because the value of —A,(x) is too large!
Conversely, the regions of AB > 0 tend to give larger B(b — s7) due to constructive
interference from A,(x).

We have shown what happens when one varies tan 3, A, y and m,. We took |B|
such that m},, was of order the weak scale—if | B| is larger (smaller) than in Figures
1-4, m},, will be larger (smaller), and all the values for B(b — s7v) will be smaller
(larger). This simply demonstrates the point stressed by [3,4] that B(b — sv) can
be suppressed by large my+. If m, is heavier (lighter) than 140 GeV, all of the
values for B(b — sv) will be shifted up (down) slightly, but for the SUSY result
of my =~ 134 £ 25 GeV [14], there is no qualitative change in our results. Lastly,
one can make a different choice for my. Increasing mo makes both A, and mi,,
larger, so that B(b — sv) generally decreases in the AB < 0 regions. One must be
careful for large Amy that m} is greater than zero.

The branching ratio for 5 — sy in SUSY theories is near or below the SM
value if the charged Higgs mass is large, or the chargino contribution destructively
interferes with the charged Higgs and W loops. We found that the latter occurs in
regions of parameter space where AB < 0 (or equivalently when Ap < 0), and is
accentuated by large tan # and large |A|. One can have B(b — s7) at or below the
SM prediction in supersymmetric models without requiring a large charged Higgs
mass. Finally, we have noted that if my+ and tan 8 were found to be small, it might

be possible to rule out minimal SUSY models which satisfy the SUGRA relation
mc = \»c —-1.
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