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Abstract

The influence of Bose-Einstein correlations on the rise of factorial moments is small
in the l-dimensional phase space given by the pseudorapidity 1, where the 2-body
correlation function is dominated by unlike sign particle correlations. Contrarily, the
influence is dominant in the higher dimensional phase space. This is shown by using
correlation integrals. They exhibit clear power law dependences on the four-momentum
transfer (* for all orders investigated (i = 2-5). When searching for the origin of this
behaviour, we found that the Bose-Einstein ratio itself shows a steep rise for Q- 0,
compatible with a power law.
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1 Introduction

Recent searches for intermittency in the two- and three dimensional phase space show
a strong rise of the factorial moments (FM) with decreasing phase space volumes v
[1]. This rise is not only seen in hard scattering processes, but also in hadron-hadron
reactions [2, 3| and in nuclear collisions [4, 5]. It indicates, that a singularity might oc-
cur for v — {} in the two and multiparticle correlation function. In hadron-hadron and
nuclear collisions, the question is still open, if this behavior can be explained by known
effects. One candidate is the Bose-Einstein (BE) effect [6, 7, 8]. All investigations of
the influence of this effect are rather indirect up to now!: Usually the slopes of the FM
measured for all particles {¢#") are compared to those where only like-sign particles
contribute (p!*). However, experimental investigations in the 1-dimensional rapidity

space show either no differences between ! and ¢!, indicating that the Bose-Einstein

effect has no major influence [9} or are not conclusive (see e.g. refs. [1, 10]). Studies
of intermittency and multifractality with Monte Carlo models including the BE effect
(11] could not explain the experimental results [9] . Perhaps, the implementation has
been too crude and so the question is still open.

The aim of this paper is to study the influence of the Bose-Einstein correlations
with some new experimental methods. We cannot distinguish between the quantum
statistical symmetrization effect and other short range correlations of like-sign parti-
cles {e.g. from the decay of higher resonances). Therefore, more precisely, we want to
study the contribution of the very short range correlations observed in the correlation
function of like-sign particles {when analysed e.g. in @?) to the rise of the FM. We
will call these correlations B.E. effect throughout this paper?.

The paper is organized as follows: after giving the definitions and the specification
of the data sample in sections 2 and 3, we present the analysis in section 4. We used
three methods: a) comparison of p!* with ¢! b) the method of “pair subtraction”
and c) a detailed study of the two particle correlation function. For our analysis we
used two different variables: the pseudorapidity n and the four-momentum difference
@Q? between pairs. The conclusions of our results are given in section 5.

2 Definitions

We use the usual “vertical” FM of order ::

= ()’ M 2 Lo Tlednepi(n) < pa () )
(1

1We will refer to new investigations which occured during the preparation of this manuscript in
our conclusions

2The question about the relative contributions of differcnt effects is still discussed, however, recent
analysis [12] of higher order like sign correlations {13} in the framework of quantum statistics has led
to a most consistent description of all orders ¢ = 2 — 5.
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where p; is the inclusive i-particle density function. For the computation of the in-
tegrals a binning of the original region An into M subintervals of the size én is
introduced. The number of particles in the m-th bin n,, is counted. The integration
domain g = Zle 2, thus consists of M i-dimensional boxes ,, of edge length é7.
The brackets ( ) denote the averages over the event sample.

Selfsimilar density fluctuations at all scales én would lead to a power law depen-

dence of {F}) on 6n: "
() .

1
log () = ai + o1 - log (5)

This behavior is called intermittency [14] and the parameters ; (slopes of the (£} in
a log-log scale) are called intermittency exponents.

Recently a considerable improvement of the factorial moment method to study
correlations has been proposed in [15] with the measurement of the correlation in-
tegrals (C;). These quantities are closely related to the {£;). The main difference is
that the integration domain Q5 = >M_ 0, is extended to a strip domain 2 which
depends only on én:

. oo e dmepi(my, -+ - mi)
(Ci(n)) = o TTx @ (1) -~ () (3)

The counting procedure for the correlation integral requires, that all i- tuples in [0, Ay]
which are separated by a distance less than é7 are counted. In {15] a detailed discussion
of the implementation of the (C;) has been given. The method of counting i-tuples
which is used in this paper is given by the “GHP” integral [16]:

1
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where €& is the usual Heaviside step function and Norm is obtained by “event mixing”
[15].

We have verified, that the values of (F}) and (C;) are almost identical in the case
of the analysis in 67 {17, 18] (differences are of the order of the statistical errors in our
data sample of 160.000 events, see fig. la). One advantage of {C;} is the better statis-
tical accuracy. We use here another advantage: since (4) depends only on differences
of phase space variables, we can replace |n;, —n;, | by —(p;,, — p;,, ), and 6n by @2,
where p is the four-momentum of a particle. Thus we are able to measure the {C;) as
a function of Q% which is the theoretically preferred variable in jet evolution. In {4)
the product extends over all possible pairs of an i-tuple. It contributes to {C;} only
if all pairs satisfy the condition |n;, — 5;, | < én. In the case of the Q*-analysis we
have modified this condition: only i-tuples with ¢%, + ¢¥5 + --+ + qa’—i)i < @7, where
g2y = —(pi, _ijh)za contribute to (C;) and we obtain:
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< Norm < Z o Z q‘”‘l 7hy > (3)

J1 << ai k1.k2

In analogy to the usual analysis with FM, we will search for a power law of the

{C;) as a function of Q%
on()

Eqn. (5) is conceptually different from eqn. (4) for + > 3. However, the search for a
power law is motivated by the desire to search for selfsimilar dynamics in the produc-
tion of particles, not knowing a priori in which variable it might show up. The variable
()? defined above has been proposed in [19] and used in the analysis of higher order
Bose-Einstein correlations [13]. In choosing this variables, we are able to demonstrate
the close connection between intermittency analysis and the analysis of Bose-Einstein
correlations. Moreover, we want to remind the reader that there exists the simple re-
lation between Q2 and the invariant mass M; of the i-tuple: Q% = M? — (zm,r) in the
case all particles are pions. The Bose-Einstein correlations are given in the differential
form. Let’ s denote N {Q?)dQ? as the number of i-tuples found in [Q? Q? + dQ?]
where N (Q?) is the i-body density function p; (ky, ko, .., &), integrated over all

phase space variables k; except %, and let’s define N (Q*)dQ* as the expected

number of i-tuples in the same interval in absence of correlations. N,E,::x (Q*) is the
product of single particle densities p; (k1) ... p1 (ki) integrated in the same manner as
pi (k1,kq, ..., k). It can be obtained by Monte Carlo integration, or simply by event
mixing®. The proper normalization of the event mixing term is achieved by demand-
ing the total number of mixed i-tuples in the overall phase space region (in our case:
7l € 3,¢ < 2x,pr > 0.15GeV) to be Ny - {(n)* where (n) is the measured mean
number of particles per event in this overall region, and N, the total number of
events. This can be obtained e.g. by generating a Poissonic multiplicity distribution
of the mixed events with the mean value (n). The Bose Einstein correlations are usu-
ally presented in the form ng = NG/ (const anzx), where const is choosen such
that this ratio is equal to 1 in a suitably choosen Q° region (usually @* > 1). The

connection with {C;) is given by eqn. (7):

2 - -
<C-(Q2)> _ Q N(')(Qf)de
i 2
TN (@D
We will measure in the following also the properly normalized differential 2-body
density correlation function

(7)

N@(])

N (1

3The event mixing technique has been recently discussed and justified in refs. [15, 20].

fi) = , 1=Q" or by (8)
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3 Data Sample

The data sample consists of approximately 160.000 non-single-diffractive events at
V3= 630 GeV. All data were taken using a “minimum bias” trigger [21], requiring
at least one charged particle in the pseudorapidity range of 1.5 < || < 5.6 in each
of the downstream arms of the detector. All information used for this analysis was
obtained from reconstructed trajectories measured by the UA1 central detector [22].
Only vertex associated charged tracks with transverse momentum py > 0.15 GeV /¢,
|n] < 3, good measurement quality and fitted length > 30cm have been used. To
calculate Q*, we assumed that all charged particles are pions.

Acceptance loss: All tracks recorded in the central detector (CD) are reconstructed
first from the drift time measurements in the zy-plane which inlcudes the beam axis
() and is normal to the direction of the magnetic field (z). The dip angle v with
respect to this plane is determined from the charge division on the wires which are
spanned parallel to the magnetic field of 0.7 Tesla [22]. There is a multiplicity depen-
dent loss of tracks with large angle «. Using the independence of particle production
from the azimuthal angle around the beam axis, we estimated this loss and corrected
the data.

Double counting of tracks: A visual examination of a sample of nearby like sign
track pairs has been done on the graphic device MEGATEK to investigate possible
double counting of tracks. About 1% of all tracks are misidentified as two tracks by
the pattern recognition program. A special algorithm has been applied which searches
for like sign pairs which are close together in phase space. If the two tracks belong to
only one splitted track, then this algorithm removes the one that has more distance
to the vertex. In addition we require for each pair with Ay, < 2.5° a separation
d > 15 mm in the zy plane along a track length of > 30 ¢m. Finally, we require
Q? > 0.0001 (GeV/c)? for all accepted like sign pairs. The accompanying visual
control asserts, that the remaining fake pairs occur at a rate of 0.03% (5% in the
region 0.001 < Q? < 0.003) and are compensated by approximately the same rate of
visual identifiable real pairs (two separated chains of hits in the CD) which are cut
away by the software cuts.

Loss of nearby track pairs: Due to the limited signal resolution in the CD and since
the tracks are recontructed only in the zy plane, most of the pairs with d < 15 mm are
not recorded as two distinct tracks, irrespectively of Av. This has been confirmed by
the visual examination: the number of detected real pairs with d < 15 mm is only 1/3
of those found in the neighbouring region with 15 < d < 30 mm, independent from Av~.
The correction for this loss is dependent on the (unknown) physics at small separation
of pairs in phase space. We therefore will present the data without a correction for this
loss (unless it is stated explicitely). Since the (F;) and (C;) are integrated quantities,
their sensitivity on track-pair losses grows rapidly with decreasing phase space bins.
We therefore restricted our investigations to 67 > 0.05 and Q* > 0.05 (GeV/c)? and
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verified by cutting away successively also pairs in the region 15 < d <€ 30 cm, that
our data are not yet sensitive to these cuts. In the case of the differential two particle
density correlation functions f(@?) the data turned out to be much less sensitive. We
therefore show this function also in the low Q% region (Q* > 0.001) and discuss the
influence of the pair loss separately in section 4.3.

~ conversions: The influence of Dalitz pairs and 7-conversions in the beam pipe on
the (F;)’s has been estimated previously [9] to be less than 10% in the case of the
§n analysis. We have verified that it is negligible for Ci(Q* > 0.03). In the case of
the differential iwo particle correlation function of unlike sign pairs, our Monte Carlo
generations show, that they mainly contribute at Q* < 0.001, a region which is not
investigated here (see also ref. [23]).

Resolution: The error of the pseudorapidity measurement varies between a,, = 0.007
(In] < 1.5) and &, = 0.034 (1.5 < |p| < 3.5). The error of Q* has been estimated from
the errors of track-fits and has been also determined directly at Q* = 0.17 from the
width of K%-decays. It is given by AQ? = 2Q - AQ + (AQ)? with AQ ~ 8 MeV, where
AQ is approximately constant over the whole region of investigation.

4 Analysis

4.1 Charge dependence of slope parameters

Fig. 1 shows the rise of {7} or {C*) for two different data samples with decreasing bin
sizet in 6y (fig. 1a) and Q? (fig. 1b) in a log-log plot. The first data sample contains only
like-sign particles and the second one all charged particles. The comparison in fig. 1
shows, that ¢ = 1p!* is fulfilled approximately in the Q% representation (table 1)
whereas at the same time only small differences are visible in the &7 analysis®. This
demonstrates that the influence of the BE correlations is strongly dependent on the
variable used and turns out to be more important in the higher dimensional phase
space. It has been conjectured [24, 25, 26] that intermittency occurs in the higher
dimensional phase space and the bending of the (F}) or {C;) in fig. la is due to the
projection to the 1-dimensional pseudorapidity space. However, figs.la,b demonstrate,
that with projections we may also select different mechanisms: in fig. la the like
sign particle correlations are significantly smaller than the correlations of all charged
particles, but they dominate (for small Q?) in fig. 1b. It should be stressed that in

fig. 1b a good linearity shows up in agreement with eqn. {6) and the conjecture of

In all figures of this paper bin sizes increase from left to right. This differs from the usual
convention of drawing {F;) or (Ci) values where the bin sizes increase from right to left. However,
our present notation most naturally merges with the usual way to draw the correlation functions
and in particular the B.E. correlations and thus provides us with a consistent presentation of its
influence.

5This is in agreement with an earlier UA1 analysis [9] , where in a very central (|n| < 1.5} region
even no difference between ¢ and ¢!* has been found.

i
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intermittency. Slight deviations from this law (a bending upwards of {C3) and {Cs} for
the like-sign sample } vanish, if all charged particles are considered (open circles). This
indicates, that the linearity is due to an interplay of all correlations, irrespectively of
the distinct dynamical origin.

In the following we want to investigate in a more sensitive way the contribution
of Bose-Einstein correlations to the rise in é7, therefore we applied another method
[17] in the next section.

4.2 The method of “pair subtraction”

With this method we attempt to measure the rise of the (C;) in absence of the Bose-
Einstein effect. To this end, like-sign pairs with small Q* were cut away until a data
sample is (artificially) achieved which exhibits no Bose-Einstein effect as shown in
fig. 2.

It should be mentioned, however, that studying the sample with subtracted pairs
provides us only with a lower limit of what the influence of the BE correlations
might be. If there exist also genuine higher order correlations they will contribute
additionally. Recently higher order BE density correlations (i-tuple counts in bins [Q*,
Q7% + dQ?)) have been measured up to the 5 order for the first time [13]. However,
to get rid of the contributions from lower orders, we need to measure the cumulant
correlation functions [27].

We restrict in the following our investigation to the influence of 2-particle BE
correlations. The behavior of the (C;} before (open circles) and after (full circles) the
subtraction of the BE pairs is shown in figs. 3a-d. Let’s concentrate first on (C5)
(figs. 3a,b). In the case of the analysis in @? (fig. 3b) and the sample of like-sign pairs
no residual rise is left after the subtraction as expected, since {(C,) is (apart from a
normalization constant) the integral over the BE ratio shown in fig. 2 (see eqn. (7)).
There is some residual rise in the sample of all particles in fig. 3b but it vanishes
for Q% < 0.2 which indicates that in the region of small Q2 only the BE correlations
contribute Lo the overall 2-body correlation function.

- The situation is different in the case of the analysis in é7 (fig. 3a): there is after
the subtraction of BE pairs still some rise also in the case of the like-sign particles
for én 2> 1 indicating the presence of some correlations which do not originate from
the very short range BE correlations in @%. Only a small rise is left for oy < 1. We
conclude therefore, that the rise in that region in the like-sign sample is mainly due
to BE correlations.

In the case of all particles (fig. 3a) the subtraction of BE pairs has only a small
influence and we conclude that the rise is mainly due to strong correlations of unlike-
sign pairs.

The region in &y which can be populated by BE pairs is given by the following
relation {17]:

Q? = — (m%, +mk, — 2mp,my, cosh(6y)) + (ph, + %, — 2r1P1s cos(89)) (%)
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with 8y = §y and m% = m? + p2..

Eqn. (9) shows that pairs with the same @ can contribute at different 65 values,
dependent on the transverse momenta pr and the difference of azimuthal angles 6¢.

We turn now to the influence on higher order (C;) in the case of all particles in
figs. 3¢,d. (The like-sign sample (not shown here} has very similar behaviour.) After
the subtraction of the BE pairs they all show still a significant rise (see table 2),
indicating the presence of other correlations too. A difference before and after the
subtraction of BE pairs is seen in both the Q% and én analysis, but it is weaker in the
case of é7.

4.3 A detailed study of the two-particle correlation functions

If one assumes that intermittency is indeed present and - as fig. 1b suggests - is
dominated (in %) by the B.E. correlations, one would expect that the shape of the
BE ratio itself should be represented by a power law rather than by an exponential
(or Gaussian). Therefore we present a measurement of differential 2-body density
correlation functions f(!), ({ = én or Q*) for like-sign pairs and unlike-sign pairs
seperately and search for a singularity® for { — 0, as an indication for intermittency.
Fig. 4 shows the ratio fg% = (1/const) - f(Q*). This is the usual form in which
BE correlations are presented. Fig. 4 shows a comparison of the samples of like-sign
pairs with unlike sign pairs and all charged particles. Each sample is normalized to 1
separately for Q% > 1 by choosing “const” [3, 28]. One observes a strong dominance
of unlike-sign pair correlations for 0.03 < Q% < 1 which is at least partly due to
resonance and particle decays (e.g. there is a broad peak at Q* ~ 0.5 GeV/c? which
is due to p decays (m, = /Q? + 4m?) and a peak at Q% & 0.17 GeV/c? which is
due to remaining K2 decays, where the decay point could not be resolved from the
vertex). However, at very small Q*(< 0.03 GeV/c?) this function is nearly constant.
Contrarily, the like-sign particle correlation function rises above one only for small
Q% < 0.24 GeV/c?). For very small Q%( < 0.03 GeV/c?) there is a cross-over and the
function is rising very rapidly for Q% — 0. Fig. 4 suggests that a possible singularity
in the correlation function would be due to the like-sign particle contributions only.
To resolve the small Q? region we choose again the log-log scale in fig. 5. Fig. 5b shows
f(Q?), the same functions as fig. 4, the only difference — besides the different binning
- is the proper normalization to the uncorrelated sample as described in section 2.
Fig. 5b confirms the observations in fig. 4. The unlike sign correlation function stays
approximately constant for @? < 0.17. The rise near Q* = 0.001 can be attributed
partly to the onset of y-conversions (which contribute mainly to the region @? < 0.001)
but may be also at least partly due to the Coulomb attraction of the unlike sign pairs
(4+ 10% increase at Q* = 0.001 expected). The like sign correlation function continues
to rise at least until Q% = 0.001 GeV?. Once more we show the same analysis in é7
(fig. 5a). A comparison between figs. 5a and 5b confirms the results of the previous

Snot in the mathematical sense: either due to the limited detector resolution or because of physical
reasons there will be a cut-off at finite /. - ‘



investigations: the 2-body correlation function of all charged particles is dominated by
unlike-sign particle correlations when analysed in én but dominated by the like-sign
correlation function when analysed at small Q2.

The good resolution of the functions presented in fig. 5b permits to study the
functional form of f{Q?) of the like-sign sample, and especially to search for a power

law dependence. In fig. 6 we show a comparison with the following functions”:

@) = a+b-(Q)7 (10)
QY = o +bexp(-rQ) (11)
F@Q@%) = a"(14+2M1 = Aexp(=rQ) + X exp (-2rQ)) (12)

Each of them has 3 free parameters: a, b, ¢ (eqn. (10)), o' , &, r (eqn. (12}) and
a”, A, r (eqn. (12)). The best agreement with the data (at small Q?) is obtained by
the power law of eqn. (10). Subsamples, with positive pairs or negative pairs only,
agree within their statistical errors, each showing the excess of pairs at small Q2 over
an exponential ansatz separately. We have also studied the systematic uncertainties
which arise from the inclusion of residual fake pairs on one side, and from the loss of
real pairs on the other side (see section 3) by varying the selection criteria for accepted
pairs. The result of this study gives a systematic uncertainty of +9.0%, +3.2% and
-8.0%, -2.2% at Q% = 0.001, 0.005 (GeV/c)?, respectively. Tt should be stressed that
with each selection and in particular with a sample (called sample 2) where all fake
pairs have been removed by rigorous cuts, and which has been corrected for the severe
loss of real pairs by Monte Carlo afterwards, we come to the same conclusion as above:
the best agreement is obtained by a power law.

Table 3 contains the fit parameters of eqns. (10), (11) and (12) for the data as
defined in section 3 and shown in fig. 6, and for sample 2 (in brackets).

In conclusion, the data of fig. 6 indicate, that one scale might be not enough to
describe them satisfactorily, but they are in agreement with the conjecture of scale
invariance.

Three remarks should be added: The first concerns the question how the present
data compare with previously published ones [13] and with those of other experiments
[30] which also show a steep rise for Q* — 0 incompatible with a Gaufiian function
but still in agreement with an exponential ansatz. The answer is, that with a larger
binning (AQ* = 0.05 (GeV/c)? and Q* > 0.05 in the case of [13], and AQ = 25
MeV in the case of [30] the data became smeared out and show a less steep rise for
@* — 0. We have compared in detail with the statistically excellent data of the AFS
collaboration [30] from pp reactions at /s = 63 GeV. It turned out, that our data
are (after the correction for pair loss) in quantitative agreement with the AFS data in
our lowest Q%-region, if we adopt the same {larger) binning {AFS: fgg = 1.79 £ 0.1,
UAL: fgg = 1.77 £ 0.035, 25 MeV < @ < 50 MeV). To obtain the Bose-Einstein

“The functional form of (10) has been proposed in [29] for a 3-dimensional analysis, a possible
contribution from long range correlations can be absorbed in the parameter a.



ratio, we have put const = 1.36, the value of the correlation function at Q% = 1. Qur
data show (again with the same binning) a comparable steeper fall off towards higher
(@*-values than the AFS data. It is not clear, if this can be attributed to the much
higher CMS energy of our experiment, since the data of ref. [31] at /s = 26 GeV
also show a steeper fall off than the AFS data, as discussed in ref. [32]. We want
furthermore to refer to an early experiment [33] where 2-body correlations have been
successfully compared to power laws. Secondly, we want to point out, that we did not
correct our data for Coulomb repulsion, because the validity of the Gamov correction
factor [34] (which would amount +10% at @2 = 0.001 (GeV/c)?) has been questioned
recently {35]. The third remark concerns the fact that the Bose-Einstein ratio of our
experiment, but also that of refs. [30, 31] reach or nearly reach the value fgg = 2
in the lowest bins, leaving not much room for “coherence”. We question therefore the
procedure to deduce coherence from extrapolations to Q% = 0 of exponential or (even
worse) Gaufian fits, obtained in a region of much larger (Q*.

5 Summary and Conclusions

e We studied the contribution of the (very short range) like sign particle correla-
tions which we call the BE effect to the rise of factorial moments (or correlation
integrals) with decreasing phase space bins.

e We used two variables for this study:

(i) the 1-dimensional variable é7,

(i1) the squared 4-momentum difference (J2 between two particles.

A study with a similar formalism in both variables was possible with the help of
the correlation integrals [15}, quantities which are closely related to the factorial
moments, but which depend only on differences of phase space variables.

e Three methods have been applied:

1. a comparison of slope parameters ©?" and ¢! of the rise of the (C;),

2. the method of “pair subtraction”,

3. a search for a singularity in the two-particle density correlation function
for like-sign pairs and unlike-sign pairs separately.

Our conclusions:

e Theinfluence of the BE effect depends on the variable used. Whereas it is weak in
the case of 67, it is the dominant contribution to the rise of {C;} with decreasing
Q* (@Q* — 0). This is shown most clearly by method 1: In the éy-analysis we

found ¢ = ¢!, but in the Q*-analysis the condition " & ! is fulfilled for

all orders 1.



e Method 2 shows, that there is also a weak, but non-negligible contribution of
the BE effect in the case of é5-analysis.

e Different dynamical mechanisms are dominant in the én and ()? analysis, this is
confirmed directly by method 3: when analysed in 87, the two particle correlation
function is dominated by the contribution of unlike-sign pairs whereas when
analysed in Q? the dominance of the like-sign pairs shows up very clearly for
small % (< 0.03 GeV/c?).

e The correlation integrals in fig. 1b show an almost perfect power law depen-
dence of {C;) on (Q? over the whole region of analysis® It is due to the interplay
of different mechanisms, however, for small Q2 the {C;}s are dominated by the
like sign particle correlations® for all orders = 2 — 5. Therefore the question, if
intermittency (in Q?) can be explained by known effects, will only be answered
with "yes”, if we can explain the correlations of like sign particles for @* — 0.
Restricting to the two-particle density correlation function, we observe a steep
rise compatible with a power law down to Q% = 0.001 (GeV/c)?. This deviates
from the usual GauBian parametrisations and it even exceeds (only at very small
Q%) the exponential ansatz, but it is in agreement with an early measurement
[33] where power laws as a function of the invariant mass have been successfuly
compared to the data in the framework of the Miiller-Regge approach. But it
has also been pointed out in ref. [33] that the predictive power of this approach
is limited to large masses only. More recently another attempt has been made
to understand intermittency [38]. Let’s assume that all like sign particle corre-
lations at small Q? are due to the quantum statistical symmetrisation effect.
Then arguments have been given in [38], that a power law in the correlation
function would imply strong fluctuations of the size of the interaction region.
One possibility could be, that the interaction region is itself a fractal [38, 39, 40},
extending over a large volume. According to our smallest Q* = 0.001 (GeV/c)?
this extention would be as large as 6 fm. It would be interesting to check, if the
contribution to the B.E. effect from known resonance decays [41, 42] can explain
this behaviour.

8This region is not very large yet because of the reasons discussed in section 3.
9Gimilar results have been found recently with hh reactions at lower energy [36] and with a
3-dimensional intermittency analysis of up reactions [37].
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Tables

Table 1: The results of fitting the {(C;) (i = 2,...,5) as a function of Q? to a power
law (6). In fig. 1b the fitted functions superimposed to the data are shown.
The fitted slope parameters are given for two different data samples. The errors
indicated are only statistical.

] slope parameters ] P2 | ©3 ] P4 ] s ]
all charged
particles 0.0348 £ 0.0006 | 0.078 + 0.001 | 0.213 £ 0.004 | 0.338 £ 0.019
like-sign
particles 0.0522 £ 0.0009 | 0.147 & 0.001 | 0.443 £ 0.010 | 0.855 £ 0.051

Table 2: A comparison of the slope parameters before and after the BE-cut, obtained
by fittng the (C;) of all charged particles as a function of Q* to a power law (6).
In fig. 3d the fitted functions superimposed to the data are shown. The errors
are only statistical.

| slope parameters | ©2 | ©3 [ P4 ] Vs |
before BE-cut 0.0348 £ 0.0006 | 0.078 &£ 0.001 | 0.213 4 0.004 | 0.338 £ 0.019
after BE-cut 0.0108 £+ 0.0005 | 0.046 £0.001 | 0.172 £ 0.004 | 0.305 £ 0.018

Table 3: Parameters of the fits, shown in fig. 6. The errors include statistical and
systematic uncertainties. The values in the brackets are obtained with sample
2, see text. Q% is in units [(GeV/c)?], r in {fm]. The data are not corrected for
Coulomb repulsion.

[ fit to Eq.10 [ fit to Eq.11 | fit to Eq.12 |

@ =125+ 002(1.27) | @ = 1.357 + 0.003 (1.359) | «® = 1.355 = 0.003 (1.357)
b =0.08 + 0.02 (0.07) | & = 0.84 £ 0.10 (0.96) X = 0.43 + 0.13 (0.56)

@ = 0.39 £ 0.06 (0.43) | * = 1.39 &+ 0.11 (1.50) r= 126+ 0.06 (1.31)
X?/NF =214 (2.05) | x’/NF = 2.61 (3.65) /NE = 2.23 (2.90)

Figure Captions

Fig. 1: The rise of the factorial moments and correlation integrals a) with decreasing
61, b) with decreasing Q%. The indicated errors are statistical only. Additional
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Fig.

Fig.

Fig.
Fig.

Fig

systematic errors arise from uncertainties of acceptance corrections. Their mag-
nitudes are: £1.5%(: = 2), £3%(i = 3), £7%(i = 4), £14%(i = 5). Since these
numbers are independent from 87 or 2, they concern only the absolute values
of the FM or C; but not the slopes.

2: The Bose-Einstein ratio before and after the subtraction of pairs with small
Q%

3: The effect of the pair-subtraction (BE-cut)

a) b) on the second order correlation integrals depending on én or ()* respec-
tively,

c) d) on the higher order correlation integrals depending on én or Q2 respec-
tively.

4: Bose-Einstein ratios fgg for different samples, as indicated.

5: The normalized two-body density correlation function [, eqn. (8)

a) as a function of &7,
b} as a function of Q2.

. 6: The two-body density correlation function for like-sign particles fitted to (10),
(11), (12), see text. The indicated errors are statistical only.
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