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ABSTRACT
The data acquisition system of the ATLAS experiment, a major
experiment of the Large Hadron Collider (LHC) at CERN, will go
through a major upgrade in the next decade. The upgrade is driven
by experimental physics requirements, calling for increased data
rates on the order of 6 TB/s. By contrast, the data rate of the existing
system is 160 GB/s. Among the changes in the upgraded system
will be a very large buffer with a projected size on the order of
70 PB. The buffer role will be decoupling of data production from
on-line data processing, storing data for periods of up to 24 hours
until it can be analyzed by the event processing system.

The larger buffer will allow a new data recording strategy, pro-
viding additional margins to handle variable data rates. At the same
time it will provide sensible trade-offs between buffering space
and on-line processing capabilities. This compromise between two
resources will be possible since the data production cycle includes
time periods where the experiment will not produce data.

In this paper we analyze the consequences of such trade-offs,
and introduce a tool that allows a detailed exploration of different
strategies for resource provisioning. It is based on a model of the
upgraded data acquisition system, implemented in a simulation
framework. From this model it is possible to obtain insight into
the dynamics of the running system. Given predefined resource
constraints, we provide bounds for the provisioning of buffering
space and on-line processing requirements.
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1 INTRODUCTION
Colliding beam High Energy Particle Physics experiments study
physical phenomena by measuring subatomic particles. A complex
layout of sensors and special-purpose electronic devices detect the
product of particles interaction at the collision point. Analysis of
the data produced by these kind of experiments takes time, in the
order of several months or even years. Not only because of the vasts
amount of data involved, but also because experiment goals are the
study of new, never-examined before physical phenomena.

For this reason, data have to be recorded in permanent storage to
allow scientists to iterate over the results. However, it is unfeasible
to record all the data produced, since the requirements for stor-
age will be enormous. Also, a large portion of the data represents
known phenomena. Therefore, data are filtered in real-time before
being sent to permanently storage. This initial filtering is done by
identifying general aspects of the interesting phenomena for the
experiment.

The data-acquisition system (DAQ) is in charge of receiving the
data from the sensors, filtering and selecting relevant data, and send-
ing data to permanent storage. The filtering stage is usually called
a trigger system. The DAQ system implementation often involves
a mixture of custom electronics and general purpose computing
hardware, like Ethernet networks.

In this and similar contexts, the data rates of the DAQ system
exhibit the following behavior during execution:

(1) Data rates are very high, and it is unfeasible to store all
produced data.

Copyright 2018 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license
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(2) Data rates vary in time, depending on external conditions
that are usually not possible to control.

(3) Data rates may show a cyclic behavior, including a drop to
zero for a certain amount of time. This can be due to external
or technical reasons.

As a result, many experiments provision their DAQ system for
peak data rates. During the time the experiment is either not deliver-
ing data or producing data below its peak operation, the processing
system will remain totally or partially unused. Future DAQ systems
will observe a substantial increase of maximum data rate, resulting
in an increase of the gap between the average and peak values for
data rates.

For example, the ATLAS experiment at CERN [3], a major exper-
iment at the Large Hadron Collider (LHC), uses different sensors
to record collision data. Protons are collided 40 million times per
second over periods that can last longer than 24 hours, so that
vast amounts of physics data are produced. This data stream has
very specific production patterns, and bounds for data rates and
objects sizes vary over time. The trigger system of the ATLAS DAQ
system [2, 4] is implemented in two stages: while the first stage con-
sists of custom electronics with strict real-time requirements, the
second stage is based on a general-purpose multicore computing
system, interconnected using an Ethernet network. Under today’s
configuration, so-called ATLAS “Phase-0”, the second trigger stage
receives data from the sensors electronics on average at 160 GB/s.
The future upgrade for the ATLAS experiment, so-called “Phase-
2”, will have to deal with an increase in maximum data rates on
the order of 30x when compared to the existing system. Such an
increase of data rate, even if it will take place in the future, has
tremendous implications on the system architecture. However, the
LHC is unable to deliver collisions continuously. Stable collisions
that contribute for the experiment’s data production will occur
around 65% of the time. Figure 1 shows this behavior in the ex-
isting ATLAS system. This presents an opportunity to trade-off
computing power with storage space.

Previous relatedwork includes [15], which describes a simulation
model to study the single-stage buffering system of the existing
ATLAS “Phase-0” experiment, a model which in this paper is called
single buffer simulation model. By contrast, this work is about a
split buffer simulation model for a large buffer like the one it will
be required for ATLAS “Phase-2”, and which is distributed across
multiple storage entities.

Two scenarios of operation are studied: when the experiment
is delivering data, and when the experiment is not delivering data.
In the first case, the system has to both store data in the buffering
system, and process incoming data on-line. In the second case, the
experiment has to continue the processing of the data leftover in
the buffering system. Within each scenario, the size of the data
processing system is explored in order to analyze the storage and
throughput requirements.

Model validation is done from two sides. First, the split buffer
model is run and compared against the existing system by using
single buffer model results [15] as reference, described in Section 4.
Second, a small-scale emulated DAQ system was created and the
simulation model compared against the output metrics of the small-
scale emulated DAQ system, as described in Section 5.
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Figure 1: Instantaneous LHC luminosity as observed by
ATLAS over a period of several days. For any given physics
process, the rate of generated events is directly proportional
to the luminosity.

Results for this work are estimates for the usage of the buffer-
ing components of the model, and for each scenario of operation.
This will provide an estimate for the processing power and net-
working requirements of the future system. Future provisioning of
large-scale DAQ systems can rely on the work proposed here, in
order to improve resource provisioning. In general, decoupling data
production and data processing can benefit many systems doing
intensive data analysis. For example, the new DAQ system of the
CMS experiment[5] follows this design, having a large buffer that
can hold data for several minutes.

In summary, the contributions of this paper are:

(1) Proposing large-scale storage buffers for data acquisition
systems to reduce overprovisioning of the processing system,
to allow handling temporary data bursts higher than design
rate without data loss, and to improve decoupling of data
collection and data processing system.

(2) A simulation model for the DAQ system that is accurate and
validated against existing real-world data.

(3) Exploring the operational envelope of a DAQ system, which
describes trade-off possibilities in between storage and pro-
cessing when applying a storage buffer.

The rest of the paper is organized as follows: Section 2 describes
the data acquisition process for the ATLAS “Phase-2” system. Sec-
tion 3 describes the split buffer simulationmodel. Section 4 describes
the validation of the split buffer simulation model against real data
of the existing system, and Section 5 describes the validation of
the split buffer simulation model against the small-scale emulated
DAQ system. Section 6 describes the operational envelope to char-
acterize resource utilization of the system. Section 7 provides more
details regarding related work on DAQ system and storage systems.
Finally, Section 8 provides the conclusions of this paper.
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Figure 2: ATLAS Phase-2 Upgrade dataflow architecture.
Buffering of incoming data to be processed is split into the
Data Handler and the Storage Handler systems.

2 BACKGROUND
This section mainly describes the foreseen ATLAS “Phase-2” data
acquisition system, but also overviews the DAQ of other systems..
Details for the ATLAS “Phase-0” system, the corresponding simu-
lation model and results can be found in [15]. Figure 2 shows the
dataflow organization of the ATLAS “Phase-2” DAQ.

2.1 The Interfill Period
The accelerator, for both technical and physics reasons, has to stop
delivering collisions after a finite period of operation, and resuming
production requires several hours of preparation. The time period
in the LHC cycle when it is not producing data is called the interfill
period, which presents an unavoidable efficiency limitation. The
duty cycle or cycle efficiency is the time percentage when collisions
are delivered. Real data for the efficiency of the existing system can
be seen in Figure 1, where the actual pattern for the cycle does not
follow a stable pattern. A mixture of both long and short cycles are
present, and within each cycle there is a lot of variation affected by
many external factors.

This interfill period presents an opportunity to trade-off pro-
cessing power with storage space. The processing system can be
downscaled below the required size to process all incoming data in
real time. Below this point, the system is required to save data in the
buffering system to avoid data losses. Even tough the instantaneous
rates for production and processing will not match, the buffering
system is used to balance the difference over the time period of the
full cycle. The processing system has to be large enough to allow
the completion of the processing of the data during this period, and
before the next data production cycle starts. This strategy can be
implemented in general in any DAQ system, and is a strong choice

for ATLAS “Phase-2”. In the existing ATLAS “Phase-0” system, the
buffering system has enough space to accommodate for fluctuations
in the incoming data rates and can buffer incoming data in the order
of seconds. It is implemented as a single RAM-based storage space.

2.2 ATLAS Upgrade Design
The ATLAS DAQ will receive data from many sensors. Different
sensor families provide different data, varying in formatting and
size. The data from all sensors corresponding to a single particle
bunch crossing is called event. An ATLAS event is composed by
many fragments. Fragments are defined as logically grouped ATLAS
detector elements optimized for efficient usage of DAQ resources.

In ATLAS “Phase-2”, it is anticipated the DAQ will select and
process 1 million events per second. Approximately only 10 thou-
sand events per second will be retained for offline analysis. Thus,
∼99% of the data will be discarded by the DAQ system.

A dedicated custom-hardware electronics system, known as
Level-0, will perform the initial reduction from the collision rate
of 40 MHz to 1 MHz. Upon selection by the Level-0, data from the
detector sensors are pushed through approximately 17000 high-
speed serial links into FELIX [16]. FELIX acts as interface between
these links and a general purpose network. In the baseline design
it will be implemented with several hundred servers equipped with
custom PCIe interface cards.

From FELIX the event data is transferred to the Data Handlers,
a set of commodity servers where sensor-specific post-processing
takes place. The Data Handlers are followed by a large storage
system, the Storage Handler, decoupling the data movement and
aggregation from the filtering. The latter takes place in a distributed
computing farm called the Event Filter. At the anticipated input
rate of 1 MHz, the Data Handler will receive a data rate of about
6 TB/s.

For each event, the Event Filter will incrementally fetch and
analyze data fragments until a decision on whether to accept or
reject the event is taken. Accepted events will be organized in
files and transferred to off-site permanent storage. Data of rejected
events will be deleted from the system.

The processing time of an event will follow a very complex distri-
bution, composed by many populations, as driven by the difference
physics processes taking place in the ATLAS detector.

A meta-data system, implemented on top of Data Handler and
Storage Handler will keep track of events and fragments. It will also
implement the Event Builder functionality, which involve logically
or physically joining all fragments corresponding to one event.
Finally the meta-data system will manage the assignment of events
to the Event Filter.

In this paper, a buffering model distributed across Data Handler
and Storage Handler is analysed. In this scheme short-term buffer-
ing takes place in the Data Handler, while the Storage Handler
provide long-term buffer space. The meta-data system in this case
provides transparent access to the data for the Event Filter, while
managing the transition between short-term and long-term storage.

Indeed data fragments corresponding to events experiencing a
long processing time in the Event Filter have to be moved from
the Data Handler to the Storage Handler to create space for new
incoming data.
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Figure 3: Comparison between single buffer and split buffer
models. In both models each buffer Bi receives fragment
data synchronously, while in the split model each buffer Sk
receives fragment data asynchronously.
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Figure 4: OMNeT++ model for the split buffer simulation.

2.3 Other DAQ systems
Another example of a DAQ is at the ANTARES neutrino tele-
scope [1]. As observed in [1], “The data acquisition system of the
[ANTARES] detector takes care of the digitisation of the photo-multiplier
tube signals, data transport, data filtering, and data storage.” The
ANTARES detector consist of 900 sensors located 2.5 km undersea.
The data output of the detector is ∼0.5 GB/s. An initial filtering
selects physical signals from the background phenomena, and this
processing is done in a farm of standard PCs.

3 SIMULATION MODEL CONSTRUCTION
This section introduces the split buffer model, followed by a detailed
comparison against the single buffer model and a description of the
used simulation environment.

A high-level overview between the single buffer and split buffer
models is shown in Figure 3. In both cases, data arrives synchronously
to the buffering machines Bi via high speed serial links. Each se-
rial link transports the stream of data for one kind of fragment.
Fragments are buffered in the machine they arrive. For the analysis

Parameter Description

Level-0 rate Event output rate for the Level-0
trigger

Total cores count Total number of CPU cores in the
Event Filter

Fast-reject delay Time for the fast rejection of an
event

Full-reject delay Time for the full processing of an
event

Fast-reject probability Probability for an events for being
fast-rejected

Full-reject probability Probability for an events for being
full-rejected

Data Handler count Number of Data Handlers
Request count (fast) Number of Data Handlers requested

per event for fast-rejected events
Request count (full) Number of Data Handlers requested

per event for full-rejected events
Fragment Size Average size of fragment per event
Network overhead Network overhead factor
Max. frags. in Data Han-
dler

Maximum number of fragments
stored in Data Handler

Cycle time Total length of the LHC cycle
Cycle duty Length of the LHC production cycle

Table 1: Input parameters description for the split buffer
simulation.

of each event, processing units request fragments to the buffer-
ing machines where they are located. Coordination is done by the
meta-data system Meta.

In the single buffer model, there is only one stage of buffering.
Data arrives synchronously to the buffering machines Bi and the
processing units request data directly to this buffer stage. Fragments
are stored in buffering machines Bi for periods of time in the order
of seconds, for the processing system to analyze the event data.
Fragments from the buffering are removed shortly after the event
is processed. There is no synchronization required to be performed
between buffer machines and processors, because fragment data
arrives to all the machines at the same time. Processing units also
know statically the location of each fragment, because is implied
by the physical serial link connections. Coordination is done by
the Meta system by tracking individual events, and assigning the
events to processing units.

In the split buffer model, there are two buffering stages: the
intermediate buffer machines Bi , and the large buffer machines Sk .
Fragments are stored in the intermediate buffer space for short term
periods, in the order of seconds. For the large buffer, data is stored
for periods of many hours. This large buffer enables the possibility
to have a processing system with a size smaller than the required
to process data at the peak rate. Data arrives synchronously via
serial links to the intermediate buffering machines Bi . From the
intermediate buffers, data is asynchronously moved to the large
buffering machines Sk through a packet switching network. There
is no implied or static mapping between the machines from the
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first stage of buffering, Bi , to the second stage of buffering, Sk . And
processing units process events by reading fragments from the large
buffering machines Sk . Thus, the location of the fragments needs
to be tracked and synchronized. Being an asynchronous operation,
fragments can be located in the intermediate buffers, in the large
buffer, or in both. Therefore, both processing units and machines
from the first stage of buffering have to communicate with the
meta-data system, in order to synchronize the location of the data
for writing and reading fragments.

Figure 4 depicts a high-level overview of the split buffer simula-
tion model. Felix is the high-speed serial link system. The first layer
of buffering is depicted as Data Handlers, and the second layer of
buffer is Storage Handler. Table 1 shows simulation input parame-
ters. The simulation model follows the description of the ATLAS
data acquisition system, with some simplifications as follows.
• The network is assumed to be ideal, with no packet drops.
The network overhead is an input parameter describing in
percentage how much more data is used for the protocol
layers, i.e., Ethernet, IP, and TCP overheads. This simplifica-
tion is possible to be followed since in the existing “Phase-0”
system a flow control mechanism is used, based on the credit
system described in [9]. It mitigates the TCP incast problem
by minimizing the number of TCP retransmissions. It is ex-
pected that some form of flow-control mechanism continues
being part of the system in future upgrades.
• Data delivery in the network is also assumed to be infinite
in bandwidth, since the network has to be able to handle the
throughput of data as sent by the detector electronics. Also,
the network latency is set to zero.

The model presented in Figure 4 shows the model’s modules
and relationships for the flow of messages. For all modules except
the Data Handler module, there is one instance. The Data Handler
module’s count is configurable as a simulation input parameter. At
start-up, the Event Filter module informs the Meta-data module of
the number of available CPU cores. The Network module simply
forwards messages from a source to a destination module, very
much like a network switch.

A typical data production looks as follows:
(1) Data production begins at the Level-0 trigger, which sends

fragments through the Felix serial link to all Data Handlers.
(2) Data Handlers, then, inform the Meta-data module about the

reception of a new fragment.
(3) When a CPU core in the Event Filter is available and all the

fragments of an event are stored in one or possible multiple
buffers, the Meta-data module assigns the event to the Event
Filter.

(4) Then, the Event Filter requests the location of fragments
from the Meta-data module, and upon reply the fragments
are requested from the corresponding buffers. Once all frag-
ments are received, processing of the event is simulated by
a random delay drawn from an configurable distribution:
exponential or normal.

(5) In the simulation, events are divided in two populations:
either “fast” events or “full” events. For each event assigned
to the Event filter, it is marked as one of the two kinds with
a configurable probability. The two kinds differ in the delay

time to simulate the processing of the event, and the num-
ber of fragments associated with an event. Both values are
configurable (see Table 1).

(6) Fragments are moved from the Data Handler to the Storage
Handler when the number of fragments in the Data Handler
is above the configurable threshold (see Table 1). The move-
ment operation is initiated by the Meta-data module but the
data is sent by the Data Handler to the Storage Handler.

(7) Once an event is processed, it is either accepted or rejected.
Fragments of accepted events are sent to the Permanent
Storage. Then, independent of being accepted or rejected,
the event’s fragments are removed from the buffers, either
by the Data Handlers or the Storage Handler.

3.1 Setting Parameters for Single Buffer and
Split Buffer Simulation Models

Compared to the split buffer, the single buffer simulation model uses
histograms to produce specific probability distributions. They are
used to determine: data request patterns, processing time, and the
number of fragments associated with an event.

Three sets of histograms describe:

(1) The rate of requests per second for each buffer machine
(2) The number of data fragments requested for each buffer

machine
(3) The average time it takes to process an event

The first two histograms are used to select: the random buffer
machine to make a request of data, the number of requests made
for each incoming event, and the number of fragments requested
for each incoming event. In the split buffer model, an analytical
model is used combining the total event size in bytes and the first
two histograms as a probability distribution, and to obtain for each
event the average size in bytes of data sent through the network.

The third histogram used as input parameter for the single buffer
model can be greatly simplified by using the following formula
(see also [15]). According to this formula, the average processing
time over Np records for a processing time pi and the number of
processed events qi is:

∑Np
i=1 piqi∑Np
i=1 qi

(1)

On average, over the selected time interval for the data to validate
the single buffer model, the average processing time is ∼ 180 ms.

In the split buffer simulation model the processing time is mod-
eled as a single exponential distribution with this value as average,
whereas in the single buffer model there are ∼40 k different expo-
nential distributions.

In the single buffer model, the output bandwidth is modeled
with an overhead increase of 46 bytes for every 1454 bytes for
each response from the buffering system to the processing system,
since the maximum transmission unit of Ethernet networks is 1500
bytes. The value of 46 bytes is the overhead size of the protocol
headers sent through the network. In the split buffer model, network
overhead is calculated using a factor of 1500/1454 ≈ 1.031, shown
in Table 1 as a simulation input parameter.
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Figure 5: Comparison of operational data and simulation
model results for the output bandwidth of the buffering sys-
tem.

Simulation model Error
Metric Single buffer Split buffer

Output bandwidth 4.3% 4.8%
Number of fragments 5.4% 4.2%
Active Processing Units 1.3% < 0.1%

Table 2: Simulation error based on a comparison of opera-
tional data and results from simulation for both models.

3.2 Model implementation
Both models are built using OMNeT++ [17, 21], a robust and user-
friendly discrete-event simulation framework. OMNeT++ usage is
prominent in the network simulation community. Simulations are
defined by C++ modules, and relationships between modules are
defined by configuration files.

The previously described parameter simplifications also result
in an easier to understand and easier to use model. Furthermore,
configuration files of the simulation are smaller by several orders of
magnitude, and there is a big improvement of the simulation perfor-
mance. In the split buffer model, one simulated second running at
the data rates of the existing system requires about 15 real seconds
of wall-clock time. For the single buffer model, one simulated second
requires about one hour of wall-clock time. A large contribution of
performance improvement comes from the simplifications in the
modeling. Instead of using histograms as source of randomness
the built-in exponential random number generator of OMNeT++ is
used, which is a faster way to produce random numbers.

4 SIMULATION MODEL VALIDATION USING
OPERATIONAL DATA

To validate the single buffer model, there exists a huge amount of
operational data from the current ATLAS “Phase-0” experiment.
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Figure 6: Comparison of operational data and simulation
model results for the number of fragments stored in the
buffering system.
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Figure 7: Comparison of operational data and simulation
model results for the number of active processing units.

Because there is obviously no operational data available to validate
the split buffer model, we separate this validation into two parts.
First, and part of this section, the split buffer model is validated
against the same ATLAS operational data as the single buffer model,
by running the split buffer model using single buffer settings. In the
next section, we will extend this validation by covering the case of
multiple storage buffers.

Thus, we configure for first buffering stage of the split buffer we
set the number of Data Handlers to one, mimicking single buffer
configuration. We follow the methodology described in [15] for the
single buffer model, but extend the validation for the split buffer
model as described in Section 3. The simulation is run for 60 simu-
lated seconds. The values compared for the validation are averages,
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where operational data values correspond to the average of the five
minutes, while simulation results corresponds to the average of the
60 seconds of simulation.

The output of both simulations is compared against operational
data derived from the existing ATLAS “Phase-0” system, in particu-
lar related to the main metrics of the system:

• Average output bandwidth metrics of the buffering system
in MB/s
• Average number of data fragments stored in the buffering
system
• Average number of active processing units

Data and results corresponds to an interval of 2 hours, divided
in 24 intervals of 5 minutes each. Results are shown in Figure 5,
Figure 6, and Figure 7, respectively. The three figures show an
outlier at minute ∼ 70, where the real system had to stop accepting
data due to external conditions.

Figure 5 shows the comparison between simulation and real
metrics for the average output bandwidth of the buffering system.
Real data is archived with a limited resolution of one hour, which
explains the shape of the data as an step function of one hour.
For this reason, the simulation does not match real data point at
minute ∼ 70.

Figure 6 shows the comparison between simulation and real
metrics for the average number of fragments stored in each buffer.
There is a systematic bias in the results between the real data and
simulation results, because in both models several latencies present
in the real system are set to zero. They include network and software
latencies.

Figure 7 shows the comparison between simulation and real
metrics for the average number of active Processing Units. This
number directly depends on the processing time of the events in
the system and the input data rate.

Generally, we observe a very good match in between operational
data and simulation results for both models, resulting in errors of
5.4% or less. Table 2 summarizes the results from this validation.

5 VALIDATION OF THE STORAGE BUFFER
This section describes the validation against the small-scale emu-
lated DAQ from Section 5.1. The previous section validated the split
buffer model for a setting similar to the single buffer model. However,
this setting basically neglects the presence of a distributed storage
buffer. As there is no operational data available to utilize such a
distributed storage buffer, in this section we first introduce an tool
that allows us to generate such data using a small distributed com-
puting system. Then, we use these results for a validation against
the simulation results for the split buffer model.

5.1 Small-scale Data-Acquisition Emulator
To obtain operational data for the validation of the split buffering
concept, we develop a software tool that emulates a data acqui-
sition system as described in Section 2. It is implemented in the
Python programming language, and designed as a distributed sys-
tem. All communication is done using the ZeroMQ [13] message
passing library. There is no flow control mechanism for the data
sent through the network, as it is expected that the network can

Felix Data
Handler

Meta

Event
Filter

Storage
Handler

Figure 8: Architecture for the small-scale emulated DAQ im-
plementation. Each box represents an application, and ar-
rows represent the flow ofmessages. Some applicationsmay
be instanced more than once.

guarantee drop-less packet forwarding by appropriate provisioning
and a credit-based flow control as described in [9].

Figure 8 shows the software architecture, based on multiple
applications, and the flow of messages. There is one instance of each
of the Felix, Meta, and Storage Handler application. The number
of instances for the Data Handler and Event Filter applications is
configurable. The different applications behave as follows:
• The Felix application represents the source of data fragments
and handles their creation at a configurable rate. Data arrives
to the system in the form of events, where an event consists
of multiple fragments, one for each Data Handler.
• The Meta application handles the meta data of the system. It
tracks available fragments in both Data Handler and Storage
Handler, and the available Event Filter applications. It erases
fragments from the Data Handler and Storage Handler, and
assigns events to the Event Filter. Events are assigned from a
list of unassigned events, giving priority to the ones buffered
in the Data Handler. Only when there are no events in the
Data Handler, events buffered in the Storage Handler as
selected.
• The Data Handler application is the first buffering stage. It
notifies the availability of fragments to the Meta application,
answers fragment requests from the Event Filter, and sends
fragments to the Storage Handler.
• The Storage Handler application is the second buffering
stage. It receives fragments from the Data Handler, and an-
swers fragment requests from the Event Filter. Fragment
movement from the Data Handler to the Storage Handler
is initiated by the Meta application, although fragments are
sent directly from one to another. Only fragments of unas-
signed events are moved.
• The Event Filter application receives work, issues location
requests to the Meta application, and requests fragments
to the Data Handler or Storage Handler. Each Event Filter
processes one event at a given time, and the processing of
the fragments is emulated by a time delay.

5.2 Single Execution of the Small-Scale DAQ
System

The validation of the Data Handlers is based on metrics including
event rate, number of events stored in Data Handlers and Storage
Handler, and input and output bandwidth for the Storage Handler.
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Figure 9: Comparison of event rates, for a single execution of
the small-scale DAQ and the split buffer simulation model.
The values are sampled once a second for 60 seconds.
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Figure 10: Comparison of number of events stored in the
Data Handlers (DH) and the Storage Handler (SH) metric,
for a single execution of the small-scale DAQ and the split
buffer simulation model. The values are sampled once a sec-
ond for 60 seconds.

The small-scale data-acquisition emulator is executed on a ded-
icated Gigabit Ethernet network of five GNU/Linux computing
nodes, each having dual Intel Xeon CPU E5540 with 16 cores. It is
ensured that the system is not loaded otherwise. Time is measured
using the time.time() Python function, which on Linux has a res-
olution of 0.001 milliseconds. We set the number of Data Handlers
to 10, and the number of Event Filters to 12. There is one instance
each for the Felix, Meta, and Storage Handler.

The experiment is running for a period of 60 seconds, with an
incoming rate of 1,000 events/s. Being a small-scale experiment and

0 10 20 30 40 50 60 70
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
B

/s

SH out (Small-scale)

SH out (Simulation)

SH in (Small-scale)

SH in (Simulation)

Figure 11: Comparison of Storage Handler (SH) input and
output bandwidth, for a single execution of the small-scale
DAQ and the split buffer simulation model. The values are
sampled once a second for 60 seconds.

not a complete system, it represents a scaled-down version of the
full ATLAS DAQ system, with incoming data rate set to a fraction of
the “Phase-2” system. The cycle begins with a period of 10 seconds
of data production followed by a period of 10 seconds where no
new events arrive to the system. This pattern repeats three times
to complete 60 seconds. Processing time for events is 20 ms, and
the maximum number of events stored in the Data Handler is 1,000.
Thus unprocessed fragments that remain in the Data Handler for
more than one second will be sent to the Storage Handler.

We replicate this configuration for the split buffer model. Figure 9,
Figure 10, and Figure 11 show the results of a single execution for
both the small-scale system and the split buffer simulation.

Figure 9 shows the rate of both incoming and acceptance of
events, sampled at the Meta application. The rate of incoming is
the rate at which the Felix produces events, and the acceptance
is the amount of events processed by the Event Filters. Figure 10
distinguishes the related number of events stored in both types
of buffers, the Data Handlers (DH) and the Storage Handler (SH).
Finally, Figure 11 reports the related input and output bandwidth
for the Storage Handler buffering stage.

Table 3 shows latency results for the data-acquisition emulator
software. Values are measured at the Meta application, averaged
for all events. The total time represents the time since an event
is sent to the Event Filter until the event answer is received. The
processing time is the time it took to process an event. Since the
software is an emulator, no real processing occurs and the time is a
delay call to the operating system. Then, the overhead is the total
time minus the processing time.

Data Handler time and Storage Handler time values from Table 3
correspond to the average time an event remains in the system until
is permanently deleted. The first value, Data Handler time, corre-
sponds to events which remain entirely in the Data Handler system.
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Name Latency average value

Total time 21.7 ms
Processing time 20.0 ms
Overhead time 1.7 ms
Data Handler time 0.99 s
Storage Handler time 9.98 s

Table 3: Latency results for the small-scale emulated DAQ
experiment.

Contrary, the second value, Storage Handler time, corresponds to
events which are in between stored in the Storage Handler.

5.3 Non-zero Overhead Latency
Results from Table 3 shows an overhead latency of 1.7 ms, and
Figure 9 shows a discrepancy between simulation and Small-scale
emulator results. This difference can be attributed to the overhead
latency in the simulation set to zero. Running a new simulation that
includes a calibration latency for the overhead of 1.7 ms thus having
a total time of 21.7 ms instead of 20 ms does produce results which
agree between simulation and the small-scale emulator. Figure 12
shows simulation results in this new scenario. Comparing Figure 9
and Figure 12, the peak number of events goes from ∼ 3000 to
∼ 3600.

Determining the overhead latency can be a challenge. Already
having an system which is built and running allows to simply
measure the overheads of the system. For example, this is the case
of the current small-scale emulator experiment. However, in general,
if the system is not yet built and the specific choices for hardware
and software infrastructure are unknown, some other method has
to be used to determine the overhead. One option is to build a
small-scale system which follows the technological elements of a
full-scale system, and to use this system to measure and extrapolate
overheads. A second option is to use the simulation model to either
model and analyze concrete components of a future system, or scan
for a range of overheads within some tolerance range in order to
understand the implications of the changes in overheads.

6 OPERATIONAL ENVELOPE
In the previous section, the split buffer simulation model is vali-
dated against real operational data. In this section, the split buffer
simulation model is used to reproduce and expand over the original
results, by studying the behavior of the system under scenarios of
increasing complexity. It is first studied with the data production at
constant rate, then with data production as a cycle, and finally with
incremental variance on the processing time. This last experiment
is of particular interest since in the future ATLAS DAQ system the
distribution of the processing time for the events will have a large
variance.

Resource utilization of the system is explored by having the data
rates of the upgraded ATLAS system, at 1 million events per second.
The simulations were executed in four dual Xeon E5540 computers,
using 12 cores in each computer and taking about 10 hours in each
computer to complete. For each simulated second, the simulation
model requires about 90 seconds of wall-clock time.
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Figure 12: Comparison of number of events stored in the
Data Handlers (DH) and the Storage Handler (SH) metric,
for a single execution of the small-scale DAQ and the split
buffer simulation model. The values are sampled once a sec-
ond for 60 seconds. Average total processing time in the sim-
ulation is 21.7 ms, by including a calibration value for the
overhead latency.

The operational envelope describes the overall system utiliza-
tion as a function of distinct resources. In this case, two resources
are considered: compute power and buffering space. When both
resources are fully utilized, the system is at the peak utilization
efficiency.

Thus, the efficiency fe is defined as the product of memory usage
fm , compute usage fp , and fraction of discarded events fd . The
first two factors are the ratio of used resources over total resource
amount, while the discarded event factor is the ratio of events
discarded for the lack of storage space.

fe = fm × fp × (1 − fd ) (2)

It is important to notice that in high-energy physics experi-
ments it is often fundamental to minimize fd , at the cost of over-
provisioning other resources. At the same time, from a system
design point, leaving fd unconstrained allow understanding its
dependence from the system parameters.

In the following, the utilization efficiency will be investigated as
a function of the deployed buffer size. It is anticipated the efficiency
will reach a peak value at a buffer size defined by various operational
parameters. In fact, on the left side of this peak the system does not
have enough buffer space to store new events, and existing events
are not removed fast enough. Thus, data loss due to event discarding
will occur, and compute usage will likely be below maximum. On
the right of the peak, compute resource usage will remain constant,
but the buffer occupancywill decrease. If enough compute resources
are available the system will process all incoming data in real time,
with no data loss. The operational envelope value reaches 100%
efficiency only when processing capacity and maximum buffer
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Figure 13: Estimation of the operational envelope as a func-
tion of available buffer size. The model is configured with
250,000 CPU cores, a processing latency of 200 ms, and fixed
input rate of 1,000,000 events/s. For each data point the sim-
ulation was configured with an available buffer space as re-
ported on the horizontal axis. Each simulation is run for 60
simulated seconds.

space are at the minimum, based on a processing without discarded
events.

The parameters affecting the operational envelope are the input
event rate, the event size, and the overall system latency. The latter
directly depends on the event processing time. In this context, the
buffer space is described in terms of the number of events in storage,
which represents the average space required to store one event.

One can consider the operational envelope from an analytical
perspective, as it was done in [15]. On the other hand the use of
a simulation model offers the possibility to explore other metrics
and constraints. In particular, by limiting the amount of available
buffer space in the simulation model, the usage of compute and
buffer resources can be explored. In addition the data loss, which is
an important metric for a DAQ system, can be analyzed as well as
the impact of different distributions for the input parameters.

6.1 Data Production at Constant Rate
Figure 13 shows the results of the split buffer model with a sweep
over different values of the available buffer space. Each simulation
is configured with a number of 250,000 CPU cores, and an input
event rate of 1,000,000 events/s. The processing latency follows an
exponential distribution with an average value of 200 ms. In total
40 simulations were run, starting from a maximum of 1 event in
storage and ending at a maximum of 400,000 events in storage. Each
simulation is run for 60 simulated seconds with a cycle of 100%
production rate.

The system reaches the peak utilization efficiency of the oper-
ational envelope when enough buffer space is available to serve
all incoming events in real time. The peak efficiency is not 100%
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Figure 14: Estimation of the operational envelope as a func-
tion of available buffer size. The model was configured with
150,000 CPU cores, a processing latency of 200 ms, and in-
put rate of 1,000,000 events/s at a 75% duty cycle. For each
data point the simulation was configured with an available
buffer space as reported on the horizontal axis.

since the compute capacity is over-provisioned. As expected, af-
ter the peak, the efficiency deteriorates due to the buffer space
being over-provisioned. Analytically the amount of buffer space
required to reach the operational envelope peak is 20,000 events.
The simulation results on the other hand show a slightly higher
value, because at that point the data loss is small but non-zero, of
about ∼0.5%. The cause of this difference is the variance of the
exponential distribution used for the processing time.

6.2 Data Production as a Cycle
This experiment introduces a cycle in the simulation, following
what’s been discussed in Section 1. The possibility to make a trade-
off between storage and compute power depends on the availability
on a data production cycle. Having a duty cycle below 100% means
that it behaves like a square wave. In this experiment, the duty
cycle in the production of data is 75%. During the 60 simulated
seconds, data arrives for 45 seconds, followed by 15 seconds where
no events arrive to the system.

Figure 14 shows the results for a system operating with non-
constant input rate. In total, 40 simulations were run, starting from
a maximum of 1 event in storage and ending at a maximum of
20,000,000 events in storage. Each simulation is configured with
150,000 CPU cores, processing latency of 200 ms and input event
rate of 1,000,000 events/s with a duty cycle of 75%. The processing
latency follows an exponential distribution.

The system was purportedly configured with compute power
insufficient for real-time operation. Due to the 75% duty cycle, the
buffering system absorbs the difference between the instantaneous
incoming rate and the instantaneous processing rate. Therefore,
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Figure 15: Required buffer space for peak efficiency as a
function of the processing time distribution width. The
model is configured with 150,000 CPU cores, processing la-
tency of 200 ms following a normal distribution, and input
rate of 1,000,000 events/s. Each data point is the buffer space
corresponding to the peak utilization efficiency. The mea-
sured buffer spare is normalized to the measured average
processing time.

peak efficiency is expected when enough buffer space is available
to absorb all incoming data with no data loss.

Since the incoming data can not be all processed in real time, the
amount of space required to buffer incoming data directly depends
on the amount of time the system was producing data.

6.3 Data Processing Variance
This experiment explores a large variance in the processing time of
events. In the real ATLAS system, the processing time of an event
follows a very complex distribution due to the physical nature of
the experiment being studied. This distribution has a large variance.
Many events take a short amount of time to analyze, in the order
of hundreds of milliseconds, but some non-negligible set of events
may take several minutes to analyze.

Figure 15 shows the required buffer space as a function of the
processing time distribution width. For the this study the processing
time follow a normal distribution whose average value is 200 ms.
In total 347 simulations were executed for 60 simulated seconds,
starting from amaximum of 10,000,000 events in storage and ending
at a maximum of 20,000,000 events in storage. The processing time
distribution variance varies from 1 ms to 300 ms. Each simulation
is configured with 15,000 CPU cores and an input event rate of
1,000,000 events/s with a duty cycle of 75%.

For each simulation the buffer space required to achieve peak
utilization efficiency is evaluated. The result are then corrected by
measured effective processing time. In fact, negative processing
time values, as generated by large variance settings, are nonphysical.
Neglecting these, results in a variable effective average processing
time. In order to compare the results of the different simulations,
the measured required buffer space needs to be normalized by the
processing time variation.

A large variance has a meaningful impact on the storage require-
ments, as can be seen in Figure 15. Increasing the variance produces
in an increase of the storage requirements. The use of a simulation
model enables the practical study of the behavior of the system
under this large variance of processing time conditions.

7 RELATEDWORK
Data acquisition systems. A detailed description of data acqui-
sition systems can be found for example in [19] for the ATLAS
experiment, in [5] for the CMS experiment, in [11] for the LHCb ex-
periment, and in [7] for the ALICE experiment, all four experiments
located at CERN. The data acquisition system of the ANTARES ex-
periment is described in [1]. In these works, the description of
data acquisition systems is provided with much more detail when
compared to the one in Section 2.

ATLAS simulations. Related work regarding simulations of the
ATLAS data acquisition system can be found in [8, 9] and [6], where
some aspects of the ATLAS network were studied. Specifically,
studies about network latencies, TCP retransmissions, and the TCP
incast pathology can be found. A more general study of the existing
ATLAS “Phase-0” buffering system can be found in [15]. They are
validated with real ATLAS “Phase-0” data.

Other ATLAS simulation studies are available in [10, 18], which
were made before the ATLAS data acquisition system was imple-
mented. In such studies, the focus was rather to understand the
consequences of some of the design choices that were made, and
in particular how these choices affect system latency. Contrary, in
the present work a general overview of the system is the focus of
study.

Storage systems. In this paper, the buffer space study does not
involve concrete technological solutions. However, future directions
of this paper will consider more specific storage technologies and
how this impacts system behavior.

Distributed file systems can be scaled to provide large amounts
of storage and throughput. Research about performance analysis
and characterization for large storage systems implemented with
a distributed file system can be found for instance in [20]. The
authors provide a general model to predict the performance of a
storage system, and offer the Hadoop distributed file system as an
example. A concrete example of an existing storage system is the
Trinity supercomputer [12], which utilizes a distributed file system
for its operation. It has an usable storage of 78 PB and 1.6 TB/s of
bandwidth. Alternative data storage systems like Apache Cassan-
dra [14] provide a service to store large amounts of structured data.
The service can be scaled by increasing the number of machines
with no single point of failure.

8 CONCLUSIONS
A new simulation model is presented, which is validated with both
existing operational data from the ATLAS experiment of the LHC
and with a small-scale version of a data-acquisition software emu-
lator. Validation results agree between simulation and their coun-
terparts in the real and emulated system. The simulation model
is accurate and the performance is improved compared to other
models.

The trade-off between storage and compute power requires the
availability of a data taking cycle, in order to allow the processing
system to finish the analysis of the data in the buffers. Bursts in the
incoming data rate can be handled by trading off compute power
with buffer space.

The buffering system introduces an abstraction layer between
data production and data processing. This approach has potential
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benefits for the maintenance and evolution of the overall system.
The underlying technologies of the buffer can change with a mini-
mal impact on the design of the rest of the components.

The operational envelope of the system characterizes a high-level
overview of resource utilization of the system. Three scenarios are
studied: constant rate of both production and processing, variable
rate of production, and rate of processing with a large variance with
a non-exponential probability distribution. For the simple cases,
results can be predicted with analytical methods. However, a simula-
tion model enables the study of a system with complex interactions
between components and complex behaviors. For example, bursts
in the incoming data rate can be more practically studied with a
simulation model, as well as complex probability distributions for
the processing time of data.

One challenge to the accurate simulation of data-acquisition
systems corresponds to the prediction of the overhead latency of
the system. If the system is already built, the overhead latency can
bemeasured in a similar way it was done for Table 3. However, if the
specifics of the system like the hardware and software infrastructure
are yet unknown, one option is to build a small-scale system which
mimics the final version of the system. This approach will allow
to measure the overheads introduced in the system and the fine-
tuning of the simulation of the full-scale system. Another option is
to use the simulation model to scan for a range of overhead values
in order to include tolerance margins in the sizing of the system
design.
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