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Abstract

The CP asymmetry in B−→ D−s D
0 and B−→ D−D0 decays is measured using

LHCb data corresponding to an integrated luminosity of 3.0 fb−1, collected in pp colli-
sions at centre-of-mass energies of 7 and 8 TeV. The results are ACP (B−→ D−s D

0) =
(−0.4 ± 0.5 ± 0.5)% and ACP (B−→ D−D0) = (2.3 ± 2.7 ± 0.4)%, where the first
uncertainties are statistical and the second systematic. This is the first measurement
of ACP (B−→ D−s D

0) and the most precise determination of ACP (B−→ D−D0).
Neither result shows evidence of CP violation.
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1 Introduction1

Weak decays of heavy hadrons are governed by transition amplitudes that are proportional2

to the elements Vqq′ of the unitary 3×3 Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2],3

a crucial component of the Standard Model (SM) of elementary particle physics. Different4

decay rates between heavy-flavoured hadrons and their antiparticles are possible if there5

is interference between two or more quark-level transitions with different phases. The6

corresponding violation of CP symmetry was first observed in neutral kaon decays [3]. In7

B decays, CP violation was first observed in the interference between a decay with and8

without mixing [4, 5] and later also directly in the decays of B0 mesons [6, 7].9

The decays of charged or neutral B mesons to two charm mesons are driven by tree-level10

and loop-level amplitudes, as illustrated in Fig. 1. Annihilation diagrams also contribute,11

but to a lesser extent. The decays B0 → D+D−, B0 → D0D0 and B− → D−D0 are12

related by isospin symmetry,1 and expressions that relate the branching fractions and CP13

asymmetries, as well as nonfactorizable effects, have been derived [8, 9].14

The CP asymmetry in the decay of the B− meson to two charm mesons is defined as15

ACP (B−→ D−(s)D
0) ≡

Γ(B−→ D−(s)D
0)− Γ(B+→ D+

(s)D
0)

Γ(B−→ D−(s)D
0) + Γ(B+→ D+

(s)D
0)
. (1)

Nonzero CP asymmetries in B−→ D−(s)D
0 decays are expected [10–13] due to interfer-16

ence of contributions from tree-level amplitudes with those from loop-level and annihilation17

amplitudes. In the SM, these CP asymmetries are expected to be small, O(10−2). New18

physics contributions can enhance the CP asymmetry in these decays [12–15]. The most19

precise measurements of the CP asymmetry in B−→ D−D0 decays are from the Belle20

and BaBar experiments, ACP = (0 ± 8 ± 2)% [16] and ACP = (−13 ± 14 ± 2)% [17],21

respectively, where the first uncertainties are statistical and the second systematic. The22

CP asymmetry in B−→ D−s D
0 decays has not been measured before.23

This paper describes a measurement of the CP asymmetry in B− → D−s D
0 and24

B−→ D−D0 decays, using pp collision data corresponding to an integrated luminosity of25

3.0 fb−1, of which 1.0 fb−1 was taken in 2011 at a centre-of-mass energy of
√
s = 7 TeV26
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Figure 1: Illustration of (left) tree diagram and (right) loop diagram contributions to the decay
B−→ D−D0. Similar diagrams, with the d replaced by s, apply to the decay B−→ D−s D

0.

1Unless specified otherwise, charge conjugation is implied throughout the paper.
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and 2.0 fb−1 in 2012 at
√
s = 8 TeV. Charm mesons are reconstructed in the following27

decays: D0→ K−π+, D0→ K−π+π−π+, D−→ K+π−π−, and D−s → K−K+π−.28

The determinations of ACP (B−→ D−(s)D
0) are based on the measurements of the raw29

asymmetries30

Araw ≡
N(B−→ D−(s)D

0)−N(B+→ D+
(s)D

0)

N(B−→ D−(s)D
0) +N(B+→ D+

(s)D
0)
, (2)

where N indicates the observed yield in the respective decay channel. The raw asymmetries31

include the asymmetry in B production and detection efficiencies of the final states. If the32

asymmetries are small, higher-order terms corresponding to products of the asymmetries33

can be neglected, and the following relation holds34

ACP = Araw − AP − AD, (3)

where AP is the asymmetry in the production cross-sections, σ, of B± mesons,35

AP ≡
σ(B−)− σ(B+)

σ(B−) + σ(B+)
, (4)

and AD is the asymmetry of the detection efficiencies, ε,36

AD ≡
ε(B−→ D−(s)D

0)− ε(B+→ D+
(s)D

0)

ε(B−→ D−(s)D
0) + ε(B+→ D+

(s)D
0)
. (5)

2 Detector and simulation37

The LHCb detector [18, 19] is a single-arm forward spectrometer covering the38

pseudorapidity range 2 < η < 5, designed for the study of particles containing b or39

c quarks. The detector includes a high-precision tracking system consisting of a silicon-40

strip vertex detector surrounding the pp interaction region [20], a large-area silicon-strip41

detector located upstream of a dipole magnet with a bending power of about 4 Tm, and42

three stations of silicon-strip detectors and straw drift tubes [21] placed downstream43

of the magnet. The polarity of the dipole magnet is reversed periodically throughout44

data-taking, to cancel, to first order, asymmetries in the detection efficiency due to nonuni-45

formities in the detector response. The configuration with the magnetic field vertically46

upwards (downwards) bends positively (negatively) charged particles in the horizontal47

plane towards the centre of the LHC.48

The tracking system provides a measurement of momentum, p, of charged particles49

with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c.50

The minimum distance of a track to a primary vertex (PV), the impact parameter (IP),51

is measured with a resolution of (15 + 29/pT) µm, where pT is the component of the52

momentum transverse to the beam, in GeV/c. Different types of charged hadrons are53

distinguished using information from two ring-imaging Cherenkov (RICH) detectors [22].54

Photons, electrons and hadrons are identified by a calorimeter system consisting of55

scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic56

calorimeter. Muons are identified by a system composed of alternating layers of iron and57

multiwire proportional chambers [23].58
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The online event selection is performed by a trigger [24], which consists of a hardware59

stage, based on information from the calorimeter and muon systems, followed by a software60

stage, which applies a full event reconstruction. At the hardware trigger stage, events61

are required to have a muon with high pT or a hadron, photon or electron with high62

transverse energy in the calorimeters. The software trigger requires a two-, three- or63

four-track secondary vertex with a large sum of the transverse momenta of the tracks64

and a significant displacement from the primary pp interaction vertices. At least one65

track should have pT > 1.7 GeV/c and χ2
IP with respect to any PV greater than 16, where66

χ2
IP is defined as the difference in fit χ2 of a given PV reconstructed with and without67

the considered particle. A multivariate algorithm [25] is used for the identification of68

secondary vertices consistent with the decay of a b hadron.69

Simulated events are used for the training of a multivariate selection, and for deter-70

mining the shape of the invariant-mass distributions of the signals. In the simulation,71

pp collisions with B−→ D−(s)D
0 decays are generated using Pythia [26] with a specific72

LHCb configuration [27]. Decays of hadronic particles are described by EvtGen [28],73

in which final-state radiation is generated using Photos [29]. The interaction of the74

generated particles with the detector, and its response, are implemented using the Geant475

toolkit [30] as described in Ref. [31]. Known discrepancies in the simulation for the mass76

scale, the momentum resolution and the RICH response are corrected using data-driven77

methods.78

3 Candidate selection79

The offline selection of B−→ D−(s)D
0 candidates is a two-step process. First, loose criteria80

are applied to select candidates compatible with the decay B−→ D−(s)D
0. Second, a81

multivariate selection is applied and optimized by minimizing the statistical uncertainty82

on the asymmetry measurement.83

Charm meson candidates are constructed by combining 2, 3 or 4 final-state tracks84

that are incompatible with originating from any reconstructed primary vertex (χ2
IP > 4).85

In addition, the sum of the transverse momenta of the tracks must exceed 1.8 GeV/c,86

the invariant mass must be within ±25 MeV/c2 of the known charm meson mass [32]87

and the tracks are required to form a vertex with good fit χ2. Particle identification88

(PID) criteria are also applied to the final-state particles, such that particles that have a89

significantly larger likelihood to be a kaon than a pion are not used as a pion candidate, and90

conversely. Three-track combinations that are compatible with both D−→ K+π−π− and91

D−s → K−K+π− decays are categorized as either D− or D−s , based on the invariant mass92

of the three-track combination, the compatibility of opposite-charge track combinations93

with the φ→ K+K− decay, and the PID information of the final-state tracks [33].94

In events with at least one D− or D−s candidate and at least one D0 candidate, the95

charm mesons are combined to form a B− candidate if their invariant mass is in the range96

4.8 − 7.0 GeV/c2. The B− candidate is required to form a vertex with good fit χ2, and97

have a transverse momentum in excess of 4.0 GeV/c. The resulting trajectory of the B−98

candidate must be consistent with originating from the associated PV, which is the PV99

for which the B− candidate has the smallest value of χ2
IP. The reconstructed decay time100

divided by its uncertainty, τ/∆τ , of D0 and D−s mesons with respect to the B− vertex is101

required to exceed −3, while for the longer-lived D− meson it is required to exceed +3.102
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The tighter decay-time significance requirement on the D− eliminates background from103

B−→ D0π−π+π− decays where the negatively charged pion is misidentified as a kaon. In104

the offline selection, trigger signals are associated with reconstructed particles. Signal105

candidates are selected if the trigger decision was due to the candidate itself, hereafter106

called trigger on signal (TOS), or due to the other particles produced in the pp collision,107

hereafter called trigger independent of signal (TIS).108

The invariant-mass resolution of B−→ D−(s)D
0 decays is significantly improved by109

performing a constrained fit [34]. In this fit, the decay products from each vertex are110

constrained to originate from a common vertex, the B− vertex is constrained to originate111

from the associated PV, and the invariant masses of the D0 and the D−(s) mesons are112

constrained to their known masses [32],113

To reduce the background contributions, while keeping the signal efficiency as large as114

possible, a multivariate selection based on a boosted decision tree (BDT) [35,36] is applied.115

The following variables are used as input to the BDT: the transverse momentum and the116

ratio between the likelihoods of the kaon and pion hypotheses of each final-state track;117

the fit χ2 of the B− candidate and of both charm meson vertices; the value of χ2
IP of the118

B− candidate; the values of τ/∆τ for the B− and for both charm meson candidates; the119

invariant masses of the reconstructed charm meson candidates; and the invariant masses120

of opposite-charge tracks from the D−(s) candidate. Separate trainings are performed for121

the B−→ D−s D
0 and the B−→ D−D0 modes, and for both D0 decay channels. The BDT122

is trained using simulated B− signal samples and candidates in the upper mass sideband123

of the B− meson (5350 < m(D−(s)D
0) < 6200 MeV/c2) as background. To increase the size124

of the background sample for the BDT training, the charm meson invariant-mass intervals125

are increased from ±25 MeV/c2 to ±75 MeV/c2, and ‘wrong-sign’ B−→ D−(s)D
0 candidates126

are also included. Checks have been performed to verify that for all the variables used in127

the BDT the simulated B− decays describe the observed signals in data well, and that128

selections on the BDT output do not alter the shape of the invariant-mass distribution of129

the combinatorial background.130

The BDT combines all input variables into a single discriminant. The optimal131

requirement on this value is determined by maximizing NS/
√
NS +NB, where NS is132

the expected signal yield, determined from the initial signal yield in data multiplied by the133

BDT efficiency from simulation, and NB is the background yield extrapolated from the134

upper mass sideband to a ±20 MeV/c2 interval around the B− mass. This selection has135

an efficiency of 98% (90%) for B−→ D−s D
0 (D−D0) decays, and a background rejection136

of 88% (93%).137

4 Measurement of the raw asymmetries138

After the event selection, the signal yields and the raw asymmetries are determined139

by fitting a model of the invariant-mass distribution of B− → D−(s)D
0 candidates to140

the data. The model includes components for the signal decays, a background from141

B−→ K−K+π−D0 decays and a combinatorial background.142

The invariant-mass distribution of B− → D−(s)D
0 decays is described by a sum of143

two Crystal Ball (CB) [37] functions, with power-law tails proportional to [m(D−(s)D
0)−144

m(B−)]−2 in opposite directions, and with a common peak position. The tail parameters145

of the CB functions, as well as the ratio of the widths of both CB components, are146
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Table 1: Yields and raw asymmetries for B−→ D−(s)D
0 decays.

Channel N(B−) N(B+) Araw

B−→ D−s D
0, D0→ K−π+ 13659± 129 14209± 132 (−2.0± 0.7)%

B−→ D−s D
0, D0→ K−π+π−π+ 7717± 103 7945± 104 (−1.5± 0.9)%

B−→ D−s D
0, combined 21375± 165 22153± 168 (−1.8± 0.5)%

B−→ D−D0, D0→ K−π+ 678± 32 660± 31 ( 1.3± 3.3)%
B−→ D−D0, D0→ K−π+π−π+ 369± 24 345± 24 ( 3.4± 4.7)%
B−→ D−D0, combined 1047± 40 1005± 39 ( 2.0± 2.7)%

obtained from simulation. The peak position of the B− signal and the width of one of147

the CB functions are free parameters in the fits to the data. This model provides a good148

description of the B−→ D−(s)D
0 signals.149

The Cabibbo-favoured B−→ K−K+π−D0 decay is a background to the B−→ D−s D
0

150

channel, despite being strongly suppressed by the invariant-mass requirement on the151

K−K+π− mass. This background is modelled by a single Gaussian function, whose width152

is determined from a fit to simulated decays and the yields determined from the D−s153

sidebands. The yield of this background is about 30 times smaller than that of the signal,154

and the shape of the invariant-mass distribution is twice as wide. The combinatorial155

background is described by an exponential function.156

Separate unbinned extended maximum likelihood fits are used to describe the invariant-157

mass distributions of candidates withD0→ K−π+ decays and those withD0→ K−π+π−π+
158

decays. Figure 2 shows the fits to the invariant-mass distributions in the fit region, 5230 <159

m(D−(s)D
0) < 5330 MeV/c2, of the B−→ D−s D

0 and B−→ D−D0 channels, separated by160

charge and decay mode. The signal yields and corresponding raw asymmetries, calculated161

according to Eq. 2, are listed in Table 1. No significant dependence on the magnet polarity162

or data taking year is observed.163

5 Production and detection asymmetries164

The production asymmetry between B− and B+ mesons at LHCb has been measured to165

be AP = (−0.5± 0.4)% using the B−→ D0π− decay [38], and no significant dependence166

of AP on the transverse momentum or on the rapidity of the B meson has been observed.167

Four contributions to the asymmetry of the detection efficiencies are considered:168

asymmetries in the tracking efficiency, the different K± interaction cross-sections with169

the detector material, and the trigger and particle identification efficiencies.170

The momentum-dependent tracking efficiency for pions has been determined by com-171

paring the yields of fully to partially reconstructed D∗+→ (D0→ K−π+π−π+)π+ de-172

cays [39]. The corresponding asymmetries are summed for all final-state tracks of simulated173

B−→ D−(s)D
0 events. After averaging over data-taking year and magnet polarity, the174

tracking asymmetry is determined to be (0.18±0.07)% for B−→ D−s D
0 and (0.21±0.07)%175

for B−→ D−D0 decays, where the uncertainties are due to the finite sample of D∗+ decays176

used for the tracking efficiency measurement.177

The interaction cross-section of K− mesons with matter is significantly larger than178
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Figure 2: Invariant-mass distribution of B−→ D−(s)D
0 candidates, separated by charge. The top

row plots are B−→ D−s D
0 decays with D0→ K−π+, the second row with D0→ K−π+π−π+.

The plots in the third row correspond to B−→ D−D0 candidates with D0→ K−π+, the bottom
row with D0→ K−π+π−π+. The left plots are B− candidates, the right plots B+ candidates.
The overlaid curves show the fits described in the text. The fits include a component for the
combinatorial background, which are not explicitly shown in the plots.
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that of K+ mesons, resulting in a large asymmetry of the charged kaon detection efficiency.179

The momentum-dependent difference in the detection asymmetry between kaons and pions180

has been measured by comparing the yield of D+→ K−π+π+ to the yield of D+→ K0
Sπ

+
181

decays [40]. These asymmetries, convoluted with the momentum spectra of the final-182

state kaons, result in a contribution to the detection asymmetry of (−1.04± 0.16)% for183

B−→ D−s D
0 decays, where the uncertainty is due to the finite samples of D+ decays. For184

B−→ D−D0 decays, this asymmetry cancels to first order since it has one K+ and one185

K− particle in the final state, and the resulting asymmetry is (0.02± 0.01)%.186

The charge asymmetry of TIS candidates is independent of the signal decay channel in187

consideration and has been measured in B→ D0µ−νµX decays [38]. After weighting by the188

TIS fraction, the asymmetry is found to be 0.04% and is neglected. A nonuniform response189

of the calorimeter may result in a charge asymmetry of the TOS signal. Large samples190

of D0→ K−π+ decays have been used to determine the pT-dependent trigger efficiencies191

and corresponding charge asymmetries for both pions and kaons. After convoluting these192

efficiencies with the simulated pT spectra, averaging by data-taking year and magnet193

polarity, and multiplying by the TOS fraction of the signal, the resulting asymmetry is194

below 0.05%, and is considered to be negligible.195

In the candidate selection, particle identification criteria that rely on information196

from the RICH detectors are used. Possible charge asymmetries in the efficiencies of197

these selections are studied with samples of D0 → K−π+ that were selected without198

PID requirements. Depending on assumptions on the correlation between the PID and199

other variables in the multivariate selection, asymmetries smaller than 0.1% are found.200

Therefore, no correction is applied, and a 0.1% uncertainty is assigned.201

The uncertainties of the contributions to the production and detection asymmetry202

are considered to be uncorrelated and result in a value of AP + AD of (−1.4± 0.5)% for203

B−→ D−s D
0 and (−0.3± 0.4)% for B−→ D−D0 decays. Changes in the fit model have204

a negligible effect on the measured asymmetry.205

6 Results and conclusions206

The CP asymmetries are determined by subtracting the production and detection asym-207

metries from the measured raw asymmetry according to Eq. 3. The obtained results208

are209

ACP (B−→ D−s D
0) = (−0.4± 0.5± 0.5)%,

210

ACP (B−→ D−D0) = ( 2.3± 2.7± 0.4)%,

where the first uncertainties are statistical and the second systematic.211

In conclusion, the CP asymmetry in B−→ D−s D
0 decays has been measured for the212

first time and the uncertainty on the CP asymmetry in B−→ D−D0 decays has been213

reduced by more than a factor two with respect to previous measurements. No evidence214

for CP violation in B−→ D−(s)D
0 decays has been found.215
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pUniversità di Pisa, Pisa, Italy551
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uUniversità di Modena e Reggio Emilia, Modena, Italy556

vIligan Institute of Technology (IIT), Iligan, Philippines557

wNovosibirsk State University, Novosibirsk, Russia558

xNational Research University Higher School of Economics, Moscow, Russia559
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