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PSB STOP-BAND WIDTHS COMPUTED FROM MEASURED MAGNETIC FIELDS

C. Bovet, K.H. Schindl

1. INTRODUCTION

Formulae giving stop—band widths for resonances up to order five

. 1) . .
have been worked out by G. Guignard ) in 1970. At that time only educated
guesses or recommendations could be made on the amount of non-linear fields

in the PSB magnet.

We are now in a situation where field maps have been measured
for each bending magnet and harmonic analysis has been performed for each
quadrupoleg). The measurements made with straight long coils on the
bending magnet proved to be adequate for further analytic developmentsB).
Therefore, we cannot resist the temptation to compute the stop-band
widths that correspond to the distribution of all known magnetic fields

in the machine.

In section 2 magnetic field measurements will be normalized to
a unique system of reference tangential to the beam and expanded in the
transverse plane with harmonic polynomials. Then azimuthal harmonics are
derived in section 3 and stbp—band widths computed. Compensation of

most dangerous stop-bands is reviewed in section L.



2. EVALUATION OF MAGNET IMPERFECTIONS

In order to compute stop-band widths for all resonances up to
order L4, we need the azimuthal distribution of the gquadrupole, sextupole
and octupole component, both normal and skew, around the ring. These

coefficients are defined as

(k-1)
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(k-1) z
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with 2k being the number of poles of multipole, Bx’ BZ the transverse
magnetic field components. They are obtained by fitting the harmonic

function series

to the measured field map ABZ(X,Z) of each magnetic element.

For each of the 128 bending magnet gaps installed in the

Booster ring, the function

AB (x,z) = 'm = (3)
z

(Bo nominal field, Qm magnetic length) has been measuredg) in 21 points

of the transverse (x,z)-plane. The coefficients B(k_l> and B(k_l) are
Z b

. .,k
obtained by least square fit ) (equ. 2) with N chosen in such a way

N . . .
that the approximation error is comparable to the measurement error.
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All relevant measurements have been performed at transfer energy

800 MeV (BO = .59 T), bubt conclusions will be drawn for injection (more

critical from the stop-band point of view) by scaling down the imperfections
. . ; . e ; . . 2

field. This procedure is justified since it has been established ) that

the field imperfections are not due to remanence or saturation.

For each of the 192 quadrupole gaps, field inperfections have
been explored by means of harmonic coil measurements, where the various
multipole strengths are evaluated by Fourier analysis 2 of the measured
data, yielding ak, Bk. The coefficients ak,(Bk) are the ratios between
the field due to the normal (or skew) multipole of order k and the main
quadrupole field, taken at the bore radius (60 mm). Harmonic coil studies
were performed on a measuring bench where gquadrupoles were positioned
with :

i) Bus bar connection opposite telescope side,
ii)  South pole in positive quadrant.

Fach multipole component is evaluated in the measurement frame and has to

. 6 .
be transformed to the coordinates seen by the beam )). Depending on the
position of the bus bar connection, we have the four quadrupole types
* . . k-1
QF1, QDU, QDD, QFE.) The relationship between Bi . ) and ak, Bk for
9

these types and for multipole components up to order 4 is given in Table 1.

g, 1s the mean gradient, computed for each ring with the formula

L8
g, = ‘“'55;"“——— (L)
i
with Qi the length of quadrupole in position i along the synchrotron

ring, 8; the measured gradient.

®
) QF1 and QDD have bus bar connection downstream (with respect to the
beam), QF2 and QDU upstream.
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Order | Multipole Multipole B(k*l)1 Sign (B(k”l)) for
k Component 2a% } Z2o%
(k-1) expressed
(T/m ) in uk, Bk QF1 QDU QDD QF2
2 B(l) Norm. Quadr. g. — & - + + -
Z i o
1 . .
2 Bi ) Skew Quadr. cannot be measured with harm. coil
s | 5@ Lo s S
. . —_— - - + +
8 orm ext 2 0.06
B(Q) S 3983 83
kew Sext. 2 ——— | - + + -
3 < ew Sext 0.06
. (3) 308 o
B N . Oct. Ny - + + -
z orm. Oc (0.06)2
u (3) 6 3983 Bq
. i - - + +
BX Skew Oct (0,06)2
Table I : Relation between o s Bk as measured with harmonic coil,

and multipole components as defined in equ. (1)

3. COMPUTATION OF AZIMUTHAL HARMONICS AND STOP-BAND WIDTHS

Taking into account
i) the ring position of each bending magnet and quadrupole,
ii) the multipole strength of each element,

. . k- - .
we may derive the functions B; 1) (6) and Bik 1) (6) for each multipole
of order k. Note that these functions are considered constant along one

element, because long coil measurement do not give more information.

1)

A few definitions are needed for computing stop-bands

i)  Resonances may occur for

Il (5)

with k = nj+ n, theorder of resonance excited by a multipole of

order k with azimuthal harmonic p.
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ii) AQ is the stop-band width.
iii) Furthermore, the following parameters are used :

R

i

25 m (mean machine radius), Bo = ,1253 T (main field at injection),

p = 8.24 m (magnetic bending radius), €, = 130 and e, = 4O T mrad.mm

‘the emittances.

The azimuthal harmonic of a normal (dp) or skew (fp) multipole

is given by equ. (100) of Ref. 1 (after correction of a sign error : the

+1p6 —ipG)

exponential should read e instead of e We put this formula into

real and obtain, for the cos. and sine components, respectively :

ap (cos) 2m n; np B(k*l)(e) cos n, even

(sin) _ 1 éj; ézy z [nlwx(9> + nzwz(e)] de for
. cos) em x 2 B(k_l)(e) sin n, odd
P (sin) © X

8 | |
with b (6) '[w (1)
. o 8, (6%)
z

The betatron functions BX, BZ are strongly varying along one
element, therefore Simpson's integration was employed for numerical
computation of (6) along one element. For example, the resulting formula
is given for dp (cos), with i the element number, U = upstream edge,

C = centre, D = downstream edge 8
IEL. ny Ny o)

2 - = -

1 2 2
7% BX BZ cos (nlxpX + nzwz) J +

"

dp (cos)

2 2 ]
+ M[BX BZ cos (nllpX + nzwz) +
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Combining equ. (99), (51), (32), (67) of Ref. 1, stop-~band widths

are computed as to

(9a)
-1, 22,
ny R € e \2 ny, €\ iépf n, even
X Z z -
AQ = - —= ny+ — — for , ny #0
¥ 1 - S -
k.2 Bop Nye Ny« \ € ny € {Lp’ n, odd
(9v)
: n
(-1
ny R €, €.\2 ny e, ]dpl n, even
AQ = — | [ny+ — == for , o # 0
k252 B ' s ad
Op Nnye Iloy EZ g EZ P Ng O¢

Note that for both nj # 0 and ny # 0, (9a) and (9b) are equivalent.

Azimuthal harmonic multipole strenghts dp, fp as well as
stop-band widths AQ have been computed for each resonance up to order U
and are given in Table II (only the most critical of the four rings is
considered). A detailed analysis of all results shows that, from the

resonance point of view, gap 4 is the most critical one.

REMARKS ON ACCURACY OF RESULTS

i) The bending magnets contribute more to the azimuthal harmonics

than the quadrupoles,

ii) B.M. field imperfections have been measured with an accuracy

of about lO_h of the main field,

iii)  varying N in the least square fit (equ. (2)) shows virtually
no changes for the quadrupole component (order 2), but serious
changes for order 4. Putting these facts together, we estimate
the precision of dp, fp as to * 10% for order 2, * 20% for order 3,

+ L0% for order L.
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L. STOP-BAND COMPENSATION

7).8)

Correcting elements have been proposed to compensate for

field imperfections and reduce stop-band widths.

Table IT gives a summary of installed correcting lenses, their
azimuthal position with polarity to create either odd or even harmonics
(amplitude p, phase ¢), control parameters that allow to act in coupled
mode on several elementsg), The number of independent controls 1s also
listed, together with the computer control of polarity. The harmonic
strengths and harmonic coefficients ldp|or |fp| of the correcting lenses
are evaluated and can be compared to the corresponding measured values

of the magnet system.

5. CONCLUSIONS

From Table II 1t 1s clear that enough strength has been providedb
for any type of compensation foreseen. It was thought in advance that sextu-
pole harmonic coefficients would be greater than skew sextupole ones. Field
error measurements show the contrary so that we would be in a better position
with skew sextupoles as correcting lenses. But in any event the stop-band
widths involved are pretty small and no third order resonance has been

observed till now. For octupoles the choice made is optimum.
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