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SOME TEMPERATURE PROBLEMS

IN MAGNETS WITH CYLINDRICAL SYMMETRY

A. Asher and D. Leroy

1. Summary

In this note the solution of two temperature distribution
problems for magnets with cylindrical symmetry is given. In the
first case the temperature distribution in space and time in a
superconducting magnet, whose surface is initially exposed to a
(cold) temperature step 6 is computed.

In the second case the final temperature distribution in
a pulsed cylindrical multipole is calculated under the assumption
that at t = O a heat pulse leads to a uniform excitation winding
temperature increase 8 followed by a cooling down notably through
the outer concentric iron shield during the cycle duration T .

The mathematical approach which may be useful for treating
similar problems is also giveno

20 Mathematical approach

Let us assume an (infinitely long) cylinder with radii
= R ... R re resentin i.e. concentric windin s iron screensp 1 n p i ’



insulation or metallic tubes of a magnet. The uniform (if only

one cylinder is considered) or for our problems the average heat

conduction coefficient be a2 [m2 s_u .

If at time t = O the cylindrical configuration is eXposed to

8 = Ta — T0 at some boundary(ies) p , or if the winding is excited

by current pulses which can be considered infinitely short compared

to the time constants of the materials involved, such that a uniform

temperature increase 9 at t = O in the winding part can again be

assumed, the temperature distribution in space and time can in fair

approximation be calculated as follows :

The starting partial differential equation is :
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Writing the solution in the form :

e = f<t> ~g<p> (2)

and assuming that for p = O the temperature increase is finite,

one obtains for a particular solution :
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and for the general solution :

-Ai2a2t '

o = 2A1 - JO (Kip) . e (4)

i‘=1
Jo (kip) being the Bessel function of the first kind.



The coefficient Ai (i z 1.,w ) can be determined from the
orthogonality property of Bessel functions. Writing

€(p> = A1 JO(A.p) (5)
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From (6) the coefficient Ai is found to
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a(p> being the assumed step (or any other) function applied
in spatial co—ordinates between 0 and 1.

To evaluate the integral M(p) the following relation

can be applied
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With (14) the temperature rise after the first pulse is
equal to

p=R
where the ai“s are found from Jo <a.-—§—z) = 0 ; ai = 2.4, 595,

896 etc.

The final temperature repartition within the multipole

after n—pulses,()n(p) is given by :
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As a numerical example let us calculate the temperature

distribution in the cylindrical correction sextupole for the PS.

The parameters are : R1 = 0.08 m, R2 = 0.118 m, R3 = 0.14 m,

L = 0.1 m, 198 kW x 0.1s corresponding to Ta-To = 0.025 0C for

3-1L:

mm



With a2 = 16.7 . 10-6[_m2 sn1j'the average heat conduction

coefficient for iron and insulated copper winding — for iron alone

a similar value of 16 o 10—6 is found — 811(p) has been computed

and shown in fig“ 1a
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