CERN Accelerating science

Published Articles
Report number AIDA-2020-PUB-2017-002 ; arXiv:1708.03135 ; FERMILAB-PUB-17-306-ND
Title The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
Author(s)

Acciarri, R. (FNAL) ; Adams, C. (Yale University, Harvard University) ; An, R. (IIT) ; Anthony, J. (UCAM) ; Asaadi, J. (University of Texas) ; Auger, M. (Universität Bern) ; Bagby, L. (FNAL) ; Balasubramanian, S. (Center for Neutrino Physics, Virginia Tech) ; Baller, B. (FNAL) ; Barnes, C. (University of Michigan) ; Barr, G. (UOXF) ; Bass, M. (UOXF) ; Bay, F. (TUBITAK Space Technologies Research Institute) ; Bishai, M. (BNL) ; Blake, A. (ULANC) ; Bolton, T. (KSU) ; Camilleri, L. (Columbia University) ; Caratelli, D. (Columbia University) ; Carls, B. (FNAL) ; Castillo Fernandez, R. (FNAL) ; Cavanna, F. (FNAL) ; Chen, H. (BNL) ; Church, E. (PNNL) ; Cianci, D. (UNIMAN, Columbia University) ; Cohen, E. (TAU) ; Collin, G. H. (MIT) ; Conrad, J. M. (MIT) ; Convery, M. (SLAC) ; Crespo-Anadón, J. I. (Columbia University) ; Del Tutto, M. (UOXF) ; Devitt, D. (ULANC) ; Dytman, S. (University of Pittsburgh) ; Eberly, B. (SLAC) ; Ereditato, A. (Universität Bern) ; Escudero Sanchez, L. (UCAM) ; Esquivel, J. (Syracuse University) ; Fadeeva, A. A. (Columbia University) ; Fleming, B. T. (Yale University) ; Foreman, W. (University of Chicago) ; Furmanski, A. P. (UNIMAN) ; Garcia-Gamez, D. (UNIMAN) ; Garvey, G. T. (LANL) ; Genty, V. (Columbia University) ; Goeldi, D. (Universität Bern) ; Gollapinni, S. (KSU, University of Tennessee) ; Graf, N. (University of Pittsburgh) ; Gramellini, E. (Yale University) ; Greenlee, H. (FNAL) ; Grosso, R. (University of Cincinnati) ; Guenette, R. (UOXF, Harvard University) ; Hackenburg, A. (Yale University) ; Hamilton, P. (Syracuse University) ; Hen, O. (MIT) ; Hewes, J. (UNIMAN) ; Hill, C. (UNIMAN) ; Ho, J. (University of Chicago) ; Horton-Smith, G. (KSU) ; Hourlier, A. (MIT) ; Huang, E.-C. (LANL) ; James, C. (FNAL) ; Jan de Vries, J. (UCAM) ; Jen, C.-M. (Center for Neutrino Physics, Virginia Tech) ; Jiang, L. (University of Pittsburgh) ; Johnson, R. A. (University of Cincinnati) ; Joshi, J. (BNL) ; Jostlein, H. (FNAL) ; Kaleko, D. (Columbia University) ; Karagiorgi, G. (UNIMAN, Columbia University) ; Ketchum, W. (FNAL) ; Kirby, B. (BNL) ; Kirby, M. (FNAL) ; Kobilarcik, T. (FNAL) ; Kreslo, I. (Universität Bern) ; Laube, A. (UOXF) ; Li, Y. (BNL) ; Lister, A. (ULANC) ; Littlejohn, B. R. (IIT) ; Lockwitz, S. (FNAL) ; Lorca, D. (Universität Bern) ; Louis, W. C. (LANL) ; Luethi, M. (Universität Bern) ; Lundberg, B. (FNAL) ; Luo, X. (Yale University) ; Marchionni, A. (FNAL) ; Mariani, C. (Center for Neutrino Physics, Virginia Tech) ; Marshall, J. (UCAM) ; Martinez Caicedo, D. A. (IIT) ; Meddage, V. (KSU) ; Miceli, T. (NMSU) ; Mills, G. B. (LANL) ; Moon, J. (MIT) ; Mooney, M. (BNL) ; Moore, C. D. (FNAL) ; Mousseau, J. (University of Michigan) ; Murrells, R. (UNIMAN) ; Naples, D. (University of Pittsburgh) ; Nienaber, P. (Saint Mary's University of Minnesota) ; Nowak, J. (ULANC) ; Palamara, O. (FNAL) ; Paolone, V. (University of Pittsburgh) ; Papavassiliou, V. (NMSU) ; Pate, S. F. (NMSU) ; Pavlovic, Z. (FNAL) ; Piasetzky, E. (TAU) ; Porzio, D. (UNIMAN) ; Pulliam, G. (Syracuse University) ; Qian, X. (BNL) ; Raaf, J. L. (FNAL) ; Rafique, A. (KSU) ; Rochester, L. (SLAC) ; Rudolf von Rohr, C. (Universität Bern) ; Russell, B. (Yale University) ; Schmitz, D. W. (University of Chicago) ; Schukraft, A. (FNAL) ; Seligman, W. (Columbia University) ; Shaevitz, M. H. (Columbia University) ; Sinclair, J. (Universität Bern) ; Smith, A. (UCAM) ; Snider, E. L. (FNAL) ; Soderberg, M. (Syracuse University) ; Söldner-Rembold, S. (UNIMAN) ; Soleti, S. R. (UOXF) ; Spentzouris, P. (FNAL) ; Spitz, J. (University of Michigan) ; St. John, J. (University of Cincinnati) ; Strauss, T. (FNAL) ; Szelc, A. M. (UNIMAN) ; Tagg, N. (Otterbein University) ; Terao, K. (Columbia University, SLAC) ; Thomson, M. (UCAM) ; Toups, M. (FNAL) ; Tsai, Y.-T. (SLAC) ; Tufanli, S. (Yale University) ; Usher, T. (SLAC) ; Van De Pontseele, W. (UOXF) ; Van de Water, R. G. (LANL) ; Viren, B. (BNL) ; Weber, M. (Universität Bern) ; Wickremasinghe, D. A. (University of Pittsburgh) ; Wolbers, S. (FNAL) ; Wongjirad, T. (MIT) ; Woodruff, K. (NMSU) ; Yang, T. (FNAL) ; Yates, L. (MIT) ; Zeller, G. P. (FNAL) ; Zennamo, J. (University of Chicago) ; Zhang, C. (BNL)

Publication 2018
Imprint 2017-08-10
Number of pages 25
In: Eur. Phys. J. C 78 (2018) 82
DOI 10.1140/epjc/s10052-017-5481-6
Subject category Detectors and Experimental Techniques ; 3: Advanced software
Abstract The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
Copyright/License publication: © 2018-2025 The Author(s) (License: CC-BY-4.0), sponsored by SCOAP³

Corresponding record in: Inspire
Email contact: [email protected]


 レコード 生成: 2017-09-27, 最終変更: 2022-11-21


フルテキスト:
Download fulltext
PDF