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Abstract

In the early 1980’s first measurements of the b-hadron lifetime were able to in-
fer that the average b-hadron lifetime was around 1 ps. Since then many lifetime
measurements were performed with increasing precision. Due to the development
of sophisticated detectors and reconstruction techniques, the lifetimes of the in-
dividual b-hadron-species have been resolved by the LEP experiments and SLD.
The latest world averages for the individual lifetimes are 73+ = 1.647 4 0.016 ps,
Tpo = 1.546 £ 0.018 ps, 75, = 1.464 + 0.057 ps and 74, = 1.208 £ 0.051 ps, for
the ratio 75+ /70 = 1.068 = 0.016 and for the average b hadron mean lifetime
T, = 1.564 £ 0.014 ps.

The vast majority of previous lifetime measurements was statistically limited
by using only a few percent of the available b decay channels. Within this analysis,
a fully inclusive approach was employed, using the data set of the DELPHI detector
taken at the Z° pole during the years 1994 and 1995. For this purpose the
analysis made extensive use of advanced analysis techniques such as artificial
neural networks and exploited the full capabilities of the DELPHI detector.

After all selection cuts the data sample consisted of approximately 420000
event hemispheres. Dedicated b-hadron identification neural networks, momen-
tum and decay length reconstruction algorithms were developed, based on the
BsAURUS package [94].

The results were extracted using a 2 fit performed on enhanced samples,
which were approximately 70% pure in BT and B° mesons, resulting in the fol-
lowing values for the lifetimes of B* and B° mesons and their ratio:

Tp+ = 1.625 £ 0.013 (stat) =+ 0.017 (syst) ps
Tpo = 1.543 £ 0.020 (stat) =+ 0.033 (syst) ps

TBY 1051 £ 0.019 (stat) = 0.024 (syst)

TRo

Utilizing the same method on a sample which was not enhanced in B* or B°
mesons, the average b-hadron lifetime was found to be:

7, = 1.568 £ 0.005 (stat) =+ 0.009 (syst) ps

The results are consistent with the current world averages. They represent a sig-
nificant improvement in precision over previous measurements, the result for the
BT and BY lifetime ratio being the most precise single measurement of this quan-
tity from Z resonance data. The result of the average b-hadron mean lifetime is
currently the most precise extraction of this number worldwide.
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Introduction

A beginning is a very delicate time.
Princess Irulan

With the discovery of the bottom or beauty quark in 1977 (see [1, 2]) in the
T resonance a successful 25 years period of b physics started. b physics provides
important tests of the so-called Standard Model and measurements of its parame-
ters, especially the parameters of the quark mixing matrix. This matrix connects
the mass eigenstates of the quarks to their flavor eigenstates participating in weak
interaction processes. This mixing mechanism enables quarks from one genera-
tion to interact with quarks from other generations, and so the b quark can decay
e.g. via b — c. Due to the fact that this so-called Cabibbo-Kobayashi-Maskawa
(CKM) matrix contains a complex phase which is the only established source for
CP violation, b physics was focused on because CP violation could be a possible
explanation for one of the remaining big puzzles of our days: Up to now, there
exists no satisfactory and proven explanation for the asymmetry between matter
and anti-matter in the universe.

In 1982 the JADE Collaboration at PETRA set an upper limit on the mean
b-hadron lifetime of (75) < 1.4 ps [3]. Before 1983, the lack of experimental data
on the strength of mixing between the first respectively second fermion genera-
tion with the third lead to the prediction that the B lifetime should be of the
order of 0.1 ps, assuming, that the strength of mixing between the second and
third generations was the same as that existing between the first and second.
There was, however, evidence from the endpoint of the semileptonic decay spec-
trum of b-hadrons, that the b quark couples predominantly to the ¢ quark. Hence
it came as a surprise when in 1983, the MAC and MARK II Collaborations at
PEP, were able to infer that the lifetime was around 1 ps [4, 5]. Thus, the new
measurement provided for the first time a value of the CKM matrix element |V
which is the transition strength between b and ¢ quarks. Since then many lifetime
measurements were performed with increasing precision due to more and more so-
phisticated detecting and reconstruction techniques. Very precise measurements
were possible at LEP since 1993 after the development of high resolution silicon
vertex detectors. This improvement made it also possible to confirm the theo-
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retical prediction that the lifetimes of the various b-hadron species are different.
From a naive point of view, where the other quark constituents play no role in
the decay process Spectator Model, the lifetimes are expected to be equal. How-
ever, there exist processes which contribute to a hadronic width of the b-hadrons
which are different for the various B species. A more detailed introduction to
the theory of B decays and their description in the framework of Monte Carlo
generators can be found in chapter one together with a brief description of the
ideas and principles of the Standard Model.

At the LEP experiments various lifetime measurements have been made. Most
of them were based on an exclusive reconstruction of certain decay chains which
could be reconstructed with small backgrounds and which have a branching ratio
which is high enough to have reasonably high statistics (for an example see [6]).
Other analyses use the slow pion from the subsequent D* decay to enhance B
mesons of a certain type (for an example see [7]). In common to all these analyses
is the statistical limitation imposed by ignoring most of the hadronic decay modes
and thus using only a few percent of the available statistics. Over the years,
however, improved detector knowledge and enhanced quality of simulation by
using more and more precision measurements as inputs or constraints, has lead
to the development of techniques which allow the inclusive treatment of B physics
problems. Inclusive means that regardless of specific decay channels an approach
was made to measure quantities from B physics using shapes of more general
variables, like the weighted charge of the secondary vertex. In the Karlsruhe
working group a dedicated B physics package named BSAURUS (see [94]) has
been developed, providing a whole bunch of inclusive tools and variables some
of which are basic inputs to this analysis. The package makes extensive use of
all parts of the DELPHI experiment especially of its unique particle identification
capabilities, and of elaborate neural network techniques. Chapter two gives a
brief description of the LEP machine, DELPHI detector and its components. The
first part of chapter three is dedicated to Neural Networks, their usage and some
of their advanced training algorithms.

The inclusive approach of the analysis presented in this work allows the recov-
ery of the large statistics of hadronic B decays for an inclusive b-hadron lifetime
measurement based on the data taken by DELPHI in the years 1994 and 1995
(LEP I phase). The result is a new, very precise contribution to other lifetime
measurements. For the measurement of the lifetimes of the BT and B" mesons!
and for the measurement of the average b-hadron lifetime a y? minimization
technique was used. For the measurement of the lifetime of B, and A, the situ-
ation was quite difficult due to the relatively low production rates of these two
b-hadrons (~ 10%) and therefore the lifetimes had to be extracted against a huge
background. This prompted to the decision to use a maximum log-likelihood

!Note that the corresponding charge conjugate state is always implied throughout this work
if not stated otherwise.
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method, where the background had to be modeled properly. An overview of the
parameter estimation techniques, from a mathematical point of view, is given in
the third part of chapter three. Using the maximum log-likelihood method the
problem of modeling probability density functions arise and therefore calculations
of numerical integrals are necessary. The B meson decay time is reconstructed
from the decay length and the momentum of the b-hadron. Both quantities are
reconstructed in the detector with limited resolution. The fitting method, which
is later applied for the extraction of the results, takes these finite resolution ef-
fects into account by convoluting the resolution functions with the theoretical
expectations. Therefore a numerical integration over these resolution functions
is necessary for each event in the two dimensional phase space (decay length over
momentum). The standard approaches for numerical integration (e.g. trapezoid
rule) are found to be too slow in two dimensions to be of practical use when
large statistics are involved and the precision is also not the best available. The
standard Monte Carlo integration algorithms can be improved by two methods:
First, the set of points used for the integration can be improved. Second, the
integration error can be reduced by using so-called Quasi-Random Numbers in-
stead of a grid or pseudo random numbers, for the same amount of points used
for the integration. A brief introduction to quasi-random numbers is given in
the second part of chapter three. Another improvement is the reduction of the
variance of the function to be integrated. Technically, this is done by a variable
transformation which transforms the quasi-random variable in a way according
to the magnitude of the resolution function so that these points see a flatten
function. This method is called Importance Sampling. A detailed description of
this method is given in the second part of chapter three.

The basic properties of the package BSAURUS are described in the fourth
chapter. Essential to the analysis is an estimate of the proper decay length, which
implies a secondary vertex reconstruction and an estimate of the B momentum,
from which the proper decay length can be calculated. This is achieved inside
BsAurus by the application of Neural Networks starting at the track level e.g.
TrackNet which is dedicated to distinguish between fragmentation tracks and B
decay tracks. Also quite essential for the analysis is the capability to distinguish
between the different b-hadron species BT, B?, B, and b-baryons. A neural
network with four output nodes (one for each hypothesis) was constructed for
this purpose.

In chapter five a study to measure b-hadron lifetimes using a maximum log-
likelihood method is described. To measure inclusively the lifetimes of B; mesons
and b-baryons, which have a small relative production fraction of about 10%
using this kind of method is essential. Performing a maximum log-likelihood
method however requires a huge amount of precise modeling. The definition
of the resolution classes of momentum and decay length, the modeling of the
acceptance and the background are described in this chapter. Unfortunately it
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turned out, that the modeling was not precise enough and would require to take
into account various correlations to have a robust analysis method. This turned
out to be unpracticable with regard to the limited statistics available.

In chapter six, the analysis for the lifetime measurement of BT and B mesons,
based on a x? method is presented starting with a description of the event selec-
tion. The analysis is based on data collected on the Z° resonance in the LEP I
phase during the years 1994 and 1995. The analyses are done for the two years
separately and combined afterwards because in 1995 some components of the par-
ticle identification were only running partly and so some adjustments and tunings
had to be done separately for the two years. For each analysis the data were di-
vided into two samples using the B species enrichment network, from which one
of them was about 70% pure in charged B mesons and the other about 70% pure
in BY mesons.

The chapter also contains a description of the fitting routine, as well as the
calibration of known differences between data and Monte Carlo. Finally, after
discussion of some modifications, the final results for the lifetimes and their ra-
tio are presented, together with a breakdown and description of the systematic
effects.

Chapter seven contains the description of the mean average lifetime measure-
ment which follows closely to the method described in chapter five. The main
difference is that there is no enhancement of specific b-hadrons and so the sta-
tistical error is quite small. Also here the final result and a breakdown of the
systematic effects is given. The interpretation of the result is presented in terms
of an estimation of the CKM matrix element |V

Finally chapter eight contains the conclusions of this work stating also all
results with their errors.



Chapter 1

The Theoretical Background

Modern elementary particle physics studies the fundamental constituents of mat-
ter and their interactions (forces). Experimental discoveries and theoretical de-
velopments lead to a mathematical model, the so-called Standard Model (SM).
With help of this Standard Model a vast majority of known phenomena can be
described with only a small number of particles which can be divided into two
classes. The first class consists of quarks and leptons which are fermions of spin
% that obey Fermi-Dirac statistics. There are 3 charged leptons, three neutral
leptons ('neutrinos’) and six known types ('flavors’) of quarks. The particles of
the second class are the so-called 'gauge bosons’. They have spin 1 (the graviton
has spin 2), obey Bose-Einstein statistics and are responsible for transmitting
the fundamental forces between the particles. There are four known fundamental
forces in the universe: the strong force binds quarks to form hadrons and nucle-
ons to form nuclei, the electromagnetic force which acts on all electrically charged
particles, the weak force, which is responsible for processes like radioactive beta
decay and the gravitational force which is not yet included in the SM. The first
part of this chapter gives an overview of the basic concepts of the Standard Model.

For an experimental analysis it is vital that there exists a good event sim-
ulation. Therefore understanding the process ete” — hadrons is essential. In
the second part of this chapter a brief overview of the simulation chain from a
theoretical point of view is given.

The last part of the chapter describes the decays of heavy hadrons consisting of
a c or b quark and a light (u,d or s) anti-quark. They decay via weak interactions.
Using a naive model for the description one expects all b-hadrons (hadrons where
the heavy quark is a b quark) to have the same mean lifetime. A more detailed
look, however, shows that there are small differences in the decay width. A brief
introduction to these phenomena and theoretical predictions is given in Section
1.4.



6 CHAPTER 1. THE THEORETICAL BACKGROUND

1.1 Gauge Theories

For the theoretical description of phenomena in elementary particle physics so-
called Gauge theories are used. They are based on a generalized Lagrange formal-
ism known from classical mechanics. The coordinates ¢; in the Lagrange function

L(q;, ¢;, t) and their derivatives ¢; = % are substituted in quantum field theories
by continuous fields ®;(z,) and their derivatives g—f:.
G — Pilzu)
dg; N 0P;
dt oz,
. 0P,
L(qi,qi,t) — 5((1)2':8—1:%) (11)
Ly

With this Lagrange density defined one can form the action S as
i 0D,
s :/ A L( 5 ) (1.2)

The dynamics of the fields are then obtained by minimizing S
IS[®] =0 (1.3)

which is the well known variational principle from classical mechanics. From the
variation of the physical fields ®; one can derive the Euler-Lagrangian equations
of motion

o , oL oL
axu(agfi) 09, 0 (14)

Now one constructs £ in a way that is invariant under local symmetry transfor-
mations U(z) of the fields ®;(x)

Q;(z) — Ul(z)P;(x) (1.5)

The structure of this underlying symmetry and its transformation dictates the
kind of interaction that the theory describes between the fields ®;. In nature
transformations under the SU(n) group (the n-dimensional, special (detU = 1)
and unitary (UTU = 1) matrices U) are particularly relevant. Such a transfor-
mation has n? — 1 parameters and can be represented® as

n?—1

Ud; = exp(i Z: 0%(x)T,)P; (1.6)

'We will adapt the Einstein sum convention where two equal indices implies a summation.
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Here the 6%(x) are the above mentioned parameters and the elements T, are
the generators of the corresponding group. They are not simple numbers but
matrices. In general the following relation is valid for the generators:

[T, Ty] = ifu Tl (1.7)

Here the f,,° are the structure constants of the group. In the case that these
structure constants are all zero, the generators commutate with each other and
the group is termed Abelian. The demand for invariance of the Lagrange density
L under local gauge transformation requires the introduction of so-called gauge
fields Wlf(x) They are inserted into the Lagrange density by substituting all
partial derivatives d,, by so-called covariant derivatives D, = 0, —igW,(x) where
g is the coupling constant of the corresponding interaction and W, (x) is an n xn
matrix which can be expanded in the following way:

W(w) = T,We(x). (1.8)

As one can see from the equation above there are equal numbers of gauge fields
and generators. Using a local gauge transformation according to Equation 1.6
the gauge fields have to transform as well to keep the Lagrange density invariant.
This transformation has to fulfill the following condition:

D;@; =U(x)D,®; (1.9)
This condition leads to the transformation of the vector fields

- i -
WL =UW,U " - ;(ONU)U L (1.10)
resulting in

a a 1 a a C
Wi =We + 50"+ i w0 (1.11)

for infinitesimal gauge transformations. The gauge fields introduced by this pro-
cedure represent physical particles, the so-called gauge bosons. In an Abelian
theory the gauge bosons do not interact with each other.

1.2 The Standard Model

The Standard Model describes the interaction of particles and is based on gauge
theories. The elementary particles are ordered in 3 generations, each of them
containing 2 quarks and 2 leptons. The main difference between these genera-
tions are the masses of the particles. The Standard Model contains the theory of
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electroweak interaction by Glashow[8], Weinberg [9] and Salam [10] and the the-
ory of quantum chromo dynamics (QQCD) which describes the strong interaction.
An overview of the particles, their division into generations and their quantum
numbers can be seen in table 1.1

In the following subsections the components of the Standard Model are briefly

summarized.
‘ Generation Quantum numbers

L. I1. I1T. 1 I Y Q

< Ve ) ( v, > < v, ) 1/2 | +1/2 -1 0
e ), . T ), 1/2 -1/2 -1 -1

( u > ( ¢ > ( t > 1/2 | +1/2 | +1/3 | +2/3
d . s . b’ . 1/2 -1/2 +1/3 -1/3
€ER HR TR 0 0 —2 —1
UR CRr tR 0 0 +4/3 +2/3
d s’y by 0 0 -2/3 -1/3

Table 1.1: The different fermions in the standard model. Quarks and leptons are
separated into three generations. Doublets are marked with an L to denote that
only the left-handed components are arranged in this way whereas the righthanded
components are arranged as singlets. The prime of the lower quarks in the dou-
blets denote the weak eigenstate (see Section 1.2.2). The different quantum num-
bers are the electromagnetic charge Q, the weak hypercharge Y, the weak isospin
I and the third component of the weak isospin I3.

1.2.1 Quantum Electro Dynamics (QED)

Quantum Electro Dynamics (QED) is the gauge theory describing electromag-
netic interactions of charged fermions via the exchange of a single gauge boson,
the photon 7. Since the photon itself is electrically neutral it does not self-
interact. The underlying gauge group of this theory is the Abelian U(1) group.
The coupling constant is proportional to the fermions electric charge which is
a conserved quantity in all QED processes. Processes of particle physics can
be illustrated via so-called 'Feynman diagrams’. These diagrams are not only
graphical illustrations but also a symbolic way to represent mathematical terms
of perturbation theory in different orders. As an example the electromagnetic
process eTe” — T~ is illustrated in Figure 1.1 (a). QED calculations to higher
orders in perturbation theory than that represented by Figure 1.1 (a) involves the
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inclusion of closed-loop processes such as those shown in Figures 1.1 (b) and (c).
These diagrams, however, correspond to divergent integrals which make infinite
contributions to any amplitude calculations attempted beyond leading order. In
QED it is found that these infinite terms may be absorbed by a redefinition of the
charges and masses to be equal to their physically measured values. The appli-
cation of this technique, known as ’renormalization’, then renders all amplitude
and hence cross-section calculations to be finite. The requirement that a candi-
date theory of particle interactions be renormalizable is clearly a prerequisite if
physical predictions beyond leading order in the perturbation expansion are to
be possible. It was shown by 't Hooft in 1971 [25] that, in fact, all local gauge
theories are renormalizable.

et ut
< v
Y Y e —P—&—P— e~
Y
e~ wo
(a) (b) (c)

Figure 1.1: (a) The lowest order (or Born level) QED-Feynman diagram for the
process ete” — ptu. Two examples of divergent diagrams in QED: (b) the cre-
ation and re-annihilation of an e*e™ pair, and (c) the emission and reabsorption
of a photon by an electron.

1.2.2 Electroweak Interaction

The electromagnetic interaction and the weak interaction are unified in one the-
ory, the electroweak interaction. The gauge group of this interaction is the
SU(2) x U(1) group. The gauge bosons of the non-Abelian group SU(2) are
W1, Wy and W3. The physical charged vector bosons of the weak interaction W+
and W™ are linear combinations of Wi and W

WE=1/V2. (W, £iW,) (1.12)

The gauge boson of the Abelian group U(1) is called B and couples to the hyper-
charge Y. The hypercharge Y is related to the electric charge ) and the third
component of the weak isospin I3 via the Gell-Mann-Nishijima formula:

Q:Iﬁ%. (1.13)
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The generators of the SU(2) group are the Pauli spin matrices 7,. The full
SU(2) x U(1) invariant Lagrange density is then:

_ . 1 Y
L= xpy"(i0, — 957 W, - glgBu)XL

_ ) Y

+Wpy*(i0, — g';Bu)\IIR (1.14)
1 v 1 v

— W W — 2B, B

The two neutral physical gauge fields A, of the photon (y)and Z, of the Z° can
be represented by orthogonal combinations of the unphysical gauge fields W3

and B,
—gi 3
Z, _ CS)S Ow sin Oy W (1.15)
A, sinfy  cos Oy B,
introducing a parameter #,, known as the weak mixing angle or Weinberg angle.

The trigonometric functions of this weak mixing angle are related to the coupling
constants of the theory:

(1.16)

cos By = ——=— (1.17)

Substituting W,; and B, by A, and Z,, in £ (Eqn. 1.15) leads to:

L = xpy"i0uxr + Yry"i0, Vg
—i(W;V}LV%L + Wrey vey)

V2
1 1
-\ g%+ 9’2Zu[§ﬁeL7“l/eL - e
—SiHZQW . (—éLyueL — éR*y“eR)]
99’ A 5 M 5 M
_W u(—eL*y €L — ERY BR)

1 1
W W BB (118)

The hypercharges of the leptons are already inserted. The first two parts in the
Lagrange density are the kinetic terms of the fermions and the last two parts are
the kinetic terms of the gauge bosons and their self interaction because of the
non-Abelian character of the gauge group. The parts in between describe the
interactions of the fermions with the gauge bosons.

This electroweak theory does not contain any mass terms in its Lagrangian neither
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for the fermions nor for the gauge bosons. An introduction of a mass term
would destroy the local gauge symmetry and therefore the renormalizability of the
theory. To give the particles in the weak interaction theory a mass nevertheless
the Ginzburg-Landau mechanism known from solid state physics is used. In this
case this means that a new complex scalar field ®, named Higgs field is used. By
coupling the Higgs field ® to the vector bosons the W, and Z° bosons become
massive without destroying the symmetry. For the fermions Yukawa couplings
to the Higgs field are introduced to give them masses. As a consequence of the
Higgs mechanism a neutral physical boson H" with unknown mass is predicted?.

Weak Quark Mixing

Within the electroweak theory, quark states can transform into their SU(2) dou-
blet partner through the emission of a W boson which, in the absence of any
mixing between the quark generations, renders the b-quark stable. The decay
into the more massive top quark doublet partner is energetically impossible and
all lighter quark flavors belong to SU(2) doublets from different generations (see
table 1.1). In the early 1960’s though it became clear that the quark sector did
not behave as simply as the lepton sector. The transition strengths for e — W,
and p — Wy, are the same while the decay rate for 7= — pv, and K= — uy,
transitions differ by a factor of about twenty. A solution to this problem was then
proposed by Cabibbo [12] who introduced a weak eigenstate for the down quark
d' which is a linear combination of the mass eigenstates d and s in the following
way:

d = dcosb, + ssinb, (1.19)

This way a mixing angle 6. was introduced, the so-called Cabibbo angle which
preserved the universality of the weak interaction by keeping one single coupling
constant.

The problem of Cabibbos modification was, that flavor changing neutral cur-
rents (FCNC) were theoretically possible but were not experimentally observed.
The solution of this problem was the modification of the s mass eigenstate into
the weak eigenstate s' as well:

s' = scosf. — dsinb, (1.20)

To keep the coupling to the Z° universal, a new doublet for the s’ state was intro-
duced and therefore the existence of a new unknown quark state ¢ was predicted,
which is the so-called charm quark. This mixture of quarks ensures that flavor
changing neutral currents (FCNC) can only occur in processes of higher order

2The current experimental lower limit of the Standard Model Higgs boson from the LEP2
collaborations is 114 GeV/c? [11]
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perturbation theory. In agreement with experimental observations this guaran-
tees that such FCNC processes are strongly suppressed. This mechanism is called
the GIM (Glashow, Iliopoulios, Maiani [13]) mechanism. The charm quark was
established experimentally by the discovery of the ¢¢ state in the mid 1970’s [14].

In a later development Kobayashi and Maskawa proposed the extension of
this to three generations to accommodate the possibility of CP violation intro-
ducing two quark states, the bottom b and the top quark t. According to this
developement the wealth of experimental evidence for charged current transitions
between generations, is theoretically accounted for by considering the weak quark
eigenstates (d', s', b') as mixtures of the mass eigenstates (d, s, b)3>. This can be
expressed in terms of a unitary 3 x 3 mixing matrix due to Cabibbo, Kobayashi
and Maskawa (CKM matrix) [15],

d, Vud Vus Vub d
s = Vea Vs Vo || s (1.21)
v Vie® Vis Va b

The values of the CKM matrix elements are, like the Higgs mass, part of the
free parameters of the standard model which cannot be predicted. Therefore
the accurate measurement of the CKM matrix elements has great importance in
constraining the uncertainty of predictions from electroweak theory. The current
experimental values of the CKM matrix elements are [18]:

0.9741 to 0.9756  0.219 to 0.226  0.0025 to 0.0048
Vexw = | 0.219 t0 0.226  0.9732 to 0.9748  0.038 to 0.044 (1.22)
0.004 to 0.014  0.037 to 0.044  0.9990 to 0.9993

In general, the diagonal terms of the CKM matrix are close to unity whereas the
off-diagonal terms are small but nonzero. The implication for decays of the b
quark is therefore that transitions b — ¢ and b — u can occur with amplitudes
proportional to |V,| and |V,,| respectively, i.e. at a rate slower than that for the
process t — b. The degree of mixing between the second and third generation is
somewhat less than the degree of mixing between the first and second. This has
the consequence that the lifetime of the b quark (and of any hadron containing a
b quark) is longer than would perhaps be expected, and hence came as somewhat
of a surprise when the first b-hadron lifetime measurements were made.

1.2.3 Quantum Chromo Dynamics (QCD)

The free Lagrange density for massless quarks (the mass of the quarks is again
produced by Yukawa couplings to the Higgs boson) is

L =¥v,0,%,, (1.23)

3Note that the (d, s, b) states are chosen to mix rather than (u, ¢, t) by convention only.
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where the index ¢ indicates that W¢ is a color triplet of the gauge group SU(3).
V.=1| ¥, (1.24)

introducing three color degrees of freedom (called red, green and blue). This color
degree of freedom was introduced to resolve the so-called spin statistics problem
with some baryonic states, such as the 2, which contains three identical s quarks
in a symmetric spin state. As a solution to the conservation of the Pauli principle
each quark was assigned a different color resulting in a color singlet state. All
experimentally observed states are color singletts.

The gauge principle for QCD requires the Lagrange density to be invariant under
local SU(3) transformation

W, (z) — Uo(z) = UV, (z) = " Oy, (). (1.25)

Here the generators 7, are 8 linear independent, traceless, hermitian 3x 3 matrices
called Gell-Mann matrices (see e.g. [16]) and a®(x) the group parameters. After
introducing the 8 Gauge fields G, like mentioned in Section 1.1 to ensure that
the Lagrangian (Eqn. 1.23) is invariant an additional term —$G% G4 is added to
the Lagrangian which represents the kinetic term of the gauge bosons (gluons).
G4, is defined as G4, = 9,G% —0,G% + g f*,. G4, G5 All this leads to the following
Lagrange density:
_ _ 1 ,

Locp = Ve(iv,0, — m)¥e + g(Ver, V)G — ZGZVGQ‘ (1.26)
It describes the interaction of the colored quarks and the massless gluons which
are also colored. Due to the structure of the field strength tensor G}, the term
—inwa:” does not only describe free gluons, but also the self interaction of
gluons. The QCD Lagrangian (Eqn. 1.26) may be written symbolically in the
following way:

L=V +G*+ gUVG + ¢G> + ¢°G* (1.27)
The occurring terms describe in detail:

e the propagation of free quarks (V)
e free gluons (G?)
e quark-gluon interaction (g¥¥G)

e gluon self coupling (¢G? and ¢?G* (Fig. 1.2 (b) and (c)))
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(a) (b) (©)

Figure 1.2: The fundamental QCD wvertices: (a) quark-gluon coupling, (b) triple-
gluon-vertex, (c¢) four-gluon-vertex.

1.2.4 Running Coupling Constants

As already briefly mentioned in Section 1.2.1 calculating higher order Feynman
diagrams ("loops’) like Figure 1.1 Figures (b) and (c) lead to divergent integrals,
with an infinite contribution to any amplitude calculation beyond the Born level.
As mentioned these divergencies vanish by redefining the masses and coupling
constants to their physical values. As a consequence of those renormalization
techniques a renormalization scale y is introduced which can be interpreted as
an energy scale. The coupling constant is not any more a constant, but depends
on p. a = a(p) is therefore the coupling strength at the energy scale p or at dis-
tance 1/p. This means, that in order to have a theory with physical meaning the
coupling constants have to be a function of the energy scale in which a problem
is observed. This running of coupling constants has also been observed experi-
mentally. The qualitative behavior of the coupling strength can be explained by
simple physical reflection. In QED the electric charge of a particle is screened
by its surrounding vacuum polarization (virtual f f pairs). The measured charge
of this particle is increasing due to this ’screening effect’. In QCD not only
fermion loops but, due to the non Abelian character of the strong interaction,
also gluon loops contribute to the running of the strong coupling constant a.
In this case the ’anti-screening effect’ from the colored gluons overwhelms the
‘screening effect’ of the fermions. As a consequence the coupling constant of the
strong interaction «; is increasing with low momentum transfer. The running of
the coupling constants leads to characteristic properties of QCD. For high mo-
mentum transfers o, goes to zero. This behavior is called ’asymptotic freedom’.
It permits the usage of perturbation theory for high momentum transfers. On
the other hand «; increases for low momentum transfers (big distances) which
makes it impossible to calculate amplitudes using perturbation theory. And as
a consequence of this quarks can only be observed in bound color singlet states.
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This effect is called 'confinement’. In QCD the lower limit for momentum ex-
change ¢ in a scattering process where perturbation theory is applicable is called

AQCD-

1.3 The Process e"e- — Hadrons

The eTe™ annihilation is in contrast to pp and other hadronic annihilation reac-
tions a process where the initial state is known with high accuracy. This makes
eTe™ collisions a good testbed for QCD. If the Z° created in eTe™ collisions de-
cays into a quark anti-quark pair the number of final state charged particles is
20 on average. In addition one observes in such multihadronic events several
photons and neutrals. The particles are grouped in so-called jets. These jets
approximately give the direction of the initial parton (quark or gluon).

The process which describes the evolution from the initial e*e™ to the hadrons
and leptons observable in the detector can be classified into four time ordered
phases illustrated in fig. 1.3. The process starts with the electroweak production
of a quark anti-quark pair via Z° or v exchange (phase I). This is followed by
a high energy strong interaction phase with parton cascade (phase II). This can
be calculated using perturbation theory. In the third part low energy QCD and
hadron formation takes place. This is not calculatable by perturbation theory
and relies strongly on models (phase III). In the last phase the hadrons produced
in phase III decay into final state stable* particles which can be observed in the
detector (phase IV). We now discuss in more detail each of these four phases.

1.3.1 The Process ete™ — ¢q

The process ete™ — ¢q in high energy collisions can be described by the Standard
Model electroweak interaction in first order perturbation theory (known as the
Born approximation or tree level) by the exchange of a photon or Z° boson.
Neglecting the fermion masses the total cross section can be derived as [17]:

4 2
ofere > qp) = Ne- 22 2
Q22+ (V2 + AV + A2 - P +2QuQ,ViVy - Re()] . (1.28)

where

1 s

4sin® Oy - cos2 Oy s —m% +imyly

(1.29)

“In this context stable means particles with a mean lifetime big enough to leave observable
traces in the detector (e.g. 7%, K¥)
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| oo IV

Figure 1.3: The four phases of ete™ — hadrons: I) electroweak phase with initial
state radiation, I1) perturbative QCD phase based on gluon radiation and splitting
as elementary processes, III) fragmentation and hadron formation phase (non
perturbative QCD), IV) particle decays.

Vi = If: —2Qy - sin? @y and Ap = Ifc’ are the vector and axial-vector couplings
of fermions to the Z° « = €?/4r is the fine structure constant and N, = 3 the
number of colors. The first term describes the v exchange, the second the Z°
exchange and the third the v/Z° interference. Formula 1.28 is modified by elec-
troweak and strong corrections of higher order. These include virtual corrections
(loop diagrams like Fig. 1.1 (b) and (c)), initial state radiation of photons and
radiative corrections of photons and gluons in the final state. The dependence
of the cross section on the center of mass energy and the relative contributions
of the three terms can be seen in Figure 1.4. At a center of mass energy of 91
GeV, which is the mass of the Z° the Z° exchange is dominating. Therefore the
relative production rates of various fermions are equal to the branching ratios of
the Z° [18].
BR(Z° — 1"17) ~ 10.1%
BR(Z" — vv) = 20.0%
BR(Z° — qq) ~ 69.9% (1.30)
The decay into neutrinos is not directly experimentally observable. Looking at
quark production rates the up-type quarks (u and ¢) have a relative production

rate of 17% whereas the down-type quarks (d, s and b) have a relative production
rate of 22%.
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Figure 1.4: Hadron production in eTe™ annihilation. o) Total hadronic cross
section as a function of center of mass energy. b) Relative contribution of vy and
Z° exchange and of v/Z° interference to the total cross section.

1.3.2 The Perturbative Phase

Beginning with the quark anti-quark pair a configuration of color charged partons
(quarks and gluons) is created in this phase by perturbative QCD processes. In
Monte Carlo models two approaches are employed to describe this phase. The
first method is the complete second order QCD matrix element (ME) calculation,
and the second is the parton shower (PS) approach in leading log approximation.

QCD Matrix Elements

In this approach all QCD Feynman diagrams are calculated up to a certain order
(until now complete calculations exist up to second order and tree level diagrams
up to third order in «y). In second order the maximum number of final state
partons are four. This means that the final states ete™ — ¢q, ete™ — qqg,
ete” — qqqq and ete” — ¢ggg can be described.

Parton Shower Model

To perform exact multi hadron final states calculations, a huge amount of QCD
Feynman diagrams have to be taken into account, which is practically impossible.
An alternative to this approach is the so-called 'Leading Log Approximation’
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(LLA). This method takes only the leading terms of each order into account.
The multi parton configuration is reached by multiple application of the basic
QCD processes ¢ — g (radiation of a gluon by a quark by bremsstrahlung),
g — gg and g — qq (splitting of a gluon into two gluons or a quark anti-quark
pair). The probability that one of those processes a — be takes place, is given by
the Altarelli-Parisi[19] equations:

dpa—mc o as(Q2)
T —/dz o Pacse(?) (1.31)

where t = In(Q*/A§¢p) denotes the evolution parameter and P,_,.(z) are the
Altarelli-Parisi splitting functions [20]:

Pysqq(2) = Cr 11+_z;;
1—2(1—2))?
,Pg—mg(z) = NC( z(g,z))) )
Py-sqq(2) = Tr(2* + (1 = 2)?), (1.32)

(1.33)

with Cp = 4/3, No = 3 and T = Np/2. z or (1—z) are the momentum fractions
of the initial parton a transfered to the final state parton b(c). The evolution of
the shower continues up to a scale )y which is a free parameter tuned to ~ 1
GeV at LEP. Interference effects of higher order are taken into account by angular
ordering of the radiated gluons. With parton showers one can get more than four
partons in the final state which gives usually a better description of high energy
data than the QCD matrix elements.

1.3.3 The Fragmentation Phase

The fragmentation (hadronisation) describes the creation of color neutral hadrons
from color charged quarks and gluons. Because the perturbatively defined strong
coupling constant becomes large at a Q% scale at about A2QCD this process is not
accessible by perturbation theory (see Section 1.2.4). Commonly used fragmen-
tation models are based on different physical assumptions. To describe real data
a large number of free parameters in these models have to be fitted. Two models
had great success in elementary particle physics in describing experimental data.
One of those two models is the "String Fragmentation’ [21] which is used in the
DEeLpHI Monte-Carlo generator. The model has several parameters which have
to be extracted by a fit to the data. The parameters used for the DELPHI Monte
Carlo for the years 1994 and 1995 are listed in Table 1.2. The other model, the
"Cluster Fragmentation’ [22], which does not describe LEP data equally well, is
only shortly described in this Section.
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In general, both of the above mentioned methods are used. First, exact matrix
element calculations are calculated to have a final state of four partons, followed
by parton shower model.

String Fragmentation

In the model of string fragmentation a quark anti-quark pair move in opposite
directions with velocity v &~ ¢. The self coupling of the color charged gluons in
between those quarks lead to a linear field configuration or string with a typical
length scale of 1 fm. The linear energy density within the color field is a constant
of about k ~ 1 GeV/fm~ 0.2 GeV? which leads to a linearly growing potential
between the quarks. If the field energy grows big enough that it is sufficient to
create a new quark anti-quark pair, the string breaks up, leaving two separated
qq pairs. They can build a meson or the described process happens again. This
process is shown in Figure 1.5 schematically. In such a string fragmentation the

4 E 3%’
qi Qi1 Qi1

Figure 1.5: Schematical picture of the string fragmentation. The primary qq pair
moves apart. The enerqgy of the field tube grows linearly with the distance until the
string breaks up leaving two separate qq pairs. This process can happen repeatedly
in those separate systems.

|
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created ¢ pairs get a fraction z respectively (1—z) of the energy and longitudinal
momentum. The probability density distribution of z is given by the longitudinal
fragmentation function f(z). Light quarks (u, d, s) are described in DELPHI by
the ’symmetric LUND function’

1— )
flz) = Q ) e*’"ﬂi/Z} (1.34)
z
where m2 = m? + p3. a and b are free parameters which have to be fitted.

Experimental data for heavy quarks (¢ and b) are described by the "Peterson
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function’ [23] in DELPHI:
B 1
2(1=1/2—¢,/(1 = 2))%

where €, denotes a free parameter, which is in principle the squared ratio of the
masses of heavy to light quarks. Unfortunately the masses of the light quarks
are not known well enough, so that €, has to be determined by comparison with
experimental data. The parameters of the heavy quarks are then related: €./€, &~
m2/m?. The fragmentation function for the different quarks is illustrated in
Figure 1.6. There it can be seen clearly that the maximum for heavy quarks
is located at high values of z. This behavior is called ’hard fragmentation’.
This leads to the effect that the hadrons containing one of the primary heavy
quarks carry most of the initial energy. The composition of quark flavors within

(1.35)
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Figure 1.6: The fragmentation function for different quark flavors.The heavy
quarks have their maximum at high z values represented by their "hard fragmen-
tation’

the hadrons depends on the probability to create a certain quark flavor in the
fragmentation process. This can be described by the quantum mechanical tunnel
effect, because the massive quarks have to be created at a distance 2/ where
[ = m/k for reasons of energy conservation. The tunnel probability is given by:

m®+pp

) (1.36)

P ox exp(—m
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The pr distribution is given in this model by a free parameter o,,.. From Equation
1.36 the relative rates are:

w:d:s:c:br1:1:03:1071: 107, (1.37)

Therefore the heavy quarks ¢ and b are almost never produced in the fragmenta-
tion process, but frequently as primary ¢q pair in the electroweak /2% exchange,
in the perturbative QQCD phase by gluon splitting or in weak decays b — ¢. For
the suppression of s quark production in fragmentation there exists a parame-
ter v which has to be fitted to the data. To simulate baryon production the
creation of diquark pairs (DD = ¢1¢2712) is inserted into the model. A baryon
anti-baryon pair is then produced by combining the diquark with neighboring
quarks. The production of diquark pairs is steered by several parameters. Their
meanings are:

e the relative fraction of diquark production to ¢g pair production

e the suppression of diquarks containing ss pairs compared to diquarks con-
taining only v and d quarks

e the suppression of diquarks with spin 1 compared to diquarks with spin 0

In addition to the production of baryons which are neighbors in the string, ¢g
pairs in between the diquarks can produce mesons so that the baryon pair does
not anymore succeed in the fragmentation chain. This process is called ’popcorn
mechanism’.

Cluster Fragmentation

The principle of the cluster fragmentation is that after the parton shower which
developed up to a certain energy scale )y all gluons are forced to split into ¢¢
pairs. These quark anti-quark pairs are then collected into color neutral clusters.
If the mass of such a cluster is bigger than a certain threshold the cluster decays
into two new clusters. In the end the clusters decay, preserving color, spin and
phase space constraints, into hadrons. The cluster fragmentation model has less
parameters to adjust than the string fragmentation, but the data are less well
described than using string fragmentation.

Another fragmentation model which will not be described here is the so-called
model of 'independent fragmentation’ [24], which is already ruled out by the data.

1.3.4 Particle Decays

The hadrons produced in fragmentation are either stable or they decay (direct or
via cascades) into stable particles. In Monte Carlo generators measured branching
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Parameter 1994 Monte Carlo | 1995 Monte Carlo
LUND parameter a 0.354 0.417
LUND parameter b 0.523 0.850
Opy 0.428 GeV 0.408 GeV
Aoep 0.346 GeV 0.297 GeV
Qo 2.25 GeV 1.56 GeV
€ 0.030476 0.03800
€p 0.002326 0.00284
Vs 0.28 0.307
diquark rate 0.1 0.099
strange diquark suppresion 0.55 0.59283
spin 1 diquark suppression 0.07 0.07
popcorn rate 0.5 0.5
baryon suppression
at end point of string 0.5 off
Z°% mass 91.187 GeV/c? 91.187 GeV/c?
ZY width 2.489 GeV 2.489 GeV

Table 1.2: The Table contains several key parameters of the Monte Carlo simu-
lation which gave the best description of 1994 and 1995 DELPHI data.

ratios are used. For states, where some decay channels are not measured yet,
predictions or observations from similar systems are used. This is the case in
particular for b-hadrons. In the DELPHI simulation the decays of short lived
particles (e.g. 7°) are implemented in the Monte Carlo generator. Particles which
live long enough to interact with the detector are handed over to the detector
simulation and decay afterwards.

1.4 Heavy Hadrons

Hadrons are named heavy hadrons if one of the quark constituents is a ¢ or b
quark®. At LEP they are mainly produced in the process efe™ — Z° — ¢g, bb
as explained in the previous section. Only a small fraction is produced by gluon
splitting®. Hadrons containing a ¢ quark can be produced either directly or via

>The top quark has a mass of m; = 175 + 6 GeV/c? [26] and cannot be produced at LEP.
In addition it does not produce hadrons, because the lifetime for the decay into a b quark is
much shorter than typical hadronisation timescales.

6The rates to produce a ¢ or bb by gluon splitting have been measured at LEP:
gee = (2,27 £0.28 £ 0.41) - 1072(OPAL [27])
gy = (0.21 £ 0.11 £ 0.09) - 10~2(DELPHI [28])
gy = (2.57+0.40 £ 0.87) - 10~3(ALEPH [29])
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decays of b-hadrons. The center of mass energy of LEP is much higher than
the threshold for ¢ or bb pair production and therefore a multitude of heavy
mesons and baryons can be produced in either ground state or excited states.
This allows hadron spectroscopy to be performed at LEP. Heavy hadrons, which
have already decayed to their ground state, decay via weak interaction and can
be schematically described by diagrams like Figure 1.7. As a consequence of
the high mass a b-hadron has thousands of decay channels with small branching
ratios which makes exclusive measurements difficult. As already mentioned in
Section 1.3.3 heavy quarks have a hard fragmentation function, i.e. the primary
¢ or b-hadron obtains a large fraction of the beam energy. b-hadrons have a mean
energy of about 30 — 35 GeV at LEP and a mean lifetime of about 7 = 1.6
ps. Therefore their mean flight distance is about < [ >=< fyer >~ 3 mm,
where 3 = v/c = pc/E and v = 1//1 — B2 = E/mc?*. This can be exploited by
high resolution micro-vertex detectors to tag bb events. In addition measuring
the decay length allows to measure the mean lifetime of b-hadrons. This section
gives an overview over theoretical tools to describe heavy hadrons. In addition
theoretical predictions for the specific b-hadron lifetimes and a brief overview over
the experimental status will be given.

1.4.1 Heavy Quark Effective Theory

For systems with one heavy quark where the limit Agcp/mg — 0 or mg — oo
is nearly reached, simplifications for their interactions can be made. Several
studies in recent years, based on these assumptions [32], [33], [34] have led to a
theory which is now commonly known as the 'Heavy Quark Effective Theory’
(HQET). It provides a framework to make model independent predictions for
heavy hadrons.

In a system with one extremely heavy particle, its dynamics can be kept
constant compared to its light partners. Any new motion or energy level of the
light partners will not change the situation of the heavy one. Following this
picture a heavy quark in a bound state can be considered as a static source
of color which is stable, whatever the light quarks are doing. Any change of
the spin or radial state will be dominated by the light quarks. The equations
of QCD in the neighborhood of such an isolated heavy quark are those of the
light quarks and the gluonic degrees of freedom are dominated by the boundary
condition of a static triplet source with the color-electric field at the origin.
This leads to the expectation that the excitation spectra of heavy mesons and
baryons will be nearly the same.

Since the spin also decouples in the heavy quark limit from the gluon field,
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all quarks look like scalar heavy quarks to their light partners. When flavor and
spin of the heavy quark are irrelevant, the static heavy quark symmetry would
lead to a SU(2N},), with Ny, the number of heavy quarks. At the spectroscopic
level this additional symmetry means that each spectral level of a heavy hadron
will be degenerate.

The characteristics of HQET can be summarized in two pictures:

e A system with 'heavy flavor symmetry’ is analogous to the chemistry of
two isotopes with different numbers of neutrons. The electronic structure
is equal, since they still have the same nuclear charge.

e The meaning of 'heavy spin symmetry’ in this picture is an atom with
degeneracy of the hyperfine levels. The resulting hyperfine splitting can
be ignored, since the nuclear magnetic moments are small compared to the
energy levels of the field interaction.

1.4.2 The Lifetimes of b-Hadrons

cl

b
d
u

Figure 1.7: Two examples for hadronic b decays in the ‘Spectator Model’. The
left diagram illustrates a weak decay of a B~ meson into a D°®) and a 7. On
the right side the weak decay of a B~ into a J/¥ and a K~ is visible.

The b quarks produced in ete™ collisions build mesons and baryons in the
fragmentation phase as described in Section 1.3.3. These hadrons are not stable
and decay inside the detector. A lot of effort has been put into understanding
the process of b-hadron decay and to predict the lifetime (see for example [36]).
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Theoretical Overview

Calculating the mean lifetime of b-hadrons in perturbation theory one has to take
into consideration two aspects. On one hand a b-hadron can decay semileptoni-
cally (see Figure 1.8) and on the other hand the W boson can decay into a quark
anti-quark pair which can produce a meson (see Figure 1.7). Therefore the total
decay width has a semileptonic and a hadronic fraction:

1—‘tot - 1—‘sl + 1—‘ha,d (138)

Introducing the semileptonic branching ratio BR,;, the mean lifetime is:

o BRsl
B Fsl

B (139)
The simplest model to calculate the decay width is the so-called ’Spectator Model’
in which the influence of the non decaying quarks in BT, B, B, and b-baryons
is neglected, i.e. they are merely ’spectators’. The widths are calculated as if the
b quark decays as a free particle. In this model all hadrons containing a b quark
have the same mean lifetime. The matrix element of the semileptonic decay, in
which the b quark decays either into a ¢ or u quark can be written as the product
of a leptonic and a hadronic current:

My = —%nb[qvu(l — WL — 15w (1.40)

where Gr denotes the Fermi coupling constant of the weak interaction and V,
the corresponding CKM matrix element. Since the third generation nearly de-
couples from the other two generations (small CKM matrix elements), the mean
lifetime of b-hadrons is quite large (=~ 1.6 ps). After squaring the matrix element
and integrating over phase space (assuming all fermions massless) one gets the
semileptonic decay width:

GEm
19273

Du(b = g) = by, [? (1.41)
which has the form of a modified muon decay width. In case of hadronic decay
Equation 1.41 has to be modified by an additional scaling |V;;| (from the quarks
of the W vertex) and a color factor N, = 3. Naively, if we consider only the extra
color factor associated with the hadronic decay channels, Equation 1.41 predicts:

I'W* —ad:¢s:vee:Dypu:0,7)=3:3:1:1:1 (1.42)

where [ is in units of |V|*G%mj /19273, The predicted semileptonic branching
fraction is thus, Brgy = é = 11%, for each lepton flavor.

This rather naive picture of b-hadron decay can be extended by applying cor-
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b
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Figure 1.8: In this Figure a semileptonic decay of a b meson s illustrated which
decays into a electron neutrino pair and a D°® . The branching ratio of B —
eX, pX is about 11% respectively, of B — 17X it is smaller due to the high T
mass (~ 2 — 3%).

rections to the spectator width of Equation 1.41. One of these corrections is the
phase space suppression where a factor F'(e) is introduced to each partial decay
width to account for non-negligible fermion masses compared to the b quark mass.
Taking account of the direct decay quark from the b only, this factor evaluates
to [36]:

Fe)=1-8+¢ — € —24e' Ine (1.43)

where € = mg,/my,. Effective quark masses have been measured by CLEO and
ARGUS, in the context of the ACM model [37], by fitting the spectrum of prompt
leptons from b meson decays at the Y(4S). The results are [39]:

my, = 4.95 £ 0.04 GeV/c® (CLFEO)
my = 4.95 + 0.07 GeV/c® (ARGUS) (1.44)
my—me = 3.30 £ 0.02 GeV/c® (ARGUS)

In the case of b — wu transitions, taking m, = 0.20 GeV/c?, the phase space
correction is small and F'(e) = 0.99. In the case of b — ¢ transitions, however,
and using the above ARGUS and CLEO mass results (m, = 4.95 GeV/c?, m, =
1.65 GeV/c?) we find that F'(e) = 0.45. The suppression of ¢s and i, 7 states is
even higher. After applying the phase space correction, the total decay width, in
the case of b — ¢ transitions, is a factor of three smaller than that from the naive
model, and BRy (for electrons and myons) increases to 16%.
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To calculate the decay width even more accurately, QCD corrections have to be
taken into account. There, one has to distinguish between soft gluon radiation like
bremsstrahlung or vertex corrections and hard gluon exchange which rearranges
the color indices of the participating quarks and therefore is color suppressed.
In this case gluon lines go from one quark line to another. In Figure 1.9 both
situations are illustrated in one picture. The correction factor for the soft gluon

Figure 1.9: This Figure illustrates the hadronic decay of a b quark with soft gluon
radiation (e.g. wvertex correction like gluon exchange between the d and the u
quark) and hard gluon exchange (e.g. gluon exchange between the b and the d
quark).

exchange can be expressed as [40]:

200
3

Focp=1—(5=) - g(e) (1.45)

where we use the numerical approximation g(e) = (7 — 31)(1 — ¢)? + 2 [41].
This soft gluon correction has a similar form as the QED radiation corrections in
the case of muon decay (substituting a; for «). In the case of b — ¢ transitions
(b — u transitions can be neglected due to the CKM suppression’) this results
in a soft gluon correction to the decay width of —10% for semileptonic decays
and —4% for hadronic decays. The correction causes the predicted value of Bry
to fall slightly to 15%.

In the case of hard gluon exchange, where the gluon lines rearrange the color
indices such that the quark pair from the W decay no longer forms a color
singlet, QCD corrections can be calculated [36]. These corrections act to modify
the usual color factor of N. = 3 and results in the hadronic decay modes being
enhanced by approximately 13%. Since the semileptonic modes are unaffected
by gluon exchange of this type, the semileptonic branching ratio is further

"This also implies that a measurement of 7p is essentially a measurement of V|
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reduced. Including all corrections up to this point we obtain a prediction from
the corrected spectator model of Bry = 14%.

The semileptonic branching ratio has been measured at the Y(45) (by AR-
GUS, CLEO, CUSB and Crystal Ball collaborations [42]) and at the Z° reso-
nance at LEP [36]. The results are difficult to reconcile with the prediction of the
corrected spectator model, which is in discrepancy with the data by (at worst)
~ 20%.

The reason for the failure of the spectator model at this level, are largely as-
sociated with calculating the hadronic decay width. QCD interactions at the
bottom mass scale are only marginally perturbative which leads to uncertainties
associated with the calculation of hard and soft gluon effects as described above.
A radiative gluon might have enough energy to split into a quark anti-quark
pair. A fragmentation process might take place subsequently. Another problem
is the fact that to describe the decay process correctly the quark fields should
be replaced by corresponding hadron fields. The hadronic currents are therefore
supplied with form factors which depend on the inner structure of the hadrons.
These form factors are provided by effective potential models.

Most important for the discrepancy of predicted and measured semileptonic
branching ratios however, is the fundamental assumption of the spectator model,
that the spectator quark plays no role in the decay process. This can be a rather
poor approximation when considering non-leptonic decay channels. Figure 1.10
shows some of the non-spectator diagrams that also contribute to b-hadron de-
cay. These non-spectator effects result in different lifetimes for the different

b l,qj b c

w-

U vy, G d U
Figure 1.10: Non-spectator diagrams for b-hadron decays. The left diagram shows

the annihilation of a B~ meson. The right plot illustrates the direct W exchange
in the decay of a B® meson.

b-hadrons. There is another very important effect which contributes to a lifetime
difference. If the final state contains two identical quarks, the Pauli principle
holds and interference effects have to be taken into account. This is the so-called
'Pauli interference’ (illustrated in Figure 1.11) which provides the largest con-
tribution to the lifetime difference of the various b-hadrons. Theoretically, these
effects are handled by an effective theory using an effective Lagrangian where the
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Figure 1.11: In this Figure the Pauli interference is illustrated which occurs in
the decay of charged b mesons. There are two identical particles in the final state
which interfere and therefore contribute to a lifetime difference between charged
and neutral b mesons

interaction terms are simplified to local point interactions parameterized in dif-
ferent orders by so-called "Wilson coeflicients’. This is achieved by expanding the
operators and currents in the Lagrangian in orders of 1/m;, the so-called ’Opera-
tor Product Expansion” (OPE) [36]. Calculating the decay width and expanding
it in different orders of 1/m;, one recovers the above mentioned non-spectator
effects.

The lifetime ratio of BT and B is given theoretically by the equation [36]:

B 14005 — 1B (1.46)
7 (200 MeV)? ‘

where fp denotes the theoretical decay constant which is of the order of 200 MeV.
This is a result of HQET briefly described in the previous Section. One also
expects

TBo ™ Tp, (1.47)

No detailed analysis has been performed yet on 7,,; simple estimates lead to the
expectation

™ 0.9 (1.48)

TBo

Due to the fact that lifetime differences scale with orders of 1/mg b-hadron
lifetimes do not differ as much as charmed hadrons because the mass is smaller.
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The expectation for the hierarchy of lifetimes is
TA, < Tpo 2 T, < Tp=+ (1,49)

There is a growing consensus between models that a difference in lifetime of order
5% should exist between the BT and B® meson whereas the difference between
the BY and the B, meson is predicted to be of the order of 1% [38]. The lifetime
of b-baryons is predicted to differ from the lifetime of BY by about 10% [36].

The Experimental Status

In the last decade many experiments have provided measurements of the different
b-hadron lifetimes and their ratios. The methods used delivered more and more
precise measurements due to better analysis techniques and the use of silicon
micro-vertex detectors (see Section 2.2.1). All these measurements, especially
the newer ones, confirmed the hierarchy of lifetimes from the previous section.
Figure 1.12 illustrates the current situation of the comparison of experiment and
theory.

Figure 1.12: Com-
LT parison  of exper-
(B )/t(B") H 1.074+0.014  jmental results

(world average)
(B)/(BY) . 0.949+0.038  and theoretical
predictions for the
different b lifetimes.
For b baryons the
situation is unclear,
(b baryon) '_._‘ 0.783+0.034 a lot of contri-
ey |, L butions have not
o 07 08 09 1 11 12 been calculated by
B Lifetime .
Working Group lifetime ratio theorists, yet.

0.797+0.052




Chapter 2

The Experiment

The experimental environment of the LEP ring for the ete~ annihilations is
briefly introduced. To understand the track reconstruction, the track chambers
of the DELPHI detector are described. Next the calorimeters and the particle
identification devices are briefly described. At the end of this chapter the online
and offline system including the data processing are explained.

2.1 The LEP Collider

The ete  collisions took place at the
Large Electron Positron storage ring (LEP)
of the FKEuropean Laboratory for Particle
physics (CERN!) in Geneva, Switzerland. It
was built from September 1983 until July
1989. Situated between the Jura mountains
and Geneva airport, the main ring (see Figure
2.1) consisted of four straight sections, the in-
teraction zones, and four arcs giving a total
‘circumference’ of 26.7 km constructed in an
average depth of approximately 100 m. The
machine parameters are listed in Table 2.1.
At the four interaction zones the detectors
ALEPH?, DerpHI 3, L3* and OPAL® were
installed.

L>Conseil Européen pour la Recherche Nucléaire’
2 Apparatus for LEP PHysics

——1km

Suisse

France

Figure 2.1: Geographical location
of the LEP collider.

3DEtector with Lepton Photon and Hadron Identification

4Named after: 3rd Letter of intent
50Omni Purpose Apparatus for LEP
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From 1989 until October 1995 LEP was running at a beam energy of about
45.6 GeV (LEP I phase) which in terms of center of mass energy corresponds
to the mass of the Z° boson. By resonant production of this vector boson high
precision tests of the standard model were possible which was the main goal of
the LEP I phase.

Starting in October 1995 the center of mass energy was increased from 130
GeV up to 208 GeV by installing successively more superconducting cavities (LEP
IT phase). This has been done to enable the production of W pairs (my+ =
80 GeV) and the search for new particles (e.g. Higgs bosons, supersymmetric
particles). Further goals were the measurement of the energy dependence of
Standard Model observables like the forward backward asymmetry Agp.

In November 2000 all experimental LEP activities ended. The experiments
were dismantled and the storage ring was removed. The LEP tunnel will be
used for a new proton collider ring, the LHC® with a center of mass energy of
about 14 TeV, which will be installed up to the year 2007. The main goals
of the LHC are the discovery of Higgs boson and the search for new physics
like supersymmetry. Two experiments are dedicated to this task, namely the
CMS and the ATLAS experiments. A dedicated b factory (LHC-b) and a heavy
ion experiment (ALICE) are also under construction. First data from proton
collisions at the LHC are expected for 2008.

Circumference 26.66 km
Active length of RF structure 272 m
Injection energy 20 GeV
Maximum beam energy 55 GeV
Dipole field 0.0645 T
RF frequency 352 MHz
r.m.s. bunch length 15.7 mm
r.m.s. beam radii:

O 255 pm
Oy 15.3 pm
Revolution time 90 ps
Bunch spacing 22 us
Current per beam 3 mA
Number of particles per bunch 4.2x10%"
Nominal luminosity 1.6x10% (cm2s71)
Beam lifetime 6 h
Synchrotron radiation loss per turn 0.262 GeV

Table 2.1: LEP (phase I) design machine parameters. From [}3].

SLarge Hadron Collider
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Forward Chamber A Barrel Muon Chambers

Forward RICH Barrel Hadron Calorimeter
Forward Chamber B ; Scintillators
Forward EM Calorimeter Superconducting Coil
Forward Hadron Calorimeter [ AL High Density Projection Chamber

Forward Hodoscope ) Outer Detector

Barrel RICH

Small Angle Tile Calorimeter
Quadrupole

Very Small Angle Tagger

DELPHI

Figure 2.2: Schematical view of the DELPHI detector.

Time Projection Chamber

2.2 The Delphi Detector

DELPHI was designed as an omni purpose detector, the main goals of which were
full covering of the solid angle of 47, precise track reconstruction, good vertex
reconstruction and an exact particle identification. The detector consisted of a
cylindrical barrel part which was 10 m long and 9 m in diameter and an endcap
on each side (see Figure 2.2). A coordinate system was defined such that the
z axis started at the interaction point and pointed in the direction of flight of
the electrons. The z axis pointed to the center of the storage ring and the
y axis upwards. For simplification purposes cylindrical coordinates were used
according to the geometry of the detector. 6 was defined as the polar angle
towards the z axis, ¢ was the azimuthal angle in the xy plane towards the x
axis and R = v/x? + y? was the distance to the coordinate origin in the zy plane.
The barrel consisted of different subdetectors ordered in cylindrical layers around
the interaction point. The individual tracking subdetectors were embedded in a
magnetic field of 1.23 T from a superconducting magnetic solenoid, bending the
tracks of charged particles in order to measure their momentum. A detailed
description of the performance of the DELPHI detector can be found in [44] and
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[45].

In the following sections brief descriptions of the most important subdetectors
of the barrel part are provided. Track and vertex reconstruction are more precise
in the barrel by construction than in the endcaps.

2.2.1 Delphi Track Chambers

[0
o
O
[-5

[-10

Figure 2.3: Schematical View of the Micro Vertex Detector (widths in cm). Left:
Projection into the plane orthogonal to the beam. Right: 3-dimensional view.

The Micro Vertex Detector (VD)

The vertex detector was one of the most important detector components for b
physics, because it was the detector closest to the interaction point and therefore
it allowed the reconstruction of secondary decay vertices which is vital for tag-
ging bb events and reconstructing them. The vertex detector consisted of three
concentric layers of silicon strip detectors at radii of 6.3, 9.0 and 10.9 cm. Each
layer consisted of 24 modules with an overlap in R¢ of 10%. The inner layer had
a length of 28 cm and covered the polar angle from 25° to 155°. The middle and
outer layer had a length of 24 cm. Particles traveling at a polar angle between 44°
and 136° were crossing each of the three layers of the vertex detector. Figure 2.3
shows a schematical view of the vertex detector. All three layers contained silicon
strips parallel to the beam axis for precise measurement of the R¢ coordinate of
a track point. The inner and outer layer had additional strips perpendicular to
the beam axis which allowed measurement of the z coordinate”. The resolution

"Here the configuration of the years 1994/1995 is described. Up until 1993 the VD only
consisted of layers with R¢ measurement.
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of one single hit was 7.6 um in R¢. In z the resolution depended on the polar
angle of the incoming particle because the number of hits increased with smaller
angles. At # = 90° the resolution was 9 pm.

The Inner Detector (ID)

The ID consisted of two parts. The inner part was a drift chamber with jet-
chamber architecture pointing to the interaction point and the outer part con-
sisted of five layers of cylindrical Multi-Wire-Proportional-Chambers (MWPC).
The jet-chamber was divided into 24 sectors in ¢ and covered the region of
R =12 — 23 ¢cm and 0 = 23° — 157°. Each MWPC layer consisted of 192
signal wires for the R¢ measurement and concentric cathode strips for the z
measurement. In 1995 the MWPC layers were replaced by Straw-Tube detectors
which delivered no z information but covered an increased polar angular region
of 15° up to 165°. The resolution of the ID was 50 pm in R¢ and 1.5 mrad in ¢.
It allowed z measurement with a precision of 0.5-1 mm depending on 6. The ID
was the most important event trigger in DELPHI with a fast readout within 3 us.

The Time Projection Chamber (TPC)

The TPC was the biggest and most useful device for the measurement and recon-
struction of charged particles. It started at R = 28 c¢m, covered about 3 m in z
(with a sensitive length of +134 cm) and ended at R = 120 cm. Its active volume
reached from R = 35 — 111 cm. As shown in Figure 2.4 the TPC was divided
into two halfs (with six sectors in ¢), which lied right and left of the interaction
point. The electrostatic field of 187 V/cm in each half was directed to the end
caps parallel to the beam axis and the magnetic field of the superconducting coil.
The volume of the TPC was filled with an argon/methane (80%:20%) mixture.
The ions produced by a passing particle drifted along the electric field parallel to
the z axis and were read out at the end plates. Here 16 concentric pad rows and
192 anode wires were installed. In each of the 2 x 6 sectors were 1680 pads which
formed the cathode rows. This allowed the measurement of 16 space points per
track. A track passing through the gas volume left a tube of ionized gas along
its way. The homogeneous electric field along the z axis lead to a drift of the
ionization electrons towards the end-caps. The R¢ position of a space point of
a track was measured with the center of gravity of the charge clouds on cathode
and anode with an accuracy of 250 um. The z component was determined from
the drift time compared with the trigger signal. The resolution in z was 880 pm.
the separation of two tracks was possible if the tracks were further apart than 1
cim.

Besides the spatial information from the pads the sense wires provided up to 192
ionization measurements per track, which were used to calculate the specific ion-
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drift of ionisation electron

pads rows
track of charged particle

I material ring
SN ' L.

proportional 3
chamber

Figure 2.4: The TPC geometry together with a track of a charged particle passing.
The pad rows are indicated as circles the sense wires cross them as lines. A charge
coming from the ionization of a track drifts towards the endcaps. The TPC was
the most important tracking device of the DELPHI detector.

ization dE /dx of the tracks. This gave a contribution to the particle identification
system for low momentum particles (< 1 GeV/c).

The Outer Detector (OD)

The Outer Detector lied between the barrel RICH and the electromagnetic
calorimeter (HPC?®). It was the tracking detector with the largest distance to
the interaction point (= 2 m). Thus the OD was able to improve the mea-
surement of high energy tracks, which had a small curvature and completed the
reconstruction of VD, ID and the TPC. In addition it was used for the matching
of particle tracks to signals in the Cherenkov counters. The OD had a length
of 460 cm and a polar angular coverage of 42° to 138°. The device consisted
of 24 modules, which overlapped partly and allowed a complete coverage of the
azimuthal region. Each module was made of five layers of drift tubes, which
were parallel to the beam pipe between radii of 198 and 206 cm. The drift tubes
allowed a good resolution in R¢ of 110 pum and from the time differences of the

8High Density Projection Chamber
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signals at the end of the chambers the z coordinate was able to be obtained with
0, = 3.5 cm. The OD also contributed to the event trigger decision, as it had a
fast readout of 3 us.

The Forward Chambers A and B (FCA, FCB)

Besides the tracking devices in the barrel, in the forward and backward region of
the detector other tracking devices, namely FCA and FCB were installed. The
FCA (]z| < 160 cm, 11° < 6 < 32° and 148° < 6 < 169°) was mounted on the
end-caps of the TPC and was based on a straw tube technique. It reached a
track resolution of 290 pum for the x and y direction. The FCB (|| < 275 cm,
11° < 0 < 36° and 144° < 0 < 169°) was a 12 layered multi-wire proportional
chamber mounted on the FCA. It had a track resolution of 150 pm for the x
and y direction. The chambers were used for the trigger decisions in the forward
region and to expand the track reconstruction to smaller polar angles.

Tracking Performance

Results from all of the different tracking components were combined to derive
more precise tracks. The alignment of the components and the disentangling of
systematic effects (shifts, twists, etc.) are essential for good momentum resolu-
tion. Nevertheless, the main limitations came from the fact that a rather large
volume of the space within the magnetic field was used by the Cherenkov detec-
tors for particle identification (see Section 2.2.3). Using Z° — utu~ events the
momentum resolution in the barrel part of the detector was determined to be:

o(1/p) = 0.57 x 107 3(GeV/c) %, (2.1)

combining VD, ID, TPC and OD track elements [45]. The momentum resolution
in the forward region (20° < 6 < 35°) was

o(1/p) = 1.31 x 1073(GeV/c) ™" (2.2)

using all available VD and FCB information.

2.2.2 Calorimetry
The High Density Projection Chamber

The High Density Projection Chamber (HPC) was the barrel electromagnetic
calorimeter in DELPHI. [t was the first large time projection gas calorime-
ter, which provides a full three-dimensional reconstruction of an electromagnetic
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Figure 2.5: The picture il-
lustrates the occupation (the
lighter grey the higher the occu-
pation) of the HPC by neutral
tracks in data back-traced to a
radius of 217 cm which corre-
sponds to the third layer in the
HPC modules. The 144 indi-
vidual modules are visible. One
can also see modules which are
nearly dead.

Z[cm]

shower. It covered the angular region 42° < 6 < 138°. The HPC consisted of
144 modules arranged in 6 rings inside the cryostat of the magnet. Each ring
consisted of 24 modules concentrically arranged around the z axis with an in-
ner radius of 208 cm and an outer radius of 260 cm. In principle, each HPC
module was a TPC, with 40 layers of a high dense material (lead) in the gas
volume with a thickness of about 3 mm, where electromagnetic showers were
initiated. The lead wires were not only used as converter material but also to
build up the homogeneous electric drift field, parallel to the magnetic field. The
converter thickness varied between 18 and 22 radiation length depending on the
polar angle . The 39 gas gaps among the converter layers were filled with an
argon/methane gas mixture (80%:20%). The produced cloud of electric charge
formed an electromagnetic shower. It drifted with a velocity of Vp = 5.5 cm/ps
in the above mentioned homogeneous electric field. The read-out of a single
module was performed at the end of each module by a planar MWPC, which
consisted of 39 sense wires and was segmented in 128 pads. Each pad was read
out in 256 time buckets. This lead to the number of 144 x 128 x 256 = 4.7 - 10°
ADC signals which were available per event. The granularity in R¢ was 10 mm
and 4 mm in 2. The energy resolution of the HPC for photons had been found
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Figure 2.6: Same plot as Fig-
ure 2.5 but for a scaled model
of the third layer of the HPC

modules.

to be og/E = 32%/\/E|GeV] ® 4.3% (with a ® b = Va? + b?) using neutral
pions reconstructed from one photon converted before the TPC, reconstructed
with high precision, and one photon reconstructed in the HPC [46]. The angular
resolution in ¢ was given by the segmentation of the read-out (o, = 3.1 mrad).
The z information has been evaluated from the drift time (leading to oy = 1.0
mrad). In each module additional plastic scintillators were installed, delivering
a fast trigger signal. Figure 2.5 shows the occupation of the HPC from neutral
tracks back-traced to the trigger layer at & = 217 ¢m which is the third layer.
Figure 2.6 shows the same for a scaled model of the third layer.

The electromagnetic calorimeter in the forward direction (FEMC?) consisted
of 9064 leadglass counters with approximately 20 radiation lengths, covering
an angle of 1° x 1° each in the polar angular region of 8° < # < 35° and
145° < 6 < 172°. The energy resolution of the FEMC has been found to be

op/E =12%/,/E[GeV] ® 11%/E[GeV] & 3%

The Hadron Calorimeter

The return yoke of the DELPHI superconducting solenoid was designed as an
iron/gas hadron calorimeter (HAC). The angular acceptance of the instrument
was 43° < # < 137° in the barrel part, and 11° < 6 < 50° respectively 130° < 6 <
169° in the two forward parts (HAF). The achieved granularity in ¢ direction
was 3.75° respectively 3°(2.6°) in the @ direction of the barrel (forward). The
active components of the HAC consisted of 20 layers (19 in the forward region)
of plastic-made wire chambers of 2 ¢m depth interleaved by 5 ¢cm of iron. The
energy resolution obtained from multi-hadronic Z° decays using the momentum

9Forward ElectroMagnetic Calorimeter
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information from the TPC was [46]

o5 _ _H2%_ 401, (2.3)
K E[GeV]

The average depth of 1.5 m of the HAC together with the other detectors made
DEeLPHI self-shielding so that even during runtime the detector remained acces-
sible.

The Luminosity Monitoring Detectors

The luminosity measurement was covered by the SAT! and the VSAT calorime-
ters installed in the extreme forward region. The luminosity measurement was
done via low Q? Bhabha scatter events which emerge from the interaction point
largely at small polar angles. The SAT consisting of lead and scintillating fibers
was mounted at z = +2.35 m. It was replaced in the winter break of 1993 by the
STIC!? a lead-scintillator sampling calorimeter read out with wavelength shifting
fibres and photoelectrode tubes with a relative error of 0.2%, achieving a better
resolution compared to the SAT. Another independent measurement was provided
by the tungsten-sampling calorimeter VSAT, which was a W-Si calorimeter of 24
radiation length sensitive between the polar angles of 5 and 7 mrad, mounted at
z = £7.5 m.

2.2.3 Particle Identification
The Cherenkov Detectors

A property of DELPHI which distinguished it from the other three experiments
was its dedicated framework for particle identification besides the energy loss
measurement, by the TPC.

The Ring Imaging Cherenkov (RICH) detectors were two detectors using the
effect of Cherenkov light emitted by charged particles traversing a dielectric
medium with a velocity larger than the speed of light in that medium. The
emission angle 6. depends on the mass m and momentum p of the particle via

the relation
\/14+m?2/p?
/ (2.4)

cosf, = Y

where n denotes the refractive index of the radiator medium. The number of the
photons emitted is proportional to sin®6,.. This information (Cherenkov angle

10Small Angle Tagger
HVery Small Angle Tagger
12Gmall angle TIle Calorimeter
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and number of photons) was used together with the momentum to evaluate the
mass of charged particles. The main goal of the RICH detectors was to separate
kaons and protons from the large pion background. In the momentum range
where kaons and protons are below the Cherenkov threshold, they do not emit
light while lighter particles do. This property had also been used in the so-called
'veto mode’.

The DeLpuI RICH [47] contained two radiator systems of different refractive
indices. A liquid radiator was used for particle identification in the momentum
range from 0.7-4.0 GeV/c, and a gaseous radiator was used from 2.5-25.0 GeV/c.
The full solid angle coverage was provided by two independent detectors (the
forward and the barrel RICH). In Figure 2.7 the Cherenkov angle and the ion-
ization loss % is illustrated for different particle types. Perfluorocarbons were
chosen as radiator media, both in the forward (liquid C¢F14, gaseous C4F o) and
in the barrel (liquid CgF14, gaseous C5F13). Photons in the range from 170-220
nm were focused onto photosensitive time projection chambers, 48 in number in

the barrel and 24 in each arm of the forward RICH.

The Muon Chambers and Scintillator Counters

To identify muons which are able to traverse even big layers of material without
interaction, two layers of drift chambers (one inside and one on the outer side of
the hadron calorimeter) were installed. They provided a muon identification with
an efficiency of about 95%. The Barrel, Forward and Surround® MUon (BMU,
FMU and SMU) chambers cover the polar angular region between 15° and 165°.
Resolution measurements on isolated tracks gave ops, = 4 mm. The z coordinate
was evaluated from delay time measurements (with a digitization window of 2
ns) obtaining a resolution of o, = 2.5 mm.

The Time Of Flight counters (TOF) were installed on the outer surface of the
solenoid. It consisted of a layer of 172 scintillation counters. The modules (19 x 2
cm? cross section and 3.5 m long) were read out at both ends by photomultipliers
connected by light guides. In the forward part of the DELPHI detector a similar
system was installed as well (HOF'). In the polar angular region from 15° to
165° the TOF system served as a cosmic muon trigger as well as a cosmic veto
during beam crossings. Cosmic ray runs showed the time resolution to be 1.2 ns.

13The Surround Muon Chambers were installed in the winter break of 1994 to cover remaining

gaps
MFEForward HOdoscope
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DELPHI particle ID
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Figure 2.7: dE/dxz- and RICH information for particle identification taken from
simulation. The energy loss dE/dx inside the TPC (top), and the Cherenkov
angles in the liquid (middle) and gas (bottom) radiator for various particles.
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2.2.4 The Delphi Analysis Chain

The following section gives a short overview about the DELPHI analysis chain.
Starting with the slow control, trigger and data acquisition online system, then
the DELANA, the DST and DELSIM offline system. For a detailed discussion
see [48, 49, 50, 51, 52, 53].

The Online System

The DELPHI online system had to manage several functions during runtime:
analyze the events on an elementary level and supply a fast trigger decision; read
out all detector components and write the data on storage media (disks, tapes);
run the power supplies, gas and cooling systems of the detector and control and
log all slowly varying detector parameters (e.g. temperatures, pressures, high
voltages, drift velocities etc.).

The DELPHIslow control system allowed a single operator to monitor and
control the complete status (high and low voltages, gas supplies etc.) of the entire
detector. The assignment comprised the display of the detector status, error
messages and the continuous updating of the detector database for calibration
and offline analysis. The 16 gas-filled subdetectors of DELPHI were supplied by
a standardized gas flow control system including automatic survey of relative
mixtures, cleaning and drying of the media. This system was realized using VAX
station computers shared with the DELPHI data acquisition. The hardware link
was realized by G64 computers for the subdetectors connected by an ethernet link.

The trigger was build in four levels (T1-T4), with the purpose to separate
the events with physical interest from background events. The first two levels T1
and T2 were hardware triggers, which were synchronized with the Beam Cross
Over (BCO). The time between two bunch crossovers was 22 us in 4-bunch mode
(11 ps in 8-bunch mode). Thus the first level trigger T1 had to be based on the
detectors with a very fast readout (ID, OD, FCA, FCB) and the scintillators.
In case of a positive first level trigger decision the slower T2 level analyzed in
addition the informations of the slower drift chambers (e.g. TPC, HPC). T1 and
T2 came to their decisions 3.5 us respectively 39 us after the bunch crossing.
The next levels T3 and T4 were software based filters, using already a partial
event reconstruction and particle identification. The trigger rates for T1 and
T2 were 400 Hz and 5 Hz respectively. T3 and T4 reduced the background by
an additional factor 1.5. The trigger system was installed with high redundancy
to enable a stable running even with some components failing. The trigger
efficiency of the system was extremely high and for multihadronic events close
to 100% over the whole polar angle.
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The data acquisition system (DAS) had the purpose to read out the
digitized data from the detector and store them on magnetic tape. All events
accepted by the second trigger level were stored on tape. For the raw data the
data structure of the program package ZEBRA'® [54] was used. The mean size
of a multihadronic Z° event was around 150 kB. The events were identified by a
'Fill'%” | "Run!” and Event number.

The Offline System

This section gives an overview over the DELPHI offline analysis chain.

The main reconstruction program was the Delphi ANAlysis program

DELANA. It contained one module for each subdetector which performs
the necessary alignment and calibration of the raw data and a local track
reconstruction if possible. A local pattern recognition was performed and
resulted in e.g. track elements and energy depositions. These track elements
were connected by a global search algorithm, starting at the TPC and then
extrapolating to the inner and outer side of the detector. The found candidates
were used to fit track parameters and to get rid of ambiguities. The tracks were
then extrapolated through the whole detector and matching vertex detector hits
were collected. With these hits the track fit was redone and a matching of tracks
and neutral clusters was done. Finally, based on the fitted tracks of charged
particles, a primary vertex was calculated.
The result of this procedure was a reconstructed event, stored in the DST'®
format. It contained informations used for physics analyses like momentum
vectors, calorimeter information and others. The size of a multihadronic Z°
event in the DST format is about 60 kB. The DST format contains enough
information to calibrate the raw data without repeating the analysis process or
to fit efficiencies in the simulation by smearing of resolutions.

An additional reduction of the data size was achieved by the production of
Short DST (SDST) format out of DST. The aim of this step is the running of
some standard reconstruction software which leads to savings in the CPU usage
of the final analysis. The most important are:

e tagging of Z° — bb events

15ZEBRA is a memory management program which provides dynamical data structures
16 A "Fill’ denotes a LEP filling

I7A "Run’ denotes a period of stable conditions for the detector

Data Summary Tape



2.2. THE DELPHI DETECTOR 45

e identification of electrons, photons nd neutral pions

e identification of myons

e reconstruction of V% decays K? — 77~ and Ay — pm
e identification of charged hadrons (7, K*, p*)

e reconstruction of tracks using only VD hits

e reconstruction of interactions with the detector material

The removal of some individual detector information lead to a mean size of
20 kB in the SDST format of a multihadronic Z° decay. In a further step the
data was reduced by an additional factor of three by storing SDST data into a
MINI-DST format. The SDST format was replaced in 1996 by the XSDST,
which contained some additional detector information.

The main task of the detector simulation of Delphi (DELSIMY [55] )
was to produce simulated ’data’ which mimic the real data from the detector as
closely as possible. The output of the detector simulation were 'raw data’ which
were processed through the reconstruction program DELANA and the subsequent
analysis programs in exactly the same way as for real data. DELSIM can be split
into three different parts:

e The first part started with the physical generation of a primary physics
process. Usually external Monte Carlo generators were used for this, e.g.
JETSET [56], HERWIG [57], and ARIADNE [58] for eTe™ — ¢¢. The
parameters in these packages were tuned from time to time with input
from the latest available data.

e The particles produced were tracked through the detector until they hit
material of the detector. This is done by stepping through the magnetic
field including the possibility that these particles can undergo a secondary
interaction. This required a detailed description of geometry and distribu-
tion of material for the different detector components. Besides energy loss
and multi-scattering also photo-effect, compton-scattering, bremsstrahlung,
positron annihilation, pair production, emission of d-electrons, weak decays
and hadronic interactions were taken into account.

e In the last step the detector response of each component was modeled. This
part was built in a modular way, so that each detector component used a
dedicated software package to take into account all specific properties of
the underlying processes.

YDELphi SIMulation



46 CHAPTER 2. THE EXPERIMENT

The number of simulated Monte Carlo data events is typically larger than the
number of real data events.



Chapter 3

Mathematical Tools

In high energy physics analyses often the problem arises to combine various vari-
ables in an appropriate way to separate a certain class of interesting events (sig-
nal) from a large amount of background. The simplest method to achieve this is
to apply linear serial cuts on variables which are suitable for classification pur-
poses. However, it turns out that such methods are inefficient and have a weak
tagging power due to the neglect of correlations between the variables. In an
inclusive analysis, like the one described in this work, more sophisticated meth-
ods have to be used. Common approaches are the Fisher discriminant analysis
[59], the Likelihood Method [60] and artificial Neural Networks [61]. There are
mainly three reasons why Neural Networks are prefered in this analysis: First
a Neural Network uses every information about the correlations between the in-
put variables and between the input quantities and the desired ’target’. These
informations are coded in a set of free parameters, the weights w, which have
to be adjusted by a training algorithm. These weights can be iteratively ob-
tained by presenting examples of signal and background events to the Neural
Network (training) together with the desired input. Second a Neural Network
is more robust against statistical correlations between the input variables, which
are not correlated with the desired target value, in contrast than e.g. the Like-
lihood Method. And third a Neural Network has the advantage that it is, once
trained, very easy to handle and to propagate new events through the net to get
the output. A brief mathematical introduction and overview of Neural Network
techniques and their application forms the first part of this chapter.

The second part describes the numerical integration technique which is used
for the Log-Likelihood method which will be described later. Based on a special
set of numbers, so-called quasi random numbers a Monte Carlo integration is
described making use of a sophisticated variable transformation to get a good
precision while minimizing the necessary CPU time. The second part describes
the statistical basics of parameter estimation used in this analysis.

47
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3.1 Neural Networks

Neural Networks have seen an explosion of interest over the last few years and
are being successfully applied for a vast range of problems in areas as diverse as
medicine, finance, engineering geology and physics. Due to this occupation and
research for algorithms to solve classification or prediction problems more and
more sophisticated methods have been invented from which a small amount is
presented here.

3.1.1 The Origin of Neural Networks

Neural Networks grew out of research in artificial intelligence. Attempts were
made to learn of biological neural systems by modeling the low-level structure of
the brain. A brain consists of about 10 billion neurons each of them connected
to several thousands other neurons. A single neuron is a specialized cell with the
ability to propagate an electrochemical signal. It has a branching input structure
(the dendrites), a cell body, and a branching output structure (the axon). The
axon of one cell connects to the dendrites of another via a synapse. When a
neuron is activated it 'fires’ an electrochemical signal along the axon. This signal
crosses the synapses to other neurons which may fire in turn. A neuron fires only if
the total signal received at the cell body from the dendrites exceeds a certain level
(the firing threshold). Therefore changing the firing conditions means changing
the ’strength’ of synaptic connections and so learning consists of altering these
strengths. Thus from a very large number of extremely simple processing units the

Axan (Carries
signals away)

Dendrites (Carry
sighals in)

S

Synapse size changes in
response to learning

Figure 3.1: The left plot is an illustration of the properties of a biological neuron.
The right plot shows the three dimensional structure of a neuron.
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brain manages to perform extremely complex tasks. Artificial Neural Networks
mimic those basic cells and achieve remarkable results using a model which is no
more complex than this. Figure 3.1 illustrates the above mentioned properties of
biological neurons.

3.1.2 The Basic Concept

To apply the model of biological neural systems to artificial neurons one con-
structs a mathematical model of such a neuron with exact defined and relatively
simple properties. Each basic processing unit or neuron receives input x; from
neighbors or external sources and uses this to compute an output signal which
is propagated to other units. Apart from this processing, a second task is the
adjustment of the weights w; which correspond to the connection strengths of
the synapses. In addition, a neuron also has a single threshold wy, called the
bias which represents the threshold for the neuron to fire. The weighted sum of
the inputs is formed and the threshold added to compose the activation of the
neuron

y(x) = wix +wp (3.1)

which is activated if y(x) > 0 (which corresponds to a step function as activation
function). This model of a single neuron is illustrated in Figure 3.2.

Generic Node

Figure 3.2: The pic-
ture at left represents a
generic node of an ar-
tificial Neural Network.
The sigma represents
the weighted sum of the
mput variables x;. The
S-shaped curve in the
circle represents the sec-
ond part of the process-
ing, the passing through
a nonlinear activation
function.

Bias Value

el

To generalize the linear discrimination function 3.1 a nonlinear activation
function F(y) can be introduced, acting on the linear sum. Generally F(y)
is chosen monotonic and in the simple case described above its a simple step
function. Nonlinear activation functions are what give Neural Networks their
nonlinear capabilities. Omne of the most common forms of activation function
is the sigmoid which is a monotonically increasing function that asymptotically
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approaches some finite value as +o00 is approached. The most common examples
are the standard logistic function F(y) = 1/(1 + e7¥) and hyperbolic tangent
F(y) = tanh(y). Sigmoids that are symmetric about the origin are preferred
because they are more likely to produce outputs (which are inputs to the next
layer) that are on average close to zero!, in contrast to the logistic function
whose outputs are always positive and so must have a mean that is positive. The
motivation to choose a logistic function however is based on the fact that it can
be derived by Bayes’ theorem, where the posterior probability of membership of
class C; is given by

Px|C)P(Cy) _ P(x|Ch)P(CY)

PG = =55 = PRIPC) + PGP (o)

(3.2)

If the class conditional probabilities P(x|C;) are given by Gaussian distributions
Equation 3.2 is equal to the logistic function which allows thus the output of the
discriminant to be interpreted as posterior probabilities?. The logistic function
can also have an additional parameter 1" to become:

Fly) = —

m (3.3)

The parameter 1" is comparable, according to the Boltzmann distribution, with
the (synthetic) temperature of the system. This ’effective temperature’ is used
in so-called Boltzmann machines which are similar to simulated annealing. The
network starts with a very high value in 71" which is slowly decreased as the
network iterates through the process of updating the nodes and weights (training).
The hope is that the network escapes from local minima in the training and
finds the global minimum. The activation function 3.3 is plotted for several
temperatures in Figure 3.3.

a

oo i / = Figure 3.3: This plot
0.7 T=3 / Wllustrates the nonlinear
o.6 transfer function with
©-s an effective temperature
o / according to the Boltz-
Zz / mann  distribution  for
' _— three different tempera-
O': tures.

!The reason for this is given in the following Sections.
2This argument holds only if the class-conditional probabilities are normally distributed
with equal covariance matrices.
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3.1.3 Architecture

In the previous Section the properties of the basic processing unit in an artificial
Neural Network was discussed. This section focuses on the pattern of connections
between the units and the propagation of data.As for this pattern of connections,
the main distinction we can make is between:

o Feed-forward networks, where the data flow from input to output units is
strictly feed-forward. The data processing can extend over multiple (layers
of) units, but no feedback connections are present, that is, connections
extending from outputs of units to inputs of units in the same or previous
layers.

e Recurrent networks that do contain feedback connections. Contrary to feed-
forward networks, the dynamical properties of the network are important.
In some cases, the activation values of the units undergo a relaxation pro-
cess such that the network will evolve to a stable state in which these
activations do not change anymore. In other applications, the change of
the activation values of the output neurons are significant, such that the
dynamical behavior constitutes the output of the network (see [62]).

Classical examples of feed-forward networks are the Perceptron and Adaline.
Examples of recurrent networks have been presented by Anderson [63], Kohonen
[64] and Hopfield [65] and will not be further discussed here because they do not
have much relevance in high energy physics and have not been employed in this
analysis.

A single layer feed-forward network (single-layer perceptron) consists of one
or more output neurons o, each of which is connected with an adaptive weighting
factor w;, to all of the inputs ¢. The input of one output neuron is the weighted
sum of the inputs plus the bias term, which can be regarded as an additional
input node with input value 1 and the threshold as weight. The output of the
network is formed by the activation of the output neuron considered, which is
some function of the input:

Yo = F(O_ wipr; +0) (3.4)

=1

The activation function F can be linear, or nonlinear. Considering the threshold?
function
+1 ifs>0

3.5
—1 otherwise (3.5)

F(s) = {

3 Also the Heaviside or the sgn function is commonly used.
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the output of the network is either +1 or -1, depending on the input and it can now
be used for a classification task: it can decide whether an input pattern belongs
to one of two classes. If the total input is positive, the pattern will be assigned
to class +1, otherwise to class -1. In a case like this the decision boundary is
a hyperplane in the N dimensional hyperspace. This linearity however has the
disadvantage that the XOR problem is not solvable with a single-layer perceptron
although it has a good generalization ability and the training algorithms are likely
to converge to the optimal solution.

To solve the XOR problem for which it is not possible to classify all cases by
a linear boundary additional hidden units have to be introduced which thereby
extend the network to a multi-layer perceptron. These hidden nodes lie between
the input and output layers (see Figure 3.4). They receive their inputs from a
layer directly below and send their output to units in a layer directly above the
units. There are no inter-layer connections. Generally multi-layer perceptrons

Ingut Fadden Ouput
besyer Ly Lingt

= o
S
Input 2 |{-)

Figure 3.4: Example of a multi-layer perceptron with one hidden layer.

consist of an arbitrary number of hidden layers with an arbitrary number of hid-
den nodes per layer. However it has been shown [66, 67, 68, 69] that only one
layer of hidden units suffices to approximate any function with finitely many dis-
continuities to arbitrary precision, provided the activation functions of the hidden
units are non-linear (the universal approximation theorem). In most applications
a feed-forward network with a single layer of hidden units is used with a sigmoid
activation function for the units leading to the following explicit expression for
the complete function represented by the network:

M N
y=2JF (Z wz@)}- (Z wg;)xj — 91(1)) — 0(2)> (3.6)
i1 =1

where N denotes the number of input units and M the number of hidden units.
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Practically the number of input and output units is defined by the problem.
The number of hidden units must be adjusted to the special case under investi-
gation. There is no general rule to determine this number.

3.1.4 Training a Neural Network

After describing the general architecture and functionality of a neural network in
the previous Section this Section focuses on the training of such networks. The
weights which form the free parameters of the neural network have to be config-
ured such that the application of a set of inputs x?, where p denotes the pattern
produces (either ’direct’ or via relaxation process) the desired set of outputs d?
or target values. Various methods to set the strengths of the connections exist.
One way is to set the weights explicitly, using a priori knowledge. Another way is
to 'train’ the neural network by feeding it teaching patterns and letting it change
its weights according to some learning rule.

Error Function

We first have to define an adequate error measure. All neural network training
algorithms try to minimize the error of the set of learning samples which are
available for training the network. The most commonly used error measure is the
summed square error, as indicated by the least mean square.

1
E=) EP =2 (d—y")? (3.7)
p 2 p

where the index p ranges over the set of input patterns and EP represents the
error on pattern p. The choice of this error function is motivated by its analytical
simplicity; several other error measures exist. In the case of two-class classifica-
tion a more appropriate measure is the two-class (cross-)entropy error which was
suggested by several authors in the late 1980’s [70, 71, 72]:

1 14+ dP 1—d?
E=) Ef=— 1+dP)1 1—-dP)l

p

(3.8)

This error measure can be derived from the relative entropy of a probability
function py with respect to a probability function g¢y:

E=Ypiln <@> (3.9)
k gk

This is motivated by the assumption that desired outputs d” are independent,

binary, random variables and the required network response represents the con-

ditional probability that these variables would be one.
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Figure 3.5: Compari-
o5 Square son of the square and
the cross-entropic error
function.  The desired
target output is d = 1.
The cross-entropic error
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Error function

The cross-entropic error function of equation 3.8 requires the desired target
to be d =1 or d = —1. Figure 3.5 shows the two mentioned error functions in
comparison. The advantage of the cross-entropy error function is the fact that
the penalty for completely wrong classification goes to infinity.

Gradient Descent

The problem of finding suitable weights to solve a classification task is now trans-
lated into the problem of minimizing the error or cost function with respect to
these weights. Given that the derivative of the non-linear transfer function is
easy to evaluate which is the case for the logistic function, the least mean square
procedure finds the values of all the weights that minimize the error function by
a method called gradient descent. The idea is to make a change in the weight
proportional to the negative of the derivative of the error as measured on the
current pattern with respect to each weight:

Aw = —nVE(w) n>0 (3.10)
where 7 is a small positive number called the learning rate parameter. From
dE =VE -dw~VE - -Aw = —n|VE(w)|* <0 (3.11)

follows that the error function changes in fact to smaller values by gradient de-
scent method. We assume that the activation is a differentiable function of the
total input, given by

vk = F(sk), (3.12)

in which
J
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The error measure EP is defined as the total quadratic error for pattern p at the

output units k:

1
B = 5 S~ ) (3.14)
k
where d, is the desired output for unit k& when pattern p is presented to the
network. We further set ' = >, EP. Applying the gradient descent method, we
can write:

OEP  OEP s

= 3.15
aij 83% aij ( )
By Equation 3.13 we see that the second factor is
dsh »
= 7P 3.16
S = (3.16)
The derivatives of the error function for pattern p become
OLE?
257 = —F'(sh)o% (3.17)

with 07 = d} — y4. Combining Equations 3.17 and 3.16 with Equation 3.10 the
change in the weights due to presentation of a particular pattern is given by the
so-called delta rule:

AP,y = nf’(si)éﬁx? (3.18)

where F'(s}) can be expressed for the case of the logistic transfer function by a
simple expression:

F(sk) = Flsp) (1 — F(s1)) (3.19)

All this can be generalized to an arbitrary number of patterns by computing the
derivatives for each pattern separately and then summing over all patterns.

Back-Propagation

The most common training algorithm for feed-forward neural networks is the so-
called back-propagation algorithm, which is based on the gradient descent method
described above. Just using the gradient descent method without modification is
not possible in the case of multi-layer networks. Applying the above mentioned
delta rule would result in changing only the final layer of weights leaving the
weights of previous layers unchanged. There would be no way to decide which
weights in previous layers to change and by how much. This would result of
course in loosing all advantages of multi-layer architectures mentioned in previous
Sections.
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The way out of this dilemma is simple. The error measure can be written as
a function of the net inputs from hidden to output layer E? = EP(s}) and we use
the chain rule to write

OL" _ OB dyp _ 1y ) OE"

= =F(sp) 57 3.20
o~ ofos T oy (3:20)
with index h denoting the hidden node h. Calculating further leads to:
orr e oprost  Yeopr 0 Sno Mo QEP e
= 9 — — ——Wh = — oF'(sP)oP
Oy, 5=1 050 Oy, (;1 dso Oyp, j;w] Y ogl osh " ;wh (52)%
(3.21)
substituting this into equation 3.15 yields
OE? No Os?
= —F(s3) D wnoF'(s5) 00 =" 3.22
G = PR S meF ()t (3.22)
and
No
APwiy, = nF'(s)) D wnoF' (sh) % (3.23)
o=1

for the change in the weight between the input layer and hidden layer. Using the
simple delta rule for the weights between the hidden layer and the output layer
leads to

APwpe = 1F(55) 055, (3.24)

To get the total change in the weight, everything has to be summed up over the
number of patterns p presented to the network.

The equations derived in this section are mathematically correct, but there is
a way of understanding back-propagation other than reciting the necessary equa-
tions. What happens in the above equations is the following. When a learning
pattern is clamped, the activation values are propagated to the output units, and
the actual network output is compared with the desired output values, we usually
end up with an error in each of the output units. Let’s call this error e, for a
particular output unit o. We have to bring e, to zero.

The simplest way to do this quite simple: we strive to change the connections
in the neural network in such a way that, next time around, the error e, will be
zero for this particular pattern. We know from the delta rule that, in order to
reduce an error, we have to adapt its incoming weights according to

Awpe =nF' (80)(do — yo)Yn - (3.25)

But this alone is not enough: when only applying this rule, the weights from input
to hidden units are never changed, and we do not have the full representational
power of the feed-forward network as promised by the universal approximation
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theorem. In order to adapt the weights from input to hidden units, we again
want to apply the delta rule. in this case, however we do not have a value for §
for the hidden units. This is solved by the chain rule which does the following:
distribute the error of an output unit o to all the hidden units that it is connected
to, weighted by this connection. Differently put, a hidden unit A receives a delta
from each output unit o equal to the delta of that output unit weighted with
(=multiplied by) the weight of the connection between those units. In symbols:
On = >, 0oWhe- Well, not exactly: we forgot the activation function of the hidden
unit; F has to be applied to the delta before the back-propagation can continue.

3.1.5 Advanced Algorithms

In the previous section the basic techniques of neural network training have been
described. Despite the apparent success of the back-propagation learning algo-
rithm, there are some aspects which make the algorithm not guaranteed to be
universally useful. Most troublesome is the long training process. This can be a
result of a non-optimum learning rate and learning algorithm. Outright training
failures generally arise from two sources: network paralysis and local minima.

e Network paralysis. As the network trains, the weights can be adjusted
to very large values. The total input of a hidden unit or output unit can
therefore reach very high (either positive or negative) values, and because of
the sigmoid activation function the unit will have an activation very close
to zero or very close to one. As is clear from Equation 3.19, the weight
adjustments which are proportional to the first derivative of the activation
function will be close to zero, and the training process can come to a virtual
standstill.

e Local minima. The error surface of a complex network is full of hills and
valleys. Because of the gradient descent, the network can get trapped in a
local minimum, when there is a much deeper minimum nearby. Probabilistic
methods can help to avoid this trap, but they tend to be slow. Another
suggested possibility is to increase the number of hidden units. Although
this will work because of the higher dimensionality of the error space, it
appears that there is some upper limit of the number of hidden units which,
when exceeded, again results in the system being trapped in local minima.

This section focuses therefore on some techniques to avoid such problems. This
can be achieved in either preprocessing the input data of a neural network or by
using more efficient algorithms. To improve the performance and the stabilization
of network training an adequate mixture of both is preferable.
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Learning Per Pattern

At each iteration the back-propagation algorithm requires a complete pass
through the entire dataset to ensure the weights to be adjusted in order to de-
crease the error measure, in the direction of the {rue gradient. This is called
batch learning since an entire batch of data must be considered before weights
are updated. Alternatively one can use stochastic learning, where the learning
rule is applied to each pattern separately, i.e., a pattern p is applied (preferably
chosen randomly), EP is calculated, and the weights are adapted. Because this
method estimates the gradient by choosing one pattern, the weights may not
move precisely down the gradient at each iteration. This noisiness at each iter-
ation has the advantage that it makes it possible to get out of a local minimum
by jumping into a neighboring, possibly deeper minimum. Another advantage
of the stochastic learning is that there exists empirical indication, that it con-
verges often much faster than the batch learning. This can be understood if one
considers datasets with redundant information. Whereas in batch learning one
loops over redundant pieces of information calculating several times the same
quantity in stochastic learning only one iteration leads to the same result. Care
has to be taken, however, with the order in which the patterns are taught. For
example, when using the same sequence over and over again the network may
become focused on the first few patterns. This problem can be overcome by using
a permuted training method.

Learning Rate and Momentum

Training a Neural Network requires to choose an appropriate learning rate n. To
ensure fast learning 7 has to be chosen as large as possible. If 1 is chosen too
large however the weights will oscillate around the minimum and even worse it
can lead to a situation, where the training process diverges. To avoid oscillation
for high n one possibility is to make the change in weight dependent of the past
weight change by adding a momentum term:

Aw(t+1) = —nVE(w) + aAw(t) (3.26)

where ¢ indexes the presentation number and « is a constant which determines
the effect of the previous weight change.

Figure 3.6 illustrates the learning process for different learning rates n and
how important an effective choice is.

Conjugate Gradient

There exist many improvements for the back-propagation algorithm described
in this Chapter. Maybe the most obvious improvement is to replace the rather
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Figure 3.6: The descent in weight space. a) for small learning rate; b) for large
learning rate: note the oscillations, and c¢) with large learning rate and momentum
term added.

primitive steepest descent method with a direction set minimization method,
e.g., conjugate gradient minimization. Assume we pick a descent direction, e.g.
the gradient, then we minimize along a line in this direction (line search). This
brings the error function £ at a place where its gradient is perpendicular to the
primary direction (otherwise minimization along this direction is not complete).
Subsequently we should try to find a direction along which the gradient does
not change its direction, but merely its length (conjugate direction, such that
minimization along this new direction does not spoil the result of the previous
minimization, i.e., the directions are non-interfering.The evolution of the descent
directions py at iteration k is given as

pr = —VE(Wg) + Bepr-1 (3.27)
where the choice of B can be done either according to Fletcher and Reeves [73]

= 3.28
Bk VE(kal)TVE(kal) ( )
or Polak and Ribiere [74]
VE(Wk_l)TVE(Wk_I)
Two directions p; and pi_; are defined as conjugate if
prHper =0 (3.30)
where H denotes the Hessian matrix whose components are given by
0’F

Bwiﬁwj
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For both choices it is very important to have a good line search procedure. For a
perfectly quadratic function with N variables a convergence within N steps can
be proven.

Weight Decay and Pruning

Weight decay adds a penalty term to the error function. The usual penalty is the
sum of squared weights times a decay constant ¢ leading to the modified error
function:

E(w) — B(w) = E(w) + g > w? (3.32)

If the data term is small compared to the weight decay term, the weight update
rule leads to

Aw; = —ncw;
— w;(t+1) = w(t)(1 —nc)
— wi(t) = wi(0)(1—ne)" = w;(0)e! M) (3.33)

where t indexes the iteration number. This represents the exponential decay of the
weights to zero if 0 < n-c¢ < 1. Weight decay is a subset of regularization methods
which are very useful to get control over the network complexity and to deal with
ill-conditioned non-linear least square problems leading to oscillatory behavior
of the network. The penalty term in weight decay, by definition, penalizes large
weights. It causes the weights to converge to smaller absolute values than they
otherwise would. Large weights can hurt generalization in two different ways.
Excessively large weights leading to hidden units can cause the output function
to be too rough, possibly with near discontinuities. Excessively large weights
leading to output units can cause wild outputs far beyond the range of the data
if the output activation function is not bounded to the same range as the data.
To put it another way, large weights can cause excessive variance of the output
(see [75]).

Other penalty terms besides the sum of squared weights are sometimes used.
Weight elimination (see [76]) uses:

2

Y (3.34)

2 4 2
T wy +c

where w; is the ith weight and c is a user-specified constant. Whereas decay using
the sum of squared weights tends to shrink the large coefficients more than the
small ones, weight elimination tends to shrink the small coefficients more, and is
therefore more useful for suggesting subset models (pruning). Pruning techniques
set, weights to zero and thus remove them from the network topology if the value
of a weight falls below a certain threshold. If all connections of a certain node
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are removed in this way, the entire node is removed. In this way the network is
able to optimize its own topology since only the nodes and connections between
the nodes that the network regards as important are kept.

3.1.6 Data Preprocessing

In order to make the training faster and to enhance the probability that it con-
verges one can improve a few things in the way data is presented to the network.
To ensure that the network does only learn those features from the presented
data which are important for the classification task it is useful to transform the
data before feeding them into the neural network. This transformation can be
done by hand using physics knowledge or by using automatized methods which
do a pre-processing based on the data distributions of the input variables. This
preprocessing is able to improve the pattern recognition system by giving the
network inputs which are simplified and easy to handle and therefore a better
minimum can be found. Some of these preprocessing ideas and why they work
are described in this Section.

Choosing the Inputs

A Neural Network is in general a tool which is quite good in generalizing and find-
ing separating non-linear hypersurfaces in multidimensional input space, however,
it is far from being capable in handling an arbitrary amount of input variables.
Each input variable used adds one dimension to the problem which means that a
minimum has to be found in a space which is one dimension higher. Not only the
convergence properties might be poor, also computing time increases drastically
using a lot of different input variables.

A better way is to understand which variables give a useful contribution to the
information needed and which variables are redundant or useless. There might
be cases, however, where it is useful to include variables which have nearly no
correlation to the desired output but are in correlation with other useful variables.
For example if one includes so-called quality variables which represent estimates
for how useful the other variables might be concerning the classification task, this
gives the neural network quite useful information on how to treat information. If
an input sample is clearly belonging to one class, but the quality is so poor, that
it has nearly no meaning, the Neural Network will learn this feature and will not
take much care of this sample than without giving it the quality variable.

Choosing variables properly means, that one also has to take into account that
the training data might differ in some systematic way from the actual data, e.g.
when the function being modeled is changing over time, and so the relationships
which held in the past may no longer hold. Also including variables which are
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correlated with variables under investigation is not very useful because one might
get unwanted biases and artifacts.

For stochastic learning another consideration is important. The order in which
the training samples are presented to the network are important. To increase the
learning speed, it is advisable to choose a sample at each iteration that is the
most unfamiliar to the system. To implement this one can choose successive
examples that are from different classes since training examples belonging to the
same class will most likely contain similar information.

Transforming the Inputs

After selecting the important variables from the unimportant variables it is ad-
visable to apply further treatment to the variables themselves. Convergence is
usually faster if the average of each input variable over the training set is close to
zero. One can understand this behavior if one considers the extreme case where
all the inputs are positive. This would result in the updates of the weights in the
first weight layer having all the same sign. As a result , these weights can only
all decrease or increase together. Thus, if a weight vector must change direction
it can only do so by zigzagging which is inefficient and thus very slow. For this
reason it is good to shift the inputs so that the average over the training set
is close to zero. This however cannot be applied for the outputs of the hidden
nodes which are inputs for the next layer. Instead it is advisable to use a sigmoid
function which is centered around zero.

Learning is also faster if the input variables are scaled so that all have about
the same covariance. The reason for this is that the learning speed is balanced out
between the different input variables since generally the learning rate 7 is chosen
globally for all weight updates. It is also advisable to match the covariance of
the inputs with that of the transfer function used.

Another quite useful preprocessing step is the decorrelation of input variables.
If inputs are highly correlated the training is much slower because the network
has to deal with degeneracies which means flat areas on the error surface. In
the worst case two or more input variables are linear dependent, and so the
network is fed with information which does not improve learning and therefore it
is unimportant. In order to decorrelate the variables their covariance matrix has
to be diagonalized.

The above mentioned preprocessing techniques are illustrated in Figure 3.7.
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Figure 3.7: The plots illustrate the subsequent transformation of the variables in
the input space.

3.1.7 Alternative Approaches

Neural Networks that are based on processing nodes described in Section 3.1.2
which rely on dot products and sigmoids can in principle approximate any func-
tional mapping to arbitrary accuracy (universal approximation theorem), and
therefore constitute a universal class of parametrised multivariate non-linear map-
pings. Although most systems are based on such architectures many other types
of units (or layers) can be used. In this Section two common alternatives are
described, namely the Radial Basis Function (RBF) (see [77, 78, 84, 85]) and the
Support Vector Machines (SVM).

In the Karlsruhe DELPHI group both approaches have been tested and com-
pared to the performance of multi-layer Neural Networks on classification prob-
lems for which the Neural Network approach already delivered very powerful
classifiers. It turned out that for applications in high energy physics both al-
ternatives manage to achieve a performance as good as Neural Networks. The
big drawbacks however were the high number of parameters to be tuned in order
to have the training converge fast and the huge amount of required CPU time
(especially for support Vector Machines).
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Radial Basis Function (RBF)

In RBF networks, the dot product of the weight and the input vector is replaced
with a Euclidean distance between the input vector and the weight vector, and
the sigmoid is replaced by a Gaussian function. The output activity is computed,
e.g. for one output, as

1
207

F = Y expl(- 1 — wil?) (3.35)

where N denotes the number of radial basis functions and w;(o;) is the corre-
sponding mean vector(standard deviation) of the RBF’s which have to be ad-
justed. The norm or distance metric of course does not have to be Euclidean and
can be chosen in whatever way seems most appropriate to the states and task at
hand.

These RBF units can replace or coexist with the standard units and they
are usually trained by a combination of gradient descent (for output units) and
unsupervised clustering for determining the means and widths of the RBF units.

The motivation for using RBF’s lies in the time needed for training which
can be substantially faster than the methods used to train multi-layer perceptron
networks. On the negative side, the locality property of RBF’s may be a disad-
vantage particularly in high dimensional spaces because many units are needed
to cover the spaces and noisy data results typically in high oscillatory functions
which is generally undesirable.

Support Vector Machines (SVM)

Support Vector Machines are used for several pattern recognition problems like
object recognition, image recognition, speaker identification and so on. The sub-
ject started in the late seventies [79] and since then a few steps are done to
introduce this method in modern particle physics.

The method is based on the mathematical problem to find the best dividing
hyperplane between two classes in a space of arbitrary dimension. The term
best means that the distance between any representative of the classes and the
hyperplane is maximal. To maximize the distance (the so-called margin) between
the data points and the plane, which is 2/||w||, where w is the normal vector of
the plane, one has to minimize ||w|[* with the following constraints:

vector x; belongs to
x;*w+b>+1 fory; =+1 (class 1, signal) (3.36)
x;-w+b< =1 fory; =—1 (class 2, background) (3.37)
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These conditions can be combined into one set of inequalities:
yi(x; - w+0b)—1>0 Vi (3.38)

To solve this minimization one switches to a Lagrangian formulation of the prob-
lem. Positive Lagrange multipliers o, ¢ = 1, ..., [ are introduced, one for each of
the inequality constraints 3.38. This results in the Lagrangian:

L=_||lw|* - zai(yi(xi -w+b) — 1) (3.39)

N | =

The minimum of ||w||? taking into account the inequality constraints is obtained
when the partial derivatives of L with respect to w and b simultaneously and the
derivatives with respect to the a; vanish.

This leads to the following equations, the so-called Karush-Kuhn-Tucker
(KKT) conditions [80]:

afVVL:W,,—Zaiyixi,,zo v=1,...,d (3.40)
—L = Zazyz =0 (3.41)
yi(xi-w—f—b)—lz() i=1,..,1 (3.42)

@ >0 Vi (3.43)
a;(yi(x;-w+0b0) —1)=0 Vi (3.44)

Here d is the dimensionality of the feature space and [ is the number of training
vectors. The last Eqn. 3.44 follows from the fact that for vectors that fulfill the
equality sign of relation (3.38), the constraint is active and the Lagrange multi-
plier is positive. The other vectors play no role, their corresponding constraints
are inactive, thus their corresponding Lagrange multipliers «; are zero. This is
the mathematical formulation of the fact that only the input vectors which lie
nearest to the plane (Support Vectors) are relevant. Leaving out the data points
with «;=0 would lead to the same solution.

For more convenience the problem is reformulated in the following. The main
advantage of this so-called Wolfe Dual problem is that the data only appear in
the form of dot products x; - x; which can be generalized for the treatment of
non-liner mappings. The requirement that the gradient of L with respect to w
and b vanishes (Eqns. 3.40 and 3.41) allows to express w and b as functions of
«;. These expressions can be substituted into Equation 3.39 to give

D= Zai Zazajyzy]( ) (345)

2
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This equation describes the Lagrangian in the minimum valley with respect to w
and b, as a function of the ;. We still have to search the maximum with respect
to the «;. It is a dual formulation of the same problem: instead of minimizing
||w||* with the inequality constraints 3.38, one can maximize this dual Lagrangian
(3.45) with respect to the «;.

All this is just valid for linear and separable problems, and only then we
can obtain a solution. But in modern particle physics one usually has to handle
non-linear, non-separable classification problems.

If one has to deal with non-linear problems, the idea is to transform the data
points from the origin space into another space, where the problem hopefully
becomes linear. This can be achieved by a mapping function ®:

d:RI—H (3.46)

Notice then that the only way in which the data appear is in the form of dot
products x; - x;. So the whole training algorithm would only depend on the data
through dot products in #, i.e. on functions of the form ®(x;) - ®(x;). Now if
there were a kernel function K such that K(x;,x;) = ®(x;) - ®(x;), one would
only need to use K in the training algorithm, and would never need to explicitly
even know what ® is. Suppose that the data are vectors in R?, and we choose
K (x;,%;) = (x;-x;)% Then it is easy to find a space H, and mapping ® from R?
to H, such that (z - y)? = ®(z) - P(y):

O(r) = | V2x1xy (3.47)

Another example with large practical significance is the Gaussian kernel
K (x;,%;) = e IKimxill?/20% (3.48)

In this particular example, the dimension of H is infinite, so it would not be very
easy to work with ® explicitly. But that does not matter, since one just has to
replace in the algorithm x;-x; by K (x;,x;). All former considerations hold, since
one is still performing a linear separation, but in a different space.

The Gaussian kernel is very important since it allows for constructing local
clusters in space. Its applications can be compared to Radial Basis Function
Neural Networks described in the previous Section. In modern particle physics
one mostly has to deal with non-separable data sets, i.e. a statistical separation
between signal and background can be achieved, but there are always single
background events looking like signal. In such cases the above algorithm will find
no feasible solution, since it has to find a classification which is 100% correct.

To apply SVM also in these non-separable cases, one would like to relax
the constraints 3.38, but only when necessary. This is achieved by extending the
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above ideas by introducing positive slack variables &,¢ = 1,...[ in the constraints
[81], which then become:

Xiw+b>4+1-& fory =+1 (3.49)
XiowHb< —14¢& fory =-1 (3.50)
£ >0 Vi (3.51)

Thus, for a classification error to occur, the corresponding & must exceed unity,
so Y;& is an upper bound on the number of training errors. Therefore the
Lagrangian has to be changed from ||w|*/2 to ||w|?/2 + C(>; &), where C is
a parameter to be chosen by the user, a large C' corresponding to assigning a
higher penalty to errors. So C' is a measure for the softness of the margin. Then
the dual problem becomes:

Maximize:

1
Lp =) =50 0u0yiy;X - X, (3.52)

0]

subject to the constraints:

0<a; <C, (3.53)
The solution is again given by
Ny
W = Z QG YiX; (3.55)

where N, is the number of Support Vectors. Thus the only difference from the
optimal hyperplane case is that the a; now have an upper bound of C'. The
situation is summarized schematically in Figure 3.8.

3.1.8 Dedicated Problems

Neural Network techniques are applicable to an enormous amount of tasks for
which the setup for the network has to be made individually. They can be
divided into mainly three classes of applications, namely classification, regression
and probability density function. This Section focuses on these application classes
with respect to the importance in high energy physics especially in this analysis.
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Figure 3.8: Linear separating hyperplanes for non-separable case. Support Vectors
are marked with circles. Effectively the data points inside the margin are not
classified as classification errors. [82]

Classification

The general objective in classification applications of neural networks is to de-
termine to which of a number of discrete classes a given input case belongs. As
mentioned earlier a useful interpretation of the network output was as estimate
of the probability of class membership, in which case the network was actually
learning to estimate a probability density function (p.d.f.). This probability den-
sity function is the conditioned probability P(Ck|x) of input vector x belonging
to class C,. This interpretation however relies on certain conditions. These con-
ditions are:

e The output of the Neural Network has to lie between 0 and 1. Therefore
the non-linear activation function has to be the logistic sigmoid function.

e The error function has to be either the quadratic or the logarithmic function
based on entropy

e The nodes have to have standard Gaussian distributed inputs.

With these requirements met the output of such a probabilistic Neural Network
may be interpreted directly as a probability density function.



3.1. NEURAL NETWORKS 69

Regression

In regression problems the purpose is to predict the value of a continuous output
variable. It can be used to approximate a continuous function or to predict a
value in the future from a number of time-ordered values in the past. From
the universal approximation theorem follows that in order to approximate any
continuous function a Neural Network with one hidden layer is sufficient.

Probability Density Reconstruction

In this application the aim is not to predict a single value of a function or a
probability density function like in classification or regression, but to deliver the
complete probability density function of the output variable. From this function
estimates for the mean, the median, the maximum likelihood, the uncertainty or
the moments can be deduced. To have a Bayesian interpretation of the estimator
one has to take into account a priori knowledge in the form of the inclusive (un-
conditional) distribution. This way the prediction will never result in unphysical
values outside the training range. A quite powerful approach of a neural network
for probability density reconstruction has been developed in Karlsruhe [83].

The probability density reconstruction can technically be realized by solving
binary classification problems for various output nodes. Namely the classification
problem for each output node is the true value is above the threshold value for
this node vs. the true value is below the threshold value for this node where the
true value t is transformed to its cumulative probability density function s.

t

s=F(t) = / F(#) dt’ (3.56)

tmin

Therefore the desired reconstructed probability density function is the derivative
of the network outputs.

As an example, the desired target output vector of an event with s;.,. and
10 output nodes would be T = (+1,+1,+1,+1,+1,+1,-1,-1,—1,—1). Note
that sy = 0.56 and sy = 0.64 would give the same output vector. This
is the discretization uncertainty introduced. Therefore an important consider-
ation is the number of output nodes since this limits the best resolution the
Neural Network can achieve. To reduce the discretization information loss the
target node nearest to the true value s;,. can be set to the value between
+1 and —1 to smoothen the dependence. In this example the target vector
would be T' = (+1,+1,+1,41,41,40.2, =1, —1,—1,—1) for syue = 0.56 but
T = (+1,+1,+1,+1,+1,+1,—-0.2, -1, —1, —1) for sy, = 0.64.

The output points of the neural network is then fitted by a cubic B-spline in
order to provide a parametric form of the network output. In order to achieve
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smooth functions the fit is regularized on the basis of the sum of the third deriva-
tives squared.

3.1.9 Application in High Energy Physics

The above described Neural Network techniques have in recent years been used
increasingly in high energy physics. More and more physics analyses rely on
Neural Networks as classifiers on a basis of Bayesian interpretation. Starting
with classifiers on the track level Neural Network helped to improve traditional
approaches in particle identification [102].

Especially for this analysis classification and probability density reconstruc-
tion applications were quite important for b-hadron energy reconstruction and
for the enhancement of different b-hadron species which will be described in the
next Chapter. Also for other analysis like the reconstruction of excited b mesons
which uses a dedicated Neural Networks to improve the b-hadron flight direction
resolution or oscillation analysis which relies on flavor tagging, neural network
techniques are proven to be quite useful and successful.

3.2 Monte Carlo Integration

In high energy physics a common problem is related to limitations of a mea-
surement of a certain physics quantity, e.g. b-hadron decay length, or b-hadron
momentum. These limitations arise from detector inefficiencies or from unde-
tected tracks. From simulated events one can deduce the dependency of the
reconstructed quantity from the true quantities. The effect of the imperfect in-
formation from a real detector can be extracted in terms of resolution functions.
By convoluting a theoretical a priori prediction of the true values of a physics
quantity with these resolution functions it is possible to get an estimate of the
expected measured distribution:

f(l‘rec) - f(l‘true) X R(xrecu‘true) - /f(l‘true) . R(xrec|xtrue) dl‘true ) (357)

which can be deduced by the Bayes’ theorem considering the resolution
R(Zree|Tirue) @s a conditional probability density of measuring x,.. if the true
value iS Tirye.

In general these integrals are not solvable analytically and so one has to
realize them by numerical integration techniques. In this analysis however the
situation is quite difficult because the measurement of the decay time of a b-
hadron requires the measurement of two quantities, the b-hadron momentum
and the b-hadron decay length. Therefore providing an estimate of the expected
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distribution requires a two-dimensional integration event by event. Using a large
amount of statistics leads to the fact that computing power becomes a limiting
factor using standard Monte Carlo integration techniques. In order to enhance
integration speed two approaches have been developed and find their application
in this analysis.

The first approach addresses the point set used for the integration. The
integration error, defined as the difference between numerical integration and
analytical integration depends strongly on the number N of support points used
for the integration. In order to diminish computation time one would like to have
a point set with fewest possible support points while still having an acceptable
accuracy. Using a normal grid as point set the error drops with 1/N in two
dimensions. Using normal random numbers instead, it can be shown, that the
error converges with 1/ V/N. However, the best solution for this application is a
point set based on so-called Quasi Random Numbers where the error converges
faster compared to points on a grid and which are also advantageous compared
to random numbers. Section 3.2.1 gives a brief introduction to quasi random
number algorithms.

The integration speed can be further enhanced by varying the point density
according to the integrand. One would like to enhance the point density in re-
gions were the integrand has a high curvature. On the other hand, in regions
were the integrand is constant or changes only linearly only a few support points
are necessary to get an arbitrary integration precision.This method is called im-
portance sampling. It is realized in form of an analytic variable transformation,
made possible by the fact, that the shape of the resolution functions in this anal-
ysis can be modeled either by Gaussians (for the b momentum) or by modified
Breit-Wigner functions (for the b decay length) and therefore have only one re-
gion where the point density has to be increased. The importance sampling is
described in detail in Section 3.2.2.

3.2.1 Quasi Random Numbers
General Monte Carlo Techniques

The problem to solve is the numerical calculation of a multidimensional integral:

[= / (%) dx (3.58)
B
where x = 2 = (2!, 2?%,...,2°) denotes a point in the s-dimensional integration
region B. The above integral can be expressed in a different form by:
I = vol(B) /vol(B)_ch(x)f(x) dx = vol(B)(f(x)) (3.59)

B
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Here (f(x)) is the expectation value of the function f for the uniform probability
distribution u(x) = wol(B)'cp which is defined in B C R? where cp is the
characteristic function in the integration region. In the one-dimensional case
with the integration boundaries a and b this gives:

I =i S A ]
u(x)—{ﬁo s dlab (3.60)

And the integral becomes:

I =(b—a){f(x)) (3.61)
A fundamental statistical method is to extract properties of random variables
like the standard deviation or mean value by looking at random samples of this
variable. Therefore one can estimate the expectation value of f(x) by selecting
randomly distributed support points z; and calculating the mean of f(z;):

()~ Y fla) = (3.62)
T)) ~ — €T;) = .
N = b—a
The integration error using this estimate is
e=1-S5 (3.63)

From the Central Limit Theorem one can derive the following properties for a
sample of random points which are distributed identically and independently:
The error € is normally distributed around zero and the standard deviation scales
with /V/N where V' denotes a measure of the variation of the integrand (the
proof of this can be found e.g. in [86]). This Monte Carlo method shows a con-
vergent behavior which is independent of the dimension s. Using a grid instead,
the error e drops with 1/(v/N)?. Therefore Monte Carlo integration is better if

1 2
->—-—s>4 . (3.64)
2 S

The task now is to find a point set showing a more convergent behavior.

Koksma-Hlawka Inequality Equation

The Koksma-Hlawka Inequality Equation delivers a boundary of the integration
error mentioned in the previous Section. For uniformly distributed sequences of
numbers P(N) the error boundary is:

¢ = |- S| < V(f)DL(Py) (3.65)

where V(f) denotes the variation of the function f defined by Hardy and Krause
in [87] and D% (Py) the discrepancy of the sequence P(N) which is, roughly
speaking, the deviation from a perfect uniform distribution. The proof of the
Koksma-Hlawka inequality equation can be found in [88].
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Discrepancy

Discrepancy is a measure of the uniformity of a set of points. There exist various
definitions of discrepancies using the deviation from a uniform distribution. As-
suming a volume rectangle K with volume vol(K) inside an s dimensional space
I° with volume 1 with sides parallel to the coordinate axis one can approximate
this volume using a point set Py in this space and counting the numbers of
points Ap(K; N) inside K divided by the number of points N. The discrepancy
mentioned in the previous section is then defined as:

. Ap(K; N
D (Py) = sup [Ry(K)| = sup %

— vol(K) (3.66)

By the law of iterated logarithms, the expectation value of the discrepancy of
a random sequence is bounded by (loglog N)N /2. There are many quasi ran-
dom sequences known for which the discrepancy is bounded by a constant times
(log N)*/N, which suggests greater uniformity than a random sequence and there-
fore faster convergence in numerical integration.

A convenient measure of quality for a certain point set is the quadratic dis-
crepancy normalized to the quadratic discrepancy for truly random numbers,
called the normalized quadratic discrepancy, which is defined as:

(D3(Pw))?  (D3(Py))?
(D3(Pn))?) L (QL - :%) , (3.67)

where Dj(Py) is defined as

Dj(Py) = (/ <|RN(K>|>2dx) (3.68)

8

Niederreiter and Hammersly Generator

In Karlsruhe a dedicated analysis was made where different low discrepancy se-
quences were tested and their performance compared (see [89]). Based on these
results the Hammersly method was chosen [89], which is a mixture of a linear
grid in one dimension and the Niederreiter generator [90]. This Section gives a
brief description of the generator.

Starting with the Halton sequence [91] in one dimension by choosing a prime
b and expanding the sequence of integers 0,1,2,..., N into base b notation the
nth term of the sequence is given by

, (3.69)
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where the a;’s are integers taken from the base b expansion of n — 1
n—1]p = amam, 1 - - azaia9 where m =m(n) (3.70)

with 0 < a; < b. For example, if b = 3, the first 12 terms of the sequence
(n=1...12) are

12147258 1 1019
(0,22, L22°2° } (3.71)

To generalize this in s dimensions s one-dimensional Halton sequences based on
s different primes are paired. Usually the first s prime numbers are chosen.

The Niederreiter generator is an improvement of the Halton generator by
using additional functions m,(k), p =1,2,...,s and defining a new sequence

el = zy(m (k) (3.72)
The functions m* are chosen in such a way that when N = b™, the numbers
m,(1),mu(2),...,m,(N) are just a permutation of (1,2,...,N).

The Niederreiter generator is the optimal choice for a wide range of numbers
N. In special cases, for certain values of N a slightly better discrepancy can
be obtained. The Hammersly algorithm is constructed by a grid in the first
dimension (z}, = %) and Niederreiter sequences for all the other dimensions.
Figure 3.9 shows a comparison of the Hammersly generator in two dimensions to
a normal pseudo random number generator. Clearly visible is the clustering of

the pseudo random generator which increases the discrepancy.

Table 3.1 illustrates the performance of the Halton, Niederreiter and Hammer-
sly generator on the basis of the normalized quadratic discrepancy. The chosen
dimension is s = 2 and leads to an optimal point set for N = 2. The numbers
are taken from [89].

N Halton Niederreiter Dy | Hammersly Do
512 | 1.119- 1072 5.815-1073 4.844-1073
1024 | 1.119-102 3.136 - 1073 2.647-1073
2048 | 5.544 - 1073 1.896 - 1073 1.453-1073
4096 | 4.066 - 103 9.888 - 10~* 7.807-107*
8192 | 2.076 - 1073 5.493-10~* 4.220-107°

Table 3.1: The normalized quadratic discrepancies for the Halton, Niederreiter
and the Hammersly generator. The discrepancy is calculated for dimension s = 2
and leads to optimal point sets for N = 2!,
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Figure 3.9: The left plot illustrates a two-dimensional distribution of 2048 Pseudo
Random points, the right plots shows 2048 points based on the Hammersly-
Niederreiter algorithm. Clearly visible is the clustering of points for the pseudo
random case which leads to high discrepancies.

3.2.2 Importance Sampling

From the Koksma-Hlawka inequality equation 3.65 introduced in the previous
Section one can learn, that the reduction of the integration error can be achieved
either by using low discrepancy point sets or by reducing the variance of the
integrand. As already stated in the introduction, the chosen technique is Impor-
tance Sampling which is realized by an analytical variable transformation as the
shape of the integrand is basically known and can be mapped by an estimate of
a central value and a width.

The problem of solving an integral (Equation 3.58) can be rewritten by intro-
ducing a probability density function w(x):

I:B/f(x) dx:B/ l@] w(x) dx = <l@]> (3.73)

w(x) w(x)

with
/w(x) dx =1 (3.74)

A Monte Carlo estimate of the expectation value <{%}> can be derived by

using a set of N independent numbers which are distributed according to w(x)
and calculating
vol(B)

S:N

/() (3.75)

w(x)

WE

1=1
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As stated earlier in this chapter one can derive for standard Monte Carlo inte-
gration the error from the Central Limit Theorem which is in this case:

0w (S(f/w)) = ou(f/w)VN (3.76)

Therefore importance sampling is only helpful if o,,(f/w)? < o(f)? and so it is
advisable to choose w in a way that the ratio f/w is approximately constant.
The basic principle of this is illustrated in Figure 3.10. The distribution of the
points in the integration phase space is changed according to the importance or
magnitude of the integration function. As one is not able to just change the
function to reduce the variance one can change the point density in a way that
the set of points sees a flatter function. In practice the choice of the function w

-

Figure 3.10: The basic

principle of the Impor-
T tance Sampling method.
The points wused for
integration  are  not
distributed — uniformly
but follow the magni-
tude (importance of the

M integrand.

comes naturally by doing a variable transformation as will be shown in the next
Section. In this work the problem is of the following form:

arbitrary units

Imaz Pmaz

1=Pp)= [ [ JOpRE = DR, ~ p) didp (3.77)

0 0

which is a convolution in two dimensions of the physics function f(l, p) using the
resolution functions R; and R, which have a peak at 0 and can be characterized
by their widths o; and o, which are small compared to the whole phase space

[0..limaz s 0--Pmaz)-

Variable Transformation

The transformation is applied in two steps. The first is a shift to the mean
value of the resolution /" and p’ and an additional normalization to the expected
widths 0; and o0,. The transformed variables over which to integrate are equally
distributed in a volume B. The distribution is done by a grid in one dimension
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and a Niederreiter generator in the other. To map this region B onto the region
[0..limazs 0..Pmaz] the transformation function was chosen to be the arctan function
scaled appropriately, so that the variable transformation in total becomes:

1 [=7 1 1 - 1
xz—arctan( >—|—§ : yz—arctan(p p>+§ (3.78)

™ o ™ Op

and the original variables are:

=1+ otan(n(z — %)) , p=p +otan(m(y — %)) (3.79)

Inserting this the original integral becomes:

Tmaz Ymaz

I :w/ y/ f(l' + otan(m(x — %)),p' + o tan(m(y — %))) : (3.80)
Ry(o tan(r (x — %)))Rp(atan(w(y - %))) - (3.81)
o107 cos( (i — %))2 cos(m(y — %))2 dedy — (3.82)

with transformed integration boundaries,

1 = 1 1 [ -1 1

Tpin = —arctan [ — | + = | Zyee = — arctan | ——— | + = (3.83)
T (o] 2 ™ o1 2
1 —p' 1 1 maz — D' 1

Ymin = — arctan ( p > + =, Ymaez = — arctan (H) + - (3.84)
T Op 2 T Op 2

This transformation and its principle is illustrated in Figure 3.11. It shows for
the decay length the equally distributed points in y direction and the points in the
decay length. It is clearly visible that the density increases around the mean value
' =1cminan area of £0; = 0.4 cm. In Figure 3.12 the transformation principle
is shown using the point sets from Figure 3.9. One can clearly see that the point
density increases at the expected mean point of [I',p'] = [1 cm, 30 GeV] with
expected widths of [0.4 cm, 4 GeV] for this example. The integration algorithm
was tested in Karlsruhe with different point sets and the results can be found in
[92].

3.3 Parameter Estimation

Many physics measurement problems are related in one form or another to the
problem of estimating parameters from noisy data. A parameter estimation prob-
lem is usually formulated as an optimization one. Because of different optimiza-
tion criteria and because of several possible parameterizations, a given problem
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Figure 3.11: The plot illustrates the principle of the variable transformation func-
tion. In this case a measured decay length of I' =1 cm with o width of o, = 0.4
cm (to be able to see the effect) was considered. On the y azis the transformed
variable is shown which is equally distributed (either by a grid or by quasi-random
numbers). This leads to an increased point density around the point where the
resolution peaks on the x axis.

can be solved in many ways. The way chosen will influence the accuracy of
the estimated parameters, the efficiency of computation, the robustness to pre-
dictable or unpredictable errors. This Section is focused on parameter estimation
technique used in the analysis, namely the method of least mean squares and the
mazimum likelihood method.

3.3.1 Method of Least Mean Squares

The method of least mean squares has been developed in the 19th century and is a
easy to handle and very powerful tool to analyze data with measurement errors.
Due to these measurement errors the measured data values y; differ from the
true data values by an observable which is the standard deviation o or variance
o?. Assuming that there exists a functional relationship, a so-called model for
the true data values, this model can depend on one or several parameters a; for
which no direct measurement exists. The method of least mean squares tries to
minimize the square of the deviations of the measured values y; from the model

with respect to the parameters a;.

S(a) = Z (o = fila)” = minimum (3.85)

2
i=1 0;
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Figure 3.12: These plots illustrate the effect of the variable transformation on the
point sets from Figure 3.9 for mean values of ' =1 ¢cm and p' = 30 GeV and the
expected widths o = 0.4 cm and 0, = 4 GeV respectively. Here also the numbers
are chosen to make the effect more wvisible. In real life the widths are smaller and
most of the mean decay length values are near the lower boundary.

Here the f; denote the model for the various y;, from which also the variances o?
are known.

3.3.2 The Maximum Likelihood Method

The idea behind maximum likelihood parameter estimation is to determine the
parameters that maximize the probability (likelihood) of the sample data. Al-
though the methodology which will be described next for maximum likelihood
estimation is simple, the implementation is mathematically delicate.

Assuming n measurements of the random variable x where x can be one single
variable or a vector of variables with known probability density function f(x|a),
where a denotes one or more unknown parameters, the objective is to extract an
estimate a of the parameters from the measurements of x.

The maximum likelihood method calculates the Likelihood Function

n

L(a) = f(w1la) - f(a2la) - f(znla) = [] f(@iln) (3.86)

=1

The function L(a) is for a given set of measurements x; a function of the parameter
a and is an estimate of the probability to find these measured values for a certain
parameter a. Therefore the best estimate of the parameter a is the value a
for which the likelihood function is maximized, i.e. for which the probability
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is maximized to observe the values x;. It is very important to ensure that the
probability density function f(z|a) is normalized for all possible values of a.

/f(x|a) —1 Va (3.87)

Practically more convenient is the log of the likelihood function F'(a) = In L(a),
which is called Log-Likelihood Function. The log-likelihood function is maximized
for the same value a because the logarithmic function is monotonic. Usually one
considers the negative log-likelihood function which then, of course, has to be
minimized with respect of the parameters a. This can be done by common
minimization algorithms like the Newton algorithm, gradient descent, line search
or combinations of these. The error on the parameters a can be calculated as
follows. Expanding the log-likelihood function around the minimum a leads to
[93]

F(a) = F(a)+ % > 8(21-;;3 (o — @) (a; — ;) +
= F(@)+ j(a—a)"H(a-a)+ (3.88)

L(a) = const-exp <—%(a —a)lH(a—- é))
= const - exp <—%(a —a)'va- é)) (3.89)

where V' denotes the variance matrix and H the Hessian matrix of F'. Therefore
the variance matrix is the inverse of the Hessian.

The sum of squares of the method of least mean squares S(a) and the negative
log-likelihood function F'(a) are related by:

F(a) = const + %S(a) (3.90)

if the data are Gaussian distributed. From this relation follows that the variance
of a is twice the inverse of the Hessian matrix of S. The practical problems of
the maximum likelihood method arise from the fact that one has to know the
model behind the measured values exactly. Another drawback with respect to
computational minimization algorithms is the requirement of Equation 3.87 that
for every iteration during the minimization process the normalization has to be
calculated which usually can only be done numerically.



Chapter 4

Inclusive Reconstruction and
Identification of b-Hadrons

The following chapter provides an overview of b-hadron reconstruction. For this
purpose a reconstruction package called '"BSAURUS’ [94] has been developed in
Karlsruhe over the last 5 years. In this chapter only the parts of the BSAURUS
package are described which were important for this analysis. BSAURUS makes
extensive use of neural network techniques described in the previous chapter and
is optimized for b hadron reconstruction while the enrichment of bb events was
part of the official DELPHI b-tagging package (AABTAG) [95, 96].

One possibility to distinguish Z° decays into b quarks from decays into light
quarks' is the identification of a high energetic muon or electron with high trans-
verse momentum relative to the jet axis from the semileptonic decay of a b-hadron.
However this method is limited by the semileptonic branching ratio of approxi-
mately 10% each. The usage of high resolution vertex detectors allows a more
efficient tagging of bb events.

Due to the relative long lifetime of a b-hadron of < 7 >= 1.55 ps accompanied by
a high boost due to the hard fragmentation (< Ep >~ 0.7+ Epeqm ~ 30—35 GeV),
a b-hadron can fly several millimeters (< { >~ 3 mm) before its decay. Figure 4.1
shows a bb event together with the vertex detector with two secondary vertices
clearly displaced from the primary interaction point. The b-tagging makes use
of this by defining a so-called 'impact parameter’ for every track, which denotes
the distance of the primary interaction point to the point of closest approach of
the track. According to the projection of the impact parameter to the axis of the
jet the track is assigned to, the impact parameter gets a sign (negative(positive)
if the projection is 'behind’(’in front of’) the primary interaction point). As one
can see from Figure 4.2 the impact parameter significance distribution of uds
quarks is centered around zero, while it is shifted towards positive values for b

ight quarks denote u, d, s and ¢ quarks in this context
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DELPHI
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Figure 4.1: A Z° —
bb event inside the DEL-
PHI vertex detector. Both
decay wvertices are sig-
nificantly separated from

the primary vertex in the
maddle.

quark events (¢ quark events are also slightly shifted due to the finite lifetime
of c-hadrons). The impact parameter is then combined with other additional
event information, e.g. vertex mass, rapidity, jet energy to get a good estimator
for b quark identification. The first part of this chapter gives a more detailed
description on b-tagging.

Essential for this analysis is a reconstruction of b events. The BSAURUS
package provides estimators for the decay length and the momentum of the weakly
decaying b-hadron. From this information the decay time can be calculated.
Additionally the different b-hadron species have to be separated from the others
and enriched to measure the individual lifetimes of b-hadrons.

O data
—— MC uds
—— MC udsc
1 — MCall

DELPHI

Figure 4.2: The significance distri-
bution of the impact parameter. Be-
sides the data and Monte Carlo dis-
tributions the contributions of the
different quark types are also shown.
The surplus at positive values is used
to separate bb events.
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The BSAURUS package starts with the selection of multihadronic events for
which at least 5 charged particles and some energy deposit in the detector is
required. An event is split into two hemispheres, following their two main jets.
A first estimator for the b-hadron energy is provided by the ’rapidity algorithm’.
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In addition the tracks selected by the rapidity algorithm are used to reconstruct
the secondary vertex. Based on these quantities better estimators for the energy
and decay length of the b-hadrons are calculated using neural network techniques.
The second part of this chapter describes the different tools in detail. This part
also contains the description of how different b-hadron species are separated from
each other using a neural network.

4.1 b-Tagging

Using the impact parameter method to tag bb events requires a successful and
precise reconstruction of the primary interaction point. The size and the position
of the electron positron packages are used as a boundary condition. The position
of the mean interaction point is calculated with 200 subsequent multihadronic
events which allows a sufficient statistical precision and the consideration of pos-
sible movements of the particle packages during a fill [97]. The position can be
estimated with a precision of 10 ym in z and 5 pm in y direction. The width in x
direction depends on the run conditions and has typical values between 100 and
120 pm with an error of approximately 7 ym. The width in y direction is much
smaller (< 5 pm), because synchrotron radiation does not enlarge the width in
this direction. To ensure that the reconstruction is not influenced by tracks from
decay products of long living particles (K2, Agy) or by interactions with the de-
tector material, only tracks with more than one VD hit are used. These tracks
are then used to minimize the following x? function:

(Vi) :ZZ—32+ 3 % (4.1)

i:x,y,(Z)

where d, denotes the distance of the track to the primary vertex, o, the according
error, V; the coordinate ¢ of the vertex, b; the position of the mean interaction
point and ¢? its width. In the years with Rz read-out of the VD (since 1994) the
primary vertex is determined in three dimensions, before its position was only
determined in R¢. The fit is done iteratively, dropping the track with the biggest
x? contribution as long as the x? value is above a certain threshold. The resolution
in x and z direction (with Rz read-out of the VD) is for light quark events 22
pm and for bb events about 35 ym. The worse resolution in bb events is due to
the fact that tracks from secondary vertices cannot completely be eliminated and
that the multiplicity at the primary vertex is smaller for bb events.

With the help of this primary vertex one can calculate the impact parameter
significance S for each individual track. S is defined as closest approach of the
track to the primary vertex in the R¢ plane divided by its uncertainty because
the resolution of the VD in R¢ is much better than in Rz. The significance S
is signed positive (negative) if the angle between the vector from the primary
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vertex to the point of closest approach and the jet direction of the associated
track is smaller (larger) than 90°. This leads to positive impact parameters for
decay products of long lived particles. The impact parameters of tracks from the
primary vertex are zero by definition. Due to limited detector resolution they
should have positive and negative significances with equal probability. Figure
4.2 shows the significance distribution for data and Monte Carlo simulation and
the contributions of the different quark types. The distribution for S < 0 is
fixed by the detector resolution and has a Gaussian slope. Deviations from a
Gaussian are caused by wrongly reconstructed tracks (e.g. wrong attachment of
detector hits) and tracks from secondary decays and interactions. The negative
tail of the significance distribution is used to determine the probability function
P(Sy) which denotes the probability that a track from the primary vertex has an
absolute significance value bigger than Sy:

P(So) = { P(—Sy), for Sy > 0. (4.2)
where f(5) is the resolution function determined by the significance distribution
from data.With this track probability P(S;) one can calculate for a group of
N tracks that all N tracks with their measured significances .S; stem from the
primary vertex:

N-1 N
Py=11-> (-InIl)?/j! , with Il = J] P(S,). (4.3)
j=0 1=1
The N-track probability Py can be derived for different sets of tracks, e.g. for all
tracks of an event or only the tracks of one hemisphere. Py is smaller for events
with a long lived particle (e.g. b quark and ¢ quark decays), compared to uds
production and gives therefore the possibility to enhance bb events by cutting on
it.

4.1.1 The Confidence Method

The method described only uses the N-track probability to tag b events. By
adding other variables the performance of the b-tagging can be enhanced. In the
so-called "Confidence Method’ [98] besides the impact parameter significance the
momenta of the tracks and the angles between the tracks and the jet direction
are used. Their distributions for the different quark types are taken from Monte
Carlo simulation. In contrast to the probability method of the previous section
the confidence method tests the hypothesis that tracks have their origin in a
certain quark type (uds, ¢ or b). To enhance b events values around one for the
b hypothesis are required.
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4.1.2 The Combination Method

The b-tagging algorithm can be further improved by making use of the expected
jet structure of the b quark and additional discriminating variables [99]. Therefore
the jet structure of the event was resolved using the JADE algorithm [56] with jet
resolution parameter y., = 0.01. The combination method combines different,
discriminating variables x; to one single variable y. Considering independent
variables one can determine y in the following way:

_ fB(l‘la"'al‘n) . i fB(l‘Z) o T '
- fS(xy, ... xn) ng(xi) —gyz ; (4.4)

where f5(z;) and f°(x;) denote the probability density functions for background
and signal. The procedure is the following:

e for each discriminant variable the probability density functions for signal

and background (fZ(z;) and f(z;)) are determined
e new variables y; = ;i((;z))

e the combined variable y =[]}, v; is calculated

are calculated

e events with y < yo are tagged as signal, where y; can be varied to select
desired purities or efficiencies of the tagging.

This approach is also used in the confidence method. In real life the variables
are not independent, so that the probability density functions depend on all n
variables, which makes it difficult to determine the functions for n > 2. In the
combination method variables are chosen, which are as independent as possible.
Used variables are:

e The most important variable is the N-track probability Py (P]+ in the
plot) based on the impact parameter significance described in the previous
section.

e The sum of four-momentum-vectors of all tracks associated to a jet is calcu-
lated. The invariant mass M; is derived from the jet four-momentum. For ¢
quarks a sharp drop at M, = 1.8 GeV/c? is expected, while the distribution
extends up to M, =5 GeV/c? for b quarks.

e The rapidity R = %ln(?j—;’i) is expected to be bigger for ¢ quarks com-
pared to b quarks due to the lower mass and the lower multiplicity.

e The energy fraction X of charged particles from the secondary vertex
compared to all tracks in the jet is usually higher for b quarks compared to
light quarks.
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The two backgrounds, jets from ¢ and from light quarks, are independent and
different from each other. Therefore the combined b-tag variable can be written
as:

c T q T:
R TS P
where n. and n, denote the fraction of ¢ and uds jets with reconstructed secondary
vertex and f9(z;), f¢(z;) and f°(x;) denote the probability density functions of
the variables x; for uds, ¢ and b quark jets respectively [100]. Figure 4.3 shows
the efficiency vs. purity curve for the individual contributions of the discrimi-
nant variables. One can see that especially the inclusion of the rapidity and the
invariant mass improves the selection at very high purities.
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Figure 4.3: The plot illustrates
the efficiency vs purity behav-
tor of the combined DELPHI
b-tagging calculated for quark
jets. By adding extra informa-
tion from invariant mass My,
rapidity RY and charged en-
ergy fraction X" to the pure
impact parameter tag, the per-
formance is improved dramati-
cally.
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4.2 BSAURUS

One of the properties of b-hadrons is their large number of decay channels (several
thousands) each with a small branching ratio. Standard analyses select specific
decay channels with a clear signature. Using these exclusive channels results,
however, in limited statistics and hence to a severe limitation for studying b
physics. The idea of BSAURUS is to reconstruct inclusively, which means regard-
less of decay channels, as many properties of b jets as possible with high efficiency
and good purity. This is achieved by using physics knowledge about b-hadron
production and decays wherever possible and by exploiting the capabilities of
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the DELPHI detector to their extreme. To get the maximum out of the different
sources of information they are combined using neural network techniques.

The following section gives a step by step overview of the main processing
stages of BSAURUS, where the focus is on properties which are essential for this
analysis.

4.2.1 Multihadronic Selection

BSAURUS starts with an event selection loose enough to provide sufficient free-
dom for individual analyses to apply their selection. However, to ensure that all
quantities can be calculated successfully one has to apply a minimal hadronic
selection. The aim of this selection is the effective suppression of the following
background processes:

e leptonic Z° decays, in particular 777~ events which may have a multi
hadron topology as well

e photon-photon events

e interactions of the beam with rest gas or the beam pipe
Multihadronic Z° events were selected using the following requirements:

e at least 5 charged particles with momenta larger than 400 GeV /¢, a polar
angle between 20° and 60° and a track length of at least 30 cm have to be
reconstructed

e at least 3% of the total energy of the charged particles has to be in each of
the forward and backward hemispheres defined with respect to the beam
axis, where only tracks with a momentum larger than 0.2 GeV /c are counted

e the total charged energy sum of the whole event should be at least 12% of
the center of mass energy, where pion masses are assumed for all particles
to ensure a conservative hypothesis

These requirements, taken from the DELPHI pilot record hadron selection, ensure
a selection of multihadronic events with an efficiency of more than 95% with a
remaining background of less than 1%. The same multihadronic selection criteria
are required for the Monte Carlo sample, based on fully simulated Z° — ¢q events
using JETSET 7.3 [56].
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4.2.2 Standard Particle Selection

Charged particles used by the BSAURUS algorithms must pass the following track
selection criteria:

e impact parameter, with respect to the origin in the R¢ plane
|6R¢| <4 cm

e impact parameter, with respect to the origin in the z plane
|0,] <6 cm

e |cosf| < 0.94
° % < 1.0
e at least one R¢ track from the vertex detector (VD)

e tracks must not have been flagged as originating from interactions with
material

Neutral particles are included that are flagged by the DELPHI mass code as being
a photon, 7%, K9 or A°

4.2.3 Event Jets

Event jets are reconstructed via the routine LUCLUS [101]. The distance of two
clusters? is defined as:

4+ |p;? - | |* - sin®(6;5/2)

d2. = - —
Y (173 + 1751)?

(4.6)

For d;j < djin two clusters are combined. At LEP energies a transverse momen-
tum cutoff value of djy;, = 5.0 GeV/c is used. To define the orientation of an
event, the property thrust is used:
it
T:mm;it@. (4.7)
=1 3 il

The thrust axis is defined by the unity vector 77 for which 7" becomes maximal.
Values of T' lie between 1/2 for isotropic (spheric) events and 1 for two-jet events.

2a cluster consists of one or more particles
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4.2.4 Event Hemispheres

All reconstructed particles, that pass the standard selection, are used to calculate
the event thrust axis described in the previous section via routine LUTHRU [101].
Event hemispheres are then defined by the plane perpendicular to the thrust axis.

Each hemisphere has associated with it two axes: the thrust axis and the
reference axis used for the calculation of rapidity (see Section 4.2.5 below) for
tracks in that hemisphere. The reference axis is a jet axis in the following way:

e In the case of a two jet event, the reference axis for the hemisphere is the
jet axis in that hemisphere.

e If a hemisphere contains 2 or more jets (i.e. an event with 3 or more jets):

— If one of the jets is the highest energy jet in the event, that jet axis
forms the reference axis.

— If the highest energy jet is in the opposite hemisphere, the combined
probability (Pj) for the tracks in a jet to have originated from the
event primary vertex is formed (via the AABTAG package algorithms
[95, 96, 99]).

The jet that is most 'B-like’, i.e. with the smallest probability, is then
selected if Pje; < 0.5.

— If no jet in the hemisphere satisfies the above criteria, the jet with the
highest energy is selected to form the reference axis.

In addition, internally to BSAURUS, the hemispheres are numbered as 1 or 2 with
the convention that the jet forming the reference axis for hemisphere 1 is of higher
energy than that for hemisphere 2.

4.2.5 B Energy Reconstruction

The Rapidity Algorithm

The rapidity of a track is defined as follows,

_lln(E_'_pL
y_2 E_pL

) (4.8)

for E the track energy and py the longitudinal momentum component along the
reference axis for the hemisphere. The rapidity has the property that a Lorentz
transformation modifies it by just adding a constant, i.e. y' = y+ f(3). Particles
from the b decay are peaked at a higher rapidity than fragmentation particles (see
Figure 4.4). The so-called 'rapidity algorithm’ returns an initial estimate of the
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b-hadron candidate four-vector. This is defined simply to be the sum of individual
track momentum vectors in a hemisphere for tracks with rapidity greater than
1.6. The value of the cut provides a good rejection of tracks originating from the
primary vertex while accepting the majority of tracks from the b decay.

Figure 4.4: The b-hadron ra-
pidity distribution. Tracks are
selected from events that are
contained in the barrel and
with 2-jets at a Z° — bb purity
of about 80%. The three differ-
ent shaded areas indicate parti-
cles originating from a weakly
decaying b-hadron (light grey),
fragmentation partner of the b-
hadron (dark grey) and from
the fragmentation (black).

35 4 45 5
Rapidity

Energy Correction

There are still badly reconstructed events which can be rejected by applying the
following requirements:

e the initial reconstructed b candidate energy FE,,, is 20 GeV or more

e the initial reconstructed b candidate mass m,,, lies within two standard
deviations of the total sample median value

e the ratio, xj, of the hemisphere energy Ej.,, to beam energy Epeqn, lies in
the range 0.6 < x, < 1.1

Applying these cuts leads to a reduction of b events of 26%. Monte Carlo studies
show a strong correlation between the generated b energy Ej,... and the recon-
structed energy F,..,. Additional correlations exist between the energy residuals
AE = Eru — Eywn and myq, (which is approximately linear in m,q,) and
between AFE and x, caused by energy losses due to neutral particles and ineffi-
ciencies. To improve the energy resolution and to get a better estimator for the
energy a correction is applied which accounts for these inefficiencies and neutral
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energy losses. The starting point of this correction are the initial estimates of
the b energy and mass, F,.., and m,.,. Following Monte Carlo studies, these
estimates are chosen to be from the rapidity algorithm for events with > 2 jets
and where z;, > 0.6, and to be derived from the sum of ’b weighted’ four-vectors
otherwise. This involves weighting (via a sigmoid threshold function) the mo-
mentum and energy components of charged tracks by the weights derived from
a neural network, called "TrackNet’, which separates fragmentation tracks from
b-hadron decay tracks (see Section 4.2.8). Neutral particles are weighted by their
rapidity. In this way the effect of tracks from the b decay are enhanced and tracks
from the primary vertex are suppressed. The correction proceeds in the following
way: The data are divided into several samples according to the measured ratio
xp, and for each of these classes the b energy residual AFE is plotted as function
of Mmy,4w. The median values of AFE in each bin of m,,, are calculated and their
Mrqw dependence fitted by a third order polynomial

6(mraw; .'L'h) = a+ b(mraw_ < Myaw >) + C(mraw_ < Myaw >)2 (49)
+d(mraw_ < Myaw >)3

The four parameters a, b, ¢ and d in each x;, class are then plotted as a function
of x;, and their dependence fitted with third and second-order polynomials. Thus
one obtains a smooth correction function describing the mean dependence on
Mraw and the hemisphere energy as determined from the Monte Carlo. Finally,
a small bias correction is applied for the remaining mean energy residual as a
function of the corrected energy.

In addition, for the case of hemispheres with larger missing energy, i.e. z), <
0.6, a further correction is derived separately for hemispheres 1 and 2.

The procedure described above leads to a single estimate of the b-hadron
energy. The resolution of the reconstructed b-hadron energy is shown in Figure
4.5 together with the resolution of the raw energy estimator from the rapidity
algorithm alone.

4.2.6 Inclusive Secondary Vertex Finding

To fit a secondary vertex tracks of the observed hemisphere are selected which
pass the track selection criteria of Section 4.2.2 and with rapidity > 1.6. To this
class of tracks, additional criteria are applied with the aim of selecting tracks for
the vertex fitting stage that are likely to have originated from the decay chain
of a weakly decaying b-hadron state. It is important to reject as far as possible
tracks from the fragmentation in order to avoid large pulls in the vertex position
toward the primary vertex. To apply a secondary vertex fit at least two tracks
have to be selected. The selection process is as follows:

1) the highest energy muon or electron candidate is selected if Ejepon, > 3 GeV
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2) the crossing point of each track with the initial b candidate direction vector
(see Section 4.2.5) is found and the distance, L, between primary vertex®
and crossing point is calculated. Tracks are selected if L/o;, > 2 or, for
cases where L/o;, < 2, tracks must satisfy y > 2.5 and L > 0.1 cm as well.

If at this stage the number of tracks selected for the fit is less than 2, further
attempts are made to add tracks to the fitting procedure. When this happens in
bb events, it is likely that the true decay length of the b-hadron was small. If only
one track was found in the previous stages:

3) add tracks with y > 3

4) if still only one track is selected, add the track of highest rapidity from the
remaining track list of the hemisphere

If no track was selected from the previous stages:

5) A search is made for the best kaon candidate in the hemisphere based on a
neural network (included in the MACRIB [102] package) using information
from particle identification components of the detector. If this kaon candi-
date has y > 2 it is added to that track in the remaining track list of the
hemisphere that has the highest rapidity. This track pair alone will then
form the starting track list for the vertexing procedure

3Unless otherwise stated, the primary vertex definition in BSAURUS is the event primary
vertex from the AABTAG package.
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6) Finally if no kaon candidate exists in the hemisphere, the two tracks of
highest rapidity are selected.

Using the track list supplied by this track selection process, a secondary vertex
fit is performed in 3 dimensions (using routine DAPLCON from the ELEPHANT
package [103]) constrained to the direction of the B candidate momentum vec-
tor. The event primary vertex is used as a starting point and if the fit is not
acceptable?, the track making the largest y? contribution is stripped away in an
iterative procedure and the fit repeated.

In addition to returning the secondary vertex position, the procedure also fits
the primary vertex position and updates the B candidate direction according to
the vector joining the primary and secondary vertex points. This information is
used in forming some of the input of the TrackNet as described in Section 4.2.8.

Once a convergent fit has been attained, the final stage of the secondary vertex
fitting procedure involves an attempt to add into the fit tracks that failed the
initial track selection criteria but nevertheless are consistent with originating from
the vertex. These tracks are identified on the basis of an ’intermediate’ version
of the TrackNet. This is a neural network output that discriminates between
tracks originating from the primary vertex and those likely to have come from
a secondary vertex. An intermediate version of the TrackNet is constructed,
specifically for the purpose of use in this final stage of vertex fitting, based on
secondary vertexing information available before this final stage has run. In
general, secondary vertex tracks have TrackNet output ~ 1 whereas tracks from
the primary vertex have TrackNet values close to zero. The track of largest
TrackNet output in the hemisphere is added to the existing track list and retained
if the resulting fit converges. This process continues iteratively for all such tracks
with TrackNet output > 0.5. The resolution of this standard BSAURUS vertex
algorithm is shown in Figure 4.6.

4.2.7 Decay Length and Decay Time

The b-hadron decay length estimate in the R¢ plane , Lgy, is defined as the
(positive) distance between the primary and secondary vertex positions recon-
structed from the secondary vertex search described in the previous Section. The
3-dimensional decay length is constructed as L = Ly, / sin(f), where the b-hadron
candidate momentum vector, P, detailed in Section 4.2.5, defines the direction.
The resulting proper decay time estimate is given by t = Lm;/pyc, where the b
rest mass is taken to be 5.2789 GeV/c?.

“Here, 'not acceptable’ means the fit took more than 20 iterations. A further iteration is
deemed necessary if the 2 is above 4 standard deviations during the first 10 iterations or above
3 standard deviations during the next 10 iterations.



CHAPTER 4. INCLUSIVE RECONSTRUCTION AND IDENTIFICATION
94 OF b-HADRONS

Entries
=
2
T

Figure 4.6: The decay length
resolution for the standard ver-
tex algorithm of BSAURUS 1is

12000 ~

10000 B

I Wllustrated.  The rather large
8000 | forward bias s clearly wvisi-

I ble. Three Gaussians were fit-
6000 - ted to the distribution with:
4000 - I, =122pum o, = 246 um

} l, =385um o, = 648 um
2000 |- Is =941 pm o3 = 2039 um

L puarsiral R R NSO RN RN AN RR
O—0.4 -03 -02 -01 0 0.1 0.2 0.3 0.4

[cm]

4.2.8 The b-Track Probability Network (TrackNet)

The rapidity algorithm separates already tracks from fragmentation and from
the b decay chain quite good. To get a better separation several discriminating
variables are combined via a dedicated neural network, the "IrackNet’, which
calculates for every track the probability of the track originating from a weak b
decay.

Only tracks passing the standard quality cuts of Section 4.2.2 are considered.
The discriminating variables that form the input to the network per track are:

e the track total momentum
e the track momentum in the b candidate rest frame

e the helicity angle of the track defined as the angle between the track vector
in the b candidate rest frame and the b candidate momentum vector in the
lab frame

e a flag to identify whether the track took part in the secondary vertex fit or
not

e the probability that the track originates from the fitted primary vertex
(AABTAG algorithm)

e the probability that the track originates from the secondary vertex (AAB-
TAG algorithm)
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e the probability that the track originates from the fitted primary vertex

(Bsaurus algorithm)

e the probability that the track originates from the secondary vertex

e the track rapidity

(Bsaurus algorithm)

In addition, input variables that gave no inherent discriminating power were in-
cluded to inform the network of the potential quality of the other input variables:

e The decay length or distance between the primary and secondary vertex in
the R¢ plane. This quantity is then scaled by the reconstructed error to
form a decay length significance.

e the track quality word which contains flags according to ambiguities, tracks
coming from secondary interactions, etc. (for more details see [94])

For the training of the network tracks from fragmentation where attached to
the network output zero and tracks from the b decay chain where attached to
The network output of the TrackNet is illustrated in
Figure 4.7. One can clearly see the good separation power between b decay and
fragmentation tracks.

the network output 1.
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Figure 4.7:  The TrackNet
output distribution for Monte
Carlo compared to the data.
Tracks are selected from 2-
jet events that are contained
in the barrel and are about
90% pure in Z° — bb events.
The three shaded areas indi-
cate particles originating from
the b-hadron decay chain (light
grey), fragmentation or excited
b-hadron decay (dark grey) and
any tracks from non-b-decays
of the Z° (black).
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4.2.9 Vertex Reconstruction

In Figure 4.6 the decay length resolution of the standard BSAURUS vertex al-
gorithm of Section 4.2.6 is shown. Clearly visible is the rather large bias in
the direction of larger decay lengths. Starting from the standard secondary ver-
tex described in Section 4.2.6, four independent algorithms were implemented
in BSAURUS with the aim of improving the decay length resolution and mini-
mizing any forward bias resulting from the inclusion of tracks from the vertex
of the cascade D decay in the b decay vertex reconstruction. These algorithms
were based on a neural network (BDnet) designed to discriminate between tracks
whose origin was the weakly decaying b-hadron and tracks that originated from
the subsequent decay of the cascade D meson®, This section gives a brief descrip-
tion of these four algorithms after explaining the B-D separation net (BDnet).

B-D Separation (BDnet)

In selecting tracks for inclusion in the b secondary vertex fit described in Section
4.2.6, there is inevitably some background from tracks that originate not from the
b decay vertex directly, but from the subsequent D cascade decay point. The effect
of including such tracks is illustrated in Figure 4.8 exhibiting that, on average,
the b decay length estimate reconstructed by BSAURUS lies somewhere between
the true b decay point and that of the D. The BDnet is a neural network designed

22500 T

Entries

- f Figure 4.8:  Comparison of
17500 (L(rec) — L(B)) to (L(rec) —
L(D)) illustrating that the re-
, constructed decay length is of-
12500 - ten larger than the true b decay
i length but less than the true D

15000 [

10000 .
g cascade decay length. The ori-
7500 |- gin of this pull to larger decay
co0 | L(rec)-L(D) L(rec)-L(B) lengths is the inclusion of one
. / or more tracks from the D ver-
2500 |- tex.
%6 o2 0z 0 0z o4 o6
[cm]

to discriminate between tracks originating from weakly decaying b-hadrons and

°A B meson usually decays to a D meson: B —+ D — K. This is called a decay cascade.
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those from subsequent D meson decay cascade. The following discriminating
variables are used:

e the angle between the track vector and the estimate of the flight direction
of the b which was derived from the b-hadron four-momentum vector (see
Section 4.2.5)

e the probability that the track originates from the fitted primary vertex
(AABTAG algorithm)

e the probability that the track originates from the fitted secondary vertex
(AABTAG algorithm)

e the momentum and angle of the track vector in the b rest frame
e the TrackNet output
e kaon identification information (KaonNet see [102] for details)

e lepton identification information

The remaining variables carry no implicit discriminating power but are included
as gauges of the quality of the other variables

e the track quality word (already mentioned in Section 4.2.8)

e the hemisphere quality word for the whole hemisphere which contains flags
according to e.g. the number of secondary interactions, tracks containing
detector hits that could equally well fit to other tracks in the vertex detector
(so-called ambiguities) or the number of tracks in the hemisphere which are
excluded by selection etc. (for more details see [94])

e the decay length significance of the hemisphere, L/o/,
e the secondary vertex mass of the hemisphere

e the hemisphere rapidity gap between the track of highest rapidity below a
TrackNet cut at 0.5 and the smallest rapidity above the cut at 0.5.

The output of the BDNet is shown in Figure 4.9 for simulation and data for tracks
with TrackNet > 0.5. The two classes the network was trained on are shown in
the histogram, namely tracks originating from cascade D decays (light grey) and
all other tracks which are mainly tracks from the b decay (dark grey). The main
reason for the small discrepancy between data and simulation are the different D
branching ratios which are not known with sufficient precision.
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Figure 4.9:  Output of the
BDNet  for tracks in simu-
lation (histogram) and data
(points), for tracks with Track-
Net > 0.5. The component
histograms show the distribu-
tion for cascade D decay tracks
(light grey) and B decay tracks
(dark grey).
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The Strip-Down Method

The basic idea of the Strip-Down algorithm is to select candidate tracks most
likely to come from the weakly decaying b, excluding tracks from the decay cas-
cade. Therefore candidate tracks are selected if they have a TrackNet output
larger than 0.5 and BDNet value less than zero. Monte Carlo studies have shown
that this BDNet cut gives an optimal decay length resolution for the Strip-Down
fit.

A secondary vertex fit is performed if 2 or more tracks are selected. If the fit is
not acceptable (within the same criteria as for the standard BSAURUS secondary
vertex fit described in Section 4.2.6) and more than two tracks are originally
selected, the track with the highest x? contribution is removed® and the fit re-
peated. This procedure continues iteratively until convergence is reached or only
two tracks are left. The fit is constrained by the direction estimated from the
b-hadron four-momentum reconstruction and the starting point of the fit are the
secondary vertex coordinates of the standard fit.

Improving the resolution by this way, however, has a draw-back. In a lot
of events less than two candidate tracks are selected or the fit with the two
finally selected tracks did not converge. This leads to an overall efficiency for
this algorithm of around 44% in b events depending slightly on event selection
criteria.

6This stripping procedure of tracks from the fit is responsible for the name of the algorithm
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The Build-Up Method

In the Build-Up algorithm a seed vertex was formed by those two tracks with
TrackNet bigger than 0.5 and smallest BDNet values. The two selected tracks
have the highest probability to come from a weakly decaying b-hadron. If the
invariant mass of all remaining tracks with TrackNet > 0.5 exceeds the D mass’,
that track with the lowest BDNet output is added to the seed vertex definition
and was also fitted to a common vertex with the two seed tracks. This process
continued iteratively until either the fit failed to converge or the mass in remaining
tracks dropped below the D meson mass. Finally all the candidate tracks are

fitted to a common vertex.

The Build-Up vertex has an efficiency of about 83% in b events which is better
than for the Strip-Down algorithm. However, it has the drawback that the bias
from the D vertex is hardly removed.

The D-Rejection Method

In the D-rejection method, a vertex of the candidate cascade D was built by
applying the opposite BDNet selection criteria to the Strip-Down method i.e.
candidate tracks were selected if they satisfied TrackNet output bigger than 0.5
and BDNet value greater than zero. The fit started with two tracks. Then
additional tracks were added until the fitted vertex exceeded the D mass. The b
candidate vertex was then fitted using the Strip-Down algorithm but applied to
all tracks except those already selected for the D vertex. Here the efficiency for
this algorithm is around 40%.

The Semileptonic Algorithm

The semileptonic algorithm attempted to improve the vertex resolution for the
case of semileptonic decays of b-hadrons where energy has been carried away
by the associated neutrino. When there was a clear lepton candidate in the
hemisphere, the algorithm reconstructed a cascade D candidate vertex in a similar
way to the D-rejection method but with the lepton track excluded. The tracks
associated with the vertex were then combined to form a ’D candidate track’
which was extrapolated back to be vertexed with the lepton track and so make
the b candidate vertex.

In only 16% of all b events this method converges due to the fact that only
~ 21% of all b-hadrons decay semileptonically.

TA D mass is taken to be 1.7 GeV/c?.
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Comparison of the Different Vertex Algorithms

Figure 4.10 illustrates the four different vertex algorithms in comparison with the
standard BSAURUS algorithm. In each plot only b events where used and only the
subset of events where the vertex algorithm converged. The distributions were
then normalized according to the standard algorithm. One can clearly see, that
the Strip-Down fit removes the forward bias. Also visible is a slight improvement
of the resolution. Also for the other vertices the resolution is slightly improved.

As stated earlier the overall efficiency for the different vertices are 44%, 83%,
40% and 16% for the Strip-Down algorithm, the Build-Up Method, the D rejec-
tion method and the semileptonic algorithm respectively. The combined efficiency
of requiring either one of the first three algorithms (the semileptonic algorithm
is only accessible for semileptonic decays) is 83%, which shows that around 17%
of the events are not accessible to either one of the algorithms. Monte Carlo
studies have shown that those events often have badly reconstructed tracks and
their resolution within the standard algorithm is bad. These events have a mean
resolution of approximately 780 pm with a huge tail and are not usable in the
analysis.

4.2.10 The b-hadron Identification Network

The following section describes an attempt to decide in each hemisphere whether
the hemisphere contains a B+, B°, B, or a b-baryon®.

For this purpose a neural network consisting of 15 input nodes, described in
detail below, 17 nodes in the single hidden layer and 4 output nodes was trained.
Each output node delivers a probability for the hypothesis it is trained on i.e. the
first supplies the probability for a B, meson to be produced in the hemisphere,
the second for a B® meson, the third for charged BT mesons and the fourth for
all species of b-baryons. One of the input variables is the secondary vertex charge
which will now be described in more detail than the others.

The Inclusive Secondary Vertex Charge

The weighted vertex charge is formed using the TrackNet value as a probability
Py for each track of one hemisphere to originate from the b-hadron decay vertex
rather than from the primary vertex:

Npem

Rp = Z Py(i) - Q(i) (4.10)

8The charge conjugate states are also implied
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Figure 4.10: The upper left plot shows a comparison of the Build-Up and the
standard algorithm normalized to the standard algorithm distribution. The upper
right plots shows the same for the Strip-Down vertex. The bottom plots show the
D rejection method and the semileptonic algorithm. It is clearly visible that the
Strip-Down vertex nearly removes all forward bias and improves the width of the
distribution. For the other algorithms the effects are weaker, but an improvement
of the forward bias is also visible.
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This vertex charge distinguishes between charged and neutral b-hadrons and is
illustrated in Figure 4.11. Using binomial statistics one can define an estimator
for the error of the vertex charge:

o0 = J > Poli)(1 - Pa(i) (411)

Therefore the vertex charge cannot be estimated with high precision if one or

38000 |-
= t Mhadron contains anti-quark
“ 2000 |- , Figure 4.11: The wvertex
- Lhadron contains quar . )
: charge  wvariable  comparing
6000 [ - . ) .
" Mnon-bb background data (points) to simulation
5000 | (histogram)  and  showing
, separately the contributions
4000 - from positively and negatively
oo | charged b quarks and from non
’ b events. In addition charged
2000 | b-hadrons are peaked around
, +1 and neutral b-hadrons are
1000 peaked around zero.
05" - 1

0 1 2 3
Secondary Vertex Charge

more tracks have a probability Py around 0.5. The bigger the gap Ag between
the biggest Pg below 0.5 and the smallest Pg above 0.5 the better the charge
reconstruction. Therefore a large hemisphere multiplicity leads to a high error
0gy- Another error source which cannot be excluded by a cut on og, are
wrongly reconstructed tracks, so-called 'ghost tracks’. These events are instead
coded in a variable called hemisphere quality word.

In detail, the inputs of the b species identification network are the following;:

e the secondary vertex charge described above to distinguish between charged
and neutral b-hadrons

e the binomial error on the vertex charge

e the number of charged pions® in the hemisphere. This is most powerful
for the case of b-baryons and B, mesons, which have a higher content of

9tracks not identified as proton, kaon or lepton are called pion’
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non-pion particles i.e. neutrons, protons and kaons in comparison to other
b species.

the total energy deposit in the hemisphere by charged and neutral particles
scaled by the LEP beam energy. This is sensitive to the presence of b-
baryons and B, mesons, due to the fact that associated neutrons and K9
are often not reconstructed in the detector, with the consequence that the
total hemisphere energy tends to be smaller compared to B™ or B} mesons.

B, mesons are normally produced with a charged kaon as leading!® frag-
mentation particle with a further kaon emerging from the weak decay (the
same applies to the associated production of protons with b-baryons). Ex-
ploiting this fact, input variables are constructed giving the likelihood for
the presence of a leading fragmentation kaon/proton and a kaon/proton
weak decay product, for each of the two hypotheses: By or b-baryon.

Utilizing Monte Carlo truth information, normalized track rapidity distribu-
tions were parameterized with Gaussians separately for the case of leading
fragmentation tracks and b decay products. These were then used to form
a weight per reconstructed track which was summed over to give a variable
on the hemisphere level.

the leading fragmentation track can often be neutral (e.g. K2 associated
with By meson production or A? associated with b-baryon production). An
input was therefore constructed based on the presence of a reconstructed
K? or A” in the same way as for charged kaons and protons described above.

an additional approach, independent of the one mentioned before, is made
to get a measure of the probability for the leading fragmentation particle
to be a charged kaon. Specifically, the maximum kaon net output from the
three tracks with highest rapidity originating from the primary vertex (via
the condition TrackNet < 0.5) was used.

a charge correlation between the leading fragmentation particle charges and
the secondary vertex charge provided a flag for the presence of charged b
mesons. Specifically, the rapidity-weighted track charge sum over all tracks
in the hemisphere is formed and scaled by the measured vertex charge.

In addition, input variables that give no inherent separation power between dif-
ferent b species were included to inform the network of the quality of the other
input variables:

0The term leadingrefers to the neighboring hadron to the b-hadron that emerges from the
fragmentation chain. This particle is identified in practice from the fact that it often has the
largest rapidity with respect to the b-hadron flight direction.
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e the invariant mass of the reconstructed vertex
e the hemisphere quality word already mentioned in Section 4.2.9

e the energy of the b-hadron, to provide information on how hard the frag-
mentation was and therefore inform the network of how the available energy
is expected to be shared between the b-hadron and fragmentation products

The network was trained with an equal number of b-hadrons of each species. The
output of the Single Hemisphere B-species identification Networks (SHBN) in
both simulation and data is shown in Figure 4.13 and the resulting performance of
the SHBN is shown in Figure 4.12. The best performance is achieved for charged
b-hadrons, while By mesons are hard to separate from the BY background. The
performance can be further improved by the combination of charge correlation
information from the opposite hemisphere to form the Both Hemispheres B-
species identification Network or BHBN. This network is described in Section
4.2.12.

4.2.11 Flavor Tagging

To reconstruct the flavor content of a hemisphere, i.e. tagging the b quark charge
(equivalent to the flavor) of a b jet one can use the charge correlation of a cascade
decay of a b quark (b — ¢W ™ followed by W~ — [~ ) between the lepton charge
and the b quark charge. Unfortunately leptons can be produced with opposite
or 'wrong sign’ (in D cascade decay). All in all this method is not very efficient
because of the small semileptonic branching fraction of about 10%.

In an attempt to use the information available optimally, the BSAURUS ap-
proach is tagging the b quark charge by first constructing a track probability and
then combining them to give a probability at the hemisphere level.
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Figure 4.13: Qutput of the SHBN network for the BY, B, By and b-baryon hy-
potheses in simulation (histogram) compared to the data (points). The component
histograms in each case show the distribution for the hypothesis being considered,
i.e. the 'signal’ (open histogram), compared to the distribution for everything else,
i.e. the ’background’ (shaded histogram,).

Several neural networks are trained to tag the underlying quark charge for
the cases of a BT, B?, B, or b-baryon in the hemisphere. In addition two sets
of such networks are performed, one trained only on tracks originating from the
fragmentation process and the other trained only on tracks originating from weak
b-hadron decay leading to 8 individual networks. This separation of decay and
fragmentation is vital for e.g. oscillation analyses where one has to tag the flavor
at decay and production time separately.

These b species dependent flavor networks are combined with the b-hadron
identification network (SHBN) described in Section 4.2.10 into a single flavor
estimator, i.e. the production flavor.

Track Level Flavor Tagging

The basis of optimal flavor tagging is to construct, at the track level, the con-
ditional probability for the track to have the same charge as the b quark in the
b-hadron both at the moment of fragmentation (i.e. production) and at the mo-
ment of decay. In addition, these probabilities are constructed separately for each
of the b-hadron types Bt, B°, B, and b-baryon.
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A neural network is used with a target output value of +1(-1) if the track
charge is correlated (anti-correlated) with the b quark charge. The discriminating
input variables used are the following:

e particle identification variables: kaon, proton and electron net (see [102] for
details). Muon classification code (see [104, 105])

e B-D vertex separation variables (only used for decay flavor nets): the track
momentum in the b-hadron rest frame, the BDNet output and %%mm)
where BD is the BDNet output, BD(min) is the minimum BDNet value
for all tracks in the hemisphere above a TrackNet value of 0.5, and ABD

is the difference between BD(max) and BD(min)

e track level quality variables: the helicity angle in the b rest frame, the track
quality word, the TrackNet output and the track energy

e hemisphere-level quality variables: the rapidity gap (see 4.2.9), the hemi-
sphere quality word, the number of tracks passing the standard cuts (Sec-
tion 4.2.2) and with TrackNet > 0.5, ABD as defined above, the secondary
vertex mass, the secondary vertex x? probability, b energy divided by beam
energy and the error on the vertex charge

In total the track decay flavor network uses 19 input variables, while the track
fragmentation uses 14 variables (the B-D information is not valid for fragmenta-
tion tracks and the lepton identification is also not used).

Hemisphere Level Decay and Fragmentation Tags

To obtain a flavor tag at the hemisphere level, the conditional track probabilities
described above, P(same Qli)? where i = BY, B° B, or b-baryon and j =
fragmentation or decay, are combined as the likelihood ratio,

F(hem)l = 3 In

tracks

(1 + P(same Qli)?

= P(same Q|i)j> - Q(track) (4.12)

where Q(track) is the track charge. The tracks used in the likelihood sum are
tracks with TrackNet > 0.5 for the decay flavor hypothesis and tracks with Track-
Net < 0.5 for the fragmentation flavor hypothesis.

The Same Hemisphere Production Flavor Network (SHPN)

The hemisphere flavor tags described in the previous Section form the major
input to a further dedicated network, the Same Hemisphere production flavor
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Network or SHPN. This network attempts to find the optimal combination of
fragmentation and decay flavor, for each b species hypothesis, in order to tag the
b-hadron quark flavor at production time. The network is constructed indepen-
dently of any information from the opposite hemisphere, primarily so that the
output can be used for a forward-backward asymmetry (Apz(bb)) measurement
[106] incorporating double-hemisphere flavor tag methods.

The 9 input variables used for the network are:
[ ] F(hem)g:ag . PSHBN(BS) ,11

(F(hem)Bs* — F(hem) i) - Psupn (B")

(F'(hem)Pec — F(hem). ™) - Poypy (bary.)

bary. bary.
(F(hem)[B’?‘jC- (1—2sin*(2247)) — F(hem)ggag) - Psupn(BY), where 7 is the
reconstructed b lifetime calculated from the decay length of the standard
vertex fit and the b-hadron momentum estimate. This construction takes
into account the BY oscillation frequency found in the simulation. This is
not possible for the case of By where the oscillations are so fast that we
have essentially a 50%-50% mix of By and B;.

e The jet charge, which is defined as,

Q't:Zin‘Wﬁi'ﬂn
S O

where the sum is over all tracks and ¢ denotes the thrust axis defined in
Section 4.2.3. The optimal choice of the free parameter x depends on the
type of b-hadron under consideration. For this application we choose a
range of values £ = 0.3, 0.6, oo, forming individual input variables where
the last value corresponds to taking the charge of the track with highest
momentum in the hemisphere.

(4.13)

e the vertex charge and its significance

The treatment of quality variables is slightly different for this network compared
to other BSAURUS networks. In this case, in order to ensure that the output
is inherently symmetric with respect to opposite charges, the quality variables
are used to weight the turn-on gradient (or 'temperature’) of the sigmoid func-
tion used as the network node transfer function. This restriction is especially
important for analyses such as measurements of Ay p(bb) which to first order im-
plicitly assume that the charge tag used is symmetric with respect to quark and
anti-quark. The quality variables used were:

Y Py pn (Bs) denotes the By mesons probability given by the b-hadron identification network
(SHBN)
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the hemisphere quality word

the hemisphere rapidity gap

the error on the vertex charge

e the ratio of the b energy to the beam energy

The result of the network is plotted in Figure 4.14 for data and simulation.
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4.2.12 Both Hemispheres B-Species Identification Net-
work (BHBN)

The performance of the SHBN (Section 4.2.10) can be further improved by use
of the hemisphere flavor tags developed in the previous Section and by the intro-
duction of charge correlation information from the opposite hemisphere to form
the Both Hemispheres B-species enrichment Network or BHBN. The variables
concerning the flavor of B® mesons also contain oscillation information in an ex-
plicit form, namely the oscillation probability which is proportional to cos(Amyt)
where Amy is the mixing frequency.

In the same way as for the SHBN, the BHBN is a network with four output
target nodes, one for each B type, 16 input nodes and two hidden layers consisting
of 20 and 10 nodes respectively. The input variables used, ignoring some details of
variable scaling and transformation, are as follows: We define the variable, F'L,,,,
which is a function of the production flavor tag SHPN (see previous Section) in
the opposite hemisphere, but scaled by a function in 1 — cos(#) in an attempt to
explicitly account for the b quark forward-backward asymmetry,

F Ly, = In(SHPN (opp)/(1 — SHPN (opp))) — (4.14)
In((0.5 —0.12 - cos(6))/(0.5 4+ 0.12 - cos(#)))
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The discriminating variables used are:

e SHBN probability Psypn (i) for all four species i

o F(hem)Pe . (F Loy, — F(hem)!f™) for all four species i

[

o F(hem)Pe . (FLopy — F(hem)f™™) - Psypy (i) for all four species i

[

® 'Ly, - F(hem)y; ™

Where the F'(hem) terms are the hemisphere flavor likelihood ratios described in
the previous Section. The quality variables used are:

e the hemisphere quality word
e the hemisphere rapidity gap

e the ratio of the b energy to the LEP beam energy

The outputs of the BHBN are plotted in Figure 4.15. The resulting performance
of the network is shown in Figure 4.16.

4.2.13 Reconstructing the b-Hadron Energy by a Neural
Network

A neural network was trained to reconstruct the energy of the weakly decay-
ing b-hadron, and a Bayesian interpretation to the network output was applied
in order to return a conditional probability density function for the energy on
a hemisphere-by-hemisphere basis. In a first step the algorithm took as input
the true, i.e. generated, b-hadron energy distribution of a training Monte Carlo
sample and transformed it into a uniform distribution in the interval [0,1]. The
transformed distribution was then sampled at N equidistant levels, each contain-
ing the same number of entries. For each of these levels, a separate output node of
a simple feed-forward neural network was trained using back-propagation to the
binary classification problem: ’is the true energy value above the level threshold
value’ vs ’is the true energy value below the level threshold value’. The network
outputs were filtered through a sigmoid transfer function and a cubic B-spline
fitted through the N net output values. Finally, this spline was interpreted as
an estimator of the cumulative probability distribution function (p.d.f.) of the
true energy value for a given event and can be regarded as a hemisphere-by-
hemisphere unfolding of the input b-hadron energy distribution. The median'?

2hecause it is more robust than the mean
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Figure 4.15: Output of the BHBN network for the BT, B°, B, and b-baryon hy-
potheses in simulation (histogram) compared to the data (points). The component
histograms in each case show the distribution for the hypothesis being considered,
i.e. the 'signal’ (open histogram), compared to the distribution for everything else,
i.e. the ’background’ (shaded histogram,).

(and associated error) of the estimated p.d.f. then defines the b energy (and error
on the energy).

For the network training, sixteen input variables were chosen, which included
different estimators of the energy available in the hemisphere together with some
measures of the expected quality of such estimators e.g. as given by such quan-
tities as hemisphere track multiplicity and hemisphere reconstructed energy.

The most powerful input variable, with a correlation of 73% to the true b
energy , was the corrected energy E... (see Section 4.2.5). For completeness, the
full list of variables input to the energy network were:

e the scaled hemisphere energy wpem

e the raw energy estimate from the rapidity algorithm E, .,
e the rapidity mass 4y

e the corrected energy FE o,

e the total hemisphere energy normalized by an estimate of the center of mass
energy E, ..., given by considering the Z° to decay into the two-body final
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state of a b-jet with mass M, recoiling against all other particles in the
event with mass M,ecoi, i.€. in the rest frame of the Z°:

2 2 2
‘]\4Z0 B Mrecoil + Mb—jet

Ecom. =
e 2'M20

(4.15)

an estimate of E, , ,,. as given by Eqn. 4.15 where M,....;; is based on charged
tracks only. In the hemisphere containing the b candidate, only tracks likely
to have originated from the fragmentation process are selected (by use of
the TrackNet) whereas all tracks are used in the opposite hemisphere.

a further estimate of E.,,,. as given by Eqn. 4.15 where neutrals from the
opposite hemisphere are also included in the formulation of M, ...ou

an estimate of the missing momentum p; between the b candidate direc-
tion and the thrust axis calculated using only fragmentation tracks in the
same hemisphere as the b candidate (via use of the TrackNet) and all tracks
in the opposite hemisphere. The calculation is repeated for two different
definitions of the b direction: one being the vector pointing from the re-
constructed primary vertex to the reconstructed secondary vertex and the
other given by the vector ﬁmw.

the reconstructed secondary vertex mass
the polar angle of the b candidate momentum vector

the difference between the number of tracks in the event passing the selec-
tion cuts (described in Section 4.2.2) and the number of such tracks that,
in addition, pass a TrackNet cut of 0.5.

the probability that the best electron or muon candidate in the hemisphere,
with the correct charge correlation, originates from the b candidate
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e the hemisphere rapidity gap
e the (binomial) error of the vertex charge measurement

e the hemisphere quality word

The training sample was required to pass a combined b-tagging cut of ¥ > 0.5
and lie in the DELPHI barrel region i.e. |cosfyuse| < 0.75. The final b energy
resolution from Monte Carlo is plotted in Figure 4.17 and shows a Gaussian peak
with non-Gaussian tails.
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Chapter 5

Studies of a b-Hadron Lifetime
Measurement using a Likelihood
Method

This chapter contains a study of the measurement of specific b-hadron lifetimes,
especially Bs; mesons and b-baryons, using a maximum Log-Likelihood method.
This method requires a precise modeling and parameterization of the detector
acceptance, the resolutions in momentum and decay length and the background.
All these ingredients are presented in detail. After that, it is explained how these
parameterizations are put together to form the Likelihood formulation. Finally
the results of Monte Carlo studies are given which show, that the used method
is not robust enough to extract high precision results from data. One possible
reason is, that the modeling is not complex enough to account for correlations
between measured variables. To have a better model which accounts for these
features more Monte Carlo statistics would be necessary.

The first part of the chapter describes briefly the Monte Carlo generator. The
sample consists of two parts, a multihadronic event simulation with Z° — ¢q
events and a sample with simulated Z° — bb events only.

The second part of this chapter describes the event selection. The fundamental
requirements are a selection of multihadronic events like already mentioned in
the previous Chapter, a cut on the b-tagging, which ensures a bb sample purity
of approximately 94% and a successful run of BSAURUS which ensures a fitted
secondary vertex for every event hemisphere. Additional requirements to improve
the quality of the sample were the successful application of the Strip-Down algo-
rithm and a cut on the relative expected vertex fit error.

The next Section is dedicated to the modeling of the detector acceptance. The
reconstruction efficiency is a function depending strongly the decay time. With
smaller decay times the distinction of the secondary and the primary vertex be-

113
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comes more and more difficult. Especially the small lifetime region has therefore
to be modeled correctly.

The next Section shortly presents the parameterization of the non-b background
which turned out to be not very critical.

Optimal performance can only be reached if the events are classified with respect
to their decay length and momentum resolution. Events with good resolution get
a higher statistical weight during the fitting routine. The classification is based
on the true decay length and the true momentum, both taken from simulation.
In addition, the decay length resolution is classified into five momentum classes
in order to account for correlations between momentum reconstruction and decay
length reconstruction. For the mathematical treatment of the resolution functions
in the fitting routine it is necessary to transform the resolution distributions in
analytically accessible functions, which is described in this Section as well.

The next Section describes how all the above mentioned ingredients are put to-
gether to form a maximum Log-Likelihood fit including the procedure to tag
b-hadrons. The results of Monte Carlo studies are presented.

The chapter concludes with a summary and a short discussion of the failure of
this approach in reproducing the Monte Carlo lifetimes.

5.1 The Monte Carlo Simulation

For this study, simulated samples were created consisting of 4173514 Z° — qq
event hemispheres for 1994. The LUND parton shower Monte Carlo program
JETSET 7.3 [56] was used where the parameters of the simulator were adapted
for DELPHI. The detector response has been simulated with DELSIM [55].

Additionally a Monte Carlo sample containing 3066132 Z° — bb event hemi-
spheres for 1994 was created to overcome problems with statistical limitations
in the parameterization process. The parameters in the simulation which are of
special importance for b physics can be found in Table 5.1.

5.2 Event Selection

A lifetime analysis requires a high quality multihadronic sample. To minimize
systematic effects due to inexact detector resolution simulation or the modeling
of u, d, s and charm production, a relative high b-hadron purity was required. In
addition, a class of events was selected which had the best possible decay length
resolution.

The first step of the event selection was the separation of multihadronic events
(efe™ — Z° — ¢q) from various backgrounds like 777~ events, photon-photon
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Parameter value in Monte Carlo
B™ production fraction 41.8%
BY production fraction 41.8%
B, production fraction 7.3%
b-baryon production fraction 9.1%
b-hadron lifetimes 1.6 ps
BR(B* > D) 17.7%
BR(B" — D) 31.7%
BR(B, —» D) 16.5%
BR(A, » D) 12.0%
BR(B* — DY) 69.4%
BR(B° — DY) 55.2%
BR(B, — DY) 39.3%
BR(A, — DY) 30.5%
BR(B* — D,) 2.3%
BR(B" — D,) 2.3%
BR(B, — D) 31.0%
BR(\, — D) 2.2%
BR(BT — A,) 5.3%
BR(B" — A,) 5.5%
BR(B, — A,) 5.0%
BR(A, — A,) 51.5%
B* mass 5.279 GeV /c?
B? mass 5.279 GeV /c?
B mass 5.368 GeV /c?
Ay mass 5.64 GeV/c?

Table 5.1: DELPHI Monte Carlo parameter set for b physics.
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events, Bhabha events, beam gas interactions and cosmic rays. The cuts applied
to select multihadronic events are similar to the BSAURUS selection described
in Section 4.2.1 by requiring at least 5 charged tracks and 12% of the center
of mass energy in the event. As outlined in Section 4.2.2 BSAURUS selects in
each candidate hemisphere only tracks which pass the standard particle selection
criteria. This selection enhances, of course, the probability that BSAURUS does
not find a secondary vertex. Hemispheres without a successful secondary vertex
fit are removed completely.

In the second step the event jets are reconstructed via the routine LUCLUS
[101]. The chosen transverse momentum cutoff value is dj,;, = 5 GeV. This
essentially restricts the number of jets to about 5. In addition the minimum
number of jets has to be two.

The detector has a limited polar acceptance, making all events in very for-
ward /backward direction unusable because a successful vertex reconstruction is
mandatory. Therefore events with (cos(0yrust)) greater than 0.65, where 6,5
is the polar angle of the thrust axis, are rejected to ensure that all selected events
have jet axes in the barrel region.

Finally events are selected based on the combined event b-tagging of Section
4.1. For the analysis only event hemispheres are used which have a combined
event b-tagging variable larger than 0.3 leading to a b purity of about 94%.

The actual choice of decay length for the fit from different algorithms (see
Section 4.2.9) was dictated by optimizing the resolution and minimizing any bias
while avoiding underlying substructures from the usage of different resolution
classes together. For this purpose the Strip-Down algorithm was chosen because it
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has the best resolution and the smallest bias. In Figure 5.1 one observes, however,
that the resolution of the Strip-Down algorithm shows a bias with increasing
relative error. This bias would be difficult to model properly. For this purpose
hemispheres are selected only if the relative error was smaller than 0.4. For the
analysis only reconstructed decay lengths smaller than 5 cm were accepted to
avoid the worst effects of spurious very long decay lengths while still accepting
the vast majority of the data available. The number of selected hemispheres after
the cuts described in this Section can be found in Table 5.2.

Selection Number of hemispheres
1994 qq 1994 bb
Multihadron 4173514 3066132
coS(Osnrust) 2628699 1988411
b-tagging 640888 1581499
Strip-Down vertex 316704 805003
o/l <04 287232 735313
[ <5cm 287222 735304

Table 5.2: The number of hemispheres with a successful secondary vertex fit for
199 stmulation. The rows show the number of hemispheres after the multihadron
selection (first row), cosine of the thrust axis smaller than 0.65 (second row), the
combined event b-tagging cut (third row), the Strip-Down algorithm worked suc-
cessfully (fourth row), the relative error on the reconstructed decay length smaller
than 0.4 (fifth row) and the reconstructed decay length smaller than 5 cm (sizth
row).

5.3 Acceptance Functions

For all b-hadron decays the lifetime distribution is theoretically expected to be
an exponential function with mean lifetime 7. However, it is more difficult to
separate primary from secondary vertices in b events with very short lifetime,
or even recognizing events with very short decay length as b events. Therefore
the b-tagging cut (see Section 4.1) and the vertex reconstruction reduces the
efficiency for those events. The deviation from the exponential decay is taken
from simulation and an acceptance is parametrised accordingly. To take into
account differences in the efficiencies for small decay length between different
b-hadron species, the acceptance functions have been parametrised separately.
The acceptance was parametrised by a spline approximation because an analytic
description was not available. However, the spline function did not give a nice
approximation for the lifetime region smaller than 2 ps and therefore a linear
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approximation from bin to bin was used for this region. The acceptance functions
A(tyrue) as a function of the true decay time for the four different b-hadron species
can be seen in Figure 5.2 together with their parameterizations.

I I | ‘ I ‘ L1 ‘ [ \‘ :\
0 25 5 75 10 0 25 5 75 10
proper time [ps] proper time [ps]
%) 02 ¢ 2 02 ¢
=018 — =018 —
016 DB M } 2016 — b-baryonf }
©014 — $014 +
2012 |- 2012 -
01 - i © 01 |
0.08 - 0.08 *
0.06 0.06
0.04 0.04
002 | | | R | | |

: 0
0 25 5 7.5 10 0 25 5 7.5 10
proper time [ps] proper time [ps]

Figure 5.2: The plots show the acceptance functions for the four different b-hadron
species. Superimposed in light grey is the parameterization used for the Likelihood
formulation.
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5.4 Background Functions

For charm and light quark events the decay length and momentum distributions
had to be modeled. The distributions were taken from the simulation as it is
difficult to find a useful analytic description. Also the low statistics make them
quite difficult to deal with. The two distributions are plotted in Figure 5.3.
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proper time [ps] momentum [GeV]

Figure 5.3: The reconstructed proper time distribution for charm and light quarks
(left plot) and their reconstructed momentum distribution (right plot).

5.5 Modeling the Resolution

5.5.1 Proper Decay Time Reconstruction

The proper decay time was defined by:

=" (5.1)

where m is the mean b-hadron rest mass (in GeV), ¢ the speed of light, p the esti-
mated b-hadron momentum (in GeV) and [ the reconstructed decay length. The
magnitude of the b candidate momentum vector was fixed by the relationship®
E? = p? + m? where E was the reconstructed b candidate energy. The expected

Th=c=1
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error on the proper time is estimated by error propagation to be:

R

The error on the decay time has two components which behave differently and
that has to be taken into account when modeling the resolution. It motivates
the separated treatment of the decay length and momentum resolution in the
likelihood fit, including a convolution procedure.

The following Sections are dedicated to the parameterization of the resolution.

5.5.2 Decay Length Resolution

The reconstructed decay length was based on the Strip-Down algorithm as already
mentioned with a cut on the relative error o;/l at 0.4. The fitting routines for
the vertex algorithms had the constraint of reconstructing positive decay lengths
only. This complicated the parameterization of the resolution function for the
likelihood fit because the resolution becomes a function of the true decay length
from simulation. For very small true decay length the resolution becomes more
and more asymmetric. This had to be taken into account in the parameterization.
For this purpose ten different decay length regions based on the true decay length
lirue Were defined, based on the requirement that the number of event hemispheres
in each region was about the same to guarantee that the parameterization did
not suffer from small statistics. For this purpose a transformation function was
used which was the cumulative probability density function f(l;.) of the true
decay length.

ltrue

[llrue) = 5= [ P()d (5.3)
0
where P(l) denotes the probability density function of l;,.. The distribution of
the transformed variable s is now flat, and so, to have regions with equal amounts
of entries, these regions are chosen to be equidistant bins in s.

To account for possible correlations between the decay length reconstruction
and the momentum reconstruction the parameterization was done separately for
five regions in the true momentum p;.... Again these momentum regions were
chosen in a way to have about the same statistics in each region which was
made similar to the method mentioned above, but based on the true momentum
distribution.

In addition, the resolution has been modeled for the four different b-hadron
species considered (BT, B, B, and b-baryons) separately.

The described classifications divide the sample up into 200 regions that have
been modeled by fitting the following asymmetric modified Breit-Wigner function
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with five parameters P; to the [,.. — l;. distributions:

: : >0
TEE L
,P;) =P, x 2 5.4
fla ) ' { 1+|_}§4_‘P5_ <0 (5-4)

This rather complicated parameterization had to be chosen to describe properly
the non-Gaussian tails in the resolution distributions. The parameter P; is used
for normalization. Figures 5.4, 5.5, 5.6 and 5.7 show examples of some of the
fitted resolution distributions for the ten regions in l.. starting at the top left
with region 1 and ending on the bottom right with region 10.

Starting from a set of parameters P*, k € {1,...,10}, for every region in
decay length a linear interpolation function P;(ly.,.) was calculated to have a

smooth 2-dimensional description of the decay length resolution.

The final form of the resolution functions for the different momentum resolu-
tion classes p and different b-hadron species s used in the likelihood fit was,

L >
1 1+| lr;c—ltrue |Psp3(ltrue) lrec - ltrue

p — — Psg(lt'rue)
Rs (lrec ltrue; ltrue) N 1 . lrec < ltrue (55)

lrec—1 PP_(1
1+| r;c true | 55( true)
PS4(ltrue)

where [,.. denotes the reconstructed and ;.. the true decay length. The factor N
is used to preserve the normalization of the resolution function and is calculated
numerically. In order to exclude the non-physical region of decay lengths smaller
than zero, this region was set to zero and the function renormalized.

5.5.3 Momentum Resolution

The momentum was reconstructed with the algorithm described in Section 4.2.5.
Similar to the procedure described in the previous Section the momentum res-
olution has been modeled. The modeling has been done in ten regions of the
true momentum py.. for each of the four b-hadrons separately. The regions were
chosen to have about the same number of hemispheres in each region in a similar
way as for the decay length. Since possible correlations between the momentum
resolution and the decay length resolutions have already been accounted for by
the division of the decay length resolution into 5 momentum classes, the momen-
tum resolution was not subdivided further. Hence, in total 40 regions have been
modeled.

The momentum resolution function was parametrised using a double Gaussian
as a function of the difference between reconstructed momentum p,.. and true
momentum py.. using six parameters ); in the following way:

L(X—Qs

f(2) = @, (QQ‘;Z ) +(1—@2>6_%(x‘3§5)) (5.6)



CHAPTER 5. STUDIES OF A b-HADRON LIFETIME MEASUREMENT

122 USING A LIKELIHOOD METHOD
103 103
10 ? = 0,=_ 493 um 10 ° 6, 5= 270 um
Oleri— 113 um ‘ % s Cleri— 231 um
10 Wﬁ%w | 10 me '
e v e v 71 g\m%
-04 -02 0 0.2 0.4 0.4 0.2 0 0.2 0.4
103 Irec true [Cm] 103 Irec true [Cm]
107 ougy= 22 | 107 =239 um
10 ; 10
1 Il ‘ Il 1 Il ‘ ” Il Il ‘ Il Il Il ‘ %%ﬁm+mj% 1 '/\// ‘/ /\//\ Il m\ Il Il ‘ Il Il Il ‘ w mem}m
-04 -02 o} 0.2 0.4 -04 -02 0 0.2
Irec true [Cm] Irec true [Cm]
= 2 . =
St PG,
Y 10 i
- fit 1 B
A TR A
0.4 -04 -02 0 0.2 0.4
IreC true [Cm] Irec true [Cm]
10 é—origm: 246 um
E Oler= 329 um
10
2] 102 Cpigne= 291 um
10%=, Ger= 361 um
E Oeii= 296 um
10 L 10

rec” true [Cm]

i

-0.2 0 0.2 0.4

rec” true [Cm]

Figure 5.4: The ten plots illustrate the different shapes of the decay length reso-
lution distribution of BT-mesons for the ten regions of lyue for the momentum
class 1. As the vertex algorithm reconstructs only positive decay length the reso-
lution function for the first class in lye is largely biased in forward direction (top
left plot). For larger decay length the distribution gets more and more symmetric
(bottom right plot). For the plots a logarithmic scale was chosen to show that the
function used for the fit gives a good description even in the tails.
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Figure 5.5: The ten plots illustrate the different shapes of the decay length reso-
lution distribution of BT -mesons for the ten regions of lyu. for the momentum
class 5.
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Figure 5.6: The ten plots illustrate the different shapes of the decay length resolu-
tion distribution of b-baryons for the ten regions of lyye for the momentum class
1.
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Figure 5.7: The ten plots illustrate the different shapes of the decay length resolu-
tion distribution of b-baryons for the ten regions of lyye for the momentum class

5.
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The parameters QF from the ten different regions k are then again used to cal-
culate a linear interpolation function to get a smooth 2-dimensional description
of the momentum resolution. Figure 5.8 shows the ten fitted resolution functions
for the Bt-meson and Figure 5.9 the same for b-baryouns.

5.6 The Likelihood Function

As described in the previous Sections the measurement of the decay length [
and momentum p is only possible with finite resolution, parametrised by their
resolution functions. The probability function P(t;.,.) of the true decay time
for a b-hadron can be written as a function of true decay length and momentum
using Equation 5.1,

Ptirue) = le_ltruem/(TbCptrue) (5.7)

To

where 7, denotes the mean lifetime of the b-hadron. This however is not the com-
bined probability density function P (e, Pirue) but it can be easily transformed
into it using the conditional probability density function P (liye|Pirue):

I _ m/(7pc, m
P(ltrue;ptrue) - P(ltrue|ptrue)P(ptrue) = 7__6 Leruem/ (T ptme)P(ptrue)— (58)

b CPtrue

where P (prye) is the probability density function for py., taken from simulation
and is shown in Figure 5.10. The additional factor m/cpy.. is a Jacobean factor
to guarantee normalization.

The probability P(lrec, Prec) for a b-hadron to be observed with recon-
structed decay length /... and momentum p,.. is a convolution of the probability
P (lirue, Prrue) multiplied by the acceptance function A(ty..) by the resolution
functions R, for the decay length and R, for the momentum:

P(lrecaprec) - /dltrue/dptrueA(ttrue)P(ltrueaptrue) (59)
0 0

><7?'l(lrec - ltrue; ltrue)Rp (prec — Ptrue ptrue)

5.6.1 The b-Hadron Tagging

In order to be able to distinguish different b-hadron species and to transfer this
information into the likelihood formulation a probability density function was
constructed based on the b-species identification neural network described in
4.2.12. This p.d.f. was constructed to account for correlations between the net-
work output and the decay time. In order to have a smooth function, cumulative
probability density functions are used for both, decay time and network output,
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Figure 5.8: The ten plots illustrate the different shapes of the momentum resolu-
tion distribution of Bt -mesons for the ten regions of pye.
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Figure 5.9: The ten plots illustrate the different shapes of the momentum resolu-
tion distribution of b-baryons for the ten regions of Pyye.
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in the same way as described in Section 5.5.2. Figure 5.11 shows a spline fit of
the 2-dimensional p.d.f.’s for the four different output nodes of the neural net.
These are normalized along the neural net axis (f(VN)). One can clearly see
from these plots that the tagging power is a function of lifetime increasing with
longer decay times. For the likelihood formulation however only one output node
was used. Only one b-hadron lifetime was fitted at a time and so only the cor-
responding output node was used since this had the biggest power to separate
the fitted b-hadron’s background, i.e. if the B lifetime was fitted the B* output
node was used. Figure 5.12 shows spline fits of the p.d.f.’s of the BT output node
for the four different contributions B*, B, B, and b-baryons.

Finally all ingredients are put together to form the likelihood function. The
probabilities P(l ec, prec) from Equation 5.9 are modified by the corresponding
neural net probability defined above and the convolution integral is calculated
for each b-hadron individually. The likelihood function was then the weighted
sum of those four probabilities, where the weight was the corresponding b-hadron
fraction taken from simulation. Additionally the probability for light and charm
quark background are taken directly from the simulation as described in Section
5.4 and are added, weighted with the light and charm quark fraction taken from
Monte Carlo. Finally twice of the negative logarithm of the likelihood function
is taken to be minimized. The factor two is for convenience reasons only (for
further explanation see Section 3.3.2).

In order to guarantee that the normalization of the likelihood function is fixed
with respect to the mean lifetime as demanded (see Section 3.3.2), the normal-
ization is calculated numerically in each iteration step of the fitting procedure.
All integrals (the integrals for normalization and for the convolution) had to be
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Figure 5.11: The four plots illustrate the probability function for the four different
output nodes of the enhancement network as a function of the cumulative proba-
bility density function of the true lifetime vs. the cumulative probability density
function of the neural net output variable. One can clearly see that the separation
power increases with lifetime.

performed numerically using techniques described in Section 3.2. Although these
techniques are essential in reducing the calculation expense the convolution in-
tegrals have to be solved for each event hemisphere and each iteration step. In
order to further reduce the number of integrals to be solved, the exponential
function P(t44e) from Equation 5.7 has been expanded in a Taylor series with
respect to the mean lifetime 7, around the expansion parameter 7, = 1.55 ps up
to third order:

et et/ (5.10)
t
+67t/70ﬁ(7b — 7o)

0
1.2 2t
o\ 1~ —3)(71)—70)2

+€_t/T0
2 (761 7o
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Figure 5.12: The four plots show the probability function for the BY output node
of the enhancement network as a function of the cumulative probability density
function of the true lifetime vs. the cumulative probability density function of the
neural net output variable for the different b-hadron species.
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This procedure has the advantage that the convolution integrals have to be calcu-
lated only once for each of the four expansion coefficients. The likelihood function
then becomes a polynomial of third order in 7,. During the fit only the normal-
izations have to be adjusted for each iteration step. In order to check that the
order, up to which the expansion is performed, is high enough a test was made
to compare the likelihood function with and without Taylor expansion. Figure
5.13 shows the negative log-likelihood function that had to be minimized for the
two possibilities for simulation. Around the expected mean lifetime of 1.6 ps the
two curves are in good agreement.
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L L L1 L1 L1 L1 L L
0.2 0.4 0.6 0.8 1 12 14 16 18
T [ps]

b-hadron | world average
[ps]
BT 1.647
BY 1.546
B, 1.464
b-baryons 1.208

Table 5.3: World average lifetimes from the 'B Lifetime Group’.

5.6.2 Results from Monte Carlo Tests

In order to test the performance of the method various Monte Carlo tests have
been performed to study the robustness of the method. For this purpose simu-
lated events were used as data to check if the method can reproduce the correct
mean lifetime which has been generated. Since in simulation all b-hadrons had
the same mean lifetime of 1.6 ps this was not really a good challenge to test
the method. In order to make the tests more realistic the simulation had to be
modified to have different lifetimes for the different b-hadrons. This has been
achieved by rejecting events with a certain probability which is based on the true
decay time of the b-hadron. Using this method the b-hadron lifetimes had been
transformed from 1.6 ps to their current world averages (see Table 5.3) [109].
First the modeling of the acceptance function has been checked. Therefore the
true decay length and true momentum was used and no convolution had to be
performed. In addition, only 100% pure samples were fitted. The result is shown
in Table 5.4.
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b-hadron gen. extracted devi- gen. extracted devi-
lifetime lifetime ation || lifetime lifetime ation
[ps] [ps] [ps] [ps]

Bt 1.6 1.6059 £ 0.0046 | 1.30 1.647 | 1.6594 £ 0.0067 | 1.80

B 1.6 1.5928 4+ 0.0046 | 1.60 1.546 | 1.5393 £+ 0.0063 | 1.40

B 1.6 1.6046 +0.0122 | 0.40 1.464 | 1.4738 £+ 0.0159 | 0.60
b-baryons 1.6 1.5928 +0.0117 | 0.60 1.208 | 1.2023 £+ 0.0156 | 0.40

Table 5.4: Results of the test using true information for generated lifetimes of 1.6
ps and results with generated world average lifetimes.

b-hadron gen. extracted devi- gen. extracted devi-
lifetime lifetime ation || lifetime lifetime ation

[ps] [ps] [ps] [ps]
BT 1.6 1.5975 4+ 0.0050 | 0.50 1.647 | 1.6394 £+ 0.0071 | 1.10
B° 1.6 1.5874 4+ 0.0050 | 2.50 1.546 | 1.5258 + 0.0068 | 3.00
B, 1.6 1.6145 £ 0.0135 | 1.10 1.464 | 1.4722+£0.0176 | 0.50
b-baryons 1.6 1.5153 £ 0.0370 | 2.30 1.208 | 1.1737 £ 0.0364 | 0.90

Table 5.5: Results of the test using the resolution functions to smear the true
information and performing the convolution integrals.

In a second step the resolution functions described in Section 5.5 were used to
smear the true decay length and true momentum. This test should demonstrate,
if the convolution was performed in a correct way to get back the generated
lifetimes. To avoid complications with contributions from other b-hadrons again
only 100% pure samples were fitted. The result is shown in Table 5.5.

Next the fit was performed on reconstructed Monte Carlo events to see if the
resolution modeling was correct, or if some hidden correlations have not been
taken into account. The result of this test is shown in Table 5.6. The above three
tests have been repeated for the case of using natural admixture of b-hadrons in
the samples while taking the fraction from the simulation. The results of those
tests can be found in Tables 5.7, 5.8 and 5.9. As one can see from these tests,
the numerical treatment of the acceptance functions, the resolutions and the con-
volution works quite well. However, when using reconstructed decay length and
momentum the method is not able to recover the correct lifetimes which were
put in. Additional tests showed a strong dependence of the result with respect
to the acceptance modeling. Using a spline fit or an adequate parameterization
for the low lifetime region resulted in a deviation from the expected lifetimes of
several standard deviations. Since it is known that modeling the region at low
proper time in the Monte Carlo simulation is a particularly complex task and far
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b-hadron gen. extracted devi- gen. extracted devi-
lifetime lifetime ation || lifetime lifetime ation
[ps] [ps] [ps] [ps]

Bt 1.6 1.5865 £+ 0.0049 | 2.80 1.647 | 1.6389 £ 0.0072 | 1.10

B 1.6 1.5776 +0.0049 | 4.50 1.546 | 1.5244 + 0.0068 | 3.20

B 1.6 1.5991 £ 0.0133 | 0.10 1.464 | 1.4780 £ 0.0175 | 0.8¢0
b-baryons 1.6 1.5816 £ 0.0126 | 1.50 1.208 | 1.2073 £ 0.0140 | 0.10

Table 5.6: Results of the test using reconstructed decay length and momentum
from the Monte Carlo simulation.

b-hadron gen. extracted devi- gen. extracted devi-
lifetime lifetime ation || lifetime lifetime ation

[ps] [ps] [ps] [ps]
BT 1.6 1.5994 4+ 0.0069 | 0.10 1.647 | 1.6540 £+ 0.0096 | 0.70
B 1.6 1.5972 £ 0.0070 | 0.40 1.546 | 1.5516 + 0.0097 | 0.60
B 1.6 1.6017 £ 0.0512 | 0.00 1.464 | 1.5169 +0.0714 | 0.70
b-baryons 1.6 1.5798 +0.0476 | 0.40 1.208 | 1.2394 + 0.0628 | 0.50

Table 5.7: Results of the test using true information and a natural admizture of
b-hadrons.

from being perfect one cannot expect to get meaningful results from a data fit
having a method with that low level of robustness.

5.7 Summary and Discussion

A study was performed for the inclusive measurement of b-hadron lifetimes using
a Likelihood method.

After selecting b hadron candidates with a purity of about 94%, candidates
with good resolution were selected. All inputs for the likelihood formulation of
the problem were parameterized. Then all ingredients were put together to check
the method on a Monte Carlo sample, which in one case had the lifetimes of the
generator at 1.6 ps and in the other case four different lifetimes. For this purpose
three different checks were performed on 100% pure samples which represented
three stages of difficulty to extract the lifetimes. The first check was performed on
the true information for decay length and momentum. Therefore no convolution
integrals had to be solved. This check reproduced the lifetimes quite well. The
second check was also performed on the true information but this time it has
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b-hadron gen. extracted devi- gen. extracted devi-
lifetime lifetime ation || lifetime lifetime ation
[ps] [ps] [ps] [ps]

Bt 1.6 1.5851 £ 0.0075 | 2.00 1.647 | 1.6357 £0.0104 | 1.10

B 1.6 1.5844 +0.0076 | 2.10 1.546 | 1.5333 £ 0.0106 | 1.20

B 1.6 1.5077 £ 0.0582 | 1.60 1.464 | 1.3709 +0.0721 | 1.30
b-baryons 1.6 1.4641 £ 0.0538 | 2.50 1.208 | 1.2098 + 0.0416 | 0.00

Table 5.8: Results of the test using the resolution functions to smear the true
information and performing the convolution integrals with a natural admizture of

b-hadrons.
b-hadron gen. extracted devi- gen. extracted devi-
lifetime lifetime ation || lifetime lifetime ation
[ps] [ps] [ps] [ps]

Bt 1.6 1.5635 £ 0.0073 | 5.00 1.647 | 1.6158 £0.0102 | 3.10

B 1.6 1.5601 £ 0.0074 | 5.40 1.546 | 1.5155 £ 0.0103 | 3.00

B, 1.6 1.3890 £ 0.0405 | 5.20 1.464 | 1.3372 £ 0.0583 | 2.20
b-baryons 1.6 1.3856 £ 0.0423 | 5.10 1.208 | 1.1985 + 0.0380 | 0.00

Table 5.9: Results of the test using using reconstructed decay length and momen-
tum from the Monte Carlo simulation with a natural admizture of b-hadrons.

been smeared according to the parameterized resolution functions. Also by this
test the lifetimes had been reproduced quite well. Finally the third check was
performed using reconstructed decay length and momentum. This time the result
from the fit differed from the expected result by several standard deviations. The
three checks were repeated using natural b-hadron composition showing basically
the same behavior in the results.

This leads to the conclusion that the model and parameterization is not good
enough to perform a high precision measurement on b-hadron lifetimes. There
might be some correlations to variables which have not been considered yet. For
example it is possible, that there are different underlying resolution classes which
have not been taken into account explicitely. This would explain that the check
using the smeared true information did not show a problem. In this test the
smeared decay length and momentum had been modeled exactly without any
hidden correlation. Several other tests showed that the likelihood method is very
sensitive to the exact modeling of the acceptance functions. Since it is a known
fact that the Monte Carlo simulation for the low lifetime region is a rather bad
model one cannot expect to extract reliable results on data using a method which
is that sensitive to small changes in the parameterization.






Chapter 6

Measurement of the Lifetimes of
Bt and B' Mesons

This chapter provides an analysis for the measurement of the lifetimes of B™
and B° mesons. All ingredients used in this analysis are described in detail, i.e.
event selection, sample classification, decay time definition and Monte Carlo re-
weighting. After that the fitting method (x? minimization) and the choice of the
working point is explained. Finally the results are presented and the details of
the considered systematic error sources are given. The chapter finishes with a
short summary.

The first part of the chapter describes briefly the Monte Carlo generator. The
Monte Carlo sample consists of two parts, a multihadronic event simulation with
7" — qq events and a sample with simulated Z° — bb events only.

The event selection of the data sample is described in the second part of the
chapter. The fundamental requirements are a selection of multihadronic events
like already mentioned in Chapter 4, a cut on the b-tagging, which ensures a
bb sample purity of approximately 94% and a successful run of BSAURUS which
ensures a successful fitted secondary vertex for every event hemisphere. In total
421913 event hemispheres have been selected in the data sample from 1994 to
1995 by these pre-cuts.

From the four different advanced secondary vertex algorithms presented in the
Chapter 4 a special selection had to be made for each hemisphere. This selected
decay length and the energy estimator from the Bayesian approach were used to
calculate the proper decay time per hemisphere.

In order to improve the agreement with the data of the Monte Carlo and
to account for known discrepancies in the Monte Carlo generator with recent
experimental measurements, weights were constructed. These weights which have
been applied to all Monte Carlo hemispheres before the fitting procedure are

137
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b-hadron || MC prod. fraction [%] | MC lifetime [ps]
BT 41.8 1.6
B° 41.8 1.6
B 7.3 1.6
b-baryons 9.1 1.6

Table 6.1: The Monte Carlo production fractions and lifetimes for b-flavored
particles used in the Monte Carlo generator

presented afterwards.

The division into two enhanced samples is described in Section five leading to
69310 selected hemispheres in total for the years 1994 to 1995.

The results are extracted in terms of a binned y? minimization fit. The
detailed formulation of the fit is presented in the sixth Section.

Section seven describes in detail the choice of the working point including the
presentation of stability plots around it. The section also provides all systematic
checks and studies which were necessary to guarantee a robust fit result. Further
the section contains a description of the method to combine the two separate
measurements for 1994 and 1995 data to give one single result.

In section eight all systematic uncertainties considered within this analysis
are described in detail. It finally contains the full systematic error breakdown for
1994 and 1995 separately.

The last section gives a short summary of the chapter.

6.1 The Monte Carlo Simulation

For the analysis simulated samples were created consisting of 4173514 Z° — qq
event hemispheres for 1994 and 1565386 event hemispheres for 1995. For this the
LUND parton shower Monte Carlo program JETSET 7.3 [56] was used were the
parameters of the simulator were adapted for DELPHI. The detector response
has been simulated with DELSIM [55].

Additionally a Monte Carlo sample containing 3066132 Z° — bb event hemi-
spheres for 1994 and 824924 event hemispheres for 1995 was created to restrict the
statistical limitation of the analysis to real data only. The simulated events are
fed into the same analysis chain than the real data events. The relative b-hadron
production fractions and lifetimes used for the generator have their origins in
theoretical predictions and can be found in table 6.1.
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Selection Number of hemispheres
1994 data | 1995 data | 1994 qg | 1994 bb | 1995 qq | 1995 bb

Multihadron | 1922532 927679 | 4173514 | 3066132 | 1565386 | 824924
coS(Osnrust) 1199774 577264 | 2628699 | 1988411 | 982705 | 535300
b-tagging 285088 136825 640888 | 1581499 | 239061 | 422304

Table 6.2: The number of hemispheres with a successful secondary vertez fit for
data and simulation. The rows show the number of hemispheres after the multi-
hadron selection (first row), cosine of the thrust axis smaller than 0.65 (second
row) and the combined event b-tagging cut (third row).

6.2 Event Selection

A lifetime analysis is only possible on a well selected, high quality multihadronic
sample. The selection conditions imposed on the data samples used for the life-
time fits were motivated by the wish to minimize the total error on the final
results. Systematic error contributions due to the inexact simulation of detector
resolutions and the physics modeling of u, d, s and charm production mean that
relatively high b-hadron purities were required while still keeping the selection
efficiency at an acceptable level as far as the statistical error is concerned.

The first step of the event selection is the separation of multihadronic events
(efem — Z° — ¢q) from various backgrounds. The background sources are
widely spread, e.g. Z° — 777 events, photon-photon events, Bhabha events
beam gas interaction events and cosmic rays. Multihadronic events are selected
similar to the BSAURUS selection described in Section 4.2.1 by requiring at least
5 charged tracks and 12% of the center of mass energy in the event. As outlined
in Section 4.2.2 BSAURUS selects in each candidate hemisphere only tracks which
pass the standard particle selection criteria. This selection enhances of course
the probability that BSAURUS does not find a secondary vertex. Hemispheres
without a successful secondary vertex fit are removed completely.

In the second step the event jets are reconstructed via the routine LUCLUS
[101]. The chosen transverse momentum cutoff value is dj,; = 5 GeV. This
essentially restricts the number of jets to about 5. In addition the minimum
number of jets has to be two.

As described in chapter two the detector has a limited polar acceptance, mak-
ing all events in very forward/backward direction unusable because a successful
vertex reconstruction is mandatory. Therefore events with (cos(6inrust)) greater
than 0.65 are rejected to ensure that all events selected have jet axes which fall
into the efficient barrel region.

The final event selection cut is based on the combined event b-tagging of
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Section 4.1. For the analysis only event hemispheres are used which have a
combined event b-tagging variable greater than 0.3.

After all the selection criteria above the sample b purity is about 94%. In
table 6.2 the numbers of hemispheres with a successful secondary vertex fit for
each subsequent selection is listed for the years 1994 and 1995 and for the Monte
Carlo simulation samples.

6.3 Proper Decay Time Reconstruction

The proper decay time ¢ was defined by the following relationship,

p= (6.1)
cp

where m is the mean b-hadron rest mass which was taken to be 5.2789 Gev/c?
[107], ¢ the speed of light, p the estimated b-hadron momentum and [ the recon-
structed decay length. The magnitude of the b candidate momentum vector was
fixed by the relationship £? = p? + m? where E was the reconstructed B candi-
date energy. Only hemispheres were accepted, were the reconstructed energy was
greater than 10 GeV. The estimator of the B candidate energy was the Bayesian
neural network estimator described in Section 4.2.13.

The actual choice of decay length for the decay time calculation from the
different algorithms (see Section 4.2.9) was dictated by optimizing the resolution
and minimizing any bias while still retaining the best possible efficiency. The
choice from one of the four algorithms potentially available, was made in the
following, subsequent way:

e the Strip-Down method was chosen if the algorithm worked successfully
and had a decay length error smaller than 1 mm,

e next, if the hemisphere failed the criterias above, the D-rejection method
was used, if successful, and had a decay length error smaller than 1 mm,

e next, if the hemisphere failed the criterias above, the Build-Up vertex was
chosen, if successful, and had a decay length error smaller than 200 pm,

e lastly, if the hemisphere failed the criterias above, the Semileptonic algo-
rithm was used, if the algorithm was successful, and the angle between the
lepton and D candidate satisfied 0.8 < |cosfy| < 0.99 and if the decay
length error was smaller than 1 mm.

Every hemisphere which fails all of the above criterias was excluded from the fit.
Figure 6.1 illustrates the decay length resolution based on the above mentioned
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choices compared to the standard secondary vertex fit described in Section 4.2.9.
Clearly visible is the improved resolution and the vanishing of the forward bias.
The efficiency of this combination of different algorithms is about 56% for b
events which is more than for every single algorithm alone. For the analysis only
reconstructed proper lifetimes smaller than 10 ps were accepted to avoid the worst
effects of spurious very long reconstructed lifetimes while still accepting the vast
majority of the data available. The number of selected hemispheres after the cuts
described in this Section can be found in Table 6.4.
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6.4 Monte Carlo Weighting

The first stage of the fitting procedure involved weighting quantities in the Monte
Carlo to agree with recent experimental measurements. Weights were constructed
to account for the following effects:

e The current world average measurements of By and b-baryon lifetimes (see
Table 6.3). The numbers are taken from [109].

e The current measurements of the B species production fractions (see Table
6.3). The numbers are taken from [108].

e The b fragmentation function. The mean value (z) = 0.708 (x is the fraction
of the b-hadron energy with respect to the beam energy) of the function
and the shape in the default Monte Carlo was weighted to agree with the
mean value (x) = 0.7153 = 0.0052 of the function and the shape obtained
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b-hadron species | lifetime | error | fraction | error COIT. COIT.
[pS] [pS] with st with fb*bary
B, 1.464 | 0.057 | 0.097 | 0.011 1 +0.034
b-baryons 1.208 | 0.051 | 0.104 | 0.017 | +0.034 1
BY or Bt this analysis 0.399 | 0.010 | -0.577 -0.836

Table 6.3: Results of recent experimental measurements and the world averages of
the B species production fractions and the lifetimes of B, mesons and b-baryons.

from a recent DELPHI analysis from the Karlsruhe b physics group using an
unfolding algorithm (for further details see [110]).

e Hemisphere quality. A hemisphere quality flag for the whole hemisphere
was constructed which was correlated to e.g. the number of secondary
interactions, tracks containing detector hits that could equally well fit to
other tracks in the vertex detector (so-called ambiguities) or the number
of tracks in the hemisphere which are excluded by the standard selection
criteria of Section 4.2.2 etc. This flag is the same already mentioned in
Section 4.2.9. The hemisphere quality weight was constructed as a function
of hemisphere track multiplicity ensuring that the overall track multiplicity
is essentially invariant under the application of the weight.

In the case of the reweighting of the production fractions, the weight is just the
ratio of the measured quantities to the Monte Carlos fractions stated in Table 6.1.
For the reweight of the lifetimes, the weight depends on the created true proper
lifetime "¢ via w; = 1.6/Tyq exp(t(Typq — 1.6)/1.67yq), where 7, denotes the
world average mean lifetime from Table 6.3. The quality weights are constructed
by the ratio of the normalized data distribution and the normalized Monte Carlo
distribution. This was done for each number of tracks in the hemisphere sepa-
rately. Figure 6.2 shows the ratio of data and Monte Carlo for the distribution of
the output of the hemisphere flavor Neural Network described in Section 4.2.11
before and after the application of the above described weights as an example.
The lifetimes of B® and B have been reweighted in this plot according to their
world averages (1.546 ps and 1.647 ps respectively'). The much improved agree-
ment between data and simulation after the weight is applied illustrates the need
for such a correction.

!The numbers are taken from [109)].
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6.5 Selection of B™ and B Enhanced Samples

The enrichment of BT and B° was part of a general attempt, implemented in
BsAURUS, to provide a probability for an event hemisphere to contain a b-hadron
of a particular type. The result was the Neural Network described in Section
4.2.12. The upper plots of Figure 6.3 show the weighted output of the simulation
of the BT and B output nodes of the neural net for the different b species overlaid
with the data for 1994. The lower plots trace the change in purity per bin for
the different b species as a function of the network output value at the B* and
BY output nodes respectively.

For the analysis the neural network outputs were then cut at > 0.52 and
> 0.6 to obtain enhanced samples in B+ and B° respectively. These cut values
correspond to a final purity in both BT and B° of ~ 70% according to the Monte
Carlo. In addition, to ensure that the correlation between the two lifetimes was
kept to a minimum for the final result, it was demanded that the two samples
were statistically independent. This was achieved, e.g. for the case of selecting a
BT hemisphere, by first requiring that the B* output node value passed a cut at
0.52. If however for this hemisphere, the B® output node value was also larger
than the selection cut at 0.6, the hemisphere went into the B+ sample only if the
BT output node was also larger than the BY output node value. If this was not
the case, the hemisphere entered into the B® sample. The number of events after
these final selection cuts in the two enhanced samples are listed in the last two
rows of Table 6.4. The final selection corresponds to a selection efficiency, with
respect to the multihadronic selection sample (first row of Table 6.2) of about
13.0%(4.4%) in 1994 and 13.0%(4.4%) in 1995 for the B*(B°) enhanced sample
respectively. The overall b purity in the two samples is about 98%.
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Figure 6.3: The upper plots show the output of the BT and BY output nodes of the
Both Hemispheres B-Species Identification Network (BHBN) in the 1994 data.
Overlaid is the b-hadron composition as seen in the Monte Carlo and the lower
plots trace the change in purity per bin. The background labeled 'bg’ consists of
lrght and charm quark events. The lower plots show the purity attained by making
sequential cuts on the BT and B° outputs.
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Selection Number of hemispheres
1994 data | 1995 data | 1994 ¢ | 1994 bb | 1995 qg | 1995 bb
Vertex 180010 86796 | 432962 | 1098594 | 160773 | 292072

t"¢ < 10 ps 179635 86631 432058 | 1096451 | 160463 | 291521
Neural Net
enhancement 46878 22432 120851 | 313156 | 45545 84321
BT sample 36088 17367 90455 234101 33889 62645
B sample 10790 5065 30396 79055 11656 21676

Table 6.4: The number of hemispheres selected after various hemisphere cuts. The
first row gives the number of hemispheres surviving the vertex selection criteria
described in Section 6.3. In the second the upper decay time cut is made. The
third row shows the number of hemispheres selected in the final selection cut and
the last two show the division into the two enhanced samples.

6.6 The B" and B' Lifetime Fit

The Bt and B lifetimes were extracted by a simultaneous fit to proper lifetime
distributions reconstructed in the B* and B° enhanced samples, using a binned
x? method.

Nominally 100 bins were chosen but the exact binning was determined by the
requirement that at least 10 entries be present in all bins of the data distribution
to have a minimum of statistics in each bin.

To avoid the need to generate many separate Monte Carlo samples of different
B lifetimes, weighting factors were formed, in a similar way than for the lifetime
reweighting described in Section 6.4, for each lifetime measurement from the ratio
of exponential decay probability functions. Specifically, the weight,

0 ti new ~— ‘o
w; = 2 exp( (r Tld)) , (6.2)

Tnew ToldTnew

for measurement 7 and true B lifetime ¢;, effectively transforms the Monte Carlo
lifetimes generated with a mean lifetime 7,4 to be distributed with a new mean
value of 7,,,. The x? function given below was then minimized with respect to
the BT and B lifetimes, which were the two free parameters in the fit.

Thins (WzMC o Nidata)2
X2 = Z [Z MC\2 data 2]
B+,B0 (az ) + (az )

i=1
sample

(6.3)

Here the first sum is over the two enhanced samples and the second sum is over
the number of bins. N4 is the number of data entries in bin ¢ and W is the
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corresponding sum of weights in the Monte Carlo sample. These weights contain
the weights already described in Section 6.4 as well as the weight from Equation
6.2. In addition a weight wy, is constructed to account for the fact that a huge
amount of bb only Monte Carlo hemispheres are used. The light and charm quark
events are therefore weighted by

~ONJT4 NP

Wyq = Nf‘j (64)

where NJ7(N/?) denotes the number of b quark events in the Monte Carlo ¢g(bb)
sample respectively. This weight ensures the fraction in the distribution of light
and charm quark events to be constant. The normalization of the two Monte
Carlo histograms was also fixed by a weight w, for each sample s which was
equal to all hemispheres in one enhanced sample:

Thi data
i

P = Sk (6.5)

Wy

In addition, a two parameter fit was made to the same samples to extract the
ratio 7p+ /7o of the two lifetimes separately. The two free parameters were the
ratio and the arithmetic mean (75+ + 750)/2 of the two lifetimes.

Above described procedure has been applied to the 1994 and 1995 samples
separately. The result was combined afterwards taking into account all systematic
uncertainties which will be described in Section 6.8.

6.7 Working Point and Results of the Fit

The selection conditions imposed on the data samples used for the lifetime fit
which were described in the previous Sections, were motivated by the wish to
minimize the total error on the final results. The inexact detector resolution
simulation and modeling of light and charm quark events required a relatively
high b purity. The enhancement of BT and B° described in Section 6.5 requires a
choice of cuts. In addition the b-hadron species enrichment Neural Network in the
form described in Section 4.2.12 turned out to be problematic for the B lifetime
extraction which made it necessary to apply a modification to it. For small decay
times the lifetime distribution of the simulation was not in good agreement with
the data. Therefore a so-called acceptance correction was constructed. In this
Section the reason for all the choices for the cuts and modifications are given. In
addition the final fit results are given at the end of this Section.
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6.7.1 b-Tagging Cut

The choice of the b-tagging cut at 0.3 on the combined b-tagging variable described
in Section 4.1 was based on the observation of the behavior of the statistical error
for varying this cut. In Figure 6.5 the top plot shows the x? probability of the
fit as a function of the total b purity of the two samples. The middle plot shows
the b purity as a function of the cut for the two samples separate and for the two
samples combined. The bottom plot shows the sum of the statistical error of the
BT and the BY lifetime fit as a function of the b purity. Below 95% the error
increases due to increasing pollution by not well enough modeled light and charm
quark contribution. Above 99% the statistical error increases dramatically. So
the cut at 0.3 which corresponds to a b purity of about 98% lies in the stable
valley of the bottom plot of Figure 6.5. The x? probability is quite stable and
above 10% in the full region tested. In Figure 6.4 a scan over various b-tagging
cuts resulting in different b purities shows a stable behavior for a relatively wide
range of cuts. Only in the region were the b purity is very large, the scan becomes
unstable but still lies within one statistical standard deviation according to the
working point.
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Figure 6.4: The plots show the result of the fit of 1994 data as a function of the b
purity for the BT lifetime fit (left) and the B° lifetime fit (right). The gray band
indicates the one statistical standard deviation band. The lines indicate one o of
the working point (dot). The scan shows a quite stable behavior in a relatively
large purity range.

6.7.2 Neural Network Modification and Cuts

During the development of the fitting procedure various tests were made to show
the stability of the result by varying key cuts. One of those tests was to change
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the fit range while basing the normalization weight from Equation 6.5 still on the
full range, because no proper fit would be possible without this information. As
one can see from Figure 6.6, the B lifetime shows a stable behavior, whereas the
B lifetime shows a very significant systematic effect while increasing the lower
bound or decreasing the upper bound. In the overlap region however the mean
value of the left and the right plot stays stable. The reason for seeing an instability
for B® but not for BT is the fact that B° oscillate into B° and vice versa. In the
enhancement network flavor information from the opposite hemisphere was used
(see Section 4.2.12), so that the neural network learned to use this information to
identify B° by the fact that they have oscillated. Therefore a cut on the neural
network to enhance BY enhances more oscillated B° than non-oscillated B°. The
oscillation probability is time dependent and therefore the proper decay time
distribution of an enhanced sample is affected. Due to inexact modeling of the
Monte Carlo simulation this effect is a source of instability.

To counter this effect and to increase the stability the neural network was
modified. All flavor information from the opposite hemisphere and of course
explicit oscillation information was removed from the inputs. In the case of
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Figure 6.6: The upper plots show the stability of the extracted BT lifetime for 1994
as a function of the start point (left) and end point (right) of the fit. The lower
plots show the same distributions for the B lifetime. The grey band marks the
statistical error. While the Bt behavior is quite stable the B stability distribution
shows a significant systematic effect while the upper fit bound decreases or the
lower bound increases.

flavor information, the flavor net output of the opposite side was set to 0.5 which
means no information. The performance of the neural network did not suffer as
much as one might expect because the most important ingredients, namely the
outputs of the single hemisphere neural network 4.2.10 were kept. In Figure 6.7
the behavior using the modified neural network is illustrated. The stability of
the B lifetime is still not perfect but clearly improved compared to Figure 6.6.

After fixing the neural network itself an appropriate working point has to be
found. The cuts on the neural network to enhance the two samples were varied.
As one can see from Figure 6.8 the fit results were quite stable with respect to a
cut variation in the BT output node. Also the increase in the error (see Figure
6.9) was smaller for the BT cut variation than for B cut variation. For the fit it
does not make sense to go below 50% purity which means no real enhancement.
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Figure 6.7: The plots shown are the same as in Figure 6.6, but with the modified
neural network used. The stability of the B° lifetime is still not perfect but clearly
mproved.

Increasing the purity by more than 80% means increasing instability and statis-
tical errors. Therefore the working point was chosen at 70% purity for both B°
and BT, which lies in a stable region and where the result does not yet suffer
severely from low statistics.

6.7.3 Acceptance Correction

The efficiency for reconstructing proper lifetimes in the region below about 1.0-1.5
ps exhibits a miss-match between data and simulation. The effect is illustrated in
Figure 6.10 which shows the ratio of data to simulation in this region for the case
of 1994 and 1995 data separately. This observation is not surprising since this
region is very sensitive to details of reconstruction resolution and the modeling of
events which contain no intrinsic lifetime information such as u, d, s events and
the reconstruction of spurious vertices. From Figure 6.10 it is also clear that the
effect is somewhat larger in 1994 data than in 1995. The effect was corrected for
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Figure 6.8: The plots show the stability of the results with respect to the enhance-
ment cuts. The black surfaces illustrate the result plus and minus one statistical
standard deviation. The plots show the stability for the BT lifetime (top left),
the BY lifetime (top right), the lifetime ratio (bottom right) and the arithmetic
mean of the two lifetimes (bottom left). Varying the cut on the Bt enhancement
network results in a stable behavior whereas the BY lifetime is only stable in a
small region around the working point.

by fitting the shape to a parabola shown in Figure 6.10. This function was used
as an additional acceptance correction weight applied on all Monte Carlo events
with reconstructed decay times smaller than 2 ps.

6.7.4 Further Crosschecks

A first check of the fitting procedure was performed by using half of the available
qq Monte Carlo statistics as 'data’; to see if the fit finds the correct answer. For
this purpose the ’data’ was modified to have different lifetimes for B* and B.
This has been achieved by rejecting events with a certain probability which is
based on the true decay time of the meson. In this way the BT lifetime was
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Figure 6.9: The left plot shows the sum of the statistical error of the BT and
B lifetime fit as a function of the enhancement cuts. The right plot shows the
according x* probability.

modified to be 1.5 ps whereas the B lifetime was modified to be 1.7 ps. The
result of this test was 70 = 1.7202 £ 0.0322 ps and 75+ = 1.4928 4+ 0.0193 ps
which was in good agreement with the right answer.

A further crosscheck on the stability and robustness of the results was made
by repeating the fits for one data set using the simulation sample compatible
with another data set e.g. fitting 1994 data using 1995 simulation. This provides
a rough check that aspects of the detector and physics modeling effects are well
under control and gives information about the sensitivity to the details of the
acceptance correction. It was found that all fit results (for 7, 75 and their
ratio) for both cases (1994 data using 1995 simulation and 1995 data using 1994
simulation) changed by amounts that were within the systematic error assigned
for detector effects (see Section 6.8).

Another check concerned the rather bad agreement between data and simula-
tion of the BDNet (see Chapter 4 Figure 4.9). Since the Strip-Down algorithm is
the only algorithm used which has an explicit cut on the output of the BDNet the
analysis was run leaving out completely the Strip-Down algorithm and replacing
it with the results of one of the other 3 algorithms that are employed. This gave
a shift of only -0.0017 ps for the BT lifetime and -0.0063 ps for the B° lifetime.
In any case the reasons for the discrepancy between data and Monte Carlo in the
BDNet distributions can in principle be due to all aspects of B and, in particular,
B — D modeling. It is known, that at least some part of the discrepancy comes
from the inadequate modeling of (B — DDX) in the Monte Carlo and so an
explicit systematic error have been assigned for this effect (see Section 6.8).
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Figure 6.10: The left plot shows the ratio of the reconstructed lifetime of data and
Monte Carlo for 199/4. The right plot shows the same for 1995. The superimposed
functions are the fitted parabolas.

6.7.5 Extraction of the Results

With all these modifications and corrections applied, the fit was done, after im-
posing the working point conditions and following the procedure described in
Section 6.6. The result of the fit is illustrated in Figure 6.11 which shows the
data distributions together with the best fit Monte Carlo distributions. Imposed
are also the contributions from different sources, with purities and efficiencies as
stated in Table 6.5. The results of this fit is stated in Table 6.6 together with the
correlation and the x? probability of the fit for 1994 and 1995.

An approach was made to improve the modeling of the detector response.
Therefore an attempt to better match the track impact parameter and error
(with respect to the primary vertex) between simulation and data according to the
prescription detailed in [111] was made. Another correction was the hemisphere
quality weight described in Section 6.4. The effect of those corrections was studied
by switching them on and off. Since in general, knowledge of detector modeling
uncertainties are not at the same level of certainty as e.g. the knowledge that b
production fractions in our Monte Carlo generator differ with the world average,
the result obtained from the fit by one fixed set of corrections is not more accurate
than a result from any other set of corrections. We have taken the following
approach to assigning systematic values for these effects: All four combinations
of switching the above two corrections on and off in the analysis were made and
the fitted lifetimes of the four possibilities recorded. The central results were then
chosen to be the arithmetic means of these four combinations. For the statistical
uncertainty the error of the default fit using the hemisphere quality correction
but not the resolution matching was used, since they did not vary much.

The results of these four combinations are stated in Table 6.7 together with
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Figure 6.11: The result of the fit in the BT (left side) and B° (right side) samples
compared to the data for 1994 (top) and 1995 (bottom). The b-hadron composition
of the samples is also shown. Here, by refers to the background from non-bb Z°
decays which is added on top of the plot and is hardly visible.

the mean values.

The standard Monte Carlo data set used was generated with a wrong-sign?
charm rate of only 11% and contained no wrong-sign D° or D* production. It is
now known (see e.g. [112]) that there is an additional wrong-sign contribution, of
a comparable size, due to the production of D° and DT at the W or upper vertex.
To estimate the effect of this omission, the wrong-sign D, branching ratio was
enhanced to 20% with the effect of increasing the reconstructed lifetime in the
Monte Carlo (or equivalently decreasing the fitted lifetime). The final fit central
values were corrected downwards by the total observed shift in the fitted lifetime
and in the case of the ratio upwards by the total observed shift, because the ratio
behaves different.

The corrected central values which are the final values are stated in Table 6.7

2Wrong-sign charm decays are b decays, where a charm quark comes from the W-decay and
therefore has an opposite sign to the charm quark from the b — ¢ transition.
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BT sample B? sample
1994(1995) in % | 1994(1995) in %
B fraction 70.6(71.0) 16.6(16.9)
BY fraction 21 0(21.7) 69 6(69.2)
B fraction 2.9(2.9) 7.8(8.2)
b-baryon fraction 2.7(2.7) 4.8(4.7)
b fraction 98 1(98.3) 98 8(99.0)
uds fraction 0.3(0.2) 0.1(0.1)
¢ fraction 1.6(1.4) 1.1(0.9)
both samples combined
b fraction 98 2(98.5)
uds fraction 0.3(0.2)
¢ fraction 1.5(1.3)
b efficiency 10. 2(10 2)
uds efficiency 0. 01(0 01)
c efficiency 0.2(0.2)

Table 6.5: The B* and BY sample composition and efficiencies

Observed Result x?/n.d.f. Corr.
quantity 1994 1995 1994 1995 with 7o
Tp+ [ps] | 1.6218 £0.0155 | 1.6231 £ 0.0230 -0.54
Tpo [ps] | 1.5659 £ 0.0238 | 1.4942 £+ 0.0358 | 207/179 | 160/161 1.00

Tp+/Tpo | 1.0375 £ 0.0226 | 1.0865 £ 0.0368

Table 6.6: The results of the lifetime fits in the 1994 and 1995 data samples where
the errors quoted are statistical only.

Combination of the Results

The results obtained from 1994 and 1995 represent two independent measure-
ments of the same quantities. In order to combine them to one single result, the
following x? function had to be minimized with respect to the combined result
for each of the three quantities analyzed:

=) V() (66)

(¥

where V' denotes the error matrix, 7 the combined result and 7; the result ¢ where
the sum of Equation 6.6 goes over the number of measurements, here two. V' is
a 2 x 2 matrix which consists of three contributions, the statistical uncertainties
0;, which are uncorrelated, systematic uncertainties s;°" based on physics which
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Combination observed
of correction quantity
hem. qual. | resol. Tp+ [ps] Tpo [ps] Tp+/Tpo
weight match. 1994 1995 1994 1995 1994 1995
on off 1.6218 | 1.6231 | 1.5659 | 1.4942 | 1.0357 | 1.0865
off off 1.6312 | 1.6308 | 1.5899 | 1.5198 | 1.0260 | 1.0731
on on 1.6420 | 1.6261 | 1.5739 | 1.5084 | 1.0433 | 1.0781
off on 1.6504 | 1.6339 | 1.5996 | 1.5342 | 1.0319 | 1.0651
mean values 1.6364 | 1.6285 | 1.5823 | 1.5142 | 1.0342 | 1.0757
ws-charm 11% — 20% | 1.6139 | 1.6144 | 1.5527 | 1.4819 | 1.0396 | 1.0894
final corr. values 1.6285 | 1.6198 | 1.5691 | 1.5019 | 1.0381 | 1.0786

Table 6.7: The results of the lifetime fits in the 1994 and 1995 data samples for
four different combinations of resolution corrections and for doubling the wrong-
stgn charm contribution using the combination of the first row. The number at
the bottom which is the result of the analysis is the central value from the four
numbers above shifted by half of the change in the lifetime fit according to the
wrong-sign charm doubling.

are treated conservatively as 100% correlated and other systematics s¥“°"" which
are treated as uncorrelated. The listing of systematics and exact division into
correlated and uncorrelated error will be described in the next Section. The error
matrix V then becomes:

‘/ij — Uigj 5ij + Z Sgncorrsgncorréij + Z Slgorr S;orr (67)

uncorrelated correlated
errors errors

Minimizing the x? function from Equation 6.6 leads to

N VR
s iy Vig T . (6.8)
2i Vi
with a total error of
-1/2
o= > Vi (6.9)
i’j

To get an estimate of the statistical and systematical error separate, the total sta-
tistical error was calculated similar to Equation 6.9 with a reduced error matrix
and then quadratically subtracted from the total error to get the total combined
systematic uncertainty. The y? can be used to calculate a probability with effec-
tively one degree of freedom which can be interpreted as how consistent the two
measurements are to each other. Then the total result becomes:
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T8+ = 1.625 +0.013 (stat) 4 0.017 (syst) ps at 81.9% x? prob.
B0 = 1.543 40.020 (stat) & 0.033 (syst) ps at 28.6% x? prob.

’BY _ 1.051 £0.019 (stat) +0.024 (syst)  at 48.0% 2 prob.

TBoO

6.8 Systematic Uncertainties

Systematic uncertainties on the lifetime measurements come from three main
sources. The first source is from the modeling of heavy flavor parameters in our
Monte Carlo. Since attempts were made to model these effects using current
world average values, these errors are largely irreducible. The second source
comes from the analysis method itself and the choices made in determining the
measurements working point and the details of the corrections mentioned in the
previous Sections. The overall good level of agreement between simulation and
data and the demand that the results are stable within a wide range of the working
point (as already shown e.g. in Figure 6.4) means that these errors are kept to a
minimum. The third source of systematic uncertainty can be generically termed
detector effects and result from a less than perfect modeling in simulation of the
response of the detector. In this Section all systematic error sources considered
are explained in detail.

6.8.1 Physics Modeling

Where possible, b physics modeling uncertainties were estimated by varying cen-
tral values by plus and minus one standard deviation and taking half of the
observed in the fitted lifetime value as the resulting systematic uncertainty from
that source. In this way the systematic error from the lifetimes of B® mesons and
b-baryons was extracted by using the values and errors from Table 6.3.

Charged b Multiplicity

The charged multiplicity and its modeling could in principle have an effect on
the measured lifetime. A recent DELPHI measurement [115] resulted in a mean
charged multiplicity of 4.97 + 0.03 (stat) & 0.06 (syst). In our Monte Carlo we
have about the same mean value. Studies were a weight was constructed to shift
the mean by 40.1 showed only small impact on the lifetime measurement and
therefore no systematic error was assigned.
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b-Hadron Production Fractions

The b-hadron production fractions were varied one by one by a small variation
Af; and the total systematic error from this source was then extracted by error
propagation taking account of the covariance matrix V' listed in Table 6.3:

5. AT AT
ol = —Vij—r 6.10

ij=1

D-Topological Branching Fractions

The uncertainty from D-topological branching fractions which is the fraction of
D decaying into a certain number of charged tracks, was estimated from the
difference in the fit result obtained when weighting according to the results from
[113]. Here the full difference was taken as a systematic error.

b-Fragmentation Function

The systematic error due to uncertainty in the b-fragmentation function was set
to half of the change in the fit result seen when the (z) value was varied by +1o
of the measurement [110].

b — Charm Modeling

Close attention was paid to possible systematic effects on the analysis due to the
modeling of b — charm branching ratios, where current experimental knowledge
is scarce. The charm content impacts on the performance of the B* and B°
enhancement networks and can pull the reconstructed b vertex to longer decay
lengths. The size of this pull in turn depends on whether a D° or D was
produced since 7p+ is about 2.5 times larger than 7p0. Specific aspects of the
Monte Carlo that were found to warrant systematic error contributions were:

(a) As mentioned in the previous Section, the wrong-sign charm contribution in
our Monte Carlo is not in agreement with latest measurements. Considering
this error source we decided to shift the mean fitted lifetime values according
to the description in the previous Section. Additionally a systematic error
was assigned by taking half of the change in the fit result seen when changing
the wrong-sign charm contribution by a reasonable amount of +3.3%.

(b) BR(b — D,X) is currently known to, at best, £30% [107] and was varied
in the Monte Carlo by a factor of two. The full change in the fitted lifetime
was then assigned as a systematic error.
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(¢) The Branching ratios for B® — (D¥)D°X and B~ — (D*)DX for which
no precise measurements exist were adjusted in the Monte Carlo according
to a fit using all currently available measurements from [107] as constraints.
This fit derived the exclusive branching fractions by using the measured
inclusive branching fractions measured at LEP and at b factories, mea-
sured production fractions of b-hadrons at LEP and measured probability
of prompt D** decay into D. The free parameters were then the produc-
tion fractions of D**, D* and D at the lower vertex (right-sign decay), D*
and D at the upper vertex (wrong-sign decay) and some other quantities.
The exclusive branching ratios were extracted by considerations like isospin
conservation for some decays and so on. The full shift in the fitted lifetime
by putting the fitted branching fractions as a weight into the analysis was
taken as a systematic error.

6.8.2 Analysis Method
Start Point of the Fit

From Figures 6.6 and 6.7 one can see that the choice of end point is rather
uncritical for the measurement of the B* lifetime. After the modification of the
neural net the B° lifetime is also stable in a long range of the end point (see
Figure 6.7) For these reasons no systematic error was assigned to a change in
the end point. The start point however was treated different with respect to the
acceptance correction applied which will be discussed in Section 6.8.3.

b(c) Purity and Efficiency

While changing the b purity the fit result remains stable over a wide range (see
Figure 6.4) and therefore does not give the occasion to assign a systematic er-
ror, studies showed that the efficiency, especially the charm efficiency is wrongly
modeled in the Monte Carlo. This efficiency for the reconstruction of bb and
cc events (as a function of the event b tag) has been evaluated using a double
hemisphere tagging technique on the DELPHI data set [114]. At the b-tag value
of the working point, the results of this study suggests that while the reconstruc-
tion efficiency for bb events might be underestimated in the simulation by about
~ 2% (relative), the efficiency for ¢ events is ~ 8% (relative) underestimated in
the simulation compared to data. To account for this possible source of error,
the efficiencies were changed in the simulation according to these results and the
difference seen in the fit results assigned as a systematic error. Since a large part
of the discrepancy between simulation and data in the c¢ event reconstruction
efficiency is probably due to a relatively poor modeling of D physics, this error
contribution has already, in part, been accounted for by the explicit D physics
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systematics detailed above. Given the current level of uncertainty in this sector,
the conservative approach of quoting both error contributions is preferred.

Binning Effects

Uncertainties resulting from the method itself have been checked by varying the
binning used for the x? formulation. The fit has been repeated using nominally
50, 75, 150, 200 and 250 bins, the result of which is illustrated in Figure 6.12.
From these plots one can see no systematic effect since the variation is well within
one statistical standard deviation. Therefore no systematic error was assigned.
The minimum numbers of entries per bin was also varied over a wide range and
no dependence was observed.
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Bt and B’ Enhancement Purities

Rather critical to the analysis is the assumption that the B™ and B° purity as
given by the simulation, models the situation in data well. The effect in the result
of scanning over the BT and B° enhancement purities was already illustrated in
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Figure 6.13: The plots show the variation in the fitted BT lifetime (left) and
B lifetime (right) as a function of the enhancement cuts on the BT (left) and
B output node. The upper and lower shaded bands represent the statistical one
standard error. The spread of the points for each bin of purity represents changing
the other enhancement purity in the range [65%, 75%].

Figure 6.8. The same is shown in more detail in Figure 6.13. A systematic error
will arise if the composition of the BT and B° simulated samples differ from the
data and/or the overall shape of the B* and B° output node distributions differ.
To account for the first effect, half of the maximum variation in the fitted lifetime
while scanning the purity range [65%, 75%] was assigned as an error (see Figure
6.13). A separate error contribution was also assigned to take account of any
residual difference in shape between data and simulation in the net distribution.
Assuming that the difference can be wholly accounted for by a change in the B
or BY composition in the sample, it was found that the maximum error made in
calculating the BT or B purities in the samples fitted was of order 2% and 4%
respectively. The effect of these changes were then propagated into errors on the
extracted lifetimes.

Secondary Vertex Multiplicity

The multiplicity of tracks in the reconstructed b-hadron vertex was found to be in
overall good agreement between data and simulation. To account for any residual
differences, mainly in the tails of the distribution (see Figure 6.14) a weight was
formed from the ratio of the data and simulation distributions (Figure 6.14) and
the change seen as a result of applying this weight was assigned as a systematic
error.
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6.8.3 Detector Effects
Acceptance Correction

As mentioned in Section 6.7.3, modeling the region at low proper time is a par-
ticularly complex task. That this is the case is illustrated by Figure 6.15 which
shows that, in the region below about 2 ps in the BY/B™ samples, the purity of
the different b-hadron species is rapidly changing. If the variation of the purities
with proper time are not accurately modeled in the simulation one must expect to
reconstruct unstable lifetime fit results as a function of the point in proper time
chosen to start the fit from. Such lifetime scans are presented in Figure 6.16 up
to 4 ps. The results show that, in general, the fit results are rather stable which
gives confidence that the low proper time region is reasonably modeled. For the
case of BY the acceptance correction described in Section 6.7.3 helped to reduce
the effect but some residual systematic trend is still visible. To account for this,
and to reflect the overall uncertainty associated with this region, a systematic
error (labeled 'acceptance modeling’ in Tables 6.8 and 6.9) was assigned to the
BT and B results in 1994 and 1995 equal to half of the full spread in results
seen over the interval [0.0 ps, 2.0 ps| with the acceptance correction not applied.
The upper range of this interval was chosen to coincide with the point in proper
time at which the purities stabilized in our samples as already shown in Figure
6.15. Of course the values to which these purities stabilize to can also be wrongly
modeled in the simulation and this possibility has been systematically accounted
for by the error assigned for the b-hadron production fractions and the errors
associated with the cuts and shape of the enhancement neural networks.
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Figure 6.15: The plots trace how the fractional composition of the samples change
in bins of the reconstructed lifetime for the BT (left column) and B° (right col-
umn) samples in 1994 (top row) and in 1995 (bottom row).

Detector Modeling

As already mentioned, in order to account for uncertainties in the simulation
originating from detector response modeling, the effect was studied of switching
on and off the two corrections described in Section 6.7.5, namely the resolution
smearing and the quality weight. The resulting systematic error from detector
response modeling was assigned to be half of the full spread of the values from
the four combinations.

Tables 6.8 and 6.9 present the full systematic error breakdown for the mea-
surements of 7+, 7o and their ratio in 1994 and 1995 data respectively. In
general it can be seen that detector effects dominate over physics modeling er-
rors. The extremely high Z° — bb purity of the event samples used means that
only modeling errors from b physics are of importance. Of these, only the wrong-
sign charm contribution is sizeable due to the fact that our default Monte Carlo
did not account for recent evidence for a larger branching ratio b — c¢s. There
are also relatively large systematic error contributions arising from the enhance-
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Table 6.8: Summary of systematic uncertainties in the B* and B lifetime results

and their ratio for 1994 data. Systematic errors are assumed independent and

are added in quadrature to give the total error.
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Table 6.9: Summary of systematic uncertainties in the B* and B lifetime results

and their ratio for 1995 data. Systematic errors are assumed independent and

are added in quadrature to give the total error.
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Figure 6.16: The plots show a scan over the starting point of the lifetime fit for
BT in (a) 1994 and (b) 1995 and for B® in (¢) 1994 and (d) 1995. The shaded
plots show the lifetime fit result with the acceptance correction applied. Overlaid
18 the scan without acceptance correction. The band indicates the one statistical
standard deviation.

ment neural networks (labeled as NN(B,)) which were to be expected from the
difficult task of modeling accurately such complex variables.

From Tables 6.8 and 6.9 one can see, that most of the physics errors were
quite small with respect to the statistical error and some of them show an in-
consistent size comparing 1994 with 1995. For this reason the physics modeling
errors have been treated as equal in 1994 and 1995 and the weighted mean (us-
ing the statistical error) was chosen to be used for the combination. The results
for 1994 and 1995 were combined afterwards, treating all systematic contribu-
tions as independent apart from the following (which were assumed to be 100%
correlated):

e all physics modeling errors,

e the neural net shape error (NN(B,) shape),
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e the secondary vertex multiplicity error.

6.9 Summary

An inclusive BT and B lifetime measurement was performed using the DELPHI
data set taken on the Z° resonance in the years 1994 and 1995.

After selecting b-hadron candidates with a purity of about 94% and reweight-
ing of the Monte Carlo sample to correct the simulation for known discrepancies,
the analysis isolated and reconstructed BT and B° meson candidate vertices and
momentum with purities of about 70% using neural network techniques trained
to exploit the physical properties of inclusive b-hadron decays. This treatment re-
sulted in a total sample size of about 47k(22k) event hemispheres for 1994(1995).
The reconstruction and enhancement algorithms were based on the BSAURUS
package [94].

A binned 2 fit to the resulting DELPHI data samples fitting both lifetimes si-
multaneously and the ratio in a separate fit yielded the results presented in Tables
6.8 and 6.9 for the two years separately. The systematic effects and additional
correction procedures of the analysis were investigated and described in detail.
The largest systematic error contributions came from uncertainties in detector
modeling and the details of the enhancement neural networks.

The two analysis of the two years were treated as two independent measure-
ments and the results were combined using standard techniques. The results of
this combination, which are also the final results of this analysis, are:

T8+ = 1.625 £0.013 (stat) 4 0.017 (syst) ps at 81.9% x? prob.
g0 = 1.543 40.020 (stat) +0.033 (syst) ps at 28.6% x? prob.

’BY _ 1.051 +0.019 (stat) +0.024 (syst)  at 48.0% y? prob.

TBo

The total errors were therefore:

o =0.022 ps

TB+ =
aﬁ‘;to = 0.038 ps
oot = 0.031

Tp+/Tpo






Chapter 7

Measurement of the Average
b-Hadron Lifetime

In this Chapter the measurement of the average b-hadron lifetime is presented.
Historically the measurement of 7, was used to determine the magnitude of the
CKM matrix element |V,,| in an inclusive way. At this time experimental preci-
sion was not good enough to differentiate between the lifetime components in a
b-hadron sample. Meanwhile precision and understanding of heavy flavor physics
increased and a measurement of 7, is less important. Nevertheless, the sophis-
ticated reconstruction algorithms used in this analysis enabled the most precise
measurement of 7, so far.

The first part of this Chapter describes the differences between the measure-
ment of 75+ and 70 described in the previous Chapter and the 7, measurement.
Though in principle the same pre-selection and fitting method is used, there are
some things that are treated differently.

In the second part the fitting procedure is described and the results are given.

The third part of this Chapter contains the discussion of the systematic errors
considered.

Finally the fourth part gives a short summary and interpretation of the result
in form of a determination of the CKM matrix element |V,,| which then will be
compared to the world average.

7.1 Sample Selection

The event selection for the 7, fit sample is exactly the same as for the B* and B°
lifetime fit. The choice of the working point for the b-tagging cut has the same
reason, to minimize the statistical error while still having a stable result. Also the

169
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Figure 7.1: The plots show a scan over the starting point of the average lifetime
fit for 1994 (left) and 1995 (right) data. The shaded bands show the one standard
deviation error. The systematic effect for the low lifetime region 1s the reason to
start the fit at 1 ps onwards to exclude the unstable region.

Selection Number of hemispheres
1994 data | 1995 data | 1994 qg | 1994 bb | 1995 qq | 1995 bb
Vertex 180010 86796 432962 | 1098594 | 239061 | 292072

t"¢ <10 ps | 179635 86631 432058 | 1096451 | 160463 | 291521
1" >1 ps 114317 54958 272188 | 701933 | 101835 | 187336

Table 7.1: The number of hemispheres selected after various hemisphere cuts. The
first row gives the number of hemispheres surviving the vertex selection criteria
described in Section 6.3. In the second the upper decay time cut is made. The
third row shows the number of hemispheres selected in the final selection cut using
only hemispheres with a reconstructed lifetime greater than 1 ps.

selection of the secondary vertex algorithm is the same as described in Section 6.3.
The main difference, of course, is that no enhancement is required, and therefore
after the cut at 10 ps on the reconstructed lifetime, the sample size remains the
same. However changing the start point of the fit, in this case gives a problem
(see Figure 7.1), especially for the 1994 data. Here the modeling uncertainty
at low proper decay times gives a huge systematic effect on the average lifetime
measurement. It turned out that this effect cannot be corrected so easily by
introducing an acceptance correction as it was for the 7z+ and 750 measurement.
Since this region is not well under control, it was preferred to chop away from the
fit the region less than 1 ps which coincides with the point at which the b-species
purities stabilize in Figure 7.2. Since the statistics in the b-hadron sample are
relatively large, the reduction in the statistics resulting from making the cut at 1
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Figure 7.2: The plots trace how the fractional composition of the samples change
in bins of the reconstructed lifetime for the mean b-hadron sample in 1994 (left)
and in 1995 (right).

ps are not as important to the final precision as would be the case for the B and
BT fits. This selection resulted in the event hemisphere numbers of Table 7.1.
The purities and efficiencies of Table 7.2 do also refer to the above Selection.

7.2 The Average b Lifetime Fit

8000 f
7000 © 1994 sample 3500 1995 sample

6000 t bg 3000
5000 | 2500
4000 | 2000
3000 | 1500
2000 | 1000
1000 | 500
0 0

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

t[ps] t [ps]

Figure 7.3: The result of the fit in the 1994 (left) and 1995 (right) data samples
compared to the data for 1994. The b-hadron composition of the samples is also
shown. Here, bg refers to the background from non-bb Z° decays which is added
on top of the plot and hardly visible.

A one parameter fit was made to the not enhanced data sample (i.e. the
sample contained the natural mix of b-hadron species like stated in Table 7.2)
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1994 sample | 1995 sample

in % in %
BT purity 42.7 42.8
BY purity 41.8 42.0
B; purity 6.7 6.7
b-baryon purity 6.8 6.6
b purity 98.0 98.1
uds purity 0.3 0.3
c purity 1.7 1.6
b efficiency 22.9 22.7
uds efficiency 0.04 0.04
c efficiency 0.58 0.54

Table 7.2: The composition and efficiencies of the T, fit sample

Observed Result x?/n.d.f.
quantity 1994 1995 1994 | 1995
T [ps] 1.5765 £ 0.0059 | 1.5494 £ 0.0085 | 76/88 | 70/88

Table 7.3: The result of the average lifetime fit in the 1994 and 1995 data samples
where the errors quoted are statistical only.

for the mean b-hadron lifetime 7,. Therefore the same x? formulation as for
the 75+ and 7po fit was chosen. The two samples of 1994 and 1995 were fitted
again separately and the results combined. The result of the fit is illustrated in
Figure 7.3 which shows the data distributions together with the best fit Monte
Carlo distributions. Imposed are also the contributions from different sources,
with purities and efficiencies as stated in Table 7.2. The results of this fit is
stated in Table 7.3 together with the y? probability of the fit for 1994 and 1995.
To account for possible modeling uncertainties of the detector response, the same
corrections as for the 75+ and 7o fit were applied, namely the resolution smearing
and the quality weight. Again the results of the four combinations of switching
these combinations on and off were noted and the mean of these four numbers
calculated. This mean was again corrected by the deviation to the result when
the wrong-sign charm content is set to 20%. The numbers leading to the final
results are stated in Table 7.4. The two measurements in the 1994 and the 1995
data sample are again combined in the same way as the results in the previous
chapter, leading to the following result:
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Combination
of correction
hem. qual. | resol. Ty [ps]
weight match. 1994 1995
on off 1.5765 | 1.5494
off off 1.5819 | 1.5555
on on 1.5783 | 1.5596
off on 1.5835 | 1.5659
mean values 1.5801 | 1.5576
ws-charm 11% — 20% | 1.5737 | 1.5464
final corr. values 1.5773 | 1.5546

Table 7.4: The result of the average lifetime fit in the 199 and 1995 data sam-
ple for four different combinations of resolution corrections and for doubling the
wrong-stgn charm contribution using the combination of the first row. The num-
ber at the bottom which is the result of the analysis is the central value from
the four numbers above shifted by half of the change in the average lifetime fit
according to the wrong-sign charm doubling.

n = 1.568 £0.005 (stat) 4 0.009 (syst) ps at 20.2% x> prob.

7.3 Discussion of Systematic Errors

For the average lifetime the same systematic errors have been considered as in
the previous Chapter for 75+ and 70. Without enhancement, no systematic
error from the neural net cuts occurs of course. Since the fit started at 1 ps a
systematic error, labeled ’acceptance modeling’ in Table 7.5, is assigned for the
exact positioning of this cut based on half of the change in the fit result seen
when varying the cut in the range [0.5 ps, 1.5 ps]. The remaining errors can then
be divided again into three main sources, physics modeling, systematics from
the method used and detector modeling uncertainties. From all these errors the
detector uncertainties gave the biggest contribution. From the physics systemat-
ics, which were all quite small the fragmentation function error source gave the
biggest systematic effect. A full systematic error breakdown for the measurement
of 7, in 1994 and 1995 data is presented in Table 7.5. For the combination the
physics modeling errors have been treated as equal in 1994 and 1995 and the
weighted mean (using the statistical error) was calculated.
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Table 7.5: Summary of systematic uncertainties in the average b-hadron lifetime

for 1994 and 1995 data.

Systematic errors are assumed independent and are

added in quadrature to give the total systematic error.
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7.4 Summary and Interpretation

A measurement of the average mean b lifetime 7, was performed using the DELPHI
data set taken on the Z° peak in the years 1994 and 1995.

The selection of b-hadron candidates was essentially the same as in the 75+ and
Tpo analysis leading to a b purity of about 94%. After the vertex Selection which
also was the same as for the previous analysis described in Chapter 6 however no
enhancement cuts were applied, to keep a natural composition of b-hadrons. The
starting point of the fit was chosen to be at 1 ps to overcome the badly modeled
low decay time region while still having a high amount of statistics. Since the fit
was started at 1 ps also no acceptance correction was necessary. This treatment
lead to a b-hadron purity of about 98% and resulted in a total sample size of
about 114k(55k) event hemispheres for 1994(1995).

Again, a binned y? fit to the resulting DELPHI data samples yielded the
results presented in Table 7.5. The systematic effects were briefly discussed and
the largest systematic error turned out to come from imperfect detector modeling.

The two analysis of the two years were treated as two independent mea-
surements of the same quantity and the results were combined using standard
techniques. The result of this combination which is also the final result of this
analysis is:

m = 1.568 +0.005 (stat) 4-0.009 (syst) ps at 20.2% x? prob.

The total error was therefore:

o = 0.010 ps

Th =

In Section 1.4.2 in Chapter 1 it has been described, that the average mean lifetime
7y is related to |V|. This relation is via the semileptonic charmed branching ratio
BR(b — X.7) and comes with theoretical uncertainties [116]:

(7.1)

BR(b — X.p) 16 ps> 12

V| = (41.6 £2.0) x 1073 x
[Veo] = ( ) "QED< 0.105 T

where 7ggp ~ 1.007 is the electromagnetic radiative correction. A similar equa-
tion can be written for |V,|:

_ 1/2
BR(b — X.lv) 1.6 ps> (7.2)

Vool = (3.06 4+ 0.16) x 10~°
Vol = ( ) x X( 0.001 .
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These two equations can be combined to have a relation which only depends on
the inclusive semileptonic branching ratio BR(b — XIv):

Vo Vo> 0.001  BR(b— XIp) 1.6

— - 7.3
(41.6 - 1073 - 5gpp)? * (3.06 - 10-3)20.105 0.105 To (7:3)
From this follows:
- BR(b — XIv) 1.6 [Viw|?  0.001
V| =41.6-1072 - - 7.4
Vel "QEDJ 0105 7  (3.06-10-3)20.105 (7.4)

Using measured values for BR(b — XlIv) = 10.59 + 0.22% and |V,| = (3.6 £
0.7) x 107 from [18] and taking the above mentioned theoretical uncertainties
into account, the measured average lifetime 7, gives a |V,3| value of:

V| = (42.24+2.1) x 1072 (7.5)

where the error is extremely dominated by the theoretical uncertainty. This
estimation of |V,| is consistent with the current world average value which is
|Veo| = (41.2 £ 2.0) x 1072 in [18].
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Conclusion

An inclusive b hadron lifetime analysis was performed using the DELPHI data set
taken on the Z° peak in the years 1994 and 1995.

Event hemispheres were selected, passing the multihadronic selection criteria,
the b-tagging cut and the cut on the direction of the thrust axis, leading to ap-
proximately 94% purity in Z° — bb events. New vertexing algorithms based on
the BSAURUS package were used, which made extensive use of elaborate neural
network techniques. The BSAURUS package also delivered dedicated neural net-
works for the identification of b-hadrons and reconstruction algorithms for the b
momentum, exploiting the full capabilities of the DELPHI detector.

After all selection cuts the data sample consisted of about 420000 event hemi-
spheres. A y? fit was performed to extract the lifetimes of BT and B° mesons
using samples which were about 70% pure in B* and B° mesons. The lifetimes
and their ratio were measured to be:

T+ = 1.625 £ 0.013 (stat) =+ 0.017 (syst) ps
Tpo = 1.543 £ 0.020 (stat) =+ 0.033 (syst) ps

TBY 1,051 +0.019 (stat) = 0.024 (syst)

TRBO

The same method was used to extract the average b-hadron lifetime from an
unenhanced sample and resulted in:

7, = 1.568 £ 0.005 (stat) =+ 0.009 (syst) ps

These results confirm, with a significance of about 1.5 standard deviations, the
predicted hierarchy between the B and B lifetimes. The result for the B+
and BY lifetime ratio represents the most precise single measurement of this
quantity from Z° resonance data (see Figure 8.3) and is also well compatible with
a previous DELPHI measurement of this quantity from an inclusive topological

177
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vertex method [117]. The result of the average b-hadron mean lifetime is in good
agreement with the most precise previous DELPHI publication on this subject
[118]. It is currently the most precise extraction of 7, worldwide and provides a
significant improvement in the current world average (see Figure 8.4). Figures
8.1, 8.2, 8.3 and 8.4 show the experimental results from various collaborations
together with the world average from the LEP lifetime working group. The results
from this analysis are also shown in these plots.
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