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Abstract 

 

Title: Measurement of the Hadronic Photon Structure Function F2
γ with the 

L3 Detector at LEP 

Author: Liza Gyöngyi Baksay 

Advisor: Marcus Hohlmann, Ph.D. 

 

 

The photon is one of the basic components of our present understanding of 

elementary particles and their interactions. The theory of Quantum 

Electrodynamics describes this object as being the mediator of the electromagnetic 

force between charged particles. Contrary to earlier assumptions the photon turns 

out to have a “structure” due to quantum fluctuations into fermion anti-fermion 

pairs that can further interact with other particles. In this case the photon reveals its 

structure. The structure of the photon can be described by the concept of photon 

structure functions, which are studied at high energy accelerators like the Large 

Electron Positron Collider at the European Center for Particle Physics. 

With the large amount of data (L=608 pb-1) collected with the L3 detector at 

center-of-mass energies GeV 209sGeV <<189 and the analysis method used in 

this dissertation, a measurement of the hadronic structure function F2
γ(x,Q2)/α is 
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obtained with better precision than previous measurements. The evolution of F2
γ/α 

as a function of x and Q2 is studied in the 11  and 

 intervals. Due to the precision of this measurement it is possible 

for the first time to demonstrate that the results of the higher-order GRV 

parametrization of the structure function are in good agreement with the data and 

give a correct description of the physical processes involved. 

222 GeV 34QGeV <<

0.556x0.006 <<
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Chapter 1 

 

1. INTRODUCTION 

 

1.1. Historical Overview of Photon Related Discoveries  

 

What is light? There were several scientific attempts that tried to give the 

right answer to this question and we are still not in the position to say that we can 

put an end to this quest. We already know that light is made of small entities called 

photons. This overview features some of the historical discoveries regarding this 

mysterious entity.  

 The photon is the elementary constituent of light. In Quantum 

Electrodynamics (QED) it is considered to be the mediator of the electromagnetic 

force between charged particles. An endless row of similar statements can be made 

here about the quanta of light but before that we should make a little detour back in 

time. Even before the beginning of the 19th century there have been a series of 

attempts to reveal the real nature of light. Several decades passed with empirical 

and experimental observations based on well-established theory (mechanics, wave 

theory, theory of light). However, these observations were not very well understood 
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and new and challenging ideas were necessary to move this field of physics ahead. 

Some of the most exciting questions that preoccupied those early years quantum 

scientists are the same also today: What is light? What is it made of? How can we 

interpret it? Is it a wave or a corpuscle? In order to answer these questions there 

were several experimental and theoretical attempts to prove the two different 

aspects of the photon.  

Issac Newton’s well-established corpuscular theory of light dominated till 

the 19th century. Newton, assuming that light is made of tiny particles, could 

explain the reflective and refractive properties of light. However, he could not 

account for the interference effects, that were known to be a property of waves.  

Although Newton’s theory was highly accepted, there were others who 

were in favor of wave theory. Back in 1660 Francesco Grimaldi’s experiment 

showed that light can bend around obstacles (diffraction). He concluded that light is 

like a fluid that exhibits wave-like motion. A few years later in 1678 Christian 

Huygens, based on Robert Hook’s general idea (1664), deduced the laws of 

reflection and refraction. He believed that light is caused by the pulsation of a light 

source. This travels through “ether” with a periodic up and down motion 

perpendicular to the direction of propagation. Despite these experiments the wave 

theory of light was abandoned for several years. More than one century passed till 

in 1801 Thomas Young in his simple interference experiment confirmed again that 

light acts as a wave. If a screen was placed at the point were two wave fronts 
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overlapped, darker and lighter areas could be observed showing the phenomenon of 

interference. James Clerk Maxwell, the father of wave theory, in 1865 showed that 

the speed of an electromagnetic wave should be the same as the speed of light. 

Based on this result he concluded that light is a form of electromagnetic wave that 

travels through space. Between 1808 and 1875 there were several others like Louis 

Malus, Jean Arago, Jean Fresnel, Leon Foucault, Louis Fizeau, Marie Alfred Cornu 

who established through many experiments that light is a transverse wave. Several 

of these scientists including later Michelson and Morley made accurate 

measurements of the velocity of light in various media. All these experiments 

described and explained the light as an electromagnetic wave, but could not 

account for its particle nature.  

In 1900 Max Planck determined the black body spectrum for the 

electromagnetic radiation emitted by a hot object. Classical physics predicted that 

the intensity of emitted light should increase rapidly and without limit with 

decreasing wavelength. Plank could “escape” this ultraviolet catastrophe only if he 

considered that the body consists of vibrating oscillators that could absorb and emit 

small quantized packets of energy E= hν (ν frequency of the radiation, h constant 

fitted to the data). In 1905 Albert Einstein formulated the theory of light quanta. 

Based on this theory he could explain the “photoelectric effect”, a process where 

electrons are ejected from a metallic surface due to an incident electromagnetic 

radiation. Einstein showed that the electron’s maximum energy does not depend on 
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the intensity of the incident beam of light but only on the frequency (or 

wavelength). This was in total contradiction with the wave theory that considers 

that the energy of the electron increases with the intensity of the light source. 

Einstein concluded that light consists of discrete quantized packets of energy that 

also have a wave nature being characterized by a wavelength. There were also other 

attempts that tried to show that the photon is not a wave but a particle. In 1916 

Robert Millikan found that his measurements were predicted by Einstein’s 

photoelectric equation. Millikan determined with high accuracy that the maximum 

kinetic energy of the ejected electrons obeys Einstein’s equation. He determined 

Planck’s constant with a remarkable precision proving the correctness of the photon 

concept.  

In 1922 Arthur Holly Compton seemed to finally settle this debate about the 

nature of light. In his experiment he showed that when light interacts with electrons 

it behaves as if composed of particles with energy hν (h Planck’s constant, ν 

frequency of radiation) and momentum hν/c=h/λ (c speed of light, λ wavelength). 

He found that the wavelength of the scattered photon λ is slightly shifted compared 

to the incident photon’s wavelength λ0. He concluded that the wavelength of x-rays 

scattered on free electrons at a given angle does not depend on the intensity of the 

radiation and length of exposure, but only on the scattering angle θ: 
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 ( cosθ1
cm

hλλ
e

0 −=− ) , (1.1) 

 

where me is the mass of the recoiling electron and h/mec is the “Compton 

wavelength”.  

This long row of innovative experiments finally lead to the conclusion that 

light is simultaneously “wave” and “particle”. This dual nature of the photon is 

successfully described by Quantum Electrodynamics. In this theory both “particle” 

and “wave” properties of the photon are inevitable and complementary. 

 

1.2. Description of Basic Photon Interactions  

 

1.2.1. QED Interactions 

Particle interactions are described in the context of Quantum Field Theory. 

In this theory particle physics is formulated in terms of the Lagrangian L. The 

potential energy terms, also called interaction Lagrangian, specify the forces, while 

the kinetic energy terms are general and depend only on the spins of the particles. 

The laws of physics are universal. They have to be the same everywhere. 

Making the Lagrangian invariant under Lorentz transformations provides a Lorentz 

invariant theory. Local gauge invariance of the theory means that we can chose any 

phase of the field at each space-time point without affecting the theory. 
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Local gauge invariance U(1) of the theory for electrically charged particles 

(Dirac fermions) requires that there must be a field quantum, an integer-spin gauge 

boson, which is the mediator of the electromagnetic interaction. The associated 

fields are called gauge fields and the gauge theory is called Quantum 

Electrodynamics. 

In QED the photon is the mediator particle and can couple only to charged 

fermions that can be quarks or leptons. The property “charge” is attributed to a 

particle if it couples to the photon. Conventionally, there are two types of electric 

charges: positive and negative. The value of the charge is proportional to the 

strength of the coupling between the interacting particles. The force is attractive if 

the charges are of the same type and repulsive if they are of different type. 

In QED the free photon is considered a structureless and zero rest mass 

entity. Particles that take part in a virtual processes are said to be “off mass-shell”, 

receiving a non-physical mass. It means that the relation  does not 

hold for them. Due the Heisenberg Uncertainty Principle a virtual photon can be 

emitted for a very short time 

42
0

222 cmcpE +=

)E/(t ∆≤∆ h  and will be reabsorbed. The continuous 

release and absorption of virtual photons by fermions leads to the formation of so-

called virtual photon clouds around them (Figure 1.1). In case of fermion pair 

production the virtual photon can violate conservation of energy by an amount of 

energy ∆Ε (can borrow this energy from the emitting charged particle) for a very 

short period of time ∆t, can fluctuate into a charged fermion anti-fermion pair 
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γ* → ff  and then go back again into a photon ff  → γ. This is called vacuum 

polarization (Figure 1.2). Virtual photons can also create virtual fermion pairs 

(Figure 1.3) or the virtual photon can interact with another photon (Figure 1.4). The 

last process is studied in the framework of two-photon physics and is the subject of 

this dissertation. 

 

  

 

Figure 1.1 Charged fermion emitting and reabsorbing a virtual photon.  

 

 

Figure 1.2 Virtual photon fluctuating into an ff  pair and back into a photon. 
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Figure 1.3 Creation of a virtual ff  pair.  

 

  

Figure 1.4 Simplest two-photon interaction. 

 

In reality these processes are interconnected (Figure 1.5). Due to the virtual 

particle emissions and absorptions a cloud of charges will surround the negative 

test charge as shown in (Figure 1.6). After getting closer to the negative charge, a 

probing charge penetrates the cloud of virtual e  pairs leading to an increase in −+e
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the effective interaction between them. The negative charge will appear “less 

screened” and a larger charge will be measured. Consequently, the described effect 

is called charge screening. 

The electromagnetic coupling constant α is a measure of the strength of the 

electromagnetic interaction. Contrary to its name, its value is not a constant. This 

can increase with the energy of the interaction. In the low energy limit (Figure 1.7), 

when we have a low energy probe, it becomes the familiar fine structure constant 

with the value α ≅ 1/137. For experimentally accessible energies α is weak enough 

to permit perturbative QED calculations.  

 

 

Figure 1.5 A QED interaction [1]. 
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Figure 1.6 Screening of the electric charge. 

 

 

 

Figure 1.7 Evolution of the electromagnetic coupling constant  [1]. α
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For scattering of an electron by a static charge one can write the physically 

measured charge as 

 

 







+

=
)q(I1

1e)Q(e 2
2
0

22 , (1.2) 

 

where  is the real charge, also called “bare charge”, of the target particle. I(q2
0e 2) is 

the perturbatively calculable photon propagator that has contributions from 

logarithmically divergent and finite terms. The charge that experimentalists 

measure depends on the particular value of the virtual photon’s momentum q, 

specifically on the momentum squared, q2, which is negative for virtual particles. It 

is conventional to use , which is called the “virtuality” of the virtual 

photon. In the large Q

22 Qq =−

2 limit  

 

 







−

= 2

2
2

q
Mlog

3π
α)I(q , (1.3) 

 

where M2 has been introduced as a cut-off for the infinite part of I(q2) that appears 

when M2 → ∞. From here on units are used according to the Appendix. Therefore, 

M and q are both parameters with dimension of momentum expressed in GeV. 

The “running coupling constant” is given as  
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 . (1.4) π≡α 4/)Q(e)Q( 222

 

Replacing I(q2) in equation (1.2) and e2(q2) in (1.4) α becomes )Q( 2

 

 









π

α
−

α
=α

2

2
0

02

M
Qlog

3
1

)Q( . (1.5) 

 

To have only finite and physically measurable quantities, the arbitrary cut-off value 

has to vanish from equation (1.5). One can choose a renormalization or reference 

momentum µ. After subtracting α(µ2) from α(Q2) we find 

 

 









−

=

2

22

2
2

µ
Qlog

3π
)α(µ1

)α(µ)α(Q . (1.6) 

 

This result shows that with increasing Q2 the photon sees more and more charge. α 

increases slowly from the value of 1/137 until it becomes infinite at a very large 

finite value of Q2.  
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1.2.2. QCD Interactions 

Quarks can also interact by photon exchange. However, this interaction is 

not strong enough to bind quarks into hadrons. A much stronger force is needed, 

mediated by a gauge boson. This force is called the fundamental strong force.  

Again we can formulate a theory of “strong” interactions in the context of 

quantum field theory. Local gauge invariance SU(3) of the theory for “color 

charged” particles (quarks) requires that there must be a field quantum (integer spin 

gauge boson) that is the mediator of the strong interaction. The associated fields are 

called gauge fields and the gauge theory is called Quantum Chromodynamics 

(QCD).  

In QCD the gluon is the mediator particle and “carrier of color” that couples 

to colored fermions. Gluons are massless integer-spin bosons like the photon. The 

property color is attributed to each particle that has interaction with gluons. Quarks 

are known to have six different flavors: u (up), d (down), c (charm), s (strange), t 

(top), b (bottom) and three primary colors: red, green and blue (RGB). Since all 

observed particles are colorless or “white”, the anti-quarks are assigned the 

complementary colors: cyan, magenta, yellow ( B ,G ,R ). There can be many 

combinations of quarks, and among these are several not yet seen in experiments, 

like the heavier and less stable combinations of s, c, and b quarks. The top quark 

has a very short lifetime, so it does not form hadrons before decaying. The most 

conventional quark combinations are baryons, composed of one red, one green and 
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one blue quark, and mesons that include a quark and an anti-quark of the 

corresponding anti-color. All of these combinations must possess an integral 

amount of electrical charge. We can never detect a single quark or a quark-quark 

bound state. The existence of these particles is forbidden by the rule of color 

conservation. 

We can formulate an analogy between QCD and QED processes. Instead of 

photons write gluons and consider that fermions are colored quarks. This way we 

find that any colored quark can emit and reabsorb a colored gluon (Figure 1.8). A 

virtual gluon can fluctuate into a virtual quark anti-quark pair trough a vacuum 

polarization process and then go back into a gluon (Figure 1.9). Since gluons carry 

“color charge” they can self-interact with each other (Figure 1.10). This is 

completely opposite to the situation of the electromagnetic field quanta. The photon 

does not have a charge so it cannot self-couple. 

Again, in reality these processes are interconnected (Figure 1.11). A similar 

effect of charge screening can be observed also in QCD. However, this will be 

called now color screening and instead of charged electron pairs we will have color 

charged quark and gluon pairs, as described above. At very small distances quarks 

behave as free non-interacting particles. As we try to separate quarks of the same 

color the force that binds them together becomes stronger. The quark confinement 

is explained since the strength of the strong coupling increases with the distance 

between the colors. At high enough energy, the creation of a new quark anti-quark 
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pair out of the vacuum becomes energetically more favorable than to allow the 

quarks to separate further. What we see in the detector are color-neutral particles 

(mesons and baryons), clustered together in so-called “jets”. The described process 

is called hadronization or fragmentation: conversion of energy into matter until all 

quarks are confined into hadrons.  

 

 

Figure 1.8 Quark emitting and reabsorbing a gluon. 

 

 

Figure 1.9 Creation of a virtual quark pair from a gluon. 
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Figure 1.10 Self-coupling of gluons. 

 

 

Figure 1.11 A QCD interaction [1]. 

 

The QCD behavior of the strong coupling αs is very different from that of 

the QED coupling α. It can be shown that the different QCD interaction 

terms yield [1] 
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Only for more than 16 quark flavors is the sign of the coefficient in front of 

( )22Qlog µ  in equation (1.7) the same as in QED (1.5). Currently we reach 

energies that prove only the existence of the u, d, c, s, b, and t quarks. From 

equation (1.7) we can immediately see that  decreases with increasing Q)Q( 2
sα 2. 

For short distance interactions the strong coupling becomes small until quarks 

behave as free particles (Figure 1.12). For low Q2 values the strong coupling 

becomes large. The Q2 scale where this happens is 
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Therefore, the expression (1.7) for αs becomes: 
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For large Q2 values (Q2>>Λ2) the quark masses can be neglected, and they 

contribute no mass scale Λ to QCD. The effective coupling becomes small and we 

can use perturbation theory as in QED to describe shortest-distance interactions 

between quarks and gluons. At Q2 ≅ Λ2 the coupling between quarks and gluons 

becomes strong so they form bound states called hadrons. At this scale, 

perturbation theory cannot be used anymore. Λ is the value that separates the world 

of quasi-free quarks and gluons, and their bound hadronic states. The free 

parameter Λ is not predicted by theory. It has to be determined from experiments.  

Using high energy accelerators we can probe the color charge of individual 

quarks inside different target particles and reach distances where the strong 

coupling constant is smaller. The aim is to reach energies and distances where αs is 

on the order of 0.1 (Figure 1.13) and perturbation theory gives a good 

approximation. As an example, for the Q2 range 11-34 GeV2 of the present 

analysis, corresponding to an average value of 18.4 GeV2, the strong coupling is 

expected to be around the 0.1 value [1].  

For center-of-mass energies lower than 2 GeV, αs becomes too large to 

permit the use of perturbation theory. In this region perturbative QCD calculations 

cannot be performed and therefore phenomenological models or simulations are 

necessary (Section 4.4.3). 
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Figure 1.12 Evolution of the strong coupling αs [1]. 

 

Figure 1.13 Strong coupling constant sα  measured by the L3 experiment [2]. 
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1.3. Classification of two-photon interactions 

 

In the deep inelastic scattering process e  (Figure 

1.14) the highly virtual photon γ

Xeeeee (*)* −+−+−+ →γγ→

(*)γ

*, with high four-momentum transfer q, emitted by 

the scattered electron is testing the structure of the quasi-real photon . The 

result of this interaction is in leading order a fermion pair X= ff

−+→γ ll

(*)γ →

, where f can be 

either lepton or quark. In case of lepton pair production ( ) the process can 

be precisely calculated in QED since there are no self-couplings of the photon. 

However, in case of quark pair production ( qq  pair), QCD corrections have 

to be taken into account due to the additional QCD interaction terms. 

Depending on what we want to measure, two-photon physics studies can be 

subdivided as follows:  

• The total hadronic cross section can be measured at low photon virtualities.  

• Single-tagged hadron production allows study of the photon structure 

function.  

• Double-tagged hadron production allows study of the virtual photon 

structure.  

• Charm and beauty production reveal the heavy flavor content of the photon.  

• Jet and single (inclusive) particle production is used for studying QCD 

processes over a wide transverse momentum pt range.  
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• Study of exclusive resonance production gives the opportunity to study the 

quark content of mesons using the special features of two-photon coupling. 

 

 

Figure 1.14 A virtual photon  testing the structure of a quasi-real photon . *γ (*)γ
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Chapter 2 

 

2. THE LEP COLLIDER AND THE L3 EXPERIMENT 

 

2.1. The LEP collider  

 

The Large Electron-Positron Collider (LEP) was located at the European 

Center for Particle Physics near the border between France and Switzerland. In 

LEP beams of electrons and positrons orbited in opposite directions in a 27 km 

circumference vacuum pipe, 70 m under the surface. The beams, traveling near the 

speed of light, were guided by magnets to four collision points, where the four LEP 

experiments L3, ALEPH, DELPHI, and OPAL were placed.  

The LEP collider was designed to perform high precision tests and 

measurements of the standard model, especially weak interactions and to search for 

unexpected physics in a new energy range. During its operation between 1989 and 

2000, the accelerator reached energies high enough to produce the Z (m = 91 GeV) 

and pairs of W (m = 80 GeV) particles, carriers of the weak force. The accelerator 

was shut down in the year 2000 after having reached a highest center-of-mass 

energy of 209 GeV.  

 

 



  23 

 

Figure 2.1 Integrated luminosities seen by the four LEP experiments from 1989 

to 2000 [3]. 

 

Luminosities delivered by LEP at different energies corresponding to the 

two LEP phases LEP1(1989-1995, GeV 94sGeV <<88 ) and LEP2(1996-2000, 

GeV 209sGeV 161 << ) are shown in Figure 2.1. The luminosity is calculated 

using the relation 
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where  and σ  are the horizontal and vertical beam sizes, Ixσ y b is the intensity per 

bunch, Nb is the number of bunches per beam, and f0 is the revolution frequency. 

The LEP performance was well above the design expectations. During the 

last year of data taking, a signal consistent with Standard Model Higgs production 

was observed. After combining the data from all four LEP experiments the 

significance of the signal was, however, slightly below three standard deviations 

and the CERN management did not recommend a prolongation of LEP running in 

2001. All LEP experiments including L3 have produced exceptionally large 

samples of data. All four experiments, as well as CERN, recognized the importance 

to extract the maximum of information from these unique data samples, 

characterized by clean signals and very small backgrounds.  

The most important physics processes investigated at LEP are Z and W 

boson production, searches for the Higgs boson and supersymmetric particles, as 

well as for other phenomena beyond the Standard Model, and the rich and 

extensive field of photon-photon collisions. As Figure 2.2 demonstrates, two-

photon reactions with hadronic final states are the dominant process at LEP2 

energies. A hadronic final state occurring in a two-photon collision is regarded as 

revealing the “hadronic component” of the photon, described in more details in 

Chapter 4. 
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Figure 2.2 Cross sections for several processes at different LEP energies [4]. 
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2.2. About particle detection at e+e- colliders 

 

Detectors in high energy physics are very complex and costly devices. A 

devoted and long-term effort of hundreds of physicists, engineers, and technicians 

is needed to build and operate them.  

The goal of experimental particle physics is the measurement of particle 

properties and reaction probabilities, “cross sections”. After the interaction of the 

particle beams, bursts of various particles are moving outward in all directions. By 

determining their type (mass, charge, spin, flavor, etc.), momentum/energy, angle, 

and how often they occur, we can study these objects and try to have a better 

understanding of them and their interactions.  

Detection is based on the interaction of radiation with matter. In this sense 

particles can be divided in two main categories. In the first group are the charged 

particles: heavy charged particles such as µ, π, p, α, light nuclei, and light charged 

particles such as e+, e-. The other group comprises the neutral particles: n, γ-

radiation and neutrinos. There are two principle effects during the passage of 

charged particles trough matter. Due to electromagnetic processes, such as inelastic 

collisions with shell electrons of the medium and elastic scattering off nuclei, these 

particles lose energy and change directions. We are mostly interested in the 

statistical sum of such interactions. However, there are also other processes that can 

contribute: Bremsstrahlung, emission of Cherenkov radiation, nuclear reactions, 
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emission of transition radiation. Neutral particle interaction with matter can occur 

trough energy transfer to charged particles. As an example neutrons interact with 

heavy charged particles, γ-radiation with electrons, and neutrinos with heavy 

charged particles and electrons.  

Large detectors consist of several subsystems; each designed to perform 

different tasks. Particles that have a lifetime of about 10-11 sec or longer can be 

detected. Heavy charged particles such as muons go through large amount of 

materials without slowing down. These are detected by muon chambers situated in 

the outer shell of the whole detector setup. In order to have precise measurements 

of charged particle momenta, large magnetic fields are applied that bend the tracks 

of these particles. Charged particle tracking devices are placed close to the beam 

pipe and they can be cylindrical wire chambers, silicon detectors, or time-of-flight 

(TOF) scintillation counters. For detection of those particles that have a very short 

lifetime, such as τ leptons, b and c quarks, vertex detectors are used. By observing 

the final-state particles from the collision one can work backwards and deduce 

which unstable particle was produced. Photons and electrons lose energy by 

scattering and by radiating other photons and electrons. They create so-called 

electron showers during their passage. The electromagnetic energy deposited this 

way can be detected by electromagnetic calorimeters (ECAL). Photons can be 

distinguished from electrons since the electrons show up in both ECAL and 

tracking devices while photons show up only in the ECAL. The detection of 
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hadrons is based also on calorimetery. Hadrons interacting with nuclei lose energy 

in their collisions and will further interact with other hadrons. They produce hadron 

showers that are much wider than electron showers; hence they can be easily 

distinguished. The deposited energy is detected by hadron calorimeters (HCAL). 

Neutrinos are neutral particles that cannot be measured directly by the detectors. 

However, we can measure their missing momentum by applying momentum 

conservation to the other particles. In addition, one has to be sure that the energy of 

all the particles that participated in this interaction is well measured.  

Electron-positron colliding beams are the main devices for exploring two-

photon γγ→h and one-photon γ→h processes. The only obstacle is to design and 

build detectors that can fulfill the requirements for both processes. Two-photon 

events are boosted in the direction of one or both electron-positron beams while for 

one photon events the laboratory system coincides with the center of mass system. 

Another difference is that two-photon events occur at lower energies than one-

photon events. The advantage of this low energy is that these two processes can be 

easily separated. The disadvantage is that the low-energy background, such as 

beam gas events, is hard to separate from two-photon events. This affects detection 

efficiency and triggering. The trigger threshold has to be increased to reduce this 

background.  

For a highly efficient detection the detectors should cover a 4π solid angle. 

However, in real life this is not the case. About 10 to 20 % of this angle is not 
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covered leaving acceptance holes close to the beam pipe. It means that a significant 

amount of the events is lost in these regions that later when we analyze data has to 

be recovered using simulation programs (Chapter 5).  

 

2.3. The L3 detector 

 

L3 is a general-purpose detector, designed and built to detect particles that 

come from the e  collision (Figure 2.3). It is especially good for the study of 

electrons, photons, and muons, since it has a very good energy or momentum 

resolution for these. A more detailed description of the L3 detector is given in [5], 

[6], [7], [8], [9]. Only such aspects will be emphasized here that are relevant for 

this analysis.  

−+e

The L3 detector is unique for the study of two-photon processes because of 

its excellent resolution for photons and charged hadrons and because of an 

unbiased track trigger (Section 2.4).  

L3 has several subdetectors arranged in a layered structure: central tracker, 

electromagnetic and hadronic calorimeters, and muon drift chambers. A uniform 

magnetic field of 0.5 T produced by a large magnet (length 14 m, height 16 m, 

mass 7500 ton of carbon steel and aluminum) along the beam line allows 

measurement of the transverse momentum of charged particles. Luminosity of 

electron positron collisions is measured with the luminosity monitor (LUMI). 
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The most relevant detectors for this analysis are shown in Figure 2.4. The detector 

situated closest to the beam pipe is the Silicon Microvertex Detector (SMD). It is 

designed to provide high precision position measurements near the interaction 

point. The measurements allow for reconstruction of the tracks to determine the 

decay point, i.e. the “vertex”, of short-lived particles such as the τ lepton. The SMD 

is a micro-strip semiconductor detector. It consists of two cylindrical layers of 

double-sided silicon strip detectors. It has a resolution of 7 µm in the transverse 

plain and 15 µm along the beam pipe.  

The next detector surrounding the SMD is the Time Expansion Chamber 

(TEC), also called L3 Vertex Chamber. The TEC measures the bent tracks of 

charged particles over a half-meter range from the creation point. This detector is 

made of two layers of drift chambers, positioned cylindrically around the main z 

axis.  

The Electromagnetic Calorimeter (ECAL), made of 1100 Bismuth 

Germanium Oxide crystal cells, measures the energies and positions of electrons 

and photons with energies ranging from 100 MeV to 100 GeV. Their deposited 

energy is transformed into light that we can measure. The crystals have the role of 

producing scintillation light and channeling. This light coming from the particles to 

photodiodes are then connected to readout electronics. This detector has an 

excellent energy resolution over a wide range, 5% at 100 MeV and 1% above 1 

GeV. 
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The Hadron Calorimeter (HCAL) measures the energy deposited by 

particles and jets of particles. It can also contribute to the identification of muons 

and the monitoring of the direction of the energy flow. This device has three main 

parts: the barrel situated at the center, a muon filter located in the outer shell and 

two endcaps. The barrel and the endcaps are made of depleted uranium absorber 

plates (weight of 300 tons) interspersed between 7968 proportional wire chambers. 

 

 

Figure 2.3  Picture of the L3 experiment.  
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The L3 subdetectors in the forward region that are capable of “tagging” 

photon events occurring at small scattering angles are the Very Small Angle Tagger 

(VSAT), the Luminosity Monitor (LUMI), the Active Lead Rings (ALR) and the 

Electromagnetic Calorimeter (ECAL) endcaps (Figure 2.4). These are all 

calorimetric detectors similar to the ECAL. 

The Luminosity Monitor is designed to measure the rate of collisions of the 

electrons and positrons, but it also can be used to study the physics of two-photon 

collisions. The LUMI electromagnetic calorimeters are placed at z = ± 2.65 m with 

the forward part in the direction of the electron and the backward part in the 

direction of the positron. The angular coverage is 32 6.636. ≤Θ≤  mrad. The 

calorimeters in Figure 2.5 (a) are made of 304 radiation resistant BGO crystals, 

arranged in 16 sectors of 19 crystals. The silicon detector shown in Figure 2.5 (b) 

placed in front of each monitor measures the polar angle θ and the azimuthal angle 

φ with very good accuracy. 
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VSAT 

ECAL 
Endcap

Figure 2.4 Schematic view of the central and forward region of the L3 detector. 

 

 

 

 

 

 

 

 (a) (b) 

Figure 2.5 Pictures of the LUMI calorimeter and silicon detector. 
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2.4. The L3 Trigger System 

 

In general, a trigger system is needed to select events of physics interest and 

to reject as much background “noise” as possible.  

In the L3 experiment events are triggered at three levels [10].  

The level-1 consists of five independent hardware triggers: 

• TEC trigger based on the TEC chamber, 

• Energy trigger based on the calorimeters, 

• Luminosity trigger based on the luminosity monitor, 

• Scintillator trigger based on the scintillator counters, 

• Muon trigger based on the muon chambers. 

The level-1 trigger performs a logical OR operation on these individual 

triggers. They start operation at each beam crossing. To give an example, trigger 

level-1 has 22 µs in 4 bunch mode to decide if an electron-positron interaction 

occurred. Typical trigger rate is 10-20 Hz, with 45 kHz beam crossing rate. On a 

positive decision of any of these triggers the events are digitized and recorded until 

the next trigger level is available. The TEC trigger selects events with one ore more 

tracks. The energy trigger requires minimum energy deposition in the 

electromagnetic or hadronic calorimeter. The luminosity trigger requires energy 

deposition in the luminosity monitors. The muon trigger requires at least one 

reconstructed track in the muon spectrometer. 
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Level 2 trigger makes use of the level-1 trigger data. This level rejects 30-

50 % of the events accepted by level-1. Its main purpose is to reject background 

events. A typical trigger rate for level 2 is about 6 Hz. 

The level-3 trigger performs a complete reconstruction of the events from 

all the subdetectors. The event writing rate at this level is reduced to 2-3 Hz. In 

Figure 2.6 a sketch of the architecture of the L3 data acquisition system is shown. 

Between each bunch crossing, the low precision data is transferred to the 

level 1 trigger. The accepted events from this level are transferred into subdetector 

memories from where they are collected by the Subdetector Event Builder. Those 

events that are accepted by level 2, coming from the different subdetectors, are then 

combined into one event by a Central Event Builder. The event is then dispatched 

to one of the level 3 processors. The events accepted by level 3, not bigger than a 

certain size (34 Kbyte), are transferred to an online computer and are stored on 

disks.
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Figure 2.6 Schematic view of the L3 data acquisition system [10]. 
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Chapter 3 

 

3. KINEMATICS 

 

3.1. The two-photon process and basic variables 

 

The schematic representation of the reaction 
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21 ff

'
2

'
1

(*)
2

(*)
1

'
2

'
121 →→  (3.1) 

 

where two electrons scatter via the exchange of two virtual photons is shown in 

Figure 3.1. 

• , (i=1,2) are the incoming electron beams with four-momenta )k(e i

)k,E ii(k i = , where Ei = Ebeam is the beam energy, and ik  are the 

momentum vectors. 

• , (i=1,2) are the scattered electron beams with four-momenta )k(e '
i

)k,E '
i

'
i(k'

i = , where Ei
’ are the energies of the scattered electrons, and 
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are the momentum vectors. 
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•  and  are the virtual photons emitted by the scattered electrons, 

with four-momenta 

 (q)γ*
1 )p(γ*

2

 )q,(E (*)
1γ

=q  and ).p,(Ep (*)
2γ

=  The symbol (*) 

indicates that the photons can be either virtual or quasi-real. 

• The result of this interaction in leading order is a fermion-antifermion pair 

)(pf )f(p
21 ff  with four-momenta )p,E(p

iii fff = , where and 
ifE

ifp are the 

fermion energies and three-momentum vectors. 

 

 
 

Figure 3.1 Schematic representation of the two-photon reaction. 
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The “virtuality” of the photon is defined as the negative value of the four-

momentum transfer squared  

 

 2222
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The “mass squared” Wγγ of the two-photon system is  
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where the Bjorken scaling variable (Section 4.1) is 
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For known energies Ei = Ebeam, Ei’ and the scattering angles θi, considering that the 

mass of the electron me is negligible (me<<Ei, Ei’), Q2 and P2 can be determined 

from 
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3.2. Special kinematical situations 

 

In experiments, in order to identify two-photon events one can tag the 

interacting photons by detecting the scattered electrons. Three kinematical 

situations are possible: double, single, and no-tag events. 

 

3.2.1. The double-tag process 

In the double-tag process both electrons are detected. This method provides 

the full information on the γγ system. However, there are some restrictions that one 

has to consider. Tagging at small angles is problematic in most cases because of the 

relatively high background coming from Bhabha and beam-gas scattering, as 

discussed in (Section 2.2). Another negative side of this measurement is that in 

practice the complete kinematical information on the γγ system cannot be obtained 
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at high energies. Therefore, Wγγ is measured less accurately. This is the reason why 

in most cases the other two tagging methods are preferred. 

 

3.2.2. The no-tag process 

In the “no-tag” process the electrons are scattered at very small angles and 

they remain undetected. The virtualities of both photons are very low and they are 

considered quasi-real. Since the electrons are out of the tagging detector range, the 

polar angles and therefore Q2 and P2 cannot be measured. Wγγ can be determined 

only from the final state. In this process one takes advantage of the fact that 

photons are dominantly radiated along the beam axis, and the transverse 

momentum of the two-photon system with respect to the beam is small. If all 

particles of the final state are measured, then the reconstructed total transverse 

momentum distribution has a peak at low values. The distribution is flat at low 

values if particles from the final state are missing. 

 

3.2.3. The single-tag process 

In the “single-tag” case one of the electrons is scattered at a large angle and 

is detected by one of the low-angle tagging detectors. The photon emitted by the 

“tagged” electron has high virtuality Q2. For this reason we can talk about deep-

inelastic electron-photon scattering. The other electron is scattered at a very small 

angle and disappears in the beam pipe, remaining undetected. The quasi-real 
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photon emitted by the “anti-tagged” electron has a low virtuality P2. Two-photon 

interaction results in hadrons. Because the detectors are not covering the full solid 

angle around the interaction point, not all hadrons are detected and therefore Wγγ is 

only partially known. 

 

3.3. Equivalent photon approximation (EPA) 

 

Experimentally, we measure the integrated cross section ∆σee for the 

reaction e  in the kinematical region defined by ∆Qhadronseee −+−+ →

(*)e
d

γ
σ hadrons eeγ (*) →

)max
2θ

2, ∆P2, and 

∆W. Instead of writing the differential cross section dσee in terms of the cross 

sections corresponding to specific helicity states of the photon one can write it in 

terms of ( ) and the flux of quasi-real target photons 

 ,z(N (*)γ
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The cross section  from equation (3.7) can be written as (*)eγ
σ
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where 
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is the flux of the transversely polarized virtual photons and 
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The target photon flux from equation (3.7) is given by the relation [11] 

 

 







−−

θ−
−+

π
α

=θ
γ

)z1(
zm

)z1(Eln))z1(1(
z
1),z(N

e

max
2beam2max

2(*) , (3.11) 

 

where ,  is the energy of the quasi-real photon, and θ  is 

the scattering angle of the electron that remains undetected. The effective cross 

section is 
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where σTT and σLT are the cross sections that correspond to different helicity states 

of the photon (T = transverse and L = longitudinal). ε is the ratio of the 

corresponding photon fluxes written as 
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Therefore, the integrated cross section ∆σee becomes 
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Considering σTT and σLT almost constant 
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where ∆L is the integrated luminosity function.  

All of this can be written in  terms of the two structure functions  and 

so the differential cross section is [12], [13], [14] 
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Defining , we can obtain the widely used formula γγγ += LT2 FxF2F
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The factor  
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describing the flux of transversely polarized quasi-real photons of finite virtuality is 

the equivalent photon approximation (EPA), first derived in [15]. 

 

 



  46 

 

Chapter 4 

 

4. THE HADRONIC COMPONENT OF THE PHOTON 

 

4.1. Bjorken Scaling  

 

At low Q2 the photons are expected to interact like hadrons. The deep 

inelastic scattering e hadrons can be interpreted in analogy to deep 

inelastic electron-nucleon scattering. 

−+−+ → eee

Consider that the proton is made of point-like, spin-1/2 quarks. In deep 

inelastic scattering, the small wave length, i.e. high Q2 virtual photon “resolves” the 

quark content within the proton. For deep inelastic scattering of an electron on a 

proton target (Figure 4.1) the differential cross section can be written as [1] 

 

 





 θ

ν+
θ

ν
α

=
Ω

σ
2

sin)q,(W2
2

cos)q,(W
q

E4
ddE

d 22
1

22
24

2'2

' , (4.1) 

 

where W2 and W1 are the proton structure functions, q is the momentum 

transfer, ν is the energy transfer, and θ is the scattering angle of the 

'kk −=

'EE −=
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electron. For the proton initially at rest, )0,M(p = , consider  and 

. The kinematic reactions are 

pkkp '' +−=

0kk 2'2 ≅=

2
2)cos1( θ

=θ−

2qp ν−=⋅

q +

epep →

 

 sin'EE4'EE2'kk2q 2 −−≅⋅−≅ . (4.2) 

 

Squaring , we obtain 'pp =

 

 M , (4.3) 2q 2 −=

 

 

Figure 4.1 The process  in the laboratory frame.  
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M2

q'EE
2

−=−≡ν . (4.4) 

 

For scattering with very small wave length, i.e. large Q2 = –q2, the proton starts to 

behave like a free Dirac particle (a quark). The quark inside the proton is 

considered to be point-like. The differential cross section from equation (4.1) 

becomes the cross section for a point-like particle. We can consider the cross 

section for the muon scattering e process −−−− µ→µ e
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
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2
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2
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2
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4

2'2

eµeµ
' , (4.5) 

 

where m represents the mass of the quark. The structure functions in equation (4.1) 

are 
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In the high Q2 limit the inelastic electron-proton scattering can be viewed as elastic 

scattering of an electron on a “free” quark inside the proton.  

For elastic electron-proton scattering the differential cross section is 

 

 
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+νδ
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22
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2

2
ME

4

2'2

' , (4.8) 

 

where 22 M4q−=τ  and M is the mass of the proton. The two factors GE(q2) and 

GM(q2) are related to the proton charge and magnetic moment distributions 

 

 21M221E κFFG and F
4M
κqFG

2

+≡+≡ , (4.9) 

 

where, F1 and F2 are the nucleon form factors. In the q2 0 limit the probe cannot 

distinguish the constituents in the nucleon. The long wavelength photons will see a 

particle of charge e and magnetic moment ( M2/E)1 ⋅κ+ . Here, κ is the 

anomalous moment of the proton and it is measured to be 1.79 [1]. The anomalous 

moment for the neutron is κ = -0.91. In this limit, we must choose the nucleon form 

factors as follows: F1(0) = 1, F2(0) = 1 for the proton and F1(0) = 0, F2(0) = 1 for 

the neutron.  
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To obtain the structure function for a point-like particle we use the identity 

 in equations (4.6), (4.7).The dimensionless structure functions can 

be written as: 

)x(a)a/x( δ=δ

 

 




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
ν

−δ
ν

=ν
m2
Q1

m2
Q)Q,(mW2

22
2intpo

1 , (4.10) 

 

 
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
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Q1)Q,(W

2
2intpo

2 . (4.11) 

 

These “point” structure functions are only functions of Q . In this case, 

κ = 0 and F

νm2/2

1(q2) = 1 for all q2. Introducing these values into equations (4.9) we 

obtain that GE = GM = G. Comparing the cross sections for deep inelastic scattering 

(4.1) with cross sections for elastic electron-proton scattering (4.8), the structure 

functions can be written as 
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Comparing this to the point-like structure functions from equations (4.10) and 

(4.11) these structure functions contain a form factor G(Q2) called the proton dipole 

form factor  

 
22

71.0
q1G

−









−= . (4.14) 

 

With increasing Q2, above 0.71 GeV2, the chance to have an elastic scattering 

becomes less and the proton starts to reveal its structure. At high Q2 the dependence 

of the inelastic structure functions on Q  decreases until it vanishes. These 

become only function of the “Bjorken variable” 

22 q−=

ν
=

⋅
=

M2
Q

pq2
Qx

22

. Therefore, for 

deep inelastic electron-proton scattering 

 

 ) , (4.15) x(F)Q,(W 2
2

2 →νν

 

 )x(F
x2
1)x(F)Q,(MW 21

2
1 =→ν , (4.16) 

 

where F1,2 are the inelastic structure functions. For fixed x, these functions are 

independent of Q2. The photon is interacting with point-like particles with no form 

factors being involved. We say that F1,2 “satisfy Bjorken scaling”.  

Summing F1,2 over all partons making up the proton, we can write that 
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 , (4.17) ∑ ==
i

1i
2
i2 )x(xF2)x(xfe)x(F

where i = quarks and gluons, ei are the various quark charges, and fi are probability 

densities of finding a quark or a gluon inside the proton. These partons can each 

take away a fraction x of the proton’s four momentum. 

 

4.2. Theory of two-photon interactions  

 

The photon has two different appearances. To a first approximation, the 

photon is a point-like particle, also called the “bare photon”. However, it can be 

also considered as a collection of partons: quarks and gluons, like a hadron. While 

the proton structure is determined from the valence quark distribution inside the 

proton, the photon structure is determined by fluctuations of the bare photon into 

partons. In a direct process (Figure 4.2 a) the photon interacts as a whole. It does 

not reveal a structure. The processes, where the photon fluctuates into a qq  pair 

and subsequently one of the quarks takes part in the “hard” interaction, are called 

resolved processes (Figure 4.2 b, c). 

In the equivalent photon approximation the two photons are produced 

independently. They can both fluctuate into a hadronic state ( qq  pair) with low or 

high virtuality. Consequently, hadronic interactions are divided into hard and soft 
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interactions by a transverse momentum cutoff . Those interactions that are 

characterized by transverse momenta greater than this scale can be calculated by 

lowest order perturbative QCD. Below this cutoff value we enter the domain of 

non-perturbative QCD physics. Based on these considerations three main 

categories of photon-photon interactions can be distinguished (Figure 4.2): 

cut
tp

• Soft hadron-like interaction described by the Vector Meson Dominance 

Model. In this process the photon turns into a vector meson before 

interacting with the other photon or quark pair. 

• Point-like, direct interaction described by the Quark Parton Model (QPM). 

In this process the bare photon interacts with a parton from the other 

photon. 

• Hard “resolved” processes. In this process the photon fluctuates into a qq  

pair and one of these interacts with a parton from the other photon. A more 

detailed description of these processes are given in the next sections. 
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Figure 4.2 The photon as a structureless or resolved entity. 

 

4.2.1. The Vector Meson Dominance Model 

When the transverse momenta of the qq  pair is low, there will be enough 

time for the system to form a low mass vector meson bound state (ρ, ω or φ) before 

interacting with the other photon or quark pair. This is a “hadron-like” interaction 

described by the Vector Meson Dominance (VDM) model. The VDM process can 

be interpreted in analogy with electron-nucleon scattering (Section 4.1). The 

structure functions are given by (4.17). Ignoring gluon emission, the structure 

functions show Bjorken scaling, which means that the x distribution is independent 

of Q2. This is mainly due to the limited transverse momentum of the partons in the 
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hadron. With gluon emission and absorption, more momentum goes into radiated 

gluons as Q2 increases. In this case, the momentum fraction x shifts to lower 

values. In the Bjorken limit Q , for any fixed value of x, the hadronic 

structure functions F

∞→2

1,2 decrease like 1/lnQ2. The leading order diagrams for VDM 

are shown in Figure 4.3 (a). 

 

4.2.2. The Quark Parton Model 

When the transverse momenta of the qq  pair is large enough, the mass of 

the pair is large as well and the photon cannot fluctuate anymore into a low mass  

 

 

 (a) (b) 

Figure 4.3 Leading order contributions to the total hadronic two-photon cross 

section: (a) VDM and (b) QPM. 
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vector meson state with the same quantum numbers as the photon. In this case, the 

point-like quarks from the two photons interact “directly” with each other. This is a 

perturbatively calculable QED process with direct production of a qq  pair from the 

two photons, qq→γγ . This reaction dominates at high virtualities Q2 and low 

invariant mass Wγγ of the produced hadrons. The theory that describes this process 

is the Quark Parton Model (QPM). The leading order diagram for QPM is shown in 

Figure 4.3 (b). 

 

4.2.3. QCD 

When the scattering is hard enough, the QCD gluon interaction terms 

become more dominant. The exchanged gluons will be able to distinguish the quark 

from the antiquark in the photons. These processes are called single-resolved 

(Figure 4.4 a, b) or double-resolved (Figure 4.4 c). QCD processes can be also 

divided in resolved processes and corrections to QPM. The latter, includes 

processes with radiation of gluons at higher order in αs. They dominate at high 

virtualities Q2 and high invariant mass Wγγ of the produced hadrons. The two 

diagrams in Figure 4.5 (a), (b) show higher order interaction terms with radiation of 

gluons in the final state. 
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 (a) (b) 

 

 

 (c) 

Figure 4.4 QCD contributions to the total hadronic two-photon cross section: 

single- (a, b) and double resolved processes (c). 
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 (a) (b) 

Figure 4.5 QCD contributions to the total hadronic two-photon cross section: 

corrections to QPM with radiation of gluons at higher order in α . s

 

4.2.4. γγ event classes 

Since there are two photons, 3 times 3 interactions can be distinguished. 

From these 9 combinations, 3 cancel out due to the symmetry of the “off-diagonal” 

combinations. Hence, we can define only 6 different interactions: 

1. VMD – VMD: both photons turn into hadrons, 

2. VMD – direct: the bare photon interacts with the partons inside the photon, 

that turned into a vector meson, 
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3. VMD – resolved: the photon with high virtuality and high mass splits into a 

qq  pair, and one of these quarks further interacts with a parton from the 

other photon turned into a vector meson, 

4. direct – direct: is the direct production of a qq  pair from the two photons, 

qq→γγ  (lepton pair production is also possible, but it will not be 

considered in the present discussion), 

5. direct – resolved: the anomalous photons turn into a qq  pair and one of the 

quarks interacts directly with the other photon, 

6. resolved – resolved: both photons turn into a qq  pair and one quark from 

each side will undergo a hard interaction. 

 

4.2.5. Processes dominating in single-tag events  

High Q2 single-tag events favor perturbative QED and QCD diagrams such 

as qq→γγ (Figure 4.3 b), qqg →γ  (Figure 4.4 a), and qgq →γ  (Figure 4.4 b). 

The resolved processes qqg →γ  and qgq →γ  are described using parton density 

functions extracted from the photon structure functions measured in previous 

experiments at PEP, PETRA, and TRISTAN. Reviews of the existing 

parametrizations may be found in [16] and [17]. Recently, a new parametrization 

was obtained adding published LEP data [18]. 
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4.3. Study of the single-tag two-photon reaction at L3 

 

The single-tag process is described here with emphasis on the basic single- 

tag variables used in the analysis from here on. 

At LEP, in the (Figure 1.14) reaction, 

two virtual photons are produced by the incoming electrons and their interaction 

yields hadrons. If the scattering angle of one of the electrons, 

hadronseeγγeeee (*)* −+−+−+ →→

)( tag1 θ=θ , is 

sufficiently large, it is observed in the low polar-angle electromagnetic calorimeter 

[9] of the L3 detector, originally devised to detect low angle Bhabha scattering for 

measuring the LEP luminosity. The four-momentum, k’, of this “tagged” electron is 

measured. For singly-tagged events the second electron is undetected, its polar 

angle is small and the virtual photon radiated from this electron is quasi-real. Recall 

that the differential cross section dσeγ/dxdQ2 (3.16), (3.17) is given by  
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with 
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The variable x given by equation (3.5) depends on the two-photon center-of-mass 

energy, Wγγ, equal to the effective mass of the produced hadrons. The inelasticity y 

is small (y < 0.3) in the kinematic region of this study and consequently only 

 contributes appreciably to the cross section. Therefore, equation (4.18) 

becomes 

)Q,x(F 2
2
γ

 

 ( )[ ] )Q(x,Fy11
xQ
α 2π

dxdQ
)Q(x,dσ 2γ

2
2

4

2

2

2
eXeγ ⋅−+=→ . (4.20) 

 

By convention,  is measured, where α is the fine structure constant.  αγ /F2

Using this approach, the photon structure function has been extensively studied at 

previous  colliders [12] and at LEP [12], [19], [20], [21], [22], [23], [24], [25]. −+ee

 

4.4. Theoretical Predictions of the Total σγγ Cross Section  

 

The total photoproduction cross section (*)*γγ
σ  can be written as the sum of 

three contributions 

 

 QCDQPMVMD(*)* σ+σ+σ=σ
γγ

. (4.21) 
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Using equation (3.8) we obtain the following relation between the effective two-

photon cross section and the structure function  )Q,x(F 2
2
γ

 

 )Q,x(F
Q
α 4π)Q(x,σ 2

22

2
2

γγ (*)*
γ= . (4.22) 

 

4.4.1. The QPM Cross Section  

The QPM cross section is given by the sum of the contributions of all active 

quarks 

 

 csudQPM σ+σ+σ+σ=σ . (4.23) 

 

The contribution from the b quark is very small and it can be neglected. This is due 

to the high mass (mb=4.7 GeV/c2) and fractional charge (-1/3). The general 

expression for  (Bethe-Heitler cross section) from QED calculations is QPMσ
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where Nc=3 is the number of colors, are the masses of the quarks, e
kqm q are the 

fractional charges, and the sum runs over all active flavors nf. α is the fine structure 
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constant and x)x1(QW −⋅=γγ . For the three light quarks d, u, and s we can use 

the following approximation [26]: 

 

 [ ]∑ −+
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f
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2224
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cQPM logQ x)(1xx e
Q
α 4N σ . (4.25) 

 

In this equation,σ  depends on the virtuality of the photon as (1/QQPM
2)logQ2. 

Therefore, the quark parton model already predicts a logarithmic Q2 dependence of 

the cross section in QED. Parton densities do not scale as described in Section 4.1 

but evolve with Q2. This cross section is dominant in the high x region. 

The QPM structure function is given by the sum of the different quark 

density contributions 
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More explicitly this can be written as [12], [27], [28] 
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4.4.2. The VMD Cross Section 

The total cross section )hadrons( →γγσ  [29] can be parametrized 

according to the Generalized Vector Meson Dominance Model [30] 
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where 2
Vf4 πα and 2

V'fπα4 are form factors giving the probability for a photon to 

couple to a vector meson ( 3332
V 100.36 ,100.30 ,102.80fπα −−− ⋅⋅⋅≈  for ρ, ω, and ϕ, 

respectively [31]).  is related to nucleon-nucleon and γ-nucleon scattering. 

It has been measured [31], [32] that for the scattering of two quasi-real photons 

GVDM
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where S= , and σ2Wγγ 1/Wγγ is the resonance contribution to the cross section. 

The cross section factorized in a mass dependent part and two Q2 dependent 

parts can be written as 
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where (a, b) = T for transverse and (a, b) = L for longitudinally polarized photons. 

The GVDM vector meson form factors are 
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and 
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where m0 = 1.4 GeV is the “continuum term”, rρ=0.65, rω=0.08, rφ =0.05 and 

. Contributions of higher mass resonances and of the continuum are 

approximated by ~1 .  

∑−= VC r1r

)m/Q1/( 2
0

2+

The total two-photon cross section σγγ can be written as (Section 3.3) 
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Considering equation (4.33) the GVDM cross section becomes [31] 
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and  is the total cross section from equation (4.29). )0,0,(Wσ γγ
VMD
γγ

In the single-tag case  from equation (4.34) becomes GVDM
γγσ
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The most widely used approximation for the hadron-like component of the 

structure function is when the photon is assumed to behave like a ρ meson. For a 

single ρ pole rρ=1. The weights for the other vector mesons and the continuum term 

are set to zero: rω=0, rφ =0, rC=0. Therefore, equations (4.31) and (4.32) become 
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4.4.3. The QCD Cross Section  

QCD corrections are introduced via the DGLAP [33], [34], [35], [36] 

evolution equations. They necessitate the presence of the gluon and quark density 

in the photon. The dominant leading order QCD contributions for high Q2 single-

tag events are qgq →γ  and qqg →γ . Therefore, the QCD cross section can be 

parametrized as follows 

 

 2

q

2
q

2
g

QCD dxdQ)qgq()Q,x(f)qqg()Q,x(f∫ 





 →γ∑ σ+→γσ=σ γγ . (4.39) 

 

Here,  and f  are the gluon and quark density functions, also called parton 

density functions (pdf’s) of the photon. These functions are the probabilities to find 

gluons and quarks with given momentum fraction x inside the target photon. This 

contribution is not perturbatively calculable and it has to be determined from 

experiment.  

γ
gf γ

q

Large corrections in next-to-leading order leads to conclude that pdf’s do 

not converge. This indicates that pdf’s must be measured at a certain value of Q2 

and cannot be derived from calculations alone. 

Many parametrizations exist for the pdf’s of the photon. Some examples 

are: Cornet, Jankowski, and Krawczyk (CJK) [18], Drees and Grassi (DG) [33], 

Levy, Abromowicz, and Charchula (LAC) [37], Hagiwara, Tanaka, and Watanabe 
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(WHIT) [38], Glück, Reya, and Vogt (GRV) [39], (GS) Aurence, Guillet, and M. 

Fontannaz (AFG) [40], Gordon and Storrow(GS) [41], Glück, Reya, and 

Schienbein (GRSc) [42], and Schuler and Sjostrand (SaS) [43]. 

 

4.4.4. The Glück Reya Vogt (GRV) parametrization 

The parton density functions are calculated in leading order (LO) and higher 

order (HO). With notations from [39], the photon parton distributions f  

are considered as the sum of a point-like and a hadronic contribution: 

. The point-like contribution is perturbatively calculable. For the 

hadronic part the approximate similarity of the vector meson and the pion is used. 

The starting distribution is a hadron-like contribution based on VMD 

considerations. In order to avoid singularities in the low x region, the leading order 

(LO) and the higher order (HO) Q
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 and , respectively. The functional 

form of the starting distribution, is 

2GeV 0.25 22
HO

2
HO0, GeV 0.3µQ ==

)2
0

Q,x(F 2
2
γ

Q(x,f
f
α 4πκ π2

ρ

gqq f γγγγ ====

2GeV 100

, with 

 , being the valence-like inputs taken from [44] and 

[14]. κ remains the only free parameter, which is obtained from the 

fits to the data [11], [45], [46], [47], [48], [49], [50], [51], [52], [53] on  

in the Q

~)Q,x(f 2
0π x

2.24/f
2

≅πρ

ba )x1( −

2Q0.71 <

)

2 range  for W< γγ > 2 to avoid resonance production. 
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The point-like contribution is chosen to vanish at . In this dissertation, due 

to the best agreement with data, the higher order parametrization HO is considered. 

The full evolution equations for “massless” quarks u, d, and s are used in the DIS

2
0

2 QQ =

γ, 

i.e. “Deep Inelastic Scattering”, factorization scheme [39] with Λ=0.248 (Section 

1.2.2). The heavy quarks c (mc=1.5 GeV), b (mb = 4.5 GeV) are included via the 

lowest order Bethe-Heitler cross section formula (4.24). 
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Chapter 5 

 

5. SIMULATION PROGRAMS 

 

5.1. About Monte Carlo simulations in general 

 

Monte Carlo programs are widely used simulation programs. They can 

provide approximate solutions to a variety of problems by performing statistical 

sampling calculations. With these programs we can calculate probabilities, but not 

definite outcomes.  

At the generator level, MC’s can be used to describe physical events, with 

exact trajectories, energies, momenta, and particle identification. Monte Carlo 

programs are also used to simulate detector effects. At the reconstruction level, 

generated events with information about four-momenta, energy, tracks, and other 

parameters are passed through the detector simulation. Interaction with the 

detector, magnetic field, and imperfections of the detection are also taken into 

account. The outcome is stored in the same format as the data.  

Monte Carlo simulations are also helpful when data is insufficient to 

provide information about some events because of inaccessible kinematical 
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regions. They can also give an estimation for the background events that are 

subtracted from the data to be able to find the events that we want to use for our 

measurement. They play an essential role in determining the efficiency of 

detection and selection. 

 

5.2. MC Simulation for two-photon processes 

 

The value of the Q2 variable is accurately determined by measuring the 

four-momentum of the scattered electron. However, the effective mass of the final 

state hadrons is only partially reconstructed, as these are often produced at low 

polar angles where no tracking system can be installed. A Monte Carlo modeling of 

the final state hadrons is therefore necessary [54] to determine the x variable. Three 

Monte Carlo generators are used to model the process e : 

PHOJET [55], [56], PYTHIA [57] and TWOGAM [58]. 

hadronseee −+−+ →

The dominant backgrounds are evaluated with PYTHIA for )(qqee γ→−+  

and DIAG36 [59], [60] for . All Monte Carlo samples are 

generated with an integrated luminosity at least five times greater than the 

experimental one. All events are passed through a full detector simulation that uses 

the GEANT [61] and GHEISHA [62] programs and takes into account detector 

efficiencies and time-dependent effects. Monte Carlo events are then reconstructed 

in the same way as the data. 

−+−+−+ ττ→ eeee
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5.2.1. PHOJET 

PHOJET describes hadron-hadron, photon-hadron and photon-photon 

collisions. It is based on the Dual Parton Model combined with the QCD-improved 

parton model [63]. In order to have a continuous transition between hard and soft 

processes (Section 4.2), the distribution of the transverse momentum, pt, of the soft 

partons is matched to the one predicted by QCD. The two-photon luminosity is 

calculated from the flux of transversely polarized photons; corrections for the 

longitudinally polarized photons are incorporated into an effective two-photon 

cross section (Section 3.3). The transition from real-photon to virtual-photon 

scattering is obtained by a change of the relative weight of all partial cross sections. 

 

5.2.2. PYTHIA 

PYTHIA is a general purpose Monte Carlo. For two-photon interactions it 

incorporates leading order (LO) hard-scattering processes as well as elastic, 

diffractive, and low pt events. The classification of the photon interactions into 

three different components, direct, resolved, and VDM, results in six different 

classes of events (Section 4.2.4). Events are also classified according to the hard 

scales involved in the process: photon virtualities ( ) and parton transverse 

momenta p

2
iQ

t. 
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5.2.3. TWOGAM 

TWOGAM generates three different processes separately: point-like 

photon-photon interactions, resolved processes, and non-perturbative soft processes 

described by the Generalized Vector Dominance Model (Section 4.4.2). The 

structure of the program is modular and the photon flux is calculated with an exact 

LO formula. The cross sections of the three different processes are adjusted to fit 

the x distribution of the data. The adjustment ensures that the x-shape, used in the 

unfolding is similar to the data (Section 7.1). The cross section of the direct process 

is fixed to the expected value σQPM = 41 pb in the kinematical range 

. The QCD and the VDM cross sections are then adjusted 

to σ

222 GeV 34QGeV 11 ≤≤

QCD = 5 pb and σVMD = 28 pb, respectively. The partial cross sections are 

calculated using the relation: )LN(f MCgenMCMC ⋅=σ . Here, f is the normalization 

factor (fQPM=1, fQCD=0.34, fVMD=0.87) used to adjust the 3 MC contributions to the 

data. Ngen is the raw generated number of events and LMC are the corresponding 

MC luminosities (Table 5.1). For the three Monte Carlo generators parton 

showering and hadronization are described by JETSET [64].  
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Table 5.1 Generated number of events and MC luminosities for the three 

TWOGAM contributions in three Q2 ranges. 
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Chapter 6 

 

6. DATA ANALYSIS 

 

6.1. Trigger selection of single-tag events 

 

As it was described in Section 2.4, L3 uses 3 trigger levels in order to 

extract interesting events for the data analysis. In the single-tag case, a final state 

electron is detected in the luminosity monitor. At level one, events are accepted by 

two independent triggers: the single-tag trigger and the central track-trigger. The 

single-tag trigger requires at least 70% of the beam energy to be deposited in one of 

the low polar-angle calorimeters, in coincidence with at least one track in the 

central tracking chamber. The central track-trigger (TEC) requires at least two 

tracks back-to-back in the transverse plane within ±600, each with .  MeV150pt >

 

6.2. Trigger efficiency 

 

The combined efficiency of the two triggers is )1()1( 21trig ε−⋅ε−=ε  

)(1 21 ε+ε−≅ ≅ 97%, where 1ε and 2ε  are the trigger inefficiencies for level 1 and 

level 2 trigger. 

 

 



  76 

The trigger inefficiency for level 1 is: TECE1 ε⋅ε=ε . The energy trigger 

inefficiency ( Eε ) for each bin is the ratio of the number of selected events with no 

energy trigger to the total number of selected events. The TEC trigger inefficiency 

TECε  for each bin is the ratio of the number of selected events with no TEC trigger 

to the total number of selected events. 

Trigger level 2: In order to have a quick and efficient selection of the 

events, level 2 processes only 5 % of the events coming from level 1. If from these 

events we have Ngood “good” events and Nrejected is the number of events it is 

supposed to reject, then the total number of rejected events is 

=tot
rejectedN =⋅ rejectedN20 )NN(20 goodselected −⋅ . Therefore the trigger inefficiency for 

level 2 is selectedNtot
rejected2 N=ε . 

Trig level 3: The same procedure as for level 2 is applied. This time 

, the efficiency at level 3 is 100%. 0N rejected =

 

6.3. Efficiency of the detection and selection 

 

The efficiency of the detection and selection is the percentage of the events 

in a given kinematical range that are detected and kept after the selection cuts. It is 

given by the ratio between the number of reconstructed (“visible”) Monte Carlo 

events after selection and the number of generated MC events in a defined 
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kinematical range: . Its value is sensitive to detector resolution and 

acceptance. 

MC
gen

MC
vis N/N=ε

 

6.4. Selection cuts 

 

Events are selected by requiring a single scattered electron in the low polar-

angle calorimeter and a hadronic final state. A tagged electron candidate is the 

highest energy cluster with a shape consistent with an electromagnetic shower, 

Etag/Ebeam > 0.7, as shown in Figure 6.1 (a), and a polar angle in the fiducial region 

0.0325 rad  0.0637 rad. To ensure that the virtuality of the target photon is 

small, the highest-energy cluster in the low polar-angle calorimeter opposite to the 

tagged electron must have an energy less than 20% of the beam energy, as 

≤θ≤

shown in Figure 6.1 (b). The hadronic event selection requires at least four 

additional particles to be detected. A particle can be a track (in the chambers) or a 

photon (in the BGO). A track must have pt > 100 MeV and a distance of closest 

approach to the interaction vertex in the transverse plane of less than 10 mm. A 

photon is a cluster in the electromagnetic BGO calorimeters with energy above 100 

MeV not associated with a charged track.  

The two-photon events are characterized by low energy deposition in the 

central detectors. To reduce the background from the )(qqeeZe γ→γ→ −+−+e  

process, the total energy deposited in the electromagnetic and hadronic calorimeters 
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must be less than 40% of the center-of-mass energy, as shown in Figure 6.1 (c). 

The events with a large value of the total energy are due to the 

)(qqeeZee γ→γ→ −+−+  process, where the radiative photon is misidentified as 

the tagged electron.  

)(qq γ −+ →ee

To avoid the hadronic resonance region, the mass of the hadronic final state, 

Wvis, calculated from all visible tracks and calorimetric clusters, is required to be 

greater than 4 GeV, as presented in Figure 6.1 (d). All distributions in Figure 6.1 

(a), (b), (c), and (d) are presented after all other cuts are applied. The backgrounds 

from eeZee →γ→ −+−+  and  processes are indicated as 

shaded areas and added to the expectations of the PYTHIA, PHOJET and 

TWOGAM generators. The arrows indicate the position of the cuts. 

−+−+ ττee

For the analysis the data are grouped by s . Figure 6.2 shows the Q2 

distribution for each s  sample. On Figure 6.2 (a), for s

.0

= 189 GeV the 

constraints on the tagging angle ))rad(0637)rad(0325.0( tag <θ<  and 

energy of the tagged electron ( )EE E0.7 beamtagbeam <<  define the lower and upper 

limit for Q2, . This region was calculated using (3.6). For 

higher values of the beam energy these limits shift to higher values of Q

2GeV

2 GeV 34QGeV ≤≤

22 35QGeV 6 <<  

2. In order 

to avoid low efficiency regions, only events with 11  are 

studied. 

22
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Figure 6.1 Distribution of the highest energy clusters in the forward 

electromagnetic calorimeters for a) the tagged electron side and b) for the opposite 

side. c) Total energy in the central calorimeters. d) The visible mass of the hadronic 

final state. 
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Figure 6.2 Q2 distribution of the selected events for the four average s  ranges. 
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The number of selected events and the backgrounds from the 

 and −+−+−+ ττ→ eeee )(qqeeZee γ→γ→ −+−+

2 22  20QGeV ≤≤

2GeV

 processes in the Q2 intervals 

, 14  and 

 are given in Table 6.1. The average  center-of-mass 

energies, <

22 14QGeV 11 ≤≤

22 QGeV 20 ≤≤

GeV 

 34

2GeV

−+ee

s >, and the corresponding luminosities for the four data samples 

together with the signal purity calculated as data)backgrounddata( −  are also 

listed. The background is dominated by the e  production. The 

contribution from the e  process is negligible. The background 

from beam-gas and beam-wall events is found to be negligible by inspection of the 

radial distribution of track intersections. The number of selected events and 

corresponding luminosities for data and simulated events in the three Q

−+−+− ττ→ ee+e

−+−+→ WWee−+e

2 ranges are 

given in Table 6.2. The visible mass Wvis and the )WQ(Q 22
vis +=x  

distributions are presented in Figure 6.3 for all selected data. The backgrounds 

from annihilation and two photon  events are indicated as shaded areas and 

added to the expectations of the PYTHIA, PHOJET and TWOGAM generators. 

2
vis

−+ττ

The PYTHIA and TWOGAM model reproduce the data rather well, except at large 

values of Wvis. PHOJET presents a harder mass spectrum and predicts too many 

events for xvis < 0.1 and is therefore not used in the following analysis steps. 

The total acceptance (Section 6.3) is calculated for each data sample separately. It 

takes into account the trigger efficiency, the geometrical acceptance, and the  
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Table 6.1 Selected events and the backgrounds from 

and −+−+−+ ττ→ eeee )(qqeeZe γ→γ→ −+−+e  processes. 
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Table 6.2 The number of selected events and the luminosity in the data and 

simulated samples in the three Q2 ranges. 
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Figure 6.3 Distribution of the visible mass of the two-photon system and of xvis 

for all selected events compared with Monte Carlo predictions for signal and 

backgrounds. 
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Figure 6.4 The detector acceptance and selection efficiency, , obtained by the 

PYTHIA and TWOGAM generators. 

ε
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selection cuts. An example is presented in Figure 6.4 for the data at s = 189 GeV. 

For clarity, the symbols corresponding to the two Monte Carlo generators are 

slightly offset. The decreasing tendency of ε at low and high Q2 shows that we are 

loosing events at bigger and higher angles (3.6). 
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Chapter 7 

 

7. RESULTS 

 

7.1.  Unfolding  

 

In the e hadrons deep inelastic scattering process 

the energy of the quasi-real target photon is not known. The kinematics cannot be 

fully determined without measuring the hadronic final state, which is only partially 

observed in the detector. This leads to a dependence of the  measurement on 

Monte Carlo modeling (Section 5.2) of the hadronic final state. This dependence 

enters when an unfolding procedure is used to relate the visible distorted 

−+−+−+ →γγ→ eeeee (*)*

γ
2F

( )2
vis

2 W+

γ
2F

MC
visx

2
vis QQx =  distribution to the true unfolded xunf distribution. This 

analysis concentrates on measuring  as a function of x and Q2 variables. Q2 is 

entirely determined by the tagged electron’s angle and energy, and is precisely 

measured. The following example shows the limited acceptance of the hadrons in 

the detectors. In Figure 7.1  is the visible distribution from a MC simulation 

after reconstruction and xgen is the originally generated distribution.  
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Figure 7.1 Comparison of the measured and generated value of x for the 

PYTHIA Monte Carlo at GeV 189s =  for different values of Q2. 
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The mean observed value and the standard deviation of  are plotted for events 

generated in a given x

MC
visx

gen bin.  

A matrix A can be constructed which relates the reconstructed distribution 

from the MC simulation  to the generated distribution xMC
visx gen 

 

 . (7.1) )x(NA)x|x(N gengen
MC
vis ⋅=

 

The matrix elements Aij can be calculated using the relation 

 

 









=

)x(N
)x|x(N

A
j,gen

j,gen
MC

i,vis
ij . (7.2) 

 

In this equation  is the total number of events generated, i.e. “causes”  )x(N j,gen

(j = 1,2,…nc), in bin j and  is the number of measured MC events, 

i.e. “effects” (i = 1, 2,…n

)x|x(N j,gen
MC

i,vis

)x(N j,gen

E), in bin i and generated in bin j. Usually, the sum of the 

effects  caused by  are not equal to the number of 

generated events : 

)x|x(N j,gen
MC

i,vis

x(N gen )j,

 

 . (7.3) )x(N)x|x(N)x|x(N j,gen

n

1i
j,gen

MC
i,visj,gen

MC
vis

E

≤∑=
=
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This means that it is not necessary for each cause to produce an effect. The 

efficiency of detecting the cause xgen,j in any of the possible effects is 

 

 
)x(N

)x|x(N
A

j,gen

j,gen
MC
visn

1i
ij

0
j

E

=∑=ε
=

, (7.4) 

 

where . From here on the index zero indicates the use of an MC input. 

The detector-response matrix A reflects the acceptance and efficiency of the 

detector. If ε  = 1, then the response of the experiment will be perfect. 

10 0
j ≤ε<

0
j

To relate the true unfolded distribution xunf to the experimentally measured 

distribution seems to be simply 

 

 . (7.5) )x(NA)x|x(N vis
1

genunf
−=

 

However, this inverse matrix A-1 can lead to unphysical negative values of the 

unfolded xunf distribution. The example below shows the elements of a two-

dimensional matrix [66], [67] 

 

 







ε+ε−
ε−ε+

=
11
11

2
1A , (7.6) 
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where the value ε is a measure of how well these 2 bins are separated. 

For ε ≠ 0 the inverse matrix becomes 

 

 







ε+ε+−
ε+−ε+

ε
=−

11
11

2
1A 1 . (7.7) 

 

Therefore, 

 

 .
)x(N
)x(N

11
11

2
1)x|x(N

2,vis

1,vis
j,genunf 
















ε+ε+−
ε+−ε+

ε
=  (7.8) 

 

Equation (7.8) can be rewritten as 

 

 .
1
1

2
)x(N)x(N

1
1

2
)x(N)x(N

)x|x(N 2,vis1,vis2,vis1,vis
j,genunf 







+
+








−ε

−
=  (7.9) 

 

If the uncertainties in xvis are too large  

 

 2
2,vis

2
1,vis2,vis1,vis ))x(N())x(N(|)x(N)x(N| ∆+∆<−  (7.10) 
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the first term in equation (7.9) can become a random number, causing also 

 to become random. If the events are split into bins that cannot be 

distinguished by the detector (for small value of ε≠0), the elements of the matrix 

will start to oscillate between large negative and large positive numbers causing the 

result to become unphysical. To solve this problem of oscillating unfolded 

distributions the Bayesian unfolding procedure [65] is used. 

)x|x(N j,genunf

Unfolding of the measured distribution can be obtained as follows 

 

 ∑
ε

=
ε

=
=

En

1i j

j,genvis
i,vis

MC
i,visj,gen

j
jgen,unf

)x|x(N
)x(N)x|x(P1)x|N(x , (7.11) 

 

where  is the number of unfolded events assignable to each of the 

causes, N(x

)x|N(x jgen,unf

)x|x( j,genvis

vis) is the number of experimentally observed events, and  

is the expected number of events assigned to each of the causes and only due to the 

observed events. Here both “unfolded” and “observed” refer to data. If ε  is zero, 

then  becomes also zero, which means that the experiment is not 

sensitive to the causes, i.e. “generated events”. 

)x|x(N j,genvis

j

N

)x|x(N
)x|x(N

j,genunf

j,genvis
j =ε  can differ from 

the a-priori efficiency ε : 0
j
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)x(N

)x|x(N

j,gen

j,gen
MC
vis0

j =ε . (7.12) 

 

The sum of  can be written as 0
jε

 

 
∑

∑ ε
=∑ ε=ε

=

=

= c

c

c

n

1j
j,gen

0

j,gen
0

n

1j
jn

1j

0
j

0

)x(P

)x(P
, (7.13) 

 

where P0(xgen,j) is the initial probability of the causes 

 

 
∑

=

=

cn

1j
j,gen

j,gen
j,gen

0

)x(N

)x(N
)x(P . (7.14) 

 

The initial probability for any cause to occur must be  The 

conditional probabilities , i.e. “smearing matrix” S , from equation 

(7.11) can be calculated using the relation  

∑ =
=

cn

1j
j,gen

0 1)x(P .

0
ji)x|x(P MC

i,visj,gen

 

 
∑

==

=

cn

1l
l,gen

0
l,gen

MC
i,vis

j,gen
0

j,gen
MC

i,visMC
i,visj,gen

0
ji

)x(P)x|x(P

)x(P)x|x(P
)x|x(PS , (7.15) 
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where  is the likelihood of observing the measured  given a 

generated x

)x|x(P j,geni,vis visx

∑
=

cn

1j

0
jiSgen value. From the above equation it follows that for  each 

observed event must come from one of the causes.  

= 1

The total probability distribution P(xgen,j) is obtained performing an iterative 

calculation by replacing N(xgen,j) with  in equation (7.14).  )x|x(N j,genunf

The unfolding is performed as follows: 

1. Start with P0(xgen,j) from equation (7.14) and  

 using the inputs from data N(x

=)x|x(N j,genvis
0 ⋅)x(P j,gen

0

)x|x(N j,genvis vis), and from Monte Carlo 

N(xgen,i). 

2. Calculate the smearing matrix from equation (7.15). 

3. Calculate N(x  from (7.11) and )x| jgen,unf

∑
=

=

cn

1j
j,genunf

j,genunf
j,gen

)x|x(N

)x|x(N
)x(P . 

4. Perform a χ comparison between  and . 2 )x|N(x jgen,unf )x|x(N j,genvis
0

5. If χ large, then replace  with  and P2 )x|x(N j,genvis
0 )x|N(x jgen,unf

0(xgen,j) 

with . Otherwise, go to step 2. )x(P j,gen

Since after each iteration we get closer to the true distribution the agreement 

between P0(xgen,j) and P(xgen,j) becomes better.  
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After a large number of iterations the unfolded distribution starts oscillating. 

To avoid this, one has to choose an optimum number of iterations. This procedure 

is called “regularization”. 

In this analysis a “one-step” unfolding program was used. Assuming that 

the Monte Carlo program gives a valid description of the probability distribution of 

the data, one can omit the iteration steps. The result will be sensitive to the MC 

model. The initial probability P0=1 is considered and the smearing matrix is 

calculated using (7.15). An example of the correlation matrix (7.15) for the 

simulated measured x  vs. generated xMC
vis gen is shown in Table 7.1. 

After unfolding, the events N(xunf) are corrected for detector acceptance and 

efficiency  using the ratio between the number of measured selected MC events 

and the generated MC events for each j bin (7.12). This includes geometrical 

effects and inefficiencies of the detector and the analysis. 

0
jε

 

7.2. Measured Differential Cross Sections 

 

The measured cross section xee ∆σ∆  as a function of x for the reaction 

hadrons is measured for three Q−+−+ → eeee

22 QGeV 14 ≤

2 intervals: 11 , 

, and  . Each data set is 

subdivided into bins of x

222 GeV 14QGeV ≤≤

22GeV 20≤ 22 QGeV ≤ 20 GeV 34≤

vis of similar statistics, as listed in Table 7.2. 
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Table 7.1 Correlation matrices of  vs. xvisx gen obtained with the PYTHIA Monte 

Carlo for the data at s = 189 GeV for the three Q2 intervals.

 

 



  97 

 

 

Table 7.2 Cross sections x/ee ∆σ∆  as a function of x for the reaction 

hadrons for the four average values of −+−+ → eeee s , in three Q2 intervals. 
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The first uncertainty is statistical, the second systematic. The average values of the 

cross sections obtained with the PYTHIA and TWOGAM generators are used. The 

correlation between xgen and  is similar for the two models. The one obtained 

with PYTHIA is shown in Figure 7.1. The measured cross sections for each value 

of 

MC
visx

s

eeσ

 are given in Table 7.2 with their statistical and systematic uncertainties. 

is calculated using the relation: ∆ )L(N trigunfee ⋅ε⋅ε=σ∆ , where Nunf is the 

number of unfolded events, εtrig is the trigger efficiency, ε is the efficiency of the 

detection and selection, and L is the integrated beam luminosity.  

 

7.3. Systematic Uncertainties 

 

The systematic uncertainties on the cross sections are estimated for each 

data sample, for each x bin, and for each Q2 interval. Three main sources of 

systematic uncertainties are considered: the selection procedure, the trigger 

efficiency, and the Monte Carlo model. Their effects are listed in Table 7.3. For 

small variations of the uncertainties in the different x bins an average was 

calculated, otherwise, a range was given. The examples from this table show also 

the extreme cases where the uncertainties reach the lowest and highest values in the 

given kinematical range. The uncertainties from the selection procedure are 

estimated by varying the selection cuts. The fiducial value of the polar angle in the 

low polar-angle calorimeter is varied from 0.0325 rad to 0.0360 rad and from 
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0.0637 rad to 0.060 rad. These changes result in a Q2-dependent uncertainty, as the 

highest and lowest values of the Q2 are affected by the fiducial cut (3.6). Figure 6.2 

shows that due to the shift of the Q2 distribution to higher values the lower Q2 bins 

become low efficiency regions. This is especially the case for the 189 GeV data set. 

This can result in a difference of up to 10 % in the uncertainties from one data set 

to another. Due to this large difference the uncertainties are given as a range of 

values. The cut on Etag/Ebeam is varied from 0.70 to 0.65 and 0.75. The uncertainty 

on the tagging calorimeter energy cut can have variations of up to 1.4 % from one 

data set to another. This change is smaller within the different x and Q2 bins. The 

anti-tag cut is changed from 0.20 to 0.15 and 0.25 Emax/Ebeam. The uncertainty on 

this cut changes by about 0.1% from one x bin and Q2 range to another, and also 

comparing the different data sets. Therefore, an average was calculated. The 

numbers of particles is varied from four to three and five. The uncertainty on this 

cut can change by 2.2 % from one data set to another. The cut on the total energy in 

the calorimeters relative to s  is varied from 0.40 to 0.35 and 0.45. The change in 

the uncertainty for this cut can be up to 0.3% from one Q2 range to another. 

Negligible changes were observed within the x bins and from one data set to 

another. A variation by up to 1.4 % of the uncertainty on the trigger efficiency 

(Section 6.2) was observed from one Q2 range to another. The change in the 

uncertainty due Monte Carlo statistics is up to 5.5%. This uncertainty is calculated 

using the relation )x(N)x(N/)x(N)x(N gen
MC
vis

MC
visgen ⋅− , where N(  MC

visx )
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 1998 
Q2 =11-14 

(GeV2) 

2000 
Q2=11-14 

(GeV2) 

1998 
Q2=20-34 

(GeV2) 

2000 
Q2=20-34 

(GeV2) 
x = 0.006-

0.400 
x = 0.006-

0.400 
x = 0.023-

0.467 
x = 0.023-

0.467 
 Uncertainty 

range % 
Average uncertainty for the x intervals 

Tagging calorimeter polar 
angle 0.7-10.2 0.7 10.2 0.7 0.8 

Tagging calorimeter energy 1.8-3.2 2.5 3.2 1.8 1.5 
Anti-tag energy 0.4 0.4 0.3 0.4 0.4 
Number of particles 1.4-3.6 1.4 3.6 2.0 1.9 
Total energy in the 
calorimeters 0.1-0.4 0.1 0.1 0.4 0.3 

  1999(II) 2000 1999(II) 2000 
Trigger efficiency 0.8-2.6 1.3 1.1 2.5 2.2 
  Uncertainty range for the x intervals 
  1999(I) 2000 1999(I) 2000 
Monte Carlo Statistics 2.1-7.6 3.2-7.6 2.3.-5.3 3.2-7.0 2.1-4.5 
  1998 2000 1998 2000 
Model dependence 0.1-12.9 1.1-12.9 0.7-10.6 0.4-10.7 0.1-5.5 

 

Table 7.3 Systematic uncertainties on the measured cross sections. 

 

is the number of reconstructed Monte Carlo events after selection and N( x ) is 

the number of generated MC events in a defined kinematical range. The 

discrepancies of the results obtained with the PYTHIA and TWOGAM generators 

 are considered as systematic uncertainties related to the 

Monte Carlo modeling. This difference is due to the calculated acceptance as well 

as to the unfolding procedure. The uncertainty from the model dependence can vary 

by up to 7.1 % in the x bins. However, this uncertainty does not change 

significantly when we compare the three Q

gen

2/|)x(N)x(N| TWO
unf

PYT
unf −

2 intervals and the different data sets.  
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7.4. Extraction of F  γ
2

 

In order to obtain the photon structure function αγ
2F , the measured cross 

section ∆σmeas is divided by an analytically calculated cross section (3.7), using the 

program GALUGA [68] 

 

 
)hadronseeee(
)hadronseeee()Q,x(F

Galuga

meas2
2 −+−+

−+−+
γ

→σ∆
→σ∆

=α . (7.16) 

 

In general, GALUGA calculates the integrated cross section, using a 

parametrization similar to the equation 

 

∫ +=→σ∆ −+−+
LT

2
T

2
LLTTT

2
T

2
TTTGaluga )σ(P)F(QFL)σ(P)F(QF[L)hadronseeee(  

 

 , (7.17)  dW dQ dQ ])σ(P)F(QFL)σ(P)F(QFL 2
2

2
1LL

2
L

2
LLLTL

2
L

2
TTL ++

 

where LTT , LLT , LTL, LLL are the luminosity functions defined as the products of 

the photon fluxes for transverse (T) or longitudinal (L) photons. FT and FL are the 

form factors that depend only on Q2 and P2. In the single-tag case (P2 ≅ 0), equation 

(7.17) reduces to (3.14). Therefore, Galugaσ∆ is the product of the target photon flux 
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and the cross section of equation (4.18), as given in (3.16). The program calculates 

the theoretical value  in the given QGalugaσ∆ 2 and x range, setting  = 1 and to 

the QPM value [27]. If setting  = 1, the GALUGA output can be used as a 

reference for the extraction of the measured . In practice the  contribution to 

the cross section is smaller than 1% due to the small value of y (Section 4.3). The 

running of the fine-structure constant with Q

γ
2F

γ
L

γ
LF

γ
2F

γ
2F

γγW

F

2 is included. A GVDM form factor 

(4.35) is used in the calculation for the target photon virtuality whose average value 

is of the order of 0.07 GeV2. The low polar-angle calorimeter acceptance for the 

tagged and the anti-tagged electron and the  > 4 GeV requirement are taken 

into account. The uncertainty on Galugaσ∆ , as estimated by comparing the GVDM to 

a ρ form factor, is 2%.  

_µ+ee µ→ −+

γγW γ
2

The contribution of radiative corrections to the cross section is evaluated by 

using the program RADCOR [69],[70] that includes initial and final state radiation 

for the reaction .The corrections are mainly due to initial state 

radiation from the electron scattered at large angle. Final state radiation is detected 

together with the scattered electron due to the finite granularity of the calorimeter. 

Initial state radiation from the electron producing the quasi-real target photon is 

very small. The calculations are performed at the generator level using the Q

_ee+

2 from 

the electron variables and  from the muon pair. The measured αF  is 

multiplied by the ratio, R, of the non-radiative and the total cross section, shown in 
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Table 7.4 and Table 7.5 for different values of x and Q2. The first uncertainty is 

statistic, the second systematic and the third is due to model dependence. The 

values are first obtained for each individual 

γ
2F  

s  data set. The results are statistically 

compatible and, consequently, a weighted average of  is calculated for the Qγ
2F 2 

ranges with average values 12.4 GeV2, 16.7 GeV2
 and 25.5 GeV2. This procedure is 

applied to data unfolded separately with PYTHIA and TWOGAM and the two 

different values are shown in Figure 7.2. Only the statistical uncertainties are 

shown, which are often of the size of the symbols. For clarity, the symbols 

corresponding to the two Monte Carlo generators are slightly offset. 

→

Their average value as a function of x for the three Q2 intervals, with 

statistical and systematic uncertainties is given in Table 7.4 and in Figure 7.3. The 

former are indicated by the inner error bars. The final new data are presented 

together with the previous L3 results at s  = 183 GeV [21], [22], [23]. The 

predictions of the high-order parton density functions GRV-set1 (i.e. GRV-HO, 

Section 4.4.4) and CJK are shown. The change in slope of the CJK prediction is 

due to c-quark threshold. The QPM prediction for qqγγ  is also shown.  
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Table 7.4 Measured values of αγ
2F  and the applied radiative correction factors, 

R, in bins of x for the three Q2 ranges. 
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Table 7.5 The values of αγ
2F  in bins of Q2 for four x ranges together with the 

radiative correction factor. 
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Figure 7.2 The photon structure function αγ
2F  as a function of x for the three 

Q2 ranges obtained with PYTHIA and TWOGAM. 
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Figure 7.3 The photon structure function αγ
2F  as a function of x for the three 

Q2 intervals. 

 

 



  109 

In addition to the systematic uncertainty on the cross section, presented in Table 

7.3, two systematic uncertainties are further considered in the extraction of : a 

2% uncertainty on the GALUGA calculation and a 2% uncertainty on the 

estimation of the radiative corrections. The latter is estimated by varying the cone 

angle of the calorimeter for which final state radiation is detected together with the 

scattered electron. 

γ
2F

  A comparison of the data with the existing parametrizations (Section 4.4.3) 

as obtained with the PDFLIB library [71] shows that our data are not well 

described by the leading-order parton density functions. In Figure 7.3 the data are 

compared with the predictions of the high-order parton density functions GRV-set1 

[72], [73], which shows the best agreement with the data, and the more recent CJK 

set [18] whose agreement is poorer. In both cases four quarks, u, d, s and c are 

used. The pure QPM prediction for qq→γγ  is also indicated. It is calculated by 

using GALUGA with a mass of 0.32 GeV for the u and d quarks, 0.5 GeV for the s 

quark, and 1.4 GeV for the c quark. It is clearly insufficient to describe the data.  

γ
2F  has been calculated for the Q2 range 11  with the 

average value <Q

222 GeV 34QGeV ≤≤

γ
2F2> = 18.4 GeV2 taking the weighted average for  in the three 

Q2 intervals (Figure 7.4). Figure 7.4 shows the comparison to GRV-set1 prediction 

for u, d, s and u, d, s, c quarks separately. For low x values, below x ~ 0.05, L3 data 

is best described by GRV-set1 with contributions only from the u, d, s light quarks. 

For higher values of x, above x ~ 0.05, the good fit with GRV-set1 calculated for u, 
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d, s, and c quarks shows that the charm quark contribution is getting significant in 

the given Q2 range. A recent review on the charm contribution to  predicted by 

GRV parametrizations can be found in [74]. Figure 7.4 also compares the new L3 

results to measurements from the other LEP experiments: ALEPH [20], DELPHI 

[75] and, OPAL [76]. The comparison has its limits, because each experiment uses 

different methods. They compare their data to the expectations of a Monte Carlo 

generated with a well defined parton density function, while in the present analysis 

L3 deconvolutes the target photon flux and the kinematic factors of Equation (4.18) 

by using the analytical program GALUGA. It has to be also noted, that from the 

four LEP experiments only OPAL and L3 include radiative corrections in their 

calculations.

γ
2F
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Figure 7.4 The photon structure function αγ
2F  as a function of x for 

 compared to predictions from GRV-set1 and measurements 

from other LEP experiments. 

22 GeV 18.4Q >=<
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Q2-evolution of the photon structure function 

 

The Q2-evolution of , is studied in four x bins,γ
2F 1.0x01.0 ≤≤ , 

, 0 , 02.0x1.0 ≤≤ 3.0x2. ≤≤ 5.0x3. ≤≤  and the results are given in Table 7.5. In 

Figure 7.5 the αγ
2F

5.0

2GeV 14≤

2GeV 34≤

)(GeV2

values are presented for the lowest x bin and for a combined 

bin , together with previous L3 results [21], [22], and [23]. 

Corrections for radiative effects are applied. The new measurements at 

, 14 , and 

 are in good agreement with our previous L3 results. The 

expected linear growth with lnQ

x1.0 ≤≤

22 QGeV 11 ≤

2 QGeV 20 ≤

 lnQba 2⋅+

2GeV 2022 QGeV ≤≤ 

2

2 is observed in both x intervals. The function 

 is fitted to the data, taking into account the total uncertainty 

calculated from the quadratic sum of statistical and systematic uncertainties. The fit 

results are: a = 0.141 ± 0.007 and b = 0.060 ± 0.005 for 0 1.0x01. ≤≤  with a 

confidence level of 44% and a = 0.05 ± 0.11 and b = 0.13 ± 0.04 for 0  

with a confidence level of 71%. The predictions of the high-order parton density 

functions GRV-set1 and CJK [18] are also indicated in Figure 7.5. The evolution is 

different for the two models; the data are better described by the GRV-set1 model. 

5.0x ≤≤1.
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Figure 7.5 Evolution of the photon structure function αγ
2F  as a function of Q2 

for two x intervals. 
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Chapter 8 

 

8.  SUMMARY AND CONCLUSIONS 

 

The photon can have two different appearances. It can behave as a point-

like particle or it can fluctuate into a fermion anti-fermion pair. This quantum 

mechanical behavior can be studied at advanced particle accelerators. With the LEP 

accelerator we were able to reach energies and luminosities high enough to be able 

to study the deep inelastic e hadrons reaction in order to 

measure the structure of the photon with an increased precision. 

−+−+ →γγ→ eee (*)*

Results have been obtained by studying the collision between a virtual and a 

real photon. The event could be reconstructed based on the information from one 

scattered electron detected in the low polar angle luminosity monitor of the L3 

detector, and the final state hadrons. Due to the boost of the gamma-gamma system 

these particles were preferentially produced in the forward and backward regions 

where the detectors could only partially cover the space around the beam pipe, 

leaving acceptance holes. Since we had only partial information to reconstruct the 

described event, the observed xvis distribution is distorted compared to the true x 

(xtrue) distribution. In order to obtain xtrue from the measured xvis distribution, an 

unfolding procedure was used, based on Bayes’ Theorem. The measured cross 
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section was calculated using the unfolded distributions and taking into account 

efficiencies of the trigger, detection, and selection. To obtain the photon structure 

function αγ
2F , the measured cross section ∆σmeas was divided by an analytically 

calculated cross section using the program GALUGA. Finally, results were 

compared with theoretical predictions, previous L3 results, and results from the 

other LEP experiments. 

The photon structure function  was measured at LEP with the L3 

detector at center-of-mass energies 189 ≤ 

γ
2F

s

.

≤ 209 GeV in the Q2 range 

 and the x range 0222 GeV 34QGeV 11 ≤≤ 556.0x006 ≤≤ . The data were better 

described by the high-order parton density function of GRV-set1 than by other 

parton distribution functions determined from the low energy data. For the present 

Q2 range GRV-set1 takes into account the presence of the 3 light quarks u, d, s and 

the heavy charm quark in the quasi-real target photon.  

Together with previous measurements, the L3 collaboration has studied the 

Q2 evolution from 1.5 GeV2 to 120 GeV2 in the low-x region, 0 , and 

from 12.4 GeV

1.0x01. ≤≤

5.02 to 225 GeV2 in the higher-x region, x1.0 ≤≤ . The 

measurements at different center-of-mass energies were consistent and the lnQ2 

evolution of  was clearly confirmed. γ
2F
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What makes these measurements unique and significant? 

 

L3 has excellent resolution for photons and charged hadrons. Therefore, it is 

an excellent detector for two photon physics studies. 

L3 measurements of the hadronic photon structure function  in the Qγ
2F 2 

ranges 1.2  and 9 , at centre-of-mass 

energies 91 GeV(LEP1) and 183 GeV(LEP2) with integrated luminosities of 

140 pb

222 GeV 30QGeV ≤≤ 222 GeV 30QGeV ≤≤

-1 and 51.9 pb-1, respectively, have been previously performed [21], [22]. 

However, these investigations were deficient mainly in the lower x regions 

due to the limited statistics at the energies descried above. In this measurement an 

integrated luminosity of 608 pb-1 was achieved for LEP2 center-of-mass energies 

between GeV 209sGeV <<

γ
2F

γ
2F

189 . A rich sample of two-photon events has been 

obtained and used for this work to measure the cross section and hadronic structure 

function  in the kinematical range defined by the LUMI tagging detector of L3. 

The physics advantage of the high energy reached at LEP2 comes from the 

increased center-of-mass energy between the virtual photon probe and the real 

photon target. Because of this we were able to measure the hadronic photon 

structure function at lower x values than was done before. Consequently, the results 

from this dissertation represent a higher precision measurement of the structure 

function  in the x and Q2 ranges between 0.006-0.556 and 
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222 GeV 34QGeV 11 ≤≤ respectively. Figure 7.4 shows the improvement due to 

our new measurement compared to previous data from ALEPH, DELPHI and 

OPAL. The data are best described by the higher-order parton density function of 

GRV-set1 (GRV-HO). Due to the high energy obtained with the LEP accelerator, it 

was possible to measure the effect of the heavier charm quark in addition to the 3 

light quarks.  

 

Future work 

 

The results obtained in this dissertation bring up interesting and important 

questions that should be the subject of future studies: 

a) Results from Section (7.4), Figure 7.4 suggest the existence of a charm 

threshold at low x values in the given Q2 domain. The charm contribution can be 

studied through the measurement of the charm structure function [74]. It would be 

interesting to investigate the charm contribution to  using the currently analyzed 

L3 data set.  

γ
2F

b) The GRV [39] parametrization already suggests a value for the strong 

coupling constant αs≅ 0.2 for the present data. For a precise measurement of αs one 

should perform a 5 parameter fit to the data as described in [78]. 

c) The kinematical range 11  from the present 

analysis might be extended using other L3 tagging subdetectors into the range 

222 GeV 34QGeV ≤≤
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222 GeV 1.22QGeV 0.4 ≤≤

222 GeV 115QGeV 30 ≤≤

22 GeV 3850QGeV 3070 ≤≤

( Very Small Angle Tagger - VSAT), 

( Active Lead Ring -ALR) respectively 

(BGO endcap). 2
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Appendix 

Units of Measurement 

A brief overview of the units used in particle physics, relevant for this 

dissertation is introduced here. Planck’s constant (ђ = h/2π=1.055x10-34 [J sec]) and 

the velocity of light (c=2.998x108 [m/sec]) are well known quantities from 

relativistic quantum mechanics. The velocity of light can be defined as 1 unit of 

velocity=L/T, and Planck’s constant measured in [J sec] is 1 unit of action=ML2/T. 

If we choose c and ђ to be equal to 1 this simplifies the writing of lengthy formulas. 

We can always introduce these values back into the final result using dimensional 

analysis. As an example, instead of equation , one can write 

. Here E is energy, p is momentum, and m is mass. The mass (m), 

momentum (mc), and energy are expressed in terms of GeV, while the length 

(ђ/mc) and time(ђ/mc

42222 cmcpE +=

222 mpE +=

2) are in units of GeV-1. The unit for the cross section σ is 

usually expressed in mb (millibarns), nb (nanobarns) or pb (picobarns). The 

luminosity has the general expression R/σ [cm-2 s-1], where R is the reaction rate. 

Its unit is usually expressed in pb-1. 
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