
C
ER

N
-T

H
ES

IS
-2

01
7-

05
0

//
20

17

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Practice-Oriented Formal Methods to
Support the Software Development of

Industrial Control Systems

Ph.D. Dissertation

Dániel Darvas

Thesis supervisor:

István Majzik, Ph.D. (BUTE)

Advisor:

Enrique Blanco Viñuela, Ph.D. (CERN)

Budapest

2017

Dániel Darvas

http://mit.bme.hu/~darvas/

January 2017

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2.

doi: 10.5281/zenodo.162950

http://mit.bme.hu/~darvas/
http://doi.org/10.5281/zenodo.162950

Declaration of own work and references

I, Dániel Darvas, hereby declare that this dissertation, and all results claimed therein are my

own work, and rely solely on the references given. All segments taken word-by-word, or in

the same meaning from others have been clearly marked as citations and included in the

references.

Nyilatkozat önálló munkáról, hivatkozások átvételéről

Alulírott Darvas Dániel kijelentem, hogy ezt a doktori értekezést magam készítettem és ab-

ban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint,

vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

Budapest, 2017. 01. 11.

Darvas Dániel

iii

“I would therefore like to posit that computing’s central challenge, viz.

‘How not to make a mess of it’, has not been met. On the contrary,

most of our systems are much more complicated than can be consid-

ered healthy, and are too messy and chaotic to be used in comfort and

confidence.”

Edsger W. Dijkstra [Dij01]

“Funding agencies often require that larger research-funded projects

[. . .] demonstrate the practicality of an approach on ‘real’ examples.

When authors report such efforts, they state that they are success-

ful. Paradoxically, such success stories reveal the failure of industry to

adopt formal methods as standard procedures; if using these methods

was routine, papers describing successful use would not be published.”

David L. Parnas [Par10]

v

Acknowledgements

This dissertation concludes a work that has been started in 2009. I would like to express my gratitude

towards everyone who helped me on this long journey:

• My family who supported me through this whole trip;

• My Ph.D. supervisors, István Majzik and Enrique Blanco Viñuela who trusted and supported

me, and have guided my work during the last three years;

• My B.Sc. and M.Sc. supervisors, Tamás Bartha and András Vörös who oriented me towards

research and helped me much more than any student could ever expect;

• My former and present colleagues and friends at the Fault Tolerant Systems Research Group of

the Budapest University of Technology and Economics who provided continuous help, support

and fun at work and outside of it;

• My former and present colleagues and friends at the European Organization for Nuclear Re-

search (CERN);

• The PetriDotNet Team for all the improvements and memorable achievements that we have

reached together;

• Kinga Györffy, Zoltán Gönye and Tamás Polyák who helped me to understand how to convey

a message;

• All the friends who helped to keep me sane while doing research;

• The colleagues at the CERN visits service who let me exercise another passion and to clean my

mind;

• The staff of the swimming pools in Ferney-Voltaire and Gex who kept running the facilities

where many of the presented ideas were born.

Ágnes, Ákos, András, Attila, Bálint, Borja, Christina, Dávid, Gábor, James, Jesús, Josef, Kristóf,

Łukasz, Matěj, Stefan, Tamás, Valentin, Vince, William, Zita, Zoltán, and everyone else I forgot to

mention explicitly: thanks for all.

Special thanks to everyone who have read the drafts of my dissertation and provided me feedback,

new ideas or corrections.

I would like to thank also the support of CERN, providing the funding of this Ph.D. research

project through the Doctoral Student programme.

vii

Summary

Formal specification and verification methods provide ways to describe requirements precisely and

to check whether the requirements are satisfied by the design or the implementation. In other words,

they can prevent development faults and therefore improve the quality of the developed systems.

These methods are part of the state-of-the-practice in application domains with high criticality, such

as avionics, railway or nuclear industry.

The situation is different in the industrial control systems domain. As the criticality of the systems

is much lower, formal methods are rarely used. The two main obstacles to using formal methods in

systems with low- or medium-criticality are performance and usability. Overcoming these obstacles

often needs deep knowledge and high effort. Model checking, one of the main formal verification

techniques, is computationally difficult, therefore the analysis of non-trivial systems requires spe-

cial considerations. Furthermore, the mainly academic tools implementing different model checking

algorithms are not suitable for users who are not experts in formal methods. The situation is sim-

ilar with formal specification methods: they are typically too abstract or theoretical to be used by

non-specialists, with reasonably long training period.

This work provides various solutions to both the challenges of performance and usability, and

centred around the formal verification of industrial control systems. The aim is to provide more effi-

cient verification algorithms and easy-to-use, practice-oriented formal (verification and specification)

methods that can be applied to PLC (programmable logic controller) software used in industrial con-

trol systems, where the use of heavyweight, low-level methods is not necessary or not feasible. The

proposed methods take the particularities of the target domain into account, making formal methods

accessible without excessive effort needed.

First, this dissertation provides B-I-Sat, a new algorithm that improves the performance of the

saturation-based model checking techniques by combining it with bounded model checking tech-

niques. Saturation-based model checking already provides good performance for many different mod-

els. By combining it with bounded techniques, this performance can be further improved in certain

cases.

Second, a verification workflow and its implementation are presented that allow the industrial

practitioners to use the model checking for PLC-based control software. This is achieved by hiding all

formal details and adapting the inputs and outputs of the verification workflow to the specific needs

of the domain and the available knowledge. The contributions include a model checker-independent

representation of the programs to be verified and property-preserving reduction algorithms to make

the formal analysis feasible. Special attention is paid to the verification of safety-critical PLC pro-

grams, where development restrictions impose additional needs for the verification workflow.

Third, a formal specification language is proposed that is specifically targeting the behaviour

description of programmodules used in the PLC-based industrial control software. The language itself

is heavily adapted to the domain and its needs. Furthermore, it is complemented by static analysis,

code generation and conformance checking methods. For the conformance checking, special relations

were introduced, responding to the real needs observed in the domain.

All these contributions are demonstrated and evaluated on real, industrial examples.

ix

sszefoglaló

A formális specifikációs és verifikációs módszerek használatával lehetőség nyílik követelmények pre-

cíz leírására és annak ellenőrzésére, hogy a követelményeket kielégíti-e egy terv vagy megvalósítás.

Más nézőpontból e módszerek segítségével elkerülhetők, illetve felfedhetők és javíthatók bizonyos

fejlesztési hibák, ami által a fejlesztett rendszerek minősége javul. A formális módszerek használata

mára elterjedt gyakorlattá vált a biztonságkritikus rendszerek, mint például légi, vasúti vagy nukleáris

rendszerek fejlesztésében.

Az ipari vezérlőrendszerek területén mást tapasztalhatunk. Mivel e rendszerek jóval kevésbé kri-

tikusak, a fejlesztés során ritka a formális módszerek használata. Ezen módszerek alacsony vagy kö-

zepes kritikusságú rendszerek fejlesztésében való alkalmazásának két fő akadálya a korlátozott telje-

sítmény és használhatóság, amelyek leküzdéséhez gyakran nagy szaktudás és erőfeszítés szükséges.

A modellellenőrzés, az egyik gyakran használt formális verifikációs módszer meglehetősen számí-

tásigényes, így a nemtriviális rendszerek modellellenőrzése különleges technikákat igényel. Továbbá

a modellellenőrző algoritmusokat megvalósító, főként akadémiai eszközök nehezen használhatók a

formális verifikációban nem jártas felhasználók számára. Hasonló tapasztalható a formális specifiká-

ció terén is: ezek a módszerek általában túl absztraktak vagy matematikaközeliek ahhoz, hogy nem

specialisták komoly képzés nélkül használni tudják.

Jelen munka többféle megoldást nyújt mind a teljesítmény, mind a használhatóság kihívására,

fókuszba helyezve az ipari vezérlőrendszereket. A munka célja hatékonyabb verifikációs algoritmu-

sokat és könnyen használható, gyakorlatorientált formális (verifikációs és specifikációs) módszereket

javasolni, amelyek felhasználhatók a programozható logikai vezérlők (PLC-k) szoftverének fejleszté-

sében, ahol a „nehézsúlyú”, alacsony szintű módszerek alkalmazása tipikusan nem lehetséges vagy

nem szükséges. A javasolt módszerek figyelembe veszik a megcélzott szakterület sajátosságait, így

elérhetővé teszik a formális módszerek használatát túlzott erőfeszítés nélkül.

Elsőként egy új verifikációs algoritmus, a B-I-Sat kerül bemutatásra, amely a szaturációalapú mo-

dellellenőrzési technikák teljesítményét javítja azáltal, hogy az algoritmust ötvözi a korlátos modell-

ellenőrzési módszerekkel. A szaturációalapú modellellenőrzés már számos modellen bizonyította ha-

tékony működését. Ennek a korlátos módszerekkel történő integrációja tovább javíthatja a teljesít-

ményét bizonyos esetekben.

Másodikként egy verifikációs folyamat és annakmegvalósítása kerül bemutatásra, amely lehetővé

teszi az ipari fejlesztőknek a PLC-alapú vezérlőprogramok modellellenőrzését. Ez annak köszönhető,

hogy a folyamat elrejti az összes, formális verifikáció terén speciális ismereteket igénylő részletet,

és olyan be- és kimeneteket definiál, amelyek illeszkednek a szakterülethez és az elvárható ismeret-

szinthez. A bemutatott kontribúció magában foglalja a verifikálandó programok egy modellellenőrző-

független leírását és tulajdonságmegőrző redukciós algoritmusokat a hatékonyság növelése érdeké-

ben. Különleges figyelmet kap a biztonságkritikus PLC-programok ellenőrzése, ahol a fejlesztési fo-

lyamat megkötései befolyásolják a verifikációs folyamatot.

Harmadikként egy formális specifikációs nyelvet javaslok, amely kimondottan a PLC-alapú ipari

vezérlőprogramokban használt programmodulok viselkedésének meghatározását célozza. A nyelv fi-

gyelembe veszi a szakterületet és annak igényeit. A specifikációs módszer kiegészítésre került statikus

analízissel, valamint kódgeneráló és konformanciaellenőrző módszerekkel. A konformanciaellenőr-

zéshez új relációkat vezettem be, amelyek a szakterület valós, megfigyelt szükségleteihez illeszkednek.

Mindegyik új eredmény valódi, ipari példákon keresztül kerül bemutatásra és értékelésre.

x

Contents

1 Introduction 1
1.1 Preliminaries and Objectives . 1

1.1.1 Introduction to Formal Verification . 2

1.1.2 Introduction to Formal Specification . 3

1.1.3 Summary of New Challenges . 4

1.2 Contributions and Structure of the Dissertation . 5

2 Bounded Model Checking Based on Saturation 7
2.1 Preliminaries . 8

2.2 Related Work . 9

2.2.1 Bounded Model Checking . 9

2.2.2 Saturation-Based Techniques . 9

2.2.3 Bounded Model Checking With Decision Diagrams 13

2.3 Overview of the B-I-Sat Algorithm . 13

2.3.1 Building Blocks . 13

2.3.2 Sketching Up the B-I-Sat Algorithm . 14

2.3.3 Challenges and Solutions . 15

2.3.4 Iteration Strategies . 17

2.4 Compacting Saturation Strategy . 19

2.5 Termination Conditions . 21

2.5.1 Notations . 22

2.5.2 Evaluation of CTL Operators . 22

2.6 Evaluation . 25

2.6.1 Measurement Considerations . 25

2.6.2 Execution Time Evaluation on Benchmark Models 26

2.6.3 Memory Consumption Evaluation on Benchmark Models 29

2.6.4 Industrial Case Study . 32

2.7 Summary and Future Work . 34

3 Model Checking Critical PLC Programs 37
3.1 Preliminaries . 38

3.1.1 Programmable Logic Controllers . 38

3.1.2 Motivation . 39

xi

3.2 Design of the Verification Workflow . 40

3.2.1 Challenges . 40

3.2.2 Designing the Workflow . 40

3.3 Intermediate Representations . 42

3.3.1 Intermediate Model: Intermediate Representation of the Verification Model . 43

3.3.2 Additional Intermediate Representations . 47

3.4 Verification Workflow Based on the Intermediate Model 47

3.5 Reduction Rules for the Intermediate Model . 48

3.5.1 Mode Selection . 49

3.5.2 Cone of Influence . 50

3.5.3 Rule-Based Reductions . 51

3.5.4 Reduction Examples . 51

3.6 Extensions for the Verification of Safety-Critical PLC Programs 52

3.6.1 Motivation and Challenges . 52

3.6.2 Supporting the STL Language as Input Language 55

3.6.3 Code Size Blow-Up and Reductions . 57

3.7 Implementation . 58

3.8 Case Studies . 60

3.8.1 Usage for UNICOS Baseline Objects . 61

3.8.2 Usage for Safety Controller . 63

3.9 Related Work . 65

3.10 Summary and Future Work . 69

4 Formal Specification for PLC Modules 71
4.1 Requirements Towards a Specification Language . 72

4.1.1 General Requirements . 73

4.1.2 Domain-Specific Requirements . 75

4.2 Related Work . 76

4.2.1 Formal Specification Languages . 76

4.2.2 Equivalence and Conformance Checking . 79

4.3 Syntax and Semantics of PLCspecif . 80

4.3.1 Structure of the Specification . 80

4.3.2 Expression Descriptions . 81

4.3.3 Core Logic Descriptions . 82

4.3.4 Semantics of PLCspecif . 85

4.4 Checking Invariant and Well-Formedness Properties on PLCspecif 87

4.4.1 Verification of Invariant Properties . 88

4.4.2 Static Analysis of Well-Formedness Rules . 89

4.5 Code Generation . 90

4.5.1 Overview of the Code Generation Method . 90

4.5.2 Semantics Based on Control Flow Automata 92

4.5.3 Generating the Concrete Implementation . 93

4.5.4 Providing Readable Code . 95

4.5.5 Generation Process . 95

4.6 Conformance Relations and Conformance Checking 96

4.6.1 Domain Requirements . 96

4.6.2 Conformance Relations . 99

xii

4.6.3 Checking the PLC Conformance Relations . 103

4.7 Evaluation and Usage Examples . 107

4.7.1 Comparison of PLCspecif and the Collected Requirements 107

4.7.2 UNICOS Re-engineering . 108

4.7.3 SM18-PLCSE Safety Controller . 110

4.8 Summary and Future Work . 111

5 Summary of the Research Results 115
5.1 Responses to the Challenges . 116

5.2 Summary of the Proposed Verification Methods . 118

5.3 Summary of the Theses . 119

A Precise Definitions for the B-I-Sat Algorithm 123

B Pseudocode of the Bounded Saturation Algorithms 127
B.1 Restarting Bounded Saturation . 128

B.2 Continuing Bounded Saturation . 128

B.3 Compacting Bounded Saturation . 129

C Metamodel of the Intermediate Representations of PLCverif 131
C.1 Intermediate Model . 131

C.2 Other Intermediate Representations . 133

D Details About the STL to SCLr Translation 135
D.1 Semantics of the STL Instructions . 135

D.2 Identified Correspondences Between STL and SCL . 137

D.3 Concepts of the Correctness Proof . 137

D.3.1 Formal Semantics for SCLr . 137

D.3.2 Formal Semantics for STL . 140

D.3.3 Strategy for the Correctness Proof . 142

E Semantics of PLCspecif 145
E.1 Timed Automata . 145

E.2 Translation Algorithms . 146

E.3 Mapping from PLCspecif Semantics to IM . 152

F List of Abbreviations 153

Publications 155
Publications Linked to the Theses . 155

Additional Publications (Not Linked to Theses) . 159

Additional Work . 159

Bibliography 161

xiii

Chapter1

Introduction

1.1 Preliminaries and Objectives

Dependability
1
is an integrating concept comprising availability, reliability, safety, integrity andmain-

tainability. This is a desired property, especially for critical systems. A failure is an observable devi-

ation from the system’s required behaviour, thus a threat to dependability. The cause of a failure is

the propagation of an error, which itself is a certain (internal) system state that can result in a failure.

The causes of the errors are the faults [Avi+04].

There are various means to attain the attributes of dependability: fault prevention, fault tolerance,

fault removal and fault forecasting [Avi+04]. Formal methods are well-known techniques for the pre-

vention of development faults and some of the operational faults, by providing mathematically sound,

unambiguous means for the description and verification of the system’s requirements [Mar94]. For-

mal verification and formal specification are getting more and more used in safety-critical application

domains where the consequences of a failure are catastrophic [Avi+04; Woo+09]. This can be either

because a single failure may cause an accident or loss of life, or it implies a high economic loss (e.g.

in avionics [Sou+09], railway systems [LSP07], space applications [Hav+00]), or the undesired con-

sequence affects a large number of systems (e.g. mass-produced processors [Fix08; Kai+09]) causing

a high total cost.

Industrial control systems are used in various settings. If the functionality of a control system

is safety-critical, the IEC 61508-2 standard [I61508-2] defines required development and verification

methods for each safety integrity level (SIL), depending on the probability of tolerable hazards (haz-

ardous failures). The industrial control systems consist of many components. Often a key element is a

programmable logic controller (PLC): a robust, reconfigurable, specialised computer that performs the

control tasks. In certain cases, their operation is safety-critical, but many times – due to additional

safety-related systems or measures (e.g. physical barriers, independent safety relays) – the target SIL

for the PLC-based controller is below SIL 1, the lowest SIL defined in IEC 61508. Even though in these

cases the expected failure is rare or not catastrophic, this does not mean that a failure (e.g. an out-

age) cannot cause significant economic losses. However, the lower SIL typically manifests in reduced

verification budget. In these cases the use of heavyweight formal methods (e.g. B Method or Z for

specification; or manual use of theorem provers for verification) would need excessive effort. Besides

the difficult usage (high training costs, need for special expertise), another common obstacle to using

formal verification methods is their performance. For example, exhaustively checking the behaviour

1

In the dissertation the taxonomy proposed by Avižienis, Laprie et al. [Avi+04] is used, which is briefly introduced and

summarised in the following two paragraphs.

1

1. Introduction

(state space) of a model is a computationally difficult task, therefore most of the algorithms cannot

scale up to the size of industrial problems.

Goal. The main goal of this research is to analyse the applicability of formal methods in the domain

of industrial control systems and to propose specification and verification methods. As mentioned

above, the twomain challenges of using thesemethods are performance and usability. This dissertation

proposes various solutions to both challenges. It aims to provide more efficient verification algorithms

and easy-to-use, practice-oriented formal (specification and verification) methods that can be applied

to PLC software used in industrial control systems, where the use of heavyweight methods is not

necessary or not feasible. The methods to be proposed should take the particularities of the target

domain into account.

1.1.1 Introduction to Formal Verification

Verification is “[t]he process of evaluating a system or component to determine whether the products

[. . .] satisfy the conditions imposed at the start” [I1012]. Formal verification techniques are mathemat-

ically sound methods to precisely determine the satisfaction of the given formalised requirements.

“Model checking is an automated [formal verification] technique that, given a finite-state model of

a system and a formal property, systematically checks whether this property holds for (a given state

in) that model” [BK08]. As a more precise definition, model checking is a method to find all states in a

model (given as Kripke structure) which satisfy a given temporal logic formula [Cla08]. This method

was first described by Edmund M. Clarke and E. Allen Emerson in [CE82], also by Jean-Pierre Queille

and Joseph Sifakis independently [QS82].

Being an automated method, it is a good candidate for lightweight formal verification, it has a po-

tential to be a “push-button technology” whose usage does not require high degree of user interaction

or expertise [BK08]. Furthermore, it can provide diagnostic traces (counterexamples or witnesses) that

is useful feedback about the problems found.

Modelling and requirement description formalisms. While model checking operates on a

Kripke structure according to its definition, typically higher-level modelling languages are used for

representing the models, such as Petri nets [Mur89], (timed or untimed) automata [AD94], or process

algebra [Fok00]. Similarly, multiple different temporal logic can be used to describe the requirements

to check. The most frequently used ones are linear temporal logic (LTL) and computation tree logic

(CTL). The different formalisms have different expressivity, also the model checking algorithms can

differ significantly depending on the supported formalisms.

Model checking methods. E. Clarke, one of the creators of model checking said that the model

checking algorithm is an “intelligent exhaustive search of the state space to determine if the specifi-

cation is true or not” [CES09]. With the increase of the number of reachable states in a system, the

“intelligence” of the state space exploration algorithms is getting more and more important. The so-

called explicit methods represent each state of the given model individually. This allows to use simple

algorithms from graph theory, but fails to provide solution for large models where the individual han-

dling of each state is not possible. Large state sets (state spaces) may be caused by various reasons,

e.g. the large number of inputs and outputs or concurrent behaviours. This is the well-known state

space explosion problem. Over the years various solutions emerged to handle this issue:

• Symbolic algorithms, which store the state space in a more compact, encoded format, e.g. using

decision diagrams;

2

1.1. Preliminaries and Objectives

• Abstractions, which simplify the model to have a smaller state space;

• Bounded algorithms, which limit the depth of the state space exploration (from the initial state)

to reduce the size of the explored state space.

The first symbolic algorithms were based on binary decision diagrams [Bur+92]. Since then new

algorithms were developed, using different exploration strategies and data structures. One of the

promising solutions is saturation [CLS01], which “tends to perform extremely well when applied to

discrete-event systems having multiple asynchronous events that depend and affect only relatively

small subsystems” [CZJ12]. The fact that the algorithm “performswell” means that the set of verifiable

models and requirements is larger or the execution time is shorter, but it does not mean that there are

no limitations imposed by the performance needs of the algorithm. In certain cases excessive amount

of memory is required to perform the verification.

There is no silver bullet for model checking, each method has its disadvantages and limita-

tions. Some approaches tried already to combine ideas from different methods, e.g. [Cha+02; Cop+01;

CNQ05]. A possible improvement of the saturation-based model checking is to combine it with

bounded model checking, which – to the author’s best knowledge – was not studied before this re-

search project. This could also help the verification of industrial control systems by improving the

earlier verification performance (e.g. compared to [c28]). Evaluation of this possibility is a challenge

of this dissertation (Challenge 1).

Model checking as a part of the PLC software development process. Model checking has

already proven to be useful in various domains [Cla08]. However, providing the necessary formal

models and the requirements as temporal logic formulae is a difficult task, especially for the people

not familiar with formal methods. Furthermore, model checking may also need manual adaptation,

fine-tuning to the current problem to improve the performance. This implies a high cost of usage,

which may be an obstacle to apply model checking in the development of PLC programs.

The academic algorithm design and development efforts led to high-performance general-purpose

model checkers (e.g. UPPAAL [Amn+01], LTSmin [Kan+15], NuSMV/nuXmv [Cav+14]). However,

general-purpose tools cannot improve the domain-specific usability of the verification method. To

improve the usability and to integrate formal verification into the industrial control system develop-

ment processes, the focus should be specifically set to this domain.

Although the use of model checking for PLC-based industrial control software was already stud-

ied in e.g. [GSF08; SD08; BBK12], these works did not provide generic solutions applicable in real-life,

or this aspect was not emphasised. Making model checking adapted to the PLC program develop-

ment domain, usable directly by the PLC developers; and making it scalable are challenges of this

dissertation (Challenges 2, 3). Furthermore, special attention should be paid to a special branch of

PLCs, the so-called fail-safe or safety PLCs. To attain a high level of confidence during the software

development process for such PLCs, special restrictions and development methods are followed (e.g.

coding conventions, programming language restrictions), these have to be taken into account for the

solution to be proposed (Challenge 4).

1.1.2 Introduction to Formal Specification

Requirements engineering is a set of activities to explore, evaluate and document the objectives, capa-

bilities, constraints and assumptions of a system to be designed [Lam09]. The (requirements) specifica-

tion is the act of “detailing, structuring and documenting the agreed characteristics of the system-to-

be” [Lam09]. According to [Lam00], formal specification “is the expression, in some formal language

and at some level of abstraction, of a collection of properties some system should satisfy.” One of the

3

1. Introduction

facts making the formal specification process difficult is that “[s]pecifications are never formal in the

first place” and they are “hard to develop and assess” [Lam00]. The expected benefits of formalising

the specification method are “a higher degree of precision in the formulation [. . .], precise rules for

their interpretation and much more sophisticated forms of validation and verification” [Lam09].

Formal specification is studied since the late 1960s, and since then several methods emerged. Petri

nets [Mur89], Lotos [I8807], the B Method [Abr96], Z [I13568], or the communicating sequential pro-

cesses (CSP) [Hoa85] are widely-known techniques. Though widely-known, they are not widely used

in the industry [Kni+97], because they are too complex, they need too deep mathematical knowledge,

or their abstraction level is too high. Therefore the usage of these specification methods is restricted

to highly critical domains, e.g. avionics [HLR98] or railway industry [But02].

In the industrial control systems domain, the state-of-the-art development processes still rely on

informal specifications and hidden assumptions. These specifications are often ambiguous, leading to

misunderstanding and unintended behaviours in the implementation. The lack of unambiguous spec-

ification imposes a problem for the formal verification too: how can we decide if the implementation

is correct, if we do not know what is correctness, i.e. what are the expected properties?

There are various attempts to provide better, PLC-specific specification methods, e.g. [Lju+10;

Luk+13]. Analysing the existing methods and finding a suitable specification is a challenge of this

work (Challenge 5). It is another challenge to provide formal verification for PLC software on the

basis of the selected specification method (Challenge 6).

1.1.3 Summary of New Challenges

Challenge 1: Designing model checking algorithms combining bounded and
saturation-based techniques to improve their performance. Both bounded model

checking and saturation-based techniques increase the set of models on which verification

is feasible compared to basic explicit model checking algorithms. Is it possible to com-

bine these two approaches? Does it improve the performance with respect to the original

saturation-based model checking?

Challenge 2: Making model checking easily accessible to the PLC developers. Model

checking is rarely used for industrial control software, mainly because of the enormous

effort needed to create formal models and requirements, furthermore to learn the usage of

the model checker tools. How can model checking be made accessible and practically appli-

cable in the PLC program development process? How can model checking be used without

excessive effort, without exposing the users (PLC developers) to complex mathematical for-

malisms?

Challenge 3: Making the PLCmodel checking applicable to real-world PLC programs.
The formal models of real PLC modules or programs and their state spaces tend to be ex-

tremely large, making the model checking infeasible using general-purpose model checker

tools. Could heuristic model reductions reduce the performance needs of model checking

and therefore cope with a bigger set of models?

Challenge 4: Extending themodel checking approach to safety-critical PLC programs.
The original PLC model checking workflow supported the Siemens SCL language only,

which – being a high-level language – is more suitable for the implementation of complex

programs. However, the development of PLCs used in safety-critical settings has specific

procedures and restrictions, such as the mandatory usage of FBD or LAD languages (in case

of Siemens PLCs). How can model checking be adapted to these lower-level programming

4

1.2. Contributions and Structure of the Dissertation

languages used in safety-critical PLC program development?

Challenge 5: Providing lightweight formal specification for PLC software modules.
Unambiguous requirements are essential for any development or verification activity. For-

mal specifications may reduce the ambiguity, but the general-purpose formal specification

methods are too complex and non-intuitive to be used in the PLC development domain

with a reasonable effort. What are the requirements towards a formal specification lan-

guage specially adapted to the PLC domain? What formal specification method can aid the

PLC program development process?

Challenge 6: Providing verification solutions based on formal specification.How could

formal specification improve the PLC program verification?What verification methods can

be used to check the conformance between a PLC program and its formal specification?

How can this be made useful in practice, without excessive amount of false positives (i.e.

without having a high number of detected differences that are considered to be acceptable

by the developers)?

These challenges led to a research project with new scientific results in three different areas: a new,

saturation-based bounded model checking algorithm with different iteration strategies (Thesis 1), a

new method to apply model checking for PLC programs (Thesis 2) and the definition of a formal

specification language for PLC software modules together with its application methods (Thesis 3).

Table 1.1 presents the correspondence between the discussed challenges and the results of this work.

Table 1.1: Correspondence between the discussed challenges and the proposed solutions

Challenge
1 2 3 4 5 6

Thesis 1 Chapter 2 of the dissertation •
Thesis 2 Chapter 3 of the dissertation • • •
Thesis 3 Chapter 4 of the dissertation • •

1.2 Contributions and Structure of the Dissertation

This dissertation presents three different contributions. These contributions are centred around for-

mal verification of industrial control software. The challenges are twofold: they target the perfor-

mance and the usability of model checking that are two major obstacles of using model checking in

real life scenarios. The high-level challenges and the contributions are summarised in Figure 1.1.

• Thesis 1 (Chapter 2) discusses the improvement of saturation, a model checking algorithm

which provided good performance for many different models. In this thesis the combination

of saturation with bounded model checking will be presented. This new approach may further

improve the performance of the saturation algorithms, increasing the set of requirements and

models that are possible to be verified. This general method may give a solution for industrial

control software when it is not efficient to develop a dedicated workflow for the given use case.

5

1. Introduction

Key challenges in formal verification

Performance Usability/accessibility

Algorithmic improvements

(B-I-Sat)

Thesis 2 (Chapter 3)

verification workflow

(PLCverif)

Thesis 1 (Chapter 2) Thesis 3 (Chapter 4)

Solutions based on

(PLCspecif)

Code Conformance

formal specification

Practice-oriented

generation checking

Figure 1.1: Overview of the contributions of the dissertation

Here the focus is on the performance improvements, thus it may be an appropriate solution

when the performance is the bottleneck of the verification, or when it is not efficient to design

and implement a dedicated verification workflow for the given verification case(s).

This thesis responds to Challenge 1 discussed in Section 1.1.3.

• Thesis 2 (Chapter 3) focuses on the usability aspects of model checking applied to PLC-based

industrial control software. It provides a verification workflow that makes model checking of

PLC programs directly usable by the developers, without requiring extensive training, direct

modelling or manual reductions. The presented contributions are related mainly to (i) the in-

termediate model language used for the model checker-independent representation of the PLC

programs, (ii) the reduction heuristics that reduce efficiently the size of the intermediate model

representations, (iii) the extension of the verification workflow to support the development

and verification of safety-critical PLC programs, and finally (iv) the implementation and the

evaluation of the verification workflow.

This part focuses onmakingmodel checking of PLC programs accessible to developers. The ver-

ification workflow is flexible and it only needs the PLC source code and informal requirements,

which are formalised using given requirement patterns by the user.

This thesis responds to Challenges 2, 3 and 4 discussed in Section 1.1.3.

• Thesis 3 (Chapter 4) is dedicated to PLCspecif, a novel complete, formal behaviour specification

language specifically targeting PLC modules. Besides the syntax and semantics definition, it is

extended with code generation, invariant checking, static analysis and conformance checking

facilities, to provide wide support for the development and analysis of PLC software.

This contribution, similarly to Thesis 2, also focuses on the usability improvements of the PLC

program verification, but here a more thorough analysis is targeted. This additionally requires

the formal specification of the module to be verified, but the benefit is a deeper analysis and

the possibility of automated implementation generation.

This thesis responds to Challenges 5 and 6 discussed in Section 1.1.3.

6

Chapter2

Bounded Model Checking Based on

Saturation

Model checking is a successful verification technique, however its usage is limited partially because of

its performance. Various solutions emerged during the last 30 years to improve the performance. The

so-called saturation algorithms successfully pushed the limits of model checking and increased the

set of verifiable problems. Saturation improves the performance by using an efficient state encoding

and a special search order. Other approaches, such as bounded model checking use different methods

for improvement. During bounded model checking, the model is checked only up to a certain depth,

limiting the size and complexity of the model checking problem.

The bounded and the saturation-based model checking use orthogonal ideas for improvements,

therefore they could be combined. This may improve the saturation-based model checking techniques

by reducing the run time in case of shallow requirements, where the bounded model checking typi-

cally excels. Although the high-level ideas of these two approaches are independent, in reality they

affect each other. For example, the special search order makes limiting the exploration depth more

difficult.

Goal. The goal of the work discussed in this chapter is to combine the principles of bounded model

checking with the saturation-based techniques, to show its feasibility and to improve the performance

of saturation; then to build an iterative bounded saturation-based CTL model checking algorithm and

to assess its performance.

This chapter presents B-I-Sat (Bounded Iterative Saturation), an iterative, bounded CTL model

checking algorithm using saturation-based techniques. Three different strategies are proposed, which

are implementing the B-I-Sat algorithm with minor differences. The termination conditions, a crucial

part of this algorithm, are analysed in more detail. The evaluation part shows that these methods im-

prove the performance and scalability of saturation in certain cases, andmay improve the applicability

of model checking in industrial use cases too.

Structure of this chapter. Section 2.1 overviews the background of the work described in this

chapter. The corresponding formal definitions can be found in Appendix A. Next, Section 2.2 is dedi-

cated to the related work, with a special focus on the various saturation-based techniques. Section 2.3

discusses B-I-Sat, the novel iterative bounded model checking solution and its challenges. Two strate-

gies, the restarting and continuing strategies are described here as well. The more advanced, so-called

7

2. Bounded Model Checking Based on Saturation

compacting strategy is proposed in Section 2.4. After, Section 2.5 discusses the application of three-

valued logic to give termination conditions for the iterative B-I-Sat algorithm. The evaluation of the

proposed methods can be found in Section 2.6. Finally, Section 2.7 concludes the chapter.

2.1 Preliminaries

In this section we focus on the key preliminaries that are necessary to understand the contributions

presented later. For a more detailed overview we refer to [j2; a30].

Model checking. Model checking (see Def. A.1, p. 123) [Cla08] determines whether a given model

satisfies the given temporal logic formula (requirement). In general, model checking looks for the

state set of a model M that satisfies the given formula f , but often we are interested only whether

the initial state s0 of the model satisfies f , formally:M, s0
?
� f (or simply denoted as s0

?
� f).

Although the formal definition of model checking typically states that the model is given as a

Kripke structure (see Def. A.2, p. 123), modelling real systems using the low-level Kripke structures is

often impractical due to the high number of states. Various higher-level models exist with different

properties. The Petri net formalism (see Def. A.4, p. 124) is one of the widely used modelling methods,

which will be used in this chapter as well. An example Petri net is shown in Figure 2.1.

Component 1

Component 2 Component 3

p5p4p3

p1 p2

t4

t3 t5

t6

t2

t1

2

2

Figure 2.1: Example Petri net

Multiple formalisms exist to define the temporal logic formula too. Two well-known and widely-

used formalisms are computation tree logic (CTL) and linear temporal logic (LTL). As saturation is

mainly suitable for CTL [CMS03], we are focusing on this formalism. CTL expressions are interpreted

on the computation tree (see Def. A.5, p. 124), which is practically a radix tree of all possible paths from

the initial state(s). CTL formulae (see Def. A.6, p. 124) [CE82] consist of Boolean expressions that may

or may not be true for the individual states, and temporal operators (e.g. EF, EG, AX) which argue

about where in the computation tree should a certain Boolean expression be true to satisfy the CTL

formula. The intuitive meaning of the CTL operators can be seen in Figure 2.2 where for each formula

a satisfying example computation tree is given.

Boundedmodel checking. Bounded model checking was introduced in [Bie+99] as a method based

on SAT (Boolean satisfiability problem) solvers looking for counterexamples with iteratively increas-

ing lengths. This idea can be generalised: bounded model checking evaluates the given temporal logic

8

2.2. Related Work

EX • EG • E[• U •]EF • AG • A[• U •]AX • AF •

Figure 2.2: Examples of CTL operators

formula by iteratively checking greater and greater part of the model until the satisfaction of the re-

quirement can be decided (see Def. A.7, p. 124).

2.2 Related Work

This section overviews the work related to this chapter. As the goal of this work is to improve the

saturation-based techniques, the focus is set to the various saturation algorithms proposed in the past.

2.2.1 Bounded Model Checking

Early symbolic model checking methods based on binary decision diagrams (BDDs) improved the

scalability of model checking, making possible to use this verification method on industrial examples

[Bur+92]. Although this pushed the limits of model checking compared to the explicit model checking

algorithms, the memory bottleneck was still severe. Bounded model checking using SAT solver was

proposed in [Bie+99] as a complementary technique. SAT-based model checking was widely consid-

ered more applicable than BDD-based methods [Bie+03; Aml+05]. Some authors have stated explic-

itly that BDD-based model checking is unable to “handle large state spaces of ‘real world’ designs”

[Cha+02].

Bounded model checking is widely considered as a purely SAT-based method (e.g. [Aml+05]),

however its principles can be implemented using other technologies too.

2.2.2 Saturation-Based Techniques

Saturation was first introduced in [CLS01] as a symbolic state space exploration method. Typically,

the set of reachable states (the state space) is not explicitly given (enumerated) by a formal model, it

has to be determined based on the initial state(s) and the next-state function. The simplest solution for

that is a breadth- or depth-first search (BFS or DFS). Their time complexity isO(|S|), where |S| is the
number of reachable states. In case of asynchronous systems, where many components are loosely

coupled, this is not efficient. Imagine a system with two independent components, having n and m
reachable states respectively. It is intuitive that the O(nm) complexity of BFS could be reduced to

O(n+m) due to the independence.

This is the high-level motivation of saturation for checking state spaces of components in isola-

tion as much as possible [CMS03]. Given a discrete-state model decomposed into K (not necessarily

independent) parts (components), saturation determines the set of reachable states S . Formally, the

input model is as follows.

Definition 2.1 (Input model of saturation [CS03]).
A discrete-state model is a 4-tupleM = ⟨Ŝ,S0, E ,N⟩, where:

9

2. Bounded Model Checking Based on Saturation

• Ŝ = SK × · · · × S1 is the potential state space, decomposed into K parts (Si is the local

state space of component i);
• S0 ⊆ Ŝ is the set of initial states;

• E is the set of events; and

• N ⊆ Ŝ × Ŝ is the next-state relation. It can also be regarded as a function N : Ŝ → 2Ŝ ,
where N (s) = {s′ : (s, s′) ∈ N}. �

The local state spaces S1, . . . , SK do not have to be explicitly given, as they can be explored on-

the-fly [CMS03]. Furthermore, typically the N next-state relation is not given explicitly either, but

based on the given high-level model N (s) can be determined for a given s (e.g. a Petri net implic-

itly defines N). Notice that as the global state space is decomposed, each global state s ∈ S is a

composition of local states: s = (sK , sK−1, . . . , s1), where each si ∈ Si.

Underlying data structures. Saturation uses multivalued decision diagrams (MDDs) (see Def. A.8,

p. 125) to store both the reachable state space S and the next-state relationN . An MDD can efficiently

encode a functionDK ×DK−1 × · · · ×D1 → {0, 1}, where eachDi is a finite domain. An MDD is a

directed acyclic graphwith a single root, where the edges are labelled with values from theDi sets and

the exactly two leaves of the graph are labelled by values 0 and 1 (so-called terminal nodes, denoted

by 0 and 1). A path from the root to the terminal node 1 (or 0) with edge labels xK , xK−1, . . . , x1
encodes the mapping (xK , xK−1, . . . , x1) 7→ 1 (or (xK , xK−1, . . . , x1) 7→ 0). MDDs can also be used

to store sets ofK-tuples: a tuple (xK , xK−1, . . . , x1) is an element of the set encoded by the MDD iff

the MDD maps this tuple to 1. The set operations, e.g. union and intersection can also be applied to

MDDs.

Example. An example MDD can be seen in Figure 2.3(a) that encodes the following set (in x3, x2, x1
order):

S = { (0, 0, 0), (3, 0, 0), (7, 0, 0), (2, 1, 0), (5, 1, 0), (4, 2, 0),
(0, 0, 1), (3, 0, 1), (7, 0, 1), (2, 1, 1), (5, 1, 1), (4, 2, 1) }.

Let us assume the following local state space encodings for the example Petri net in Figure 2.1.

Component 3: { 0 7→ ⟨M(p4) = 2,M(p5) = 0⟩, 1 7→ ⟨M(p4) = 3,M(p5) = 0⟩,
2 7→ ⟨M(p4) = 1,M(p5) = 0⟩, 3 7→ ⟨M(p4) = 1,M(p5) = 1⟩,
4 7→ ⟨M(p4) = 0,M(p5) = 0⟩, 5 7→ ⟨M(p4) = 0,M(p5) = 1⟩,
6 7→ ⟨M(p4) = 2,M(p5) = 1⟩, 7 7→ ⟨M(p4) = 0,M(p5) = 2⟩ }

Component 2: { 0 7→ ⟨M(p3) = 0⟩, 1 7→ ⟨M(p3) = 1⟩,
2 7→ ⟨M(p3) = 2⟩ }

Component 1: { 0 7→ ⟨M(p1) = 1,M(p2) = 0⟩, 1 7→ ⟨M(p1) = 0,M(p2) = 2⟩ }

Given these symbolic state encodings, the MDD in Figure 2.3(a) encodes the reachable state set of the Petri

net in Figure 2.1.

The local state encodings in the above example were generated by the saturation algorithm. One

can see that some local states are impossible to reach, e.g. state 1 of component 3. This is a side-effect

of the on-the-fly local state space exploration. When a new potential local state is found, it is called

unconfirmed. A local state that is later found to be globally reachable (i.e. it is part of a reachable global

state) is called confirmed.

10

2.2. Related Work

CTL model checking with saturation. As mentioned above, saturation was first introduced as a

state space exploration algorithm. The state space exploration is practically the computation of the

fixed point S0∪N (S0)∪N 2(S0)∪· · · = N ∗(S0) (where
∗
denotes the reflexive and transitive closure

[CMS06]). Based on this, saturation was later generalised as a fixed point computation algorithm and

used for instance for CTL model checking, introduced first in [CS03]. CTL typically defines eight tem-

poral operators (EX,EF,EG,EU,AX,AF,AG,AU), but it is enough to implement a (not necessarily

minimal) generator subset of them. For example, each A operator can be expressed using E operators,

therefore [CS03] proposes implementations only for the E operators.

The implementation of EX and EF operators is simple. EX can be formalised as follows: s � EX p
iff ∃s′ ∈ N (s) : s′ � p. Therefore if the set P of reachable states satisfying p (P ⊆ S) is known,
checking s � EX p is equivalent to checking s

?
∈ N−1(P). With similar reasoning, checking s � EF p

(i.e. whether a state satisfying p is reachable from s) can be reduced to checking s
?
∈ (N−1)∗(P),

which is a similar problem to determining the reachable state space of the model (i.e. N ∗(S0)). The
implementation of EG and EU operators are less straightforward in symbolic settings and for the

details we refer the reader to [CS03]
1
.

Constrained saturation. Constrained saturation was proposed by Zhao et al. in [ZC09] as an im-

provement for the CTL model checking. It limits the exploration to a given state set. While this can

easily be achieved using the intersectionMDD operation, MDD operations are typically expensive. In-

stead of the “step-and-cut” strategy (with intersections after each step), they have proposed a “check-

and-step” strategy, where the constraint state set, encoded also by MDD, is simultaneously traversed

and used for constraining the exploration. The implementation of EU operator with constrained sat-

uration proved to be more efficient than the traditional approach. The formal details of constrained

saturation can be found in [ZC09].

Bounded state space exploration with saturation. Saturation can efficiently store the reachable

state space, but this does not mean that it can cope with every problem with reasonable amount of

resources. Bounded model checking techniques are powerful when the requirement can be evaluated

based on a fraction of the complete state space, for example to find shallow error states. However, the

“non-standard search strategy” that makes saturation powerful in state space exploration makes its

application for bounded state space exploration difficult [YCL09].

To perform saturation-based bounded exploration, the state distances (i.e. the minimum number

of transitions to be fired to reach the state, see Def. A.3) have to be stored. Yu et al. [YCL09] considered

different variants of decision diagrams. In the following, we will use their approach building on edge-

valuedMDDs (EV
+
MDDs or EDDs) (see Def. A.9, p. 125), which were also used in [CS02]. EDDs encode

functionsDK × · · · ×D1 → N∪ {∞}. They can be regarded as extended MDDs, where each edge is

additionally labelled with a non-negative integer (or ∞). Contrarily to MDDs, it is sufficient to have

one leaf node in EDDs, the node ⊥. A path from the root node to the leaf node ⊥ maps the sum of

the edge labels to the tuple encoded by the path.

Example. An example EDD can be seen in Figure 2.3(b) that encodes the following mappings:

1

A saturation-based method was given for EG in [CS03], but even the authors of the paper consider its performance

typically worse than the traditional greatest fixed point algorithm. The saturation-based implementation of EU was much

better, but it was later significantly improved further in [ZC09].

11

2. Bounded Model Checking Based on Saturation

Level 3

Level 2

Level 1

Terminal level

1

0

0

3

7
2

5

4

0

1
2

0 1

1

2

1

2
1

2

1

6

(a) Example MDD

Level 3

Level 2

Level 1

Terminal level⊥

ρ = 0

⟨0,0⟩
⟨3,1⟩
⟨7,2⟩ ⟨2,1⟩

⟨5,2⟩
⟨4,2⟩

⟨0,0⟩
⟨1,0⟩ ⟨2,0⟩

⟨0,0⟩ ⟨1,1⟩

⟨1,∞⟩

⟨2,∞⟩

⟨1,∞⟩
⟨2,∞⟩⟨1,∞⟩

⟨2,∞⟩

⟨1,∞⟩

⟨6,∞⟩

(b) Example EDD

Figure 2.3: Example decision diagrams (describing the symbolic state space of the Petri net shown in

Figure 2.1)

{ (0, 0, 0) 7→ 0, (3, 0, 0) 7→ 1, (7, 0, 0) 7→ 2, (2, 1, 0) 7→ 1, (5, 1, 0) 7→ 2, (4, 2, 0) 7→ 2,
(0, 0, 1) 7→ 1, (3, 0, 1) 7→ 2, (7, 0, 1) 7→ 3, (2, 1, 1) 7→ 2, (5, 1, 1) 7→ 3, (4, 2, 1) 7→ 3 }.

Given the state encodings discussed in the previous example, the EDD in Figure 2.3(b) encodes the reach-

able state set of the Petri net in Figure 2.1 with distance information (i.e. the EDD maps to each symbolic

state its distance from the initial state (0, 0, 0)).

The calculated and stored distance information is then used to limit the state space exploration

to the states with distance values less than or equal to the given bound. In case of BFS, it is easy to

terminate the exploration when the bound is reached. However, the advantage of saturation makes

this more challenging too. To overcome this challenge, Yu et al. added an explicit pruning after each

step. Two pruning strategies were proposed: an exact method that strictly computes the bounded

state space with respect to the given bound b, and an approximativemethod that is faster, but provides

weaker guarantees: it only ensures that each state within bound bwill be included and each state with
distance more thanK ·bwill be excluded from the state space (whereK is the number of components

in the model).

As the saturation-based techniques will be used for B-I-Sat as building blocks, deeper details are

not necessary at this point. For more details we refer to [CLS01; CMS03; CZJ12]. The parts related to

the contributions presented here are discussed in [a30], along with the pseudocode of the contribu-

tions. An overview and short summary of the main saturation-related papers is in Table 2.1.

12

2.3. Overview of the B-I-Sat Algorithm

Table 2.1: Milestones of the saturation algorithm

Ref. Year Contents, new contributions

[CLS00] 2000 First discussion of the main saturation concepts

[CLS01] 2001 The first paper drawing up the idea of saturation, a novel, MDD-based state space exploration

algorithm

[CS02] 2002 State space exploration with state distances to generate shortest traces

[CMS03] 2003 Extension of saturation with automated explicit local state space discovery

[CS03] 2003 CTL model checking based on the saturation algorithm

[CY05] 2005 Conjunctive and disjunctive partitioning

[ZC09] 2009 Constrained saturation to improve the efficiency of CTL model checking

[YCL09] 2009 Bounded reachability checking based on saturation

[c28] 2012 Extension of saturation to coloured Petri net models

[j26] 2014 Introduction of the lazy coloured saturation

[CMS06] 2006 Summary and deep analysis of the previous saturation algorithms

[CZJ12] 2012 Summary of the first ten years of saturation

2.2.3 Bounded Model Checking With Decision Diagrams

Combining different model checking approaches is not unheard-of in the field of formal verification.

For example, Chauhan et al. [Cha+02] combine SAT-based and BDD-based methods, where BDD-

based model checking is only used on abstract models. The first work truly combining bounded model

checking and decision diagram-based methods was done by Copty et al. [Cop+01] in 2001. Later, Ca-

bodi et al. [CNQ05] used BDD-based boundedmodel checking and they have found that their approach

can “deal with larger problems than other BDD-based tools” and that their “methodology seems to be

more scalable with deeper bugs” than SAT-based bounded model checking methods [CNQ05].

The author is not aware of any work on combining bounded model checking principles with

saturation-based techniques before the own work [c18].

2.3 Overview of the B-I-Sat Algorithm

This section presents the collected building blocks which can be used for a bounded saturation-based

model checking algorithm. Then the high-level workflow of B-I-Sat (Bounded Iterative Saturation) is

discussed. B-I-Sat is a novel CTL model checking algorithm that combines bounded model checking

and saturation-based techniques. Finally, the arisen challenges and design questions are discussed.

2.3.1 Building Blocks

Here we review the main saturation-based techniques to collect the already existing building blocks

that can be reused for the B-I-Sat algorithm.

Unbounded saturation-based model checking. The classic saturation-based CTL model check-

ing [CS03] is a two-step procedure: first it explores the reachable state space, then the given CTL

formula is evaluated, as can be seen in Figure 2.4.

It is easy to identify the following two building blocks.

13

2. Bounded Model Checking Based on Saturation

State space exploration: It collects all reachable states in a given model from a given initial state.

• Input: Petri net (with initial marking and decomposition defined);

• Outputs: reachable state space S (MDD); next-state function N (MDD);

• Internal results: local state spaces Sk; caches for the saturation functions and the decision

diagram operations.

CTL formula evaluation: It evaluates the satisfaction of a given CTL formula on the given explored

model.

• Inputs: state space S (MDD); initial state(s) S0 (MDD); next-state functionN (MDD); CTL

formula f ;
• Output: Boolean result (true iff f is satisfied on S by S0) and optionally the subset of S
which satisfies f ;

• Internal results: caches for the saturation functions and the decision diagram operations.

Bounded state space exploration. The bounded state space exploration [ZC09] is a single-step

process, it will be considered as a single building block. Let us introduce a new notation: S[a;b] , {s ∈
S : a ≤ δ(s) ≤ b}, i.e. S[a;b] is the partial state space containing all states with distances between a
and b (both inclusive).

Bounded state space exploration (with exact truncation strategy): It collects all reachable states

from a given initial state in a given model which are within a given distance b.
• Input: Petri net (with initial marking and decomposition defined); bound b;
• Output: reachable (partial or bounded) state space S[0;b] (EDD); (partial) next-state function

N (MDD);

• Internal result: local state spaces Sk; caches for the saturation functions and the decision

diagram operations.

Note that only the exact truncation (pruning) strategy ensures that the resulting state space is

S[0;b]. The approximative truncation ensures only that the resulting state space S ′ contains all states
within bound b and contains no states with distance more thanK · b: S[0;b] ⊆ S ′ ⊆ S[0;K·b].

2.3.2 Sketching Up the B-I-Sat Algorithm

To achieve the goal and to design a bounded saturation-based CTLmodel checking algorithm, two key

challenges should be met. First, the unbounded saturation-based algorithm should work on a partial

(bounded) state space, using the bounded state space exploration algorithm. Second, the algorithm

should be made iterative, to check the CTL formula on an increasingly large part of the full state

space.

State space

exploration

Evaluation of

the requirement

Figure 2.4: Overview of the classic saturation-based model checking

14

2.3. Overview of the B-I-Sat Algorithm

Non-iterative boundedmodel checkingwith saturation. The apparent challenge of integrating

the bounded state space exploration to the saturation-based CTL model checking based on the dis-

cussion in Section 2.3.1 is the mismatch between the state space encodings: the explored partial state

space is encoded by an EDD, while the CTL evaluation works on an MDD state space. The CTL eval-

uation could be modified to handle EDDs, but this might have a negative impact on the performance,

as the MDD representation of the state space is typically more compact than the EDD representation.

The basic CTL evaluation algorithm cannot benefit from the distance information, therefore they can

be dropped from the EDD. An MDD which encodes a state set contains a state s if the corresponding
path leads to the node 1. In an EDD which encodes a state set, a state s is contained if the correspond-
ing path leading to the terminal node has a finite weight. Therefore if the EDD encodes a function

fE , the corresponding MDD should encode the function fM as follows [a31]:

fM (xn, . . . , x1) =

{
0, if fE(xn, . . . , x1) = ∞
1, if fE(xn, . . . , x1) < ∞

.

This can be used to construct an MDD corresponding to the state set encoded by the EDD for the

CTL formula evaluation. This transformation has a linear time complexity in the number of EDD

nodes. The MDD representing the set encoded by the EDD E without the distance information will be

denoted byMDD(E). Similarly, let us denote by EDD(M) the EDD which maps the value 0 exactly

to the tuples contained by the MDDM, and maps∞ to all the other tuples.

The second problem is less apparent and it is related to the pruning during bounded state space

exploration. The pruning step will remove the states that are not within the given bound, but this

does not modify the next-state relation. Therefore the CTL formula evaluation may consider states

that are not included in the bounded state space. This is not a threat to correctness, but it reduces the

advantage of bounded model checking [e21; c17]. This challenge will be discussed later in detail.

If these challenges are solved, a simple, non-iterative, saturation-based bounded model checking

algorithm can be drawn up, as shown in Figure 2.5. Obviously, this is not useful in practice yet, as in

cases where the bound is not chosen correctly, the result will not be representative of the whole state

space. Knowing the smallest necessary bound value a priori is typically not possible.

State space

exploration

(with bound b)

Conversion

to MDD

Evaluation of

the requirement

Figure 2.5: Overview of the non-iterative, saturation-based bounded model checking

Iterative bounded model checking with saturation. The need to know the correct bound value

can be eliminated by making the model checking method presented in Figure 2.5 iterative. Looking

at a high level this is simple: the state space should be explored up to an increasing bound b, until a
representative result is available and the procedure can be terminated. This is the main idea of the

B-I-Sat algorithm, depicted in Figure 2.6. However, if we take a closer look at different parts of the

algorithm, various challenges and questions arise. They are discussed in the next section.

2.3.3 Challenges and Solutions

Previously the high-level ideas of B-I-Sat were presented without details. In the following part of this

section the main design questions, challenges and the given solutions are summarised.

15

2. Bounded Model Checking Based on Saturation

b := B0

State space

exploration

(with bound b)

Conversion

to MDD

Evaluation of

the requirement

Terminate?b := b+B
yesno

Figure 2.6: Overview of the iterative, saturation-based bounded model checking (B-I-Sat)

• Initial bound and bound increment. Most SAT-based bounded model checking algorithms

start with bound 0 and increment it by one in every iteration. This ensures to find the shortest

counterexample and to explore the smallest necessary part of the state space. In case of satura-

tion this might not be the most efficient strategy. Therefore the initial boundB0 and the bound

increment B will not be fixed and can be used to parametrise the algorithm, depending on the

current model and requirement. To simplify the discussion, in the following we will assume

that B0 = B, thus the bound b in iteration i is b = i · B. However, all the presented strategies

can be generalised to use initial bounds different from the increments (B0 ̸= B).

• Pruning strategy. Contrarily to BFS, due to the irregular search order, an explicit pruning

operation has to be included in the saturation algorithm. Two pruning strategies were proposed

in [YCL09]: an exact truncation and a faster but approximative truncation. The approximative

truncation had a better performance in [YCL09], however it was shown in [c18] that the use of

caches can make the exact truncation strategy competitive. The choice of pruning strategy will

not be fixed. In the following, we will generally assume the use of the exact truncation strategy,

as it simplifies the notations and the discussion in the following.

• Termination. After the first exploration and evaluation steps, a result is available. However,

this result does not necessarily hold for the whole state space. If it does, the model checking

algorithm can terminate. Otherwise, a next iteration with greater bound is required. Deciding

when to terminate the algorithm is not simple. This question will be addressed in detail in

Section 2.5, and termination conditions will be proposed based on three-valued logic.

• Avoiding unreachable states during requirement evaluation. As it was discussed before,

the next-state relation N may contain transitions leaving states that are not included in the

bounded state space. This implies that the CTL formula evaluation, which uses N−1, may

include unreachable states in the resulting state sets. This is not a threat to correctness, but

depending on the model it may significantly decrease the performance of the algorithm. A

straightforward solution is to intersect the result in each iteration with the explored partial

state space S[0,b], but this might be an expensive operation. Similar problems were addressed in

case of the evaluation of EU CTL operators in [ZC09]. The proposed solution, the constrained

saturation restricts the exploration to a given set C, without explicit intersection operation, re-

sulting in a better performance. The same solution can be used for bounded CTLmodel checking

as well: using constrained saturation, the exploration can be restricted to the explored partial

state space S[0,b]. All proposed strategies will use constrained saturation for the CTL require-

ment evaluation part with the constraint C = S[0,b].

• Reusing the produced data. The state space exploration step results in various data: partial

state space, next-state function, local state spaces, cache values, etc. Dropping all this data at the

16

2.3. Overview of the B-I-Sat Algorithm

beginning of each iteration and restarting the explorationwithout any knowledge about the pre-

vious iterations trivially results in a correct algorithm. However, keeping some of the data may

improve the performance. In the following, various strategies will be discussed which mainly

differ in this aspect, i.e. how do they reuse data from previous iterations. See Sections 2.3.4 and

2.4 for more details.

2.3.4 Iteration Strategies

In this section two simple iteration strategies are proposed for B-I-Sat: the restarting and continuing

strategies. The pseudocode of the presented iteration strategies can be found in Appendix B (p. 127).

Restarting strategy. The simplest iteration strategy would be to start each iteration with no prior

information. This strategy would start every iteration from the initial state (set) S0, then explore the

part S[0;i·B] in each iteration i = 1, 2, . . . (where B is the given bound increment).

Based on Section 2.3.1, there are four types of data produced by the state space exploration: reach-

able state spaces (encoded by EDDs), local state sets, next-state relations, and cache data.

• The state space EDD built in the last iteration will be dropped. This is the simplest way to deal

with the fact that increasing the bound will make some of the nodes unsaturated, i.e. some

nodes will not represent fixed points anymore with respect to the next-state relation (which

grows if the bound increases).

• The next-state relation (N) can grow only if a greater bound is used, therefore it can be reused

and extended.

• The local state spaces (Si) can grow only if a greater bound is used, therefore the local state

spaces from the previous iterations can be used as “hints” for the on-the-fly exploration algo-

rithm and can improve the performance of saturation in iterations i > 1.
• The caches related to the state space EDD should be flushed, as their content is not valid after

restarting the exploration. All other cache entries may be kept.

Figure 2.7 illustrates the restarting strategy. The yellow part (with a thick border) represents the

initial state set used in each iteration. The grey parts symbolise the newly explored state sets. Algo-

rithm B.1 (p. 128) shows the pseudocode of the restarting strategy. More details about the implemen-

tation can be found in [a30].

Iteration 1

Iteration 2

Iteration 3

State space (S ′) Part encoded by S ′

[0;B]

[0; 2 ·B]

[0; 3 ·B]

Figure 2.7: Illustration of the restarting strategy (based on [a30])

17

2. Bounded Model Checking Based on Saturation

Here we assume that the exact truncation is used as pruning strategy. However, the restarting

strategy can be used with the approximative truncation as well. In this case, obviously the partial

state space explored in iteration i will be a superset of S[0;i·B].

Continuing strategy. At first look it seems to be wasteful to restart each iteration from the initial

state of the model, as for every bound b′ > b : S[0;b] ⊆ S[0;b′], i.e. every state s found in iteration i
will be found in every future iteration, with the same distance value. This motivated the continuing

strategy, which starts every iteration i > 1 from the result state space of iteration i− 1 as initial state
set. The details of the minor technical modifications required on the saturation-based state space to

support this are discussed in [a30].

It is important to notice that it is not known at the beginning of an iteration, which nodes are

saturated (i.e. no new states can be found from them) andwhich are not, thus it is required to resaturate

(i.e. to recompute the fixed points) every node. This may be an expensive operation, but it is not

obvious whether this needs more or less resources compared to the restarting strategy. This question

will be addressed in the evaluation section (see Section 2.6). In every other detail the continuing

strategy works in the same way as the restarting strategy.

Figure 2.8 illustrates the continuing strategy. The yellow part (with a thick border) represents

the initial state set used in each iteration. The grey parts symbolise the newly explored state sets.

Algorithm B.2 (p. 128) shows the pseudocode of the continuing strategy. More details about the im-

plementation can be found in [a30].

Iteration 1

Iteration 2

Iteration 3

State space (S ′) Part encoded by S ′

[0;B]

[0; 2 ·B]

[0; 3 ·B]

Figure 2.8: Illustration of the continuing strategy based on [a30])

Here we have assumed that the exact truncation was used as a pruning strategy, but just as in the

case of the restarting strategy, the approximate truncation can be used as well.

The next section introduces a third, more complex strategy, the compacting strategy.

Publications related to this section. The first analysis of combining bounded state space exploration and saturation-

based CTL model checking was presented in [c18; a32], then more details were discussed in [a31; a30]. The presented

discussion of the challenges and the given solutions are based on [a30]. The idea to improve the algorithm by using con-

strained saturation was described in [e21] and the details of the improved version were presented in [c17]. The restarting

strategy was first presented in [c18], the continuing strategy in [c17].

18

2.4. Compacting Saturation Strategy

2.4 Compacting Saturation Strategy2

Both the restarting and the continuing strategies have a potential weakness: they store the whole

[0; b] part of the state space (i.e. S[0;b], the states with distances between 0 and b) in a single EDD.

The algorithms use EDDs for storing the distance information from the initial state along with each

state, which is not possible in case of the simple MDD encoding. This information is necessary to limit

the state space exploration at the bound b. The storage of the distance has its price to pay: the EDD

representation of the state space is typically less compact than the MDD representation (without the

distance information) would be.

While it is unavoidable to store distance information for some of the explored states to limit the

exploration at the given bound b, it is not necessary to store it for every state. Consider the nth
iteration (n > 1). In this case, the S[0;n·B] should be the result of the bounded state space exploration.

However, the S[0;(n−1)·B] part was already explored in the previous iteration, and it is known that

these states will be present in S[0;n·B] too. These states could be stored in the more compact MDD

format. The main idea of the compacting saturation strategy is to store the state spaces discovered in

previous iterations using a more compact, MDD-based representation.

Initial state set. In case of restarting and continuing strategies, each iteration was started either

from the initial state or from the state space of the previous iteration. The goal of compacting sat-

uration is to avoid the EDD encoding for states discovered during previous iterations, if possible.

Therefore this exploration cannot be started from the initial state or from the previous iteration’s

state space, as it would require the EDD encoding of these states.

It is easy to see that starting the iteration n > 1 from S[0;(n−1)·B] is unnecessary: if every state

with distance at most (n− 1) ·B is already explored, new states can only be found from states with

distances exactly (n− 1) ·B. Therefore new states can only be found from the states at the “frontier

of the bounded state space”, i.e. from the states in S[(n−1)·B;(n−1)·B], the set containing states s with
δ(s) = (n− 1) ·B. This frontier state set will be the initial state set of the iteration n.

Details of the compacting strategy. In the following, the steps of the new compacting saturation

algorithm are described in detail. Let us denote the initial state set of iteration n by In. The result

state space encoded by an EDD will be S[(n−1)·B;n·B] after iteration n. The frontier of this state space
is denoted by Fn = S[n·B;n·B]. The state space explored in the first n iterations without distance

information (i.e. represented by an MDD) isMn.

The first iteration of the compacting saturation is started from the state (set) I1 = EDD(S0) and
it explores the state space until the bound b = B. The result is the state set S[0;B] encoded by EDD.

Then the algorithm computes the frontier of the state space, i.e. S[B;B] = F1 and converts the EDD

of S[0;B] to an MDD representationM1 = M′
1. The CTL formula will be evaluated onM1.

After, in each iteration n > 1where the current bound is b = n ·B, the exploration is started from

In = Fn−1 = S[(n−1)·B;(n−1)·B]. The state space is explored until the bound b that is S[(n−1)·B;n·B] =
S[b−B;b]. Next, the algorithm computes the frontier of the state space Fn = S[b;b] and converts the

EDD of the state space explored in the current iteration (S[b−B;b]) to an MDD representation M′
n.

The evaluation of the CTL formula will be performed on the MDDMn = M′
n ∪Mn−1 =

⋃n
i=1M′

i.

A summary of these data structures in the different iterations can be seen in Table 2.2.

2

This section is an extended and adapted version of Section 4.2 of [j2].

19

2. Bounded Model Checking Based on Saturation

Table 2.2: Overview of the different data structures of the compacting strategy

Iteration Initial states Explored states Frontier set State set for CTL evaluation
(i) (I EDD) (S EDD) (F EDD) (MMDD)

1 EDD(S0) S[0;B] F1 = S[B;B] M1 = MDD(S[0;B])
2 F1 S[B;2B] F2 = S[2B;2B] M2 =M1 ∪MDD(S[B;2B])
3 F2 S[2B;3B] F3 = S[3B;3B] M3 =M2 ∪MDD(S[2B;3B])
.

The frontier sets Fi can be computed using a modified version of the exact truncation operation

described in [YCL09], as introduced in [a30]. The pseudocode of the algorithm is shown in Algo-

rithm B.4 (p. 130).

Avoiding to revisit states. During the traversal, the previously explored states (M) should not be

re-explored: no states of Mn =
⋃n

i=1M′
i should be explored again in iteration n + 1. To be more

precise, the goal of the algorithm is to keep: M′
n+1 ∩ (Mn \ In+1) = ∅ (overlap in the initial state

set is allowed). This is an obvious consequence of the state space parts defined above, i.e.

S[n·B;(n+1)·B] ∩ S[(n+1)·B;(n+2)·B] = S[(n+1)·B;(n+1)·B] = Fn+1.

However, if a state s ∈ Mn−1 is reachable from In, it can be explored during the iteration n causing

that it will be part of M′
n too. It effectively means that the state s will be stored with two different

distance values. The algorithm has to prevent this situation for efficiency reasons and also to keep the

correctness. The following example illustrates this issue.

Example. The problem of revisiting already explored states is illustrated in Figure 2.9. The example uses

a simple state space with states s0, s1, . . . , where for each si state the transitions to si+1 and to si−1
(if i > 0) are possible. In the examples the grey circles denote concrete states explored in the current

iteration (with B0 = B = 2), the yellow states (with a thick border) symbolise the initial states of

the current iteration. Figure 2.9(a) shows that without explicitly avoiding to revisit the already explored

states, many states will be visited several times, causing degraded performance and potentially incorrect

distance values. If the previously visited states are explicitly excluded from the exploration (denoted with

red crosses in Figure 2.9(b)), the set of explored states in each iteration is the correct one.

A simple solution would be to subtractMn−1 from the state set of the iteration n > 1 after each
step. It would make the method correct, but not efficient. The problem is similar to the motivation of

the constrained saturation, where an intersection operation would be required after each step. The

difference is that here the forbidden states should be excluded, i.e. a subtraction operation is needed.

The same principles can be used and constrained saturation can be modified to respect the given set of

forbidden states [a30]. We call this the negated constrained saturation. For the details and pseudocode

of negated constrained saturation we refer the reader to [a30]. If we use the negated constrained

saturation withMn−1 as set of forbidden states, the re-exploration of already explored states can be

efficiently avoided.

The compacting strategy is illustrated by Figure 2.10. The yellow part (with a thick border) rep-

resents the initial state set used in each iteration. The grey parts symbolise the newly explored state

sets. The dark blue parts are the states at the frontier of the state space. Algorithm B.3 (p. 129) shows

the pseudocode of the compacting strategy. More details about the design and implementation can be

found in [a30].

20

2.5. Termination Conditions

s0 s1 s2 s3 s4 s5

...

...

...

...

State space

Iteration 1

Iteration 2

Iteration 3

(a) Compacting saturation without excluding the already visited

states

s0 s1 s2 s3 s4 s5

...

...

...

...

(b) Compacting saturation with excluding the already

visited states

Figure 2.9: Example about avoiding revisiting already explored states

Iteration 1

Iteration 2

Iteration 3

State space (S ′) Part encoded by S ′

[0;B]

[B; 2 ·B]

[2 ·B; 3 ·B]

forbidden

states

forbidden

states

Figure 2.10: Illustration of the compacting strategy based on [a30])

Publications related to this section. The compacting strategy was first presented in [a30], then reformalised in [j2]. The

three B-I-Sat iteration strategies were discussed and compared in [a30] and [j2].

2.5 Termination Conditions

Formally, the result of model checking (see Def. A.1, p. 123) is a state set S of a modelM that satisfies

the given formula f . Typically, we call a formula f satisfied, if the initial state (or one of the initial

states) of the model is in the state set S, and f is not satisfied otherwise. Therefore the two-valued

Boolean logic (with values B = {T ,F} = {1, 0}, standing for true and false values) can be used to

argue about the satisfaction of a formula. In case of bounded model checking this is not necessarily

true: if the current bound b is too small, it might not be known based on the partially explored state

space whether the formula f is satisfied or not by the modelM .

Three-valued logic [Kle52] introduces a third value ⊥, representing the value unknown: T =
{T ,F ,⊥}. The common Boolean operators ¬,∨,∧ can also be extended to use the new value ⊥, see

Figure 2.11. If the inclusion of any of the initial states in the set of states satisfying f is described using

three-valued logic, it is easy to give a termination condition for the iterative B-I-Sat algorithm: the

algorithm terminates iff for any initial state the inclusion is T or for all initial states the inclusion is

21

2. Bounded Model Checking Based on Saturation

x ¬x
⊥ ⊥
F T
T F

(a) Truth table

of negation

∧ ⊥ F T

⊥ ⊥ F ⊥
F F F F
T ⊥ F T

(b) Truth table of∧ oper-
ation

∨ ⊥ F T

⊥ ⊥ ⊥ T
F ⊥ F T
T T T T

(c) Truth table of ∨ oper-

ation

Figure 2.11: Truth tables of basic three-valued logic operators [SS05]

F . For Petri nets, where there is only one initial state this is simplified to the following: the algorithm

terminates iff the inclusion of the initial state in the set of states satisfying f is not ⊥. It has to be

noted that three-valued logic in bounded model checking was already used in [BG99; SS05], but in

B-I-Sat it is applied to CTL formulae.

2.5.1 Notations

Given a partial state space Sb
that is the result of a bounded state space exploration in a certain

iteration, let us denote by Sb
φ the states in which φ is evaluated to true with respect to the state space

Sb
(Sb

φ ⊆ Sb
). Practically, this is the result given by the CTL evaluation algorithm. However, this

result cannot be lifted to the full model, the current partial state space Sb
may not contain enough

information to decide whether φ is satisfied or not. For example, if φ checks the reachability of any

state with label p (φ = EF p), the fact that φ does not hold for the initial state with a certain bound b
does not imply that with a bound b′ > b the formula φ cannot be satisfied. If there are reachable states

with label p, but they are all for a distance at least d, in every iteration with bound b < d the result

will be not satisfied, even though based on the full state space the requirement should be satisfied.

Let us denote by Sφ the set of states where the CTL formula φ is true based on the full model.

This set is not known before the full state space is explored, this is why we will use three-valued

logic to argue about the result based on the partial state space. We introduce an evaluation function

eφ : Sb → T. This will determine for each known state whether it is in set Sφ or not based on the

current, partial knowledge. eφ(s) = T means that based on the partial state space explored it can be

concluded that s ∈ Sφ. If eφ(s) = ⊥, it means that based on the partially explored state space it

cannot be decided whether s ∈ Sφ or not.

Now the termination condition can be formalised too. As the goal of the model checking is to

decide whether the initial state s0 is in Sφ or not (assuming one single initial state s0), the iterative
model checking can be terminated iff eφ(s0) ̸= ⊥.

In the following, we discuss how the function eφ can be constructed based on partial state spaces

(Sb
) and evaluations on partial state spaces (Sb

φ). For the sake of simpler discussion we assume that

the exact truncation is used as pruning strategy.

2.5.2 Evaluation of CTL Operators

Let us start with a trivial case, when the full state space is explored, i.e. S = Sb
. In this case the

evaluation is obvious for any formula:

eφ(s) =

{
T if s ∈ Sb

φ,

F if s /∈ Sb
φ

.

22

2.5. Termination Conditions

The iterative boundedmodel checking can trivially be terminated if the full state space is explored,

as there are no unknown states. Detecting if this is the case is simple if the exact truncation is used

as pruning strategy: when the frontier state set is empty, no new states can be found. Detection of

the exploration of the full state space (i.e. the situation when S = Sb
) can be done in more efficient

ways in the case of certain strategies, without computing the frontier set [a30]. The detection is more

complex if the approximative pruning strategy is used. For the details we refer the reader to [a30].

For the rest of the section we assume that the full state space is not yet explored, i.e. there is at

least one reachable state that is not in the partial state space Sb
.

In the following the three-valued evaluation of the various CTL temporal is discussed. This discus-

sion is based on [j4; a31], but the formalisation is modified and adapted to the rest of this dissertation.

Note that due to duality only E CTL operators will be considered in the following. Also, we assume

that φ is a simple CTL expression, i.e. it is one CTL temporal operator pair with Boolean arguments.

This excludes the expressions with nested CTL temporal operators (e.g. EG(EF p)).
Table 2.7 (p. 36) shows examples of the evaluation of the E CTL operators. In each case the grey

circle represents Sb
. The states labelled with ∗ can be arbitrary, i.e. no matter if they satisfy p or not,

the example holds.

EX operator. The EX CTL operator simply checks the existence of a successor state with a given

property. If in a certain iteration the EX p formula is satisfied by the states in Sb
EX p, the eEX p will be

defined as follows.

• eEX p(s) = T , if s ∈ Sb
EX p.

• eEX p(s) = F , if s /∈ Sb
EX p and s is not on the frontier of the bounded state space, i.e. all

successor states of s are included in the explored partial state space.

• eEX p(s) = ⊥, otherwise.

EF operator. The EF CTL operator computes a least fixed point, determining all states from which

a state set satisfying a given property is reachable. If in a certain iteration the EF p formula is satisfied

by the states in Sb
EF p, the eEF p will be defined as follows.

• eEF p(s) = T , if s ∈ Sb
EF p (i.e. a state satisfying p is reachable from s already in the partial

state space).

• eEF p(s) = F , if all successor states of s are explored (and none of them is on the frontier of the

state space, i.e. it is not possible to find new successors). Notice that this case may only apply

to the initial state s0 if the full state space is explored.
• eEF p(s) = ⊥, otherwise. If there are unexplored reachable states from s it cannot be decided
whether any of them will satisfy p or not.

EU operator. The EU CTL operator computes a least fixed point, determining all states from which

a state set satisfying a given property q is reachable through states satisfying p. If in a certain iteration
the E[p U q] formula is satisfied by the states in Sb

E[p U q], the eE[p U q] will be defined as follows.

• eE[p U q](s) = T , if s ∈ Sb
E[p U q] (i.e. a state satisfying q is reachable from s through states in p

already in the partial state space).

• eE[p U q](s) = F , if s /∈ Sb
E[p U q] and there is no path from s to the frontier of the explored state

space whose states are all labelled with p. This means that no new explored state can result in

a through-p-to-q path, the state s cannot satisfy the given requirement.

• eE[p U q](s) = ⊥, otherwise.

23

2. Bounded Model Checking Based on Saturation

EG operator. A state s satisfies the EG p formula iff there exists one cycle in the state space graph

where all states are labelled with p and this cycle is reachable from s through states labelled with p
(there exists a so-called p-lasso). If in a certain iteration the EG p formula is satisfied by the states in

Sb
EG p, the eEG p will be defined as follows.

• eEG p(s) = T , if s ∈ Sb
EG p (i.e. a p-lasso is reachable from s already in the partial state space,

thus it is necessarily reachable in the full state space too).

• eEG p(s) = F , if s /∈ Sb
EG p and there is no path from s to the frontier of the explored state

space whose states are all labelled with p. This means that no new explored state can result in

a p-lasso, the state s cannot satisfy the given requirement.

• eEG p(s) = ⊥, otherwise.

Both for EG and EU operators it might be necessary to determine if there exists a path from state

s to the frontier of the bounded state space, where each state satisfies p. This can be determined by

evaluating another CTL formula. Let F ⊂ Sb
represent the set of states which are at the frontier of

the currently explored state space. Determining the frontier set is discussed in Section 2.4. Then the

CTL formula E[p U (F ∩ p)] holds3 for a state s in the partial state space iff it has at least one path to

the frontier of the state space where all states are labelled with p.

Complex CTL expressions. In the discussion above it was assumed that the given formula φ is a

simple CTL expression. This imposed two restrictions: φ does not contain CTL expressions connected

with Boolean operators (e.g. EF p ∧ ¬EG q), and φ does not contain nested CTL expressions (e.g.

EF(EG p)).
The first limitation can be easily overcome by using the three-valued equivalents of the Boolean

operators (Figure 2.11): e¬φ(s) = ¬eφ(s); eφ∨θ(s) = eφ(s) ∨ eθ(s); eφ∧θ(s) = eφ(s) ∧ eθ(s).
A heuristic was proposed to extend the three-valued evaluation to nested CTL expressions in

[a31], we refer the reader to that document for details.

Simple termination heuristic. In this section a precise termination condition was proposed for

the B-I-Sat algorithm, but its efficient implementation is a future work. For the evaluation of the B-

I-Sat strategies, a simplified termination heuristic was used. Given a temporal logic formula φ, let
us construct an equivalent φ′ where each temporal logic operator is non-negated. This can be done

using the duality rules of CTL, e.g. ¬EF p = AG(¬p). If φ′ contains only E operators, the “true” result

given based on a partial state space can be accepted as result for the complete state space, as can be

seen from the discussion of the termination conditions above: s ∈ Sb
φ ⇒ eφ(s) = T if φ is a simple

CTL expression with any of the four operator pairs. The simple termination heuristic continues the

exploration otherwise, therefore it gives a result “false” only if the full state space is explored. The

three-valued termination condition defined above is more precise, it would allow early termination

in certain cases with a false result.

Similarly, it can be shown that if φ′ contains only A operators, the “false” evaluation result can be

accepted based on a partial state space, otherwise the state space exploration continues. This simple

termination heuristic does not provide a solution for a formula φ′ that contains bothA and E temporal

operators.

Publications related to this section. The usage of three-valued logic and the discussed rules for termination were first

drawn up in [a31], then refined in [j4].

3F ∩ p denotes the set of states in F which satisfies p.

24

2.6. Evaluation

2.6 Evaluation

This section is dedicated to the evaluation of the proposed B-I-Sat algorithm and the three proposed

strategies. After discussing the measurement considerations in Section 2.6.1, the Sections 2.6.2 and

2.6.3 provide measurements on widely-used benchmark models. Section 2.6.4 discusses the industrial

use of the B-I-Sat algorithm.

2.6.1 Measurement Considerations

The goal of the work described in this chapter is to show the feasibility of an iterative bounded

saturation-based CTL model checking algorithm in order to improve the performance of saturation.

To assess the performance, an extensive measurement campaign was performed. The most important

measurements are discussed in this chapter.

For the measurements a desktop PC (Intel Core i7-3770 3.4 GHz CPU, 8 GB memory, HGST Trav-

elstar Z7K500 HDD with Windows 7 x64 and .NET 4.0 framework) was used, running PetriDotNet

1.5-beta3. Each run time measurement was performed 5 times. The presented results are the av-

erage of the measurements, with the minimum and maximum measured execution times excluded

(m =
∑5

i=1(mi)−maxmi−minmi

3 , wheremi denotes the measured time values, i = 1, . . . , 5).

Baseline. As the goal of this work was to improve the performance of the unbounded saturation,

the performance comparisons will be performed with respect to the unbounded saturation-based CTL

model checking, as implemented in PetriDotNet 1.5-beta3 [c10] (without the lazy saturation intro-

duced in [j26]). The results of this algorithm will be labelled by “Unbounded”.

For the benchmark models – to show the overhead of the iterative algorithms –, the non-iterative,

bounded saturation (see Section 2.3.1) will also be used as baseline with the a priori knowledge of

the smallest bound value (denoted by b in the measurements table) that is needed to give an answer

representative to the whole state space. Obviously, the knowledge of this optimal bound should not be

expected, but it shows a lower limit for the execution time of the fully EDD-based strategies (restarting

and continuing). These measurements are labelled with “Fixed bound” in the measurement tables. All

the bounded measurements used the exact pruning strategy with caches (as described in [c18]). This

way the number of necessary iterations does not depend on the decomposition of the model, and it is

easier to analyse the results.

The various strategies of B-I-Sat are also implemented in PetriDotNet. These implementations do

not use the three-valued termination conditions. Instead a simpler method is used: the CTL expres-

sions containing only non-negated E operators are evaluated iteratively with increasing bounds until

the result is “true” or the full state space is explored (see Section 2.5.2).

Note that many of the measurements (selection of models and requirements) were inspired by

earlier work (e.g. [a30; j2]), but the baselines and the implementations are different, thus the val-

ues cannot be directly compared. Besides, it is worth to note that the PetriDotNet tool is based on

the Microsoft .NET framework, it is implemented in C# which is a managed language with garbage

collection. This might seem to be an unusual choice for the implementation of formal verification

algorithms. The details of this choice are described in [c10].

Performance metrics. Typically the main aspects of performance evaluation are execution time,

memory consumption and I/O (disk, network) usage. The I/O usage of the presented algorithms is

negligible (not including the usage of swap files, see later), therefore it will not be measured.

25

2. Bounded Model Checking Based on Saturation

The memory consumption of an algorithm is primordial. However, measuring memory consump-

tion of algorithms implemented using managed languages (using non-deterministic garbage collec-

tion) is not precise. Furthermore, usuallymost of the resources of the executing computer are available

for the model checking algorithm. If the amount of available physical memory is not enough, the swap

file will be heavily used (so-called thrashing). As hard disks are much slower than the memory, this is

reflected in the execution time. Measurements showed that on the used configuration thrashing oc-

curs at around 6 GB of memory consumption. The cases where timeout occurs because of thrashing

will be denoted by “>6 GB” in the measurements table.

In the following the main focus is on the execution time of the various model checking algorithms.

The loading time of the models is excluded from the measured execution time for all the compared

algorithms.

Aspects of evaluation. In this chapter various goals, hypotheses and questionswere drafted. Based

on them, the focus of the evaluation should be on the following statements and questions (evaluation

aspects):

EA1. The B-I-Sat algorithm provides lower run times for certain models than the unbounded satura-

tion.

EA2. The B-I-Sat algorithm scales better for certain models than the unbounded saturation.

EA3. The B-I-Sat algorithm may be more expensive computationally than the unbounded saturation

if a big part of the state space needs to be explored for the evaluation of the given formula.

EA4. The compacting strategy of the B-I-Sat algorithm can reduce the size of the state space repre-

sentation in the exploration phase.

EA5. Which strategy provides the best performance for B-I-Sat?

2.6.2 Execution Time Evaluation on Benchmark Models

This section presents run time measurements on various benchmark models. These benchmark mod-

els are widely used to evaluate saturation-based techniques. The models (in a format supported by

PetriDotNet) and their description can be downloaded from the PetriDotNet website
4
.

Each model is scalable, and the same CTL expression was evaluated with different parameters of

the models. The measurement results divided into six measurement groups are presented in Table 2.3.

• Measurements on the Kanban model (group (1) in Table 2.3) show clear advantage of bounded

methods. For a low parameter value (N = 30) the unbounded algorithm was the fastest, and

EDD-based methods could not beat it even if the optimal exploration depth (b = 35) was known
a priori. As the size of the state space increases with the increasing parameter values, the B-I-

Sat strategies provide much better results compared to the unbounded variant. In case of this

model, the restarting strategy provided the lowest execution time.

• Measurements on the Slotted ring model (group (2) in Table 2.3) show similar results. In this

case the requirement is very shallow, the expression may be evaluated with exploration depth

b = 8. This is clearly a situation where bounded model checking algorithms can excel.

• Measurements on theHanoimodel (group (3) in Table 2.3) demonstrate a different type ofmodel.

It models the widely-known Tower of Hanoi game, where N is the number of disks. It can be

4

The benchmarkmodels used in this section and their documentation (including the used decompositions) are published

under doi: 10.5281/zenodo.200500.

26

http://doi.org/10.5281/zenodo.200500

2.6. Evaluation

seen that the unbounded algorithm could not cope withN ≥ 14 parameter values, as the state

space exploration cannot be performed using the availablememory. However, the given require-

ment (moving the 8th smallest disk from rod A to rod B) does not depend on the parameter N
(i.e. the 9th, 10th, . . . ,N th disks do not have to be moved), therefore the B-I-Sat algorithms can

provide a nearly constant execution time. In this case, the restarting strategy was significantly

slower, and the continuing strategy provided the best results. The compacting strategy in the

previous measurement groups was about 3–4 times slower than the restarting strategy, but in

group (3) it provided nearly as good execution times as the continuing strategy.

• Measurements on the FMS model (group (4) in Table 2.3) show a particularly interesting phe-

nomenon. The restarting and continuing strategies provide better run time for parameter values

N ≥ 1000 compared to the unbounded algorithm. Their run time is close to the execution time

of the non-iterative solution. However, the execution time of compacting saturation is more

than three times less than the other B-I-Sat strategies’. This is due to the more compact, MDD-

based storage.

• Measurements in groups (1)–(4) showed cases when the B-I-Sat algorithm provided shorter

execution times than the unbounded algorithm. These measurements support the EA1. and

EA2. statements: the B-I-Sat algorithm provides shorter run times and scales better for certain

models than the unbounded saturation. Depending on the models and the expressions, different

strategies provided the best results. This already shows that there is no clear answer to the

question EA5., each of the three proposed B-I-Sat strategies may overcome the others in certain

cases.

• Measurements in groups (5) and (6) show cases where bounded model checking provides worse

performance than unbounded saturation, supporting the (nearly obvious) EA3. statement. In

both cases it can be seen that even the fixed bound variant provides significantly slower execu-

tion than the unbounded algorithm. This means that it is not possible to make a purely EDD-

based algorithm faster than the unbounded algorithm, independent of the values for B0, B or

how low the overhead of the iterative execution is.

In case of the Round Robin model with the given requirement (group (5) in Table 2.3), the re-

quired exploration depth depends on N , making the B-I-Sat algorithms less scalable than in

other cases.

Contrarily, the given requirement on the DPhil model (group (6) in Table 2.3) necessitates only

a shallow exploration until a constant depth of 4. However, DPhil is a highly asynchronous

model with small diameter (maximum state distance). ForN = 1000, there are only 1000 states
at distance 1, but there are 8.6 × 1010 states within bound b = 5. To store the states within

the b = 5 bound, 63,857 EDD nodes are needed, while storing the full state space requires

only 19,977 MDD nodes. As shown later in this section, even the compacting saturation cannot

efficiently reduce the state space of this model.

Scaling. Two measurements are presented here to discuss the scaling of the iterative methods in

more detail. Figure 2.12(a) shows how the different algorithms scale with the growing model size

on the Counter–N model (representing an N -bit binary counter). It can be seen that the unbounded

algorithm requires significantly more time to execute than the B-I-Sat algorithm. The various B-I-Sat

strategies provided similar run times.

27

2. Bounded Model Checking Based on Saturation

Table 2.3: Run times of CTL expression evaluation

Run time [s]

N Unbounded Restarting Continuing Compacting Fixed bound

(1) Kanban–N , expression: EF(pout4 = 5), B0 = B = 10
30 0.34 0.96 1.23 3.41 (b = 35) 0.54
50 1.74 1.28 1.69 3.92 (b = 35) 0.63
100 24.99 1.28 1.68 3.93 (b = 35) 0.64
200 >300 1.28 1.63 3.92 (b = 35) 0.66

(2) SlottedRing–N (SR–N), expression: EF(E2 = 1 ∧A2 = 1), B0 = B = 5
100 10.64 1.08 1.36 3.40 (b = 8) 0.58
200 88.34 3.01 3.75 10.84 (b = 8) 1.66
300 >300 5.70 7.07 22.70 (b = 8) 3.16

(3) Hanoi–N , expression: EG(EF(BN−8 = 1)), B0 = B = 10
12 26.97 1.76 0.59 0.72 (b = 128) 0.40
14 >6 GB 2.11 0.68 0.79 (b = 128) 0.48
16 >6 GB 2.40 0.80 0.89 (b = 128) 0.50
18 >6 GB 2.70 0.95 0.98 (b = 128) 0.57
20 >6 GB 3.15 1.04 1.06 (b = 128) 0.78

(4) FMS–N , expression: EG(E(M1 > 0 U (P1s = P2s = P3s = 3))), B0 = B = 10
25 0.92 29.00 30.39 4.77 (b = 30) 28.13
50 5.44 44.58 46.19 5.28 (b = 30) 43.42
100 45.75 46.74 49.11 5.25 (b = 30) 44.93
1000 >6 GB 46.88 50.39 5.28 (b = 30) 44.72
10,000 >6 GB 47.82 49.79 5.28 (b = 30) 46.07

(5) Round Robin–N (RR–N), expression: EG(true), B0 = B = 10
10 0.09 0.12 0.11 0.50 (b = 39) 0.04
25 0.38 2.61 1.59 17.53 (b = 99) 1.00
50 2.05 51.91 21.87 >300 (b = 199) 9.67

(6) DPhil–N , expression: E(¬eating2 U eating1), B0 = B = 10
10 0.08 0.09 0.09 0.26 (b = 4) 0.02
50 0.14 0.62 0.64 2.12 (b = 4) 0.11
100 0.24 1.52 1.61 4.66 (b = 4) 0.31
1000 2.21 78.98 78.71 >300 (b = 4) 18.21

The requirement in this case checks the reachability of a state where the 12th bit is 1, i.e. it checks

whether it is possible to count up to 212. One could expect that in this case the execution time of the

B-I-Sat algorithm should be constant. While this seems to be intuitive (i.e. bits n > 12 can stay con-

stantly 0), unfortunately this is not necessarily true. As the number of places grows, the potential state

space to be encoded grows too, making the decision diagrams bigger. This reduces the performance

of the saturation algorithms. By using the knowledge about the model and the requirement, more

sophisticated decomposition (e.g. keeping all bits n > 13 in one component) can be done, resulting in

a nearly constant execution time, around 0.4 s for each valueN using the restarting strategy. It has to

be noted that the Petri net models of Counter–N are huge: the model with N = 1024 contains 1024

places, 1025 transitions and 526,848 edges. The compared implementations are not optimised for such

high amount of edges, causing a long model loading time.

A second scaling measurement in Figure 2.12(b) targets a case when the model remains the same,

but a parameter in the requirement changes, causing different required exploration depths. The model

used as an example here is the Queen–10 model, where 10 queens should be arranged on a 10 × 10

28

2.6. Evaluation

10

10
2

10
3

10
4

10
5

64 128 256 384 512 1024

Model size (N)

R
u
n
t
i
m
e
[
m
s
]

Algorithm

Unbounded

Restarting

Continuing

Compacting

(a) Execution time of evaluating EF(bit12 = 1) on

Counter–N models (B0 = B = 16)

0

1000

2000

3000

4000

1 2 3 4 5 6 7 8 9 10

Depth of the checked state (i)

R
u
n
t
i
m
e
[
m
s
]

Algorithm

Unbounded

Restarting

Continuing

Compacting

(b) Execution time of evaluating EF(qi = 0) on Queen–10

model (B0 = B = 2)

Figure 2.12: Scaling measurements

chessboard without any two threatening each other. It is obvious that there should be exactly one

queen per row (rank). In the model first a queen is placed in the first row, after the next to the second

row, etc. A place qi has a token only if no queen is placed yet to the row i ∈ {1, . . . , N}. Therefore
checking the reachability of q1 = 0 is trivial (equivalent to placing one queen to the first row of

an empty chessboard), while the reachability of qN = 0 is equivalent to checking if the N -queens

problem can be solved or not.

As can be seen in Figure 2.12(b), the B-I-Sat algorithm provides lower execution times for the shal-

low requirements, up to EF(q6 = 0). After, the iterative bounded methods are becoming slower than

the unbounded saturation, which provides nearly constant run time, independently of the parameter i
in the requirement. In these measurements, B0 = B = 2 bound values were used. The effect of the

B = 2 can be seen on the figure as plateaus. For example, checking EF(q5 = 0) and EF(q6 = 0) takes
nearly the same amount of time, as the execution time is dominated by the state space exploration in

this case and the same number of iterations are required for the evaluation of both expressions. This

illustrates that bounded algorithms have an advantage compared to other methods typically when

the problem is shallow, i.e. the given requirement can be evaluated by exploring the model only up to

a small depth.

2.6.3 Memory Consumption Evaluation on Benchmark Models

As it was discussed at the beginning of the section, the measurement of the memory consumption is

not in the main focus of the current evaluation. Interested readers may find more detailed memory

consumption measurements in [a30]. Here some of the measurements from [a30] are repeated.

Measuring the peak or average memory consumption of managed language implementations may

be imprecise andmisleading. Here insteadwe focus onmeasuring the number of EDD andMDDnodes

created that is representative for the memory requirements of the different algorithms. It has to be

noted that the “logical” creation of a new node does not necessarily lead to a constructor call: a pool

of node objects is kept in the current implementation. When a node object is no longer needed, it

will be put into the pool. If possible, instead of creating a new node, an old node from the pool is

reused. Earlier measurements showed that a pool with moderate maximum capacity (500 in this case)

29

2. Bounded Model Checking Based on Saturation

significantly reduces the number of object instantiations (e.g. by a factor of 6 in case of the FMS–5

model) and improves the performance of the implementation [a30].

In the following, the three proposed strategies of B-I-Sat will be compared to the MDD-based

unbounded algorithm (“Unbounded” column) and to the EDD-based non-iterative model checking

with infinite initial bound (“Bounded (B0 = ∞)” column). Both of these algorithms will explore the

whole state space independently from the requirement.

For each EDD-based algorithm two metrics are given: the number of created EDD and MDD

nodes. EDD nodes are created during the bounded state space exploration. MDD nodes are created

when the EDD is converted to MDD for CTL evaluation, also during the CTL evaluation itself. The

MDD node creation counts exclude the MDD nodes created to represent the next-state function. For

the unbounded algorithm only the number of created MDD nodes is given as it creates no EDD nodes.

The measurements for three different model groups are presented in Table 2.4. It has to be noted

that these values show the number of constructor calls and they were obtained with pooling (with

capacity of 500) that lowers the number of needed constructor calls. The following observations can

be made based on the table of measurements.

• The bounded non-iterative algorithm creates more EDD and MDD nodes in total than the un-

bounded algorithm. This shows that in general the EDD-based state space representation is less

compact.

• As the restarting and continuing strategies lead to the same EDD representation in each itera-

tion, the numbers of MDD nodes created by these two strategies are identical.

• The compacting strategy creates more MDD nodes than the other B-I-Sat strategies. However,

in themeasurement groups (1) and (2) in Table 2.4, the compacting strategy leads to significantly

less EDD nodes created than the restarting or continuing strategy.

• In case of the Hanoi model with the given requirement (group (1) in Table 2.4), the continuing

strategy results in much less EDD nodes created, because it was able to efficiently reuse the

EDD nodes from previous iterations. However, in the measurement groups (2) and (3) it could

not benefit from the previous iterations, leading to slightly more EDD nodes created than by the

restarting method. It can also be observed that the B-I-Sat algorithms created similar number

of nodes independently of the parameterN , while the non-iterative algorithms could not cope

with the increasing N values.

• In case of the Queen–10 model with the given requirements (group (3) in Table 2.4), the node

counts of the unbounded and non-iterative bounded algorithms are constant or slowly increas-

ing, while the iterative B-I-Sat algorithms need significantly more nodes as the depth of the

requirement increases. This is in accordance with the run time measurements presented in Fig-

ure 2.12(b).

These measurements also support the previous findings that it varies which strategy provides

the best result depending on the model and the requirement (EA5.). It is also visible that where the

compacting saturation provided good performance (e.g. in case of Hanoi and FMS models according

to Table 2.3), the number of created EDD nodes is lower by at least a factor of 10 than the EDD nodes

created by the other strategies. In other cases, the compacting saturation cannot reduce significantly

the size of EDD representation.

The observed difference is caused by the different characteristics of the state spaces. Figure 2.13

shows the evolution of the EDD representation size over the iterations for two different models. In

case of the DPhil model, the state space is relatively wide (there are many states with low distance

values) and shallow (there are few states with high distance values). In Figure 2.13(a) it can be seen that

the EDD representations of the different strategies lead to similar sizes. In case of the Hanoi model,

the characteristics of the state space are different (see Figure 2.13(b)). As the state space is relatively

30

2.6. Evaluation

0

2000

4000

6000

8000

0 2 4 6 8

Iteration

N
u
m
b
e
r
o
f
s
t
a
t
e
s
p
a
c
e
E
D
D
n
o
d
e
s

Noncompacting final node count

Compacting initial node count

Compacting final node count

(a) Size of state space EDD of DPhil–20 model

0

1000

2000

3000

0 5 10 15 20 25

Iteration

N
u
m
b
e
r
o
f
s
t
a
t
e
s
p
a
c
e
E
D
D
n
o
d
e
s

Noncompacting final node count

Compacting initial node count

Compacting final node count

(b) Size of state space EDD of Hanoi–8 model

Figure 2.13: Size of state space EDD

narrow and deep, the compacting strategy succeeds to reduce the EDD node count in each iteration,

keeping it continuously low. The other B-I-Sat strategies cannot do this, which results in a steadily

growing state space representation. This clearly shows that the compacting strategy can reduce the

size of the state space representation in the exploration phase in certain cases (EA4.).

Table 2.4: Total number of created node objects

Total number of created node objects

N Unbounded Bounded (B0 =∞) Restarting Continuing Compacting

MDD EDD MDD EDD MDD EDD MDD EDD MDD

(1) Hanoi–N , expression: EG EF(BN−8 > 0), B0 = B = 10
8 124,046 108,767 55,391 124,279 16,094 37,874 16,094 3,493 29,198

10 1,083,002 2,126,550 373,434 122,500 16,432 37,992 16,432 3,571 27,833

12 7,863,690 — — 122,554 16,613 38,022 16,613 3,623 27,754

16 — — — 122,662 16,941 38,082 16,941 3,727 27,986

(2) FMS–N , expression: E[M1 > 0 U P1s = 3 ∧ P2s = 3 ∧ P3s = 3], B0 = B = 10
25 50,647 17,790 91,538 770,299 87,699 774,300 87,699 68,491 92,361

50 198,255 110,506 346,688 792,204 88,244 796,302 88,244 68,972 92,993

100 777,530 783,221 1,350,113 792,224 88,244 796,322 88,244 68,972 92,993

(3) Queen–10, expression: EF(qN = 0), B0 = B = 2
2 181,217 87,455 161,362 3,197 626 3,200 626 3,150 626

4 181,529 87,455 161,361 12,052 4,260 10,802 4,260 7,392 4,001

6 184,703 87,455 161,360 48,931 37,201 45,276 37,201 34,620 35,124

8 206,689 87,455 161,359 127,304 180,227 120,368 180,227 84,564 163,913

10 248,754 87,455 161,358 214,201 436,467 203,434 436,467 120,128 366,568

31

2. Bounded Model Checking Based on Saturation

2.6.4 Industrial Case Study5

To evaluate the usability of the B-I-Sat algorithm and the different strategies on industrial examples,

measurements were performed on a model describing a real, industrial safety function. The case study

is the verification of the PRISE (primary-to-secondary leakage) safety logic, a safety function included

in the Reactor Protection System of a nuclear power plant [NB09]. This safety function initiates an

emergency operation if a predefined chain of events happens. The detection of the specific event chain

requires a complex logic, the design of which is error-prone. This also puts emphasis on the necessity

of using formal verification to ensure correctness.

The safety function receives inputs from different sensors, and computes the values of outputs,

one of which initiates the emergency protection action. The values of the outputs depend on the recent

and past values of the inputs, and some internal timers. The design of the controller was specified by

simple combinatorial (OR gates, AND gates, and inverters), and sequential (SR flip-flops, delay and

pulse modules) function blocks, similar to the blocks defined for the FBD language in [I61131-3]. The

proper combination of these logic elements is required to guarantee that the emergency protection

action will be initiated only in case of a specific, dangerous event happened.

A coloured Petri net (CPN) model of this safety logic was created in [c28]. The structure of the

CPN model preserves the data flow characteristics of the function block description. The model can

be parametrised – the parameters are the delay or pulse durations of timers. The first successful

verification attempt of this safety function was presented in [c28], using saturation-based CTL model

checking. Previous attempts to use model checking on the complete model of the safety logic have

failed
6
[Tót09].

Here measurements are presented for four different parametrisation of the models (denoted by

PRISE S, M, L, and XL). The safety logic follows a cyclic execution schema. In the proposed model

each execution cycle consists of 29 transition firings. Earlier work [a30] showed that this is one of the

best choices of B0 = B for this model.

The measurements being presented in Table 2.5 show that if the verification requirement is shal-

low (measurement groups (1), (2) and (3)), then the bounded algorithms provide significantly lower

execution time than the unbounded algorithm. The different requirements are shallow for different

reasons. The requirement in measurement (1) targets an output that does not depend on the complex

behaviour of the block. For the measurement (2) a fault was injected into the design: an OR gate was

replaced by an AND gate, making the given requirement unsatisfied. Both of these requirements can

be evaluated in the first iteration, with bound B0 = 29.
In measurement (3) the requirement was not satisfied, which can be determined by exploring

only the first couple of cycles of operation. However, in this case the requirement was incorrect, thus

it does not have to be satisfied. This measurement group demonstrated that formal verification can

help to improve the understanding of the analysed systems. However, it also pointed to a weak point

of this approach: understanding the cause of the model checker’s result and fixing the requirement

took about 3–4 man-hours of two engineers experienced both in formal verification methods and the

model of the PRISE system. Improvements to the requirement handling and methods to improve the

presentation of the results will be presented in the following chapters.

Another interesting phenomenon can be observed in the measurement group (3): as the model

parameters grow, the run time of the B-I-Sat algorithms decreases. This is because the models with

bigger parameter values have longer delay timer values and for the models with larger parameters

5

The introduction and the discussion of themodel in this subsection is an adaptation of Section 5.2 of [j2]. The presented

measurements are new.

6

The authors of [NB09] decomposed the system and have done manual compositional verification.

32

2.6. Evaluation

the requirement can be evaluated before the timer expires. Therefore longer delay times imply less

explored behaviours and smaller bounded state space to be checked in these cases.

The measurement group (4) targets a complex behaviour. As it is a safety requirement (invariant

property), it is satisfied and it concerns the full model, the B-I-Sat algorithms can only give answer

based on the exploration of the full state space. In this case it is not possible to benefit from the

advantages of bounded model checking and the overhead of the less compact state space storage

and the overhead of iterations make these B-I-Sat algorithms not competitive with the unbounded

saturation. However, it is worth to notice that the compacting strategy provided a better result than

the other strategies.

These measurements show that bounded model checking may reduce the resource needs of model

checking in the early phases of design, when incorrect behaviour and imprecise requirements can be

expected. Later, when confidence is gained in the design and finding many faults is not expected,

unbounded model checking may provide a better overall result.

The PRISE safety logic was implemented using the TELEPERM XS platform of Areva [NB09],

which targets specifically the control tasks of nuclear power plants. As the goal was to verify a sin-

gle safety logic (the rest of the control system is stable), it was a more efficient choice to use direct

modelling instead of developing a dedicated workflow for the verification of programs written for

this platform, although obviously this choice implies the needs for experts in modelling and verifying

the safety logic. Furthermore, using the direct modelling it was possible to omit the detailed analysis

of certain aspects of the semantics of the TELEPERM XS platform. Instead, all possible behaviours

were modelled (e.g. all possible execution order of the concurrent FBD blocks), thus if the safety re-

quirements are satisfied on this model, the result will hold for the real implementation with the real

semantics too.

B-I-Sat for test input generation. Besides the verification of the PRISE safety logic, the B-I-Sat

algorithmwas reused for test input generation for laser-guided vehicles in the R3-COPArtemis project

[e20]. In this project we have analysed a coloured Petri net modelling the communication protocol

between the central traffic management computer and the vehicles. The B-I-Sat algorithm was used

to generate test input sequences for robustness testing. The input of the test sequence generation is

a set of CTL requirements R = {r1, r2, . . . , rn}. The goal of the algorithm is to find a state sequence

U = (s0, s1, s2, . . . , sm), where ∃i1, . . . , in : si1 � r1, . . . , sin � rn and i1 ≤ · · · ≤ in, i.e. a trace

that goes though certain states, each of them satisfying one (or some) of the given requirements. A

relaxed version of this problem is when the requirements are not ordered, thus the generated path

should satisfy only si1 � r1, . . . , sin � rn, but there is no restriction on the order of i1, . . . , in.
To generate the test sequences, the B-I-Sat algorithm was used iteratively, in a greedy manner.

In the ordered case, first the algorithm was looking for the state si1 satisfying requirement r1 that is
closest to the initial state s0. Next, based on the EDD encoding of the state space and theN−1 relation
a trace was extracted between s0 and si1 . After, the algorithm is restarted from si1 , looking for the

closest si2 satisfying requirement r2, etc. The algorithm does not provide a good approximation of

the optimum, but in practice it was found to be useful [e20].

Publications related to this section. The implementation of the B-I-Sat algorithms in the PetriDotNet framework was

discussed in [c10]. Similar measurements with different focus were presented for the B-I-Sat algorithms in [j4; j2; a30]. The

verification of the PRISE safety logic with saturation-based techniques was first reported in [j26]. The application of B-I-Sat

algorithm to test generation was discussed in [e20] which also provides the pseudocode of the various trace generation

strategies.

33

2. Bounded Model Checking Based on Saturation

Table 2.5: Run times of CTL expression evaluation on PRISE models

Run time [s]

Model Unbounded Restarting Continuing Compacting

(1) The ACTIVE output (OUTPUT-2) can be true. (B0 = B = 29)
PRISE S 0.62 0.36 0.37 0.45

PRISE M 1.38 0.36 0.37 0.45

PRISE L 2.35 0.37 0.36 0.45

PRISE XL 155.40 0.45 0.46 0.53

(2) If the stream generator is in an inhibited state (INPUT-8=true), then the RS-FF block connected to

OUTPUT-1 should be reset. (Fault injected into the models: OR gate connecting INPUT-8 and INPUT-9
was replaced by an AND gate.) (B0 = B = 29)

PRISE S (faulty) 0.98 0.36 0.37 0.49

PRISE M (faulty) 2.20 0.36 0.37 0.49

PRISE L (faulty) 3.73 0.37 0.37 0.50

PRISE XL (faulty) 166.68 0.44 0.45 0.58

(3) If INPUT-5 is false and the connected pulse timer is not on, the pulse timer’s output will be true in the

next cycle. (Incorrect requirement, not satisfied.) (B0 = B = 29)
PRISE S 1.81 2.26 2.39 4.64

PRISE M 3.90 1.51 1.58 2.95

PRISE L 6.45 1.53 1.57 2.95

PRISE XL 188.94 1.67 1.75 3.09

(4) If there is an emergency action (OUTPUT-1=true), then the steam generator water was high (INPUT-1)
for ≥ t1 time and the primary pressure was decreasing (INPUT-2) for ≤ t2 time. (B0 = B = 29)

PRISE S 0.84 33.20 19.29 11.52

PRISE M 1.90 430.10 114.36 30.05

PRISE L 3.31 >6 GB 424.14 52.41

PRISE XL 164.81 >6 GB >6 GB >600

2.7 Summary and Future Work

This chapter introduced and evaluated B-I-Sat, a bounded model checking algorithm based on the

saturation-based techniques. It demonstrated the feasibility of building an efficient model checking

algorithm on saturation, reusing the ideas of bounded model checking. Three different strategies were

proposed for B-I-Sat: the restarting, continuing and compacting strategies. Their main properties are

summarised in Table 2.6.

Table 2.6: Comparison of the three proposed strategies for B-I-Sat

Restarting Continuing Compacting

States explored in iteration i S[0;i·B] S[0;i·B] S[(i−1)·B;i·B]

Initial state set in iteration i > 1 S0 S[0;(i−1)·B] S[(i−1)·B;(i−1)·B]

State set for model checking in iteration i MDD(S[0;i·B]) MDD(S[0;i·B])
⋃i

j=1 MDD(S[(j−1)·B;j·B])

The discussion and the evaluation showed that B-I-Sat may reduce the resource needs of model

checking compared to the unbounded saturation-based model checking algorithm in certain cases,

leading to shorter execution times and a greater set of verifiablemodels. Various exampleswere shown

where B-I-Sat scales better than the unbounded algorithm. It was highly dependent on the model and

the requirement which B-I-Sat strategy provided the best performance, therefore there is no clear

34

2.7. Summary and Future Work

best strategy among the three proposed strategies. The bounded algorithms may be more resource

consuming if a big part of the model has to be explored for the evaluation of the requirements.

The contributions targeted in this chapter were the following.

Thesis 1 I designed B-I-Sat (Bounded Iterative Saturation), a novel computation tree logic

(CTL) model checking algorithm, that efficiently combines bounded model checking with

saturation-based techniques.

1.1 I defined the building blocks, and based on them the B-I-Sat algorithm to perform bounded

CTL model checking using saturation-based techniques. I defined two strategies for B-I-

Sat: the restarting and continuing strategies.

1.2 I defined termination conditions for the B-I-Sat algorithm using three-valued logic.

1.3 I developed an advanced incremental search strategy, the so-called compacting strategy

to reduce the memory consumption of the B-I-Sat algorithm.

1.4 I evaluated the performance of the B-I-Sat algorithm with the different strategies on var-

ious benchmark models and an industrial example.

Thesis 1.1 was discussed in Sections 2.2.2 and 2.3. The termination conditions based on three-

valued logic (Thesis 1.2) were introduced in Section 2.5. Section 2.4 proposed the compacting strategy

(Thesis 1.3). The evaluation of the different B-I-Sat algorithms (Thesis 1.4) were described in Sec-

tion 2.6.

Future work. There are four main research directions for the future work, as follows.

• As it is highly model and requirement-dependent if B-I-Sat provides better execution time than

the unbounded saturation algorithm and which B-I-Sat strategy is the most efficient, future

work is required on heuristics that may suggest strategies for the user.

• The measurements presented here used simple, model-based, predefined decomposition strate-

gies. The decomposition may highly affect the performance of the saturation-based techniques,

automated decomposition heuristics would be needed.

• A future research direction targets the generalised implementation of the presented algorithms

to make them applicable to non-Petri net models.

• Proposing an efficient implementation for the three-valued termination condition is also a fu-

ture work.

35

2
.
B
o
u
n
d
e
d
M
o
d
e
l
C
h
e
c
k
i
n
g
B
a
s
e
d
o
n
S
a
t
u
r
a
t
i
o
n

Table 2.7: Examples of the three-valued evaluations based on the partial state space (based on [a31])

EX EF EG EU

true

s
p

⋆

⋆
⋆

s
⋆

p

⋆
⋆

s
p

p

p
p

⋆

s
p

p

⋆
⋆

q

false

s
¬p ⋆

¬p
⋆

s
¬p

¬p
¬p

s
⋆

¬p
¬p

⋆

s
p,

¬p,

⋆

⋆

¬q

¬p,
¬q

¬q

unknown

s
¬p ⋆

s
¬p ¬p
¬p

¬p

¬p

s
p

p

⋆
⋆

s
p

p

¬p
⋆

p

3
6

Chapter3

Model Checking Critical PLC Programs

The advantages of model checking were already advocated in the previous chapter. To introduce

model checking to the development of industrial control software and widely use them (not only

in highly critical cases), manual formalisation of requirements and implementations should not be

required. To hide the formal requirements and formal models, automated methods are needed to

generate these artefacts based on inputs that can be easily provided and understood by the targeted

users. Furthermore, as the formal model should be hidden, the often needed manual optimisations

should be automated as well.

In the frame of this work a model checking-based verification workflowwas designed, specifically

targeting the verification of programmable logic controller software. Although model checking has

been used since the 1980s [Cla08], generally its usage still needs significant effort, special knowledge

and expertise, and a lot of manual work. After targeting the performance aspects of model checking

in Chapter 2, this work focuses mainly on the challenges of real-life usability.

Goal. The high-level goal of the work described in this chapter is to propose a model checking

solution for PLC programs that can be used in practice by PLC developers without excessive effort

or assistance from formal verification experts. This was a joint work mainly with B. Fernández [j3].

This chapter discusses fourmain subgoals that weremy own contributions: (i) proposing intermediate

representations for the verificationworkflow, (ii) designing reduction heuristics to reduce the resource

needs of the workflow, (iii) adapting the verification workflow to be applicable to safety PLCs, and

(iv) implementing the complete workflow.

Structure of this chapter. The structure of this chapter is as follows. Section 3.1 introduces the

preliminaries and the background of the work presented here. Section 3.2 provides an overview of the

requirements and challenges related to the verificationworkflow. Section 3.3 is dedicated to the design

of intermediate representations for the verification workflow. After that, Section 3.4 describes the

verification workflow that was designed based on the proposed intermediate model representations.

Next, the verification model reduction techniques are described in Section 3.5. This is followed by the

discussion of extensions to support the safety-critical PLC programs, in Section 3.6. PLCverif, the tool

implementing the discussed verification workflow, is briefly introduced in Section 3.7. In Section 3.8

usage examples are presented to demonstrate the applicability of the proposed methods in real-life

development. The related work overview is provided in Section 3.9. The chapter is concluded by

Section 3.10 that provides a summary and discusses future work.

37

3. Model Checking Critical PLC Programs

3.1 Preliminaries

A control system is “a combination of devices and components connected together [. . .] to command,

direct or regulate itself or another system” [Bha13]. We call process (or plant in some cases) the part

of the system that is to be controlled [Bha13].

In case of non-trivial industrial plants the direct manipulation of the process is not feasible, or

at least not safe and/or not economical [Par03]. Industrial control systems (ICS) are widely used to

monitor and control industrial processes based on a pre-defined control logic, the information from

the sensors and the commands of the operators. A simplistic view of this is in Figure 3.1. The operator

typically receives information and gives commands through a man-machine interface, often part of a

supervisory control and data acquisition (SCADA) system which is connected to the controller. This

chapter targets the controller part of the industrial control systems. The controller can be implemented

in different ways, e.g. using relay-based systems, but here we focus on implementations based on

programmable control devices, so-called programmable logic controllers, more specifically on the

software defining their application-specific behaviour.

Operator SCADA Controller Process

command

information

command

information

actuate

sense

Figure 3.1: Simplified view of a control system (partially based on [Par03])

3.1.1 Programmable Logic Controllers

Programmable logic controllers (PLCs) are robust industrial computers, optimised for control tasks and

the industrial environment [Bol15]. They have gained more and more usage since their introduction

in 1969 [Bol15; Par03]. PLCs are now widely used for industrial control and automation tasks.

Execution schema. Most PLCs have a cyclic execution schema. In each so-called scan cycle the

PLC (i) reads the input values from the physical inputs to the memory (which are then kept stable),

(ii) executes the user program reading and modifying the memory contents, and (iii) writes the com-

puted values to the physical outputs (which are then kept stable). This means that the user program

observes a consistent, stable image of the inputs and the intermediate (transient) values cannot be ob-

served on the physical outputs of the device. In addition, PLCs may have interrupts and their handling

can interrupt the cyclic execution of the user code, however in this work interrupts are not targeted.

Programming languages. The way to program PLCs is standardised in the IEC 61131 standard

[I61131-3], first issued in 1992 (under the name IEC 1131) that unified the pre-existing programming

methods. It defines five languages: Structured Text (ST), Instruction List (IL), Function Block Diagram

(FBD), Ladder Diagram (LD), and Sequential Function Chart (SFC).

As Siemens is a market leader in the field of automation
1
, also Siemens is the main vendor of the

systems providing the motivation of this work, we are focusing on their variants of the programming

languages. Siemens PLCs support five languages that are similar to the IEC 61131 standard languages:

Structured Control Language (SCL; corresponding to ST), Statement List (STL; corresponding to IL),

Function Block Diagram (FBD), Ladder Diagram (LAD), and S7-GRAPH/Sequential Function Chart

1

According to Siemens’ own websites, e.g. https://www.industry.siemens.com/verticals/global/en/chemical-industries/
pages/process-automation.aspx, accessed on 26/07/2016.

38

https://www.industry.siemens.com/verticals/global/en/chemical-industries/pages/process-automation.aspx
https://www.industry.siemens.com/verticals/global/en/chemical-industries/pages/process-automation.aspx

3.1. Preliminaries

SCL (ST) LAD (LD) FBD S7-GRAPH/SFCSTL (IL)

Figure 3.2: Examples of PLC languages [c11]

(corresponding to SFC) [Sie11]. The LAD and FBD languages are nearly identical to their correspond-

ing standard versions, SCL contains some significant extensions (e.g. it supports jump statements,

unlike the standard ST language), while STL follows rather different philosophies compared to IL

(e.g. IL uses a single accumulator, STL assumes various accumulators, status words, internal stacks

etc.). Figure 3.2 presents small program snippets showing some of the main characteristics of the five

languages. The first four examples are execution equivalent: for any input value combination they

will provide the same output values, i.e. they describe the same behaviour. The last example, written

in SFC is different, as this language is more specialised than the others.

In the following, languages will be referred by their abbreviations used for the Siemens imple-

mentations (SCL, STL, LAD, FBD, SFC).

3.1.2 Motivation

CERN , the European Organization for Nuclear Research
2
operates the world’s largest particle physics

laboratory. A particle accelerator complex, including the 27-km-long Large Hadron Collider (LHC) is

used to produce high-energy particle beams for dozens of experiments and facilities. Many machines

depend on various industrial control systems, which are controlling e.g. the vacuum, cryogenics, or

gas mixture systems. These control systems are critical for the operation: a failure of a subsystem can

cause outage for the whole accelerator complex. Many of these control systems are based on PLCs,

making the quality assurance of PLC programs a high priority. While the motivation of this work

originates from CERN, we believe that the challenges experienced are more generic and the proposed

solutions are applicable in general to the PLC-based control systems.

The most widely used verification method applied to PLC-based systems is testing, mainly accep-

tance testing with or without hardware in the loop, as for example for module (unit) testing there is

typically no specific built-in support in the development environments [Dub11]. While testing may

provide a cost-efficient way for quality assessment and improvements, exhaustive testing in general

is impossible due to the excessive number of possible combinations. Additional verification methods,

such as code inspection, static analysis, abstract interpretation, theorem proving or model checking

[DKW08] may improve the verification process.

Formal methods were successfully applied in e.g. avionics [Wie+12], railway [Cim+12], space

[Hax10] or nuclear [BS93] industries. The common in all these usages is that a failure is potentially

catastrophic, it may be a threat to multiple human lives. Intel also reported about the usage of formal

verification for their processors [Kai+09]. While a failure of such a CPU is likely not to cause any

2http://home.cern/

39

http://home.cern/

3. Model Checking Critical PLC Programs

accident, but with hundreds of millions of CPUs sold each year [Int14] a recall campaign would cause

excessive economic loss to the manufacturer.

Many of the industrial control systems are basic process control systems (BPCS) [I61511-1], where

safety (personal and machine protection) is ensured by separated, dedicated systems (e.g. hard-wired

systems, physical barriers), thus their criticality and the cost of the failure is lower. An additional

important aspect is that most control systems are uniquely designed, heavily adapted to the specific

process, making the “per unit” verification effort high.

These facts imply that such high verification cost as in the domains above cannot be justified for

many of the industrial control systems. The usage of formal methods is typically only mandatory

for highly safety-critical systems (SIL4) [SS11], but this does not mean that formal verification could

not improve the quality of less critical systems. To apply formal verification to PLC-based industrial

control systems (and especially to BPCS), easy-to-use, practice-oriented methods are needed that can

be used with much less effort; methods that are affordable.

Model checking was already introduced in the previous chapter. This is a technique that seems to

be suitable to improve the current verification practices for several reasons.

• It is an automated method, thus it can be the foundation of a push-button verification method.

• It can provide a diagnostic trace (counterexample or witness) that gives information to the users

about the problem found.

• It can find deep, hidden flaws in the design or in the implementation which are difficult to locate

by testing. Finding and correcting these problems increases the dependability of the systems.

Model checking was already applied to PLC programs, the related work is reviewed in Section 3.9.

3.2 Design of the Verification Workflow

This section overviews the requirements and the main characteristics of the designed solution for au-

tomated model checking of PLC programs [j3]. The details of the proposed model checking workflow

will be discussed in Section 3.4. This section overviews the motivation and the background of this

work. The work described in this section is a joint work of B. Fernández and D. Darvas.

3.2.1 Challenges

Themain challenges related to an automated, user-friendlymodel checkingmethod for PLC programs

is summarised below (based on [c8]).

• It is difficult to use various model checkers without extensive knowledge.

• Even if the models are generated from the source code automatically, they are often too large

to perform their formal verification.

• Most often no formal requirements are available, and it is difficult to use temporal logic to

describe the requirements that the developer wishes to check.

3.2.2 Designing the Workflow

Requirements towards the approach. To make model checking efficiently applicable in the PLC

development process, an automated, domain-specific procedure is needed that can be used by the de-

velopers, without excessive training. It has to be supported by a dedicated tool. Additionally, the devel-

opment effort should be kept reasonably low. The original requirements were targeting SCL programs

only, as this is the dominant PLC programming language at CERN. The verification workflow was

later extended to other languages, see Section 3.6.

40

3.2. Design of the Verification Workflow

Input and output artefacts. It is important to choose first the input and output artefacts of the

verification workflow, as this will highly constrain the solution. Model checking in general requires

a model of the system and a formal requirement, and provides a result with a witness or a counterex-

ample (if one exists).

There are no available formal models of the PLC programs we are aiming to verify. Most manually

written PLC programs are developed based on informal specifications. Therefore it seems that the only

possibility is to build the workflow on the PLC program. As a PLC program is considered as a precise

description of the behaviour of the implementation, it is feasible to translate the implementation into

a formal model.

Many model checkers require CTL and/or LTL expressions describing the requirement to be veri-

fied. Using CTL or LTL in our workflow would violate the high-level design requirement stating that

the workflow should be usable for the developers without excessive training. Therefore the workflow

should contain built-in support to formalise the requirements (see the details below).

The result (satisfied or not satisfied) and the diagnostic trace (witness or counterexample) can

provide useful information to the users about the requirement. However, the diagnostic traces pro-

vided by the model checkers are often too long or too detailed, also they depend on the modelling

of the checked implementation. Therefore the raw outputs of the model checkers are not suitable for

the non-expert users, instead a self-contained, domain-specific, reduced verification report should be

provided as the output of the verification workflow.

Formalising the requirements. The model checkers cannot work with informal requirements,

but the users should not be exposed to temporal logic expressions without extensive training. There

are various possibilities to hide the temporal logic requirements from the user. Some authors used re-

stricted natural languages to express temporal logic formulae [Din+06; HK99]. Others use requirement

patterns, e.g. [DAC99; CMS08]. We have chosen to use the latter, as requirement patterns seem to be

more usable by inexperienced users. The approach we have followed in our verification workflow is

similar to the one proposed by Campos et al. [CMS08], but more complex patterns have been created,

e.g. supporting state changes, to cover the real-life needs [c16]. As examples, a simple and a complex

safety requirement pattern are shown in Figure 3.3. In the examples A,B, C denote placeholders of

Boolean expressions; EoC is a proposition true only at the end of the PLC’s scan cycle.

Using external model checkers. To limit the development resources required for the implemen-

tation of the verification workflow (as discussed previously), it was decided at the beginning that no

newmodel checkers will be developed. Instead, the verification workflow should be based on existing,

general-purpose model checkers, such as NuSMV/nuXmv, UPPAAL
3
or ITS Tools.

The model checkers have different expressivity, different input-output formalisms, different ad-

vantages and disadvantages, different strengths and weaknesses. Furthermore, the performance of

the model checkers may highly depend on the given models and requirements. Therefore it is not

possible to select a single model checker that will provide the best performance and best results in

every case. Instead, the verification workflow should be designed to support multiple external model

checkers, which can be selected based on the current needs.

Supporting multiple model checkers may significantly increase the development needs of the

workflow. This issue will be addressed in Section 3.3.

3

It has to be noted that UPPAAL needs a commercial licence for non-academic usage. Therefore its applicability in this

workflow is limited and it is not fully integrated into the proposed verification workflow.

41

3. Model Checking Critical PLC Programs

Pattern: A is always true at the end of the PLC cycle.

Formal representation (CTL): AG(EoC → A)

(a) Simple safety pattern

Pattern: IfA is true at the end of the PLC cycleN and B is true at the end of PLC cycleN +1, then C is true at
the end of PLC cycle N + 1.

Tabular representation:

Cycle N Cycle N + 1

Assume (at the end of the cycle) A B
Check (at the end of the cycle) — C

Formal representation (LTL): G ((EoC ∧ A ∧ X[(¬EoC U (EoC ∧ B)])→ X[¬EoC U (EoC ∧ C)])

(b) Complex safety pattern

Figure 3.3: Example requirement patterns

Verification model reductions. The models generated from the implementations are often large,

it is difficult to avoid this problem. By making the generation smarter (and therefore more complex),

the model size might be reduced, but this results in increased implementation effort and reduced

maintainability. Themodel checkers often provide built-in reductionmethods, but they cannot benefit

from the domain-specific knowledge, i.e. the knowledge of the PLC’s behaviour and the fact that

the analysed models describe PLC programs. Including reductions in our verification workflow may

reduce the severity of both issues: structural reductions can simplify the models without requiring

complex translation rules, and domain-specific reductions may help to exploit the knowledge about

the PLCs and the analysed programs. In addition, custom model reductions can help us to improve

or fine-tune the model checking with relatively low effort, without developing a new model checker

specifically adapted to the PLC domain.

This section discussed different aspects of the verification workflow. A workflow that follows the

above discussed principles may be adequate for the defined needs. However, to put the different pieces

together efficiently, a crucial part is missing: the intermediate representations. They will be discussed

in the next section.

Publications related to this section. The steps of the proposed verification approach were first sketched up in [r24],

then described in detail in [c16]. More details can be found in these publications.

3.3 Intermediate Representations

In order to (i) efficiently support multiple model checkers, (ii) to simplify the transformations between

different artefacts and (iii) to help to include reductions in the verification workflow, the definition of

intermediate representations is desired. This allows to make the verification workflow independent

from the used model checker tool, as shown in Figure 3.4.

This section discusses the intermediate representations to be used in theworkflow. Themain focus

is on the intermediate model (IM) language that can represent the model to be verified independently

from the applied external model checkers and which also supports reductions (Section 3.3.1). Then

42

3.3. Intermediate Representations

External verification

PLCverif

External tool

requirement

model

IM to concrete

syntax

Model in

concrete syntax

Execute model

checking engine

Result in

concrete syntax

Parse result result

Figure 3.4: Wrapping the external model checking engine

the model checker-independent representation of the results and the counterexample is briefly shown

(Section 3.3.2).

3.3.1 Intermediate Model: Intermediate Representation of the Verification Model

This section is devoted to the intermediate model (IM) language that can represent models of PLC

programs.

Advantages of an intermediate verification model. Introducing a dedicated intermediate lan-

guage to describe the verification models has various advantages.

• Simplification of the transformation. Creating a text-to-text transformation from the PLC

code to the concrete syntax of a selected model checker is possible, however it tends to become

very complex. By introducing the IM, the input and output languages are decoupled and the

specialities of both the input and output languages can be handled independently.

• Extensibility. Besides simplifying the translation, the IM also eases the extension of the work-

flow. For example, to support the syntax of an additional model checker, it is enough to develop

a translation from the IM, there is no need to handle the specificities of the PLC code again. Sim-

ilarly, if a new PLC program language is added to the implementation, each supported model

checker can be used without any modification.

• Flexibility of the workflow. By having an intermediate representation, it is easy to do ma-

nipulations on the model. For example, with the IM various model reductions can be applied

before generating the concrete syntax for the model checkers. This way each supported model

checker can benefit from the same reductions, the implementation of the reduction rules can

be independent from the model checker used [r24].

Design aspects. Next, the constraints and requirements influencing the design of the IM language

are discussed.

• IM should capture the semantics, not the syntax. The abstract syntax tree of the PLC

program to be analysed is a syntactic description of the code. The elements of the syntax tree

could not be mapped directly to the elements of generic verification models, as they describe

43

3. Model Checking Critical PLC Programs

the semantics of the program using typically low-level formalisms. To facilitate the verification

model generation, the IM should focus on the semantics of the programs, not the syntax.

• IM close to the formalisms of the widely-used model checkers. By designing an inter-

mediate model language close to the targeted model checkers tools’ input languages the simple

“IM to model checker” translations can be ensured.

Based on this design aspect, the IM language was designed based on the automaton theory. The

IM describes a network of automata, extended with variables and simple synchronisations.

• Restricted non-determinism. The different tools handle non-determinism differently. There-

fore non-determinism and undefined behaviours should be restricted in IM.

Typically the PLC programs are deterministic, i.e. based on the current state of the program and

the received inputs it can be determined what will be the next state of the program. In the IM

each variable keeps its value unless it is explicitly modified by an assignment either to a defined

value or to a non-deterministically chosen value. The IM allows to have multiple transitions

enabled in different automata, but in the typical generated models this is only used to represent

function calls, therefore there is no real concurrent behaviour in the models. Furthermore, we

assume that in the generated models each location has at most one enabled outgoing transition,

as the choice between multiple enabled outgoing transitions could be handled differently by the

different model checkers.

• Expressive enough to describe PLC programs. An obvious requirement towards the IM is

to be able to describe the behaviour of PLC programs. While it is simple to design an expressive

language, it then has to be translated to the languages supported by the selectedmodel checkers.

Therefore IM was designed to cover a restricted set of PLC program features. We assume that

the PLC program (SCL code) does not use pointers, nor any dynamic addressing, i.e. for each

memory access the address can be determined in compilation time. This implies that for example

arrays should not be addressed by variables (e.g. arrayVariable1[var2] is not permitted),

except simple special cases (e.g. the index variable might be the iteration counter of a FOR

loop). A further assumption is that PLC programs do not contain recursions.

These assumptions are in accordance with the good practices of PLC programming and the

development practices followed at CERN.

• As simple as reasonably possible. Programming languages typically have various constructs

for usability, for the user’s convenience. As the IM models will not be edited manually, it is

not required to have such constructs. Therefore the IM is as simple as reasonably possible.

For example, complex synchronisations, automata templates, variables with restricted scopes,

arrays and structures are not supported in IM. The reduced feature set simplifies the reduction

rules and the “IM to model checker” translations too.

Moreover, contrarily to the modelling language used by UPPAAL, the IM language is not timed.

The reasons for that are discussed later in this section.

It is interesting to note that the STL language (corresponding to IL in [I61131-3]) could also serve as

an intermediate language, as each other PLC programming language could be translated to it [c11; j1].

However, this would be a “syntactic intermediate representation” instead of a semantic representation,

e.g. it would contain function blocks, calls, etc. The semantics of these objects are relatively complex

and not explicitly expressed in an STL-based intermediate model, while an automaton-based IM has

44

3.3. Intermediate Representations

a simpler semantics, therefore it is easier to express in the concrete input languages of the various

general-purpose model checkers. Other aspects of using STL as an intermediate formalism will be

discussed later, in Section 3.6.2.

Timing aspects. Careful considerationswere required about the timing aspects of the PLC program

modelling. PLC programs may use pulse and delay timers (TON, TOF, TP in [I61131-3]). A straight-

forward idea would have been to design the IM such that it includes timing, e.g. by building it on

the timed automata formalism. However, timed models would require timed model checkers. In the

early experimentation phase of this project we have observed that this would significantly restrict the

possible set of model checkers and would mean a serious drawback in performance. As timing is not

a crucial aspect of our motivating examples, IM was designed to be non-timed.

The timing aspects are briefly discussed here. The purpose of this discussion is to justify the

decision to use non-timed models. Precise descriptions and more detailed discussion can be found in

[c14].

Modelling time of PLC programs was already targeted in various works, e.g. [MW99; Bel+10;

WSG07; Wan+13]. Most of them use timed models ([MW99; Bel+10; WSG07]), but they do not present

verification results for large PLC programs, therefore it is not known, how these modelling methods

can cope with the state space explosion. [Wan+13] uses BIP models and represents time through a

special signal which provides “ticks” with a fixed frequency. This method is less accurate than the

timed automata models, but is still close to the real behaviour of PLCs.

In [c14], we proposed two timing representation approaches for the IM: the realistic and abstract

modelling. Both representations are simplifications compared to the real behaviour of PLC programs.

The realistic modelling represents time with the same resolution as the real PLC hardware (typ-

ically 1 ms), but it assumes that the user code is executed in 0 time which is followed by a non-

deterministically long delay. If the code contains one single PLC timer that is checked only once per

cycle, this model provides the same result as the precise, real-life time representation would provide. If

there are multiple timers, certain corner case behaviours are lost, but this is typically not problematic

[c14]. The advantage of this simplification is that there is no need for timed models or model checkers

supporting timing, the timers and the clock can be represented using integer variables, as discussed

in [c14].

Contrarily, the abstract modelling does not model the time precisely, to reduce the state space of

the models to be verified. The abstract modelling uses an abstract, non-deterministic representation

of the PLC timers.

The main difference between the two representations can be demonstrated by two example re-

quirements. Using the realistic modelling it can be evaluated whether “a certain PLC output is set to

true 500 ms after a given input has been set to true”. The abstract model cannot provide a precise an-

swer to this question, but it can decide whether “a certain PLC output will be set to true (eventually)

after a given input is set to false” [c14].

High-level syntax and semantics of the intermediate model. The high-level syntax and se-

mantics of the IM was introduced in [j3] as follows. It has to be noted that the IM language is similar

to the modelling language used in UPPAAL [Amn+01], but IM is kept much simpler, according to

the design aspects discussed before. This way the IM language is close to the input language of UP-

PAAL, but also NuSMV/nuXmv and any other model checker that uses variants of automata or state

machines. Furthermore, the IM is close to the control flow graph (or control flow automaton) repre-

sentation of the PLC programs.

45

3. Model Checking Critical PLC Programs

Definition 3.1 (Intermediate model language, based on [j3]). The intermediate model

language is defined as a simple automata network model consisting of synchronised automata.

A network of automata is a tupleN = ⟨A, I⟩, whereA is a finite set of automata, I is a finite
set of synchronisations.

An automaton is a structure a = ⟨L, T, ℓ0, Va,Val0⟩ ∈ A, where L = {ℓ0, ℓ1, . . . } is a finite

set of locations, T is a finite set of guarded transitions, ℓ0 ∈ L is the initial location of the

automaton, Va = {v1, . . . , vm} is a finite set of variables, and Val0 = (Val1,0, . . . ,Valm,0) is the
initial value of the variables.

Let V̂ be the set of all variables in the network of automata N , i.e. V̂ =
⋃

a∈A Va. (∀a, b ∈
A : Va ∩ Vb = ∅ if a ̸= b)

A transition is a tuple t = ⟨l, g, amt , i, l′⟩, where l ∈ L is the source location, g is a logical

expression on variables of V̂ that is the guard, amt is the memory change (variable assignment,

i.e. a function that defines the new values of the variables in V̂), i ∈ I ∪ {NONE} is a synchro-

nisation attached to the transition, and l′ ∈ L is the target location. amt may assign new values

to multiple variables, but the order of their evaluation is undefined.

A synchronisation is a pair i = ⟨t, t′⟩, where t ∈ T and t′ ∈ T ′ are two synchronised transi-

tions in different automata. The variable assignments attached to the transitions t and t′ should
not use (assign or refer to) the same variables. This composition operation is restrictive, but

sufficient to model PLC programs, as synchronisations will only represent function calls. Syn-

chronisations are often used only to simplify the initial model generation and are later removed

by reductions that merge the different automata, making the synchronisations unnecessary.

The operational semantics of this automata-based formalism can be informally explained as

follows: a transition t = ⟨l, g, amt , i, l′⟩ from the current location l of an automaton is enabled

if g is satisfied and either t has no synchronisation attached, i.e. i = NONE, or i = (t, t′) and the
transition t′ is also enabled. In the former case, t can fire alone; in the latter case, both t and t′

have to fire simultaneously. Each execution step consists in firing one transition or simultaneous

firing of two synchronised ones. Upon firing of a transition t as above, l′ becomes the new current

location of the corresponding automaton and the new values of variables V̂ are set using the

previous values and the variable assignment amt . [j3] �

A formal semantics definition based on systematic translation to a state-transition system can

be read in [r23]. The detailed discussion of the metamodel of the intermediate model language is in

Appendix C.1 (p. 131).

Translation from PLC code to IM. The translation from SCL code to IM is described as a system-

atic, rule-based recursive translation of each element in SCL code to the intermediate model. As this

is not a contribution of the current dissertation, the details are not discussed here. Interested readers

can find more information and examples about the translation from SCL code to IM in [r24; j3]. [r24;

r23] also describe the main rules of the IM to NuSMV model translation.

The model checking workflow and the PLCverif tool implementing it provide solutions to the

discussed challenges and issues. They provide a complete workflow that is automated and hidden

from the user. Based on the source code and the filled requirement patterns, the model checking is

automatically performed and a verification report is produced [c8].

46

3.4. Verification Workflow Based on the Intermediate Model

3.3.2 Additional Intermediate Representations

In order to make the verification workflow independent from the chosen model checker tool and to

make is easily extensible, both the inputs and outputs of the model checker tools should be hidden

(as shown in Figure 3.4). Therefore the results provided by the model checker have to be parsed and

translated into an intermediate, tool-independent format.

Furthermore, providing the intermediate model is not enough: a mapping has to be established

between the variables of the PLC program, the variables of the intermediate model and the variables

of the model checkers’ concrete syntax. This permits to provide the results in a format that is under-

standable for the users, i.e. using the names defined in the PLC code.

The metamodel of the output and counterexample representation and the mappings between the

various representations of the variables are described in Appendix C.2 (p. 133).

Publications related to this section. The design of IM was first discussed in the technical report [r24]. This report

provided also the first description of the syntax and semantics of IM, which was later refined in [r23; j3].

3.4 Verification Workflow Based on the Intermediate Model

After discussing the details of the IM in Section 3.3, the verification procedure described in Section 3.2

can be concretised. A simplified overview of the procedure can be seen in Figure 3.5.

IM generation

TL representation

of the requirement

IM reduction

External

verification

Reporting

PLC code

Req. pattern

Verif. report

Figure 3.5: Simplified overview of the PLC program verification workflow

The complete workflow is discussed and summarised in [j3]. The workflow is presented from the

users’ point of view in the following.

1. The workflow is based on the PLC program and a requirement, formalised using one of the

requirement patterns.

2. An IM representation is generated from the PLC program. The main translation rules for SCL

are described formally in [j3].

3. The requirement pattern is automatically transformed into a CTL or LTL temporal logic (TL)

representation.

4. The intermediate model is then reduced (see the details in Section 3.5).

5. The reduced IM and the requirement are then translated to the concrete syntax of the external

model checker tool. The model checker is executed and its result is parsed, representing it in a

model checker-independent format.

6. The result of the procedure for the user is a verification report that describes all details and the

result of the verification.

The extensibility of the approachwas shown in [j3], where initial work on extending theworkflow

to model interrupts, to handle SFC inputs and to cope with large, complete PLC applications were

presented. Extensions to support the verification of safety-critical PLC programs (and therefore to

support the STL language) are discussed in Section 3.6.

47

3. Model Checking Critical PLC Programs

Publications related to this section. The steps of the proposed verification approach were first described in detail in

[c16]. Detailed overview of the verification workflow can be found in [j3]. The steps are presented from the users’ point of

view in [c13].

3.5 Reduction Rules for the Intermediate Model4

The previously presented intermediate model language is able to represent the behaviour of the PLC

programs for verification purposes. Furthermore, it is possible to generate a concrete representation of

thismodel for a chosenmodel checker. However, our early experiments have shown that the enormous

size of the generatedmodels undermine the possibility of their verification. Even though certainmodel

checkers (e.g. NuSMV/nuXmv) contain built-in reduction techniques, they cannot cope with most of

these generated models.

The intermediate model representation permits the integration of various reduction techniques

into the verification workflow. Three main categories of reductions are presented here: (i) mode selec-

tion which permits to focus efficiently on certain scenarios only (Section 3.5.1), (ii) a cone of influence

heuristic which removes variables that are not required for the evaluation of the given requirement

(Section 3.5.2), and (iii) rule-based, structural reductions which can simplify and reduce the size of the

IM (Section 3.5.3). All of the presented reductions are heuristics: they do not aim to make the IM size

optimal (minimal), but to make the IM smaller with relatively low resource needs.

General requirements towards the reductions. Before presenting the details of each reduction

category, some common designs aspects are discussed.

• The satisfaction of the requirement should not be altered. The reductions should not alter
the result of the requirement evaluation, thus we are targeting property-preserving reduction

techniques. We assume that no requirement refers the value of any variables in transient states,

i.e. they should only be checked at the beginning or at the end of the PLC cycle. This is a

valid assumption, because the transient signals are not observable outside of the PLC. It is also

assumed that there is no concurrency in the PLC programs, as PLC programs are typically

single-threaded and without interrupts. This work is not targeting the analysis of concurrency

problems.

• Simple reduction rules. The complex reduction rules might be error-prone, therefore most

reduction rules are simple, they are performing single reduction steps. This implies that the

application of a reduction rule may enable another reduction rule. Therefore most of the reduc-

tions should be applied iteratively.

• Finite reduction loops. In case of iterative reductions it is a primary requirement to have

finite reduction loops only, the reduction rules should not enable each other infinitely.

• Do no harm. The precise reductions are often highly resource-consuming. Aiming for an op-

timal model typically needs a lot of resources, but if the reduction consumes more than the

4

Both this work and [Fer14] describe reduction rules and build on the work [c15]. The high-level idea of the verification

workflow is a joint contribution with B. Fernández. The variable abstraction reduction method (not presented here) is

the contribution of B. Fernández, while the detailed design and formalisation of the other reductions are the author’s

contributions.

48

3.5. Reduction Rules for the Intermediate Model

Mode selection

Cone of influence

reduction

Rule-based

reductions

Any reductions preformed

and no timeout?

no

yes

Figure 3.6: Iterative reduction workflow (based on [c15])

gain in verification time, the overall effect of the reductions is negative. Therefore the reduc-

tion heuristics are kept simple and lightweight, even if this means that they cannot cope with

certain scenarios when the model could be further reduced.

The iterative reduction loop is shown in Figure 3.6. The mode selection is independent from the

rest of the reductions, therefore this does not have to be applied iteratively. The rule-based reductions

and the cone of influence reduction are applied until a given exit condition is satisfied. If the last

iteration of the reduction loop did not modify the model, the reduction loop can be terminated. The

loop can also be terminated if it was running for too long time or if the model is already small enough.

In the following the three mentioned groups of reductions will be discussed.

3.5.1 Mode Selection

The goal of the mode selection is to allow the user to fine-tune the verification by setting an operation

mode to be verified. For example, some requirements need only to be satisfied in certain modes if

certain inputs or parameters have given values.

The motivation of this reduction method is coming from UNICOS (Unified Industrial Control

System), a CERN PLC framework that contains a set of basic, generic objects
5
(so-called baseline

objects). These objects can be adapted to the specific usage by setting their parameters which are

special input variables that do not change their values during execution [c15].

If a requirement φ shall be satisfied only if a parameter p is true, this can be expressed easily

using a CTL expression: AG(p) → AG(EoC → φ), where EoC is an atomic proposition that is

true only at the end of each PLC cycle. Certain model checkers (e.g. NuSMV/nuXmv) permit to define

invariants in the model, p = true could be expressed in this way too. However, our initial experiments

demonstrated that better performance can be achieved if these simple invariants are incorporated in

the model itself. As the verification workflow relies on the intermediate model, this can be achieved

easily.

The mode selection reduction gets an input v1 = c1, v2 = c2, . . . , where each vi is a variable and
ci is a constant. Then in the IM the mode selection algorithm replaces every occurrence of vi with
ci for every i. After this reduction, the requirement can be simplified: e.g. in the above example the

p = true assumption does not have to be included, and the requirement to be checked by the model

checker can be simplified to AG(EoC → φ).
The application of mode selection has several advantages compared to including these assump-

tions about the mode of the verified PLC program in the requirement (based on [c15]).

• The state space of the model is reduced as mode selection eliminates the variables vi.
• The application of mode selection can help the rest of the reductions. For example, if v1 is set to
false, later a rule-based reduction may replace the expression v1 ∧w2 ∧w3 with constant false.

5

More details about UNICOS are discussed in Section 3.8.

49

3. Model Checking Critical PLC Programs

• As mode selection may cause the simplification of expressions, this can also help the cone of

influence reduction which removes the unused variables. In the previous example, if w2 and w3

are not used elsewhere in the model, they can be removed by the cone of influence reduction.

3.5.2 Cone of Influence

Program slicing [Wei81] or cone of influence reduction (COI) is a widely-used abstraction technique.

Its motivation is that certain requirements can be evaluated by analysing only a part of the model. For

example, if a PLC program produces the outputs o1, o2, . . . , on, but in the requirement only the value

of o1 is used and the other output variables do not influence o1, these other output variables are not
necessary for the verification. These variables and the computation of their values can be removed

from the model. This reduction may make other variables unnecessary, thus in total the effect of the

reduction is often very significant.

Program slicing is often used in software verification, e.g. in [LNN13; BMP15; KSK15], on the con-

trol flow graph of the program under verification. Certain model checkers, e.g. NuSMV/nuXmv also

contain built-in cone of influence reductions. However, as their input model is on a lower abstraction

level than the IM, this reduction is less efficient [c15]. This motivated the design and implementation

of a custom, heuristic COI algorithm to be included in PLCverif.

This COI algorithm builds a variable dependency graph. In this graph the nodes are the variables

defined in the IM. The directed edges represent dependencies between variables. There are two types

of edges, representing assignment or data dependencies (e.g. v1 := ¬v2 will imply a data dependency

edge v1 → v2) and guard or control dependencies (e.g. if v1 is assigned by a transition having a guard

[v3], it implies a control dependency edge v1 → v3).
As it was discussed before, it is not necessary to provide an optimal solution. This custom COI

is a heuristic algorithm that only removes variables and variable assignments that will not influence

the result, but it does not necessarily remove all of them.

The heuristic identification of data dependencies is done by checking each variable assignment

⟨v := Expr⟩ in the IM. The identification of control dependencies in an arbitrary IM model is more

difficult
6
. The heuristic is based on the identification of unconditional locations of the IM. These are the

locations that will be “visited” in each PLC cycle independently from the input values or computations

in previous cycles. Typically, the conditional branches are small in the PLC programs, and therefore

there are many unconditional locations in an IM. It is easy to see that if a variable v is assigned on an

unguarded transition t leaving an unconditional location will not imply any control dependency, if t
does not have any guard. For assignments of v on transitions leaving conditional locations, the guards
are collected backwards until the first unconditional locations and v will be considered as depending

on each of the collected variables. Note that this might be an over-approximation.

The formal discussion of this COI algorithm can be found in [c15]. It is worth to be noted that by

building and using the dominator trees [All70] of the intermediate model the precision of the heuristic

might be improved. There are various more aggressive program slicing methods (e.g. [KSK15]) which

may achieve greater reductions. The improvement of the current COI heuristic is a future work.

6

This is the main difference between the custom and NuSMV’s COI: NuSMV cannot identify the control dependencies

precisely, as the NuSMV model does not distinguish between variables and the structure of the automaton. More detailed

analysis of the differences between the custom and NuSMV’s COI can be found in [c15].

50

3.5. Reduction Rules for the Intermediate Model

3.5.3 Rule-Based Reductions

This part is dedicated to the rule-based reductions. This is a diverse group with various reductions,

ranging from the very simple ones (e.g. replacement of the “· · ·∧F∧∗∧· · · ” expressions with constant
“F ”) to more complex ones. These reductions are similar to the ones used in compilers to optimise

the control flows [CT12].

These rule-based reductions aim to simplify the structure of the IM or reduce the number of

variables (variable assignments). The rules can be divided into three main categories:

• Automaton simplifications. These reductions eliminate unnecessary transitions and locations.

For example, the reduction illustrated
7
in Figure 3.7(a) removes empty conditional branches,

the reduction in Figure 3.7(b) eliminates the transitions without any described behaviour. Some

other reductions (e.g. the one in Figure 3.7(c)) reduces the number of locations and transitions

by attaching multiple, independent variable assignments to the same transition.

• Variable simplifications. These reductions analyse the data flow of the IM and try to make im-

provements based on this. For example, if two variables have always the same value at the end

of any PLC cycle, certain reductions try to merge these two variables.

• Expression simplifications.A group of reductions is responsible for the simplification of Boolean

expressions, by reordering them, identifying if an expression or a subexpression is constant or if

it contains unnecessary elements. It has to be noted that some reductions have opposite effect:

they build more complex Boolean expressions, for example to merge several guard conditions

on successive transitions into one (e.g. the reduction shown in Figure 3.7(d)).

A part of these reductions are general-purpose, domain-independent: e.g. the expression “v1 ∧
F ” can always be simplified to “F ”, if it has no side effects. Certain reductions are domain-specific,

and they benefit from the assumption that the transient states are not checked, e.g. two variable

assignments can be reordered if it does not influence the output at the end of the PLC cycle.

3.5.4 Reduction Examples

This part presents simple examples of the reduction methods considered above. Let us consider the

SCL program in Listing 3.1 with the following requirement: “If the parameter pInc is set to 1, the vari-
able c cannot be negative.” The following examples are extended versions of the examples presented

in [c15].

• Figure 3.8(a) shows the IM corresponding to the example SCL program in Listing 3.1.

• First the mode selection is applied. The requirement above targets only the cases when

pInc = 1. The IM after the mode selection can be seen in Figure 3.8(b).

• The next step is the COI reduction. The variable dependency graph is shown in Figure 3.9.

The data dependencies are represented with thin red, the control dependencies with thick blue

edges. Based on the variable dependency graph it is obvious that for a requirement targeting

only the variable c, no other variable is required. Therefore the rest of the variables will be

removed by COI, as shown in Figure 3.8(c) and Figure 3.8(d).

• After the COI reduction, the rule-based structural reductions can reduce the IM by removing

unnecessary locations and transitions from the model. By applying the reductions shown in

Figure 3.7(a) and Figure 3.7(b), the final IM is the one presented in Figure 3.8(e).

The efficiency of reductions is demonstrated on larger, real-life examples in Section 3.8.

7

The example IM snippets in the following denote locations with circles, transitions with arrows, guards with square

brackets, and variable assignments preceded by “/”.

51

3. Model Checking Critical PLC Programs

/—

[C]

ℓ

/—

[¬C]

ℓ′

ℓ

/—

[true]

ℓ′

(a) Empty conditional branch elimination [c15]

ℓ

/—

[true]

ℓ′

ℓ

(b) Empty transition elimination [c15]

ℓ

/v1 := Expr1

ℓ′′

ℓ′

/v2 := Expr2

ℓ

ℓ′′

/v1 := Expr1
v2 := Expr2

(c) Variable assignment merging rule [c15]

/—

[C1]

ℓ

ℓ′

ℓ′′ ℓ′′′

/VA1

[C2]
/VA2

[¬C2]

ℓ

ℓ′′ ℓ′′′

/VA1

[C1 ∧ C2]
/VA2

[C1 ∧ ¬C2]

(d) Condition push-down rule

Figure 3.7: Example structural reduction rules

Publications related to this section. The usage of model reduction heuristics was first mentioned in the technical report

[r24] as a motivation for the usage of IM. The case study in [c16] already benefited from the reductions and the effects of

different reduction types were discussed. Detailed discussion of the various reduction techniques were provided in [c15],

then later they were summarised in [j3].

3.6 Extensions for the Verification of Safety-Critical PLC Programs8

PLC-based systems are more and more accepted and used in safety-critical settings [Gre94]. In these

cases the logical faults introduced by mistake, misunderstanding or oversight can cause potentially

dangerous situations (among other reasons) [Par03].

Originally, the previously described verification workflow targeted mainly programs written in

SCL language. To support programs written for safety PLCs (also called safety-critical or fail-safe

PLCs), other programming languages have to be supported as well. This section discusses the chal-

lenges related to the verification of safety PLC programs and the provided solutions.

3.6.1 Motivation and Challenges

The safety-critical controllers have to fulfil the requirements of the corresponding standards, such

as IEC 61508, IEC 61511, or IEC 62061. These standards define different safety integrity levels (SIL)

and various requirements and guidelines for the system and the development process. Many PLC

vendors produce a special range of hardware complying with the corresponding standards. These

so-called fail-safe PLC CPUs (or simply safety PLCs in the following) are typically certified up to SIL3

according to IEC 61508-2 [I61508-2]. Besides the special hardware, the PLC vendors provide special

development environments, often with additional restrictions compared to non-safety-critical PLC

8

This section is an extended and adapted version of [c9].

52

3.6. Extensions for the Verification of Safety-Critical PLC Programs

1 FUNCTION_BLOCK FB
2 VAR_INPUT
3 ia : INT;
4 ib : INT;
5 pInc : INT;
6 END_VAR
7 VAR_OUTPUT
8 xa : BOOL;
9 xb : BOOL;
10 c : INT := 0;
11 END_VAR
12 BEGIN
13 IF ia > 0 THEN
14 xa := TRUE;
15 ELSE
16 xa := FALSE;
17 IF ib > 0 THEN
18 xb := TRUE;
19 ELSE
20 xb := FALSE;
21 END_IF;
22 END_IF;
23

24 c := c + pInc;
25 END_FUNCTION_BLOCK

Listing 3.1: SCL code used in the reduction example (based on [c15])

programming. For instance, Siemens restricts the developers to use the LAD or FBD language with

further restrictions, such as no usage of floating-point or compound data types [Sie14], following the

recommendations of the IEC 61511-2 standard [I61511-2]. Although the hardware of the safety PLCs

is special, the hardware differences do not affect the software part. Thus the main particularity of the

safety PLCs for the verification is the restricted programming possibilities, namely the obligation to

use restricted LAD or FBD language for programming (in case of Siemens PLCs) [c9].

One of the motivation of the previously presented verification workflow was the reduced amount

of verification resources in non-safety-critical cases, which makes the methods requiring deep exper-

tise impossible. Obviously, more effort is spent on the verification of safety-critical systems, however

using formal verification for safety PLCs is still not common. The IEC 61508-3 [I61508-3, Table A.4]

marks the usage of formal methods “highly recommended” for the detailed design and development

only for SIL4 (the highest SIL defined), and even there it can be replaced by “structured methods” or

“semi-formal methods”. This is in accordance with our observations at CERN. Probably one of the

most critical PLC-based systems at CERN is the access control system of the accelerator complex. It is

responsible for personal safety by not letting people enter areas where the accelerator is in use, thus

there is a risk of dangerous radiation levels and other hazards. The state-of-the-practice for verifica-

tion of this system is the extensive usage of testing [Val+08; Val+13].

Challenges. There are two main challenges related to the verification of safety-critical PLC pro-

grams (written for Siemens safety PLCs).

• The primary need to verify safety-critical PLC programs is the ability to check LAD and FBD

code. However, in case of Siemens PLCs, the programs written in graphical languages are not

directly accessible, but they can be exported from the development environment as STL code.

53

3. Model Checking Critical PLC Programs

initialisation

/xa := F
[¬(ia > 0)]

/xb := F
[¬(ib > 0)]

/xb := T
[ib > 0]

/c := c+ pInc

/xa := T
[ia > 0]

init

ℓ0

ℓ1

ℓ2

end

of inputs

(a) IM corresponding to the example SCL

code

initialisation

/xa := F
[¬(ia > 0)]

/xb := F
[¬(ib > 0)]

/xb := T
[ib > 0]

/c := c+ 1

/xa := T
[ia > 0]

init

ℓ0

ℓ1

ℓ2

end

of inputs

(b) IM after mode selection

initialisation

/✘✘✘✘xa := F
✘✘✘✘✘
[¬(ia > 0)]

/✘✘✘✘xb := F
✘✘✘✘✘
[¬(ib > 0)]

/✘✘✘✘xb := T
✘✘✘[ib > 0]

/c := c+ 1

/✘✘✘✘xa := T
✘✘✘[ia > 0]

init

ℓ0

ℓ1

ℓ2

end

of inputs

(c) IM after COI

initialisation

/c := c+ 1

init

ℓ0

ℓ1

ℓ2

end

of inputs

(d) IM after COI

initialisation

/c := c+ 1

init

ℓ2

end

of inputs

(e) IM after COI and structural

reductions

Figure 3.8: Example IM representations in different stages of reductions (based on [c15])

c
INT

xa
BOOL

ia
INT

xb
BOOL

ib
INT

Figure 3.9: Variable dependency graph of the example SCL program (after mode selection)

54

3.6. Extensions for the Verification of Safety-Critical PLC Programs

Therefore the challenge is to support simple STL programs, mainly having Boolean and arith-

metic operations (as these are the typical blocks used in safety logics). The main challenge of

supporting STL is the lack of precise semantics definition.

• The STL instructions use low-level data structures and have many side effects. This may result

in large models. It is therefore required to extend the verification workflowwith new reductions

that target specifically the IMs generated from STL programs.

3.6.2 Supporting the STL Language as Input Language

As discussed before, the STL language has to be supported by the verification workflow in order to

verify safety-critical PLC programs. However, the abstraction level of STL is low, therefore handling

STL programs is different from handling SCL programs.

It is resource demanding to implement (i) a parser that can build the abstract syntax tree of the

STL language, and (ii) a model translator that translates the syntax tree to the intermediate model.

Therefore we tried to find a pivot language that can represent PLC programs written in any of the

Siemens PLC languages. At first look STL – being a low-level language – might even seem to be a

good pivot (intermediate) language, as the SCL programs could be translated to STL. Earlier work

[c11] discussed that STL may represent programs written in any of the five programming languages

used in Siemens PLCs. However, it was also shown that the SCL language extended with explicit

register representation can also be used as a pivot language. SCL is a higher-level language, with

a more compact representation (e.g. for expressions). The IM, used under the verification workflow

also supports complex expressions, similarly to many model checkers, e.g. nuXmv, UPPAAL. Hence

translating a compact SCL expression to a lengthy STL form seems to be inefficient. Furthermore, as

in our setting mostly SCL programs are verified, using SCL (and not STL) as pivot can provide support

for the other languages without any impact on the verification of SCL programs [c11].

Consequently in the following the translation from STL to SCL will be discussed
9
. This translation

provides a mapping in an inductive way from each STL statement to (one or more) SCL statements.

This way the method of IM construction does not change, and the instruction-by-instruction mapping

can be much simpler than a complete parser for the STL language. In [c11; j1] detailed discussions

about the possibility of representing STL programs in SCL can be found.

3.6.2.1 Mapping STL to SCL

The challenge of this instruction-by-instruction mapping is that the STL instructions directly access

and modify the low-level data structures of the PLC (e.g. registers). For example, the STL statement

L var1 stores the contents of Accumulator 1 in Accumulator 2, then it loads the value of variable

var1 to Accumulator 1. There is no language element to access the registers directly in SCL, making

the direct representation of STL code impossible. However, this can easily be solved for verification

purposes. We emulate the registers as local SCL variables according to a well-defined naming con-

vention, and use it consistently in the SCL programs and in the properties to be verified. To avoid the

confusion – though it does not require a language extension –, we will use SCLr as language name for

programs written in SCL where the registers are emulated as local variables. This solution is similar

to the one presented in [SD08]. To distinguish between ordinary variables and the ones representing

SCLr registers, the latter’s names start with double underscores.

9

It has to be noted that from the theoretical point of view this does not cause any additional problems, the same

challenges would have been targeted if the verification of STL programs was supported from the beginning, as can be read

later on.

55

3. Model Checking Critical PLC Programs

Table 3.1: STL to SCLr transformation examples [j1]

IL instr. SCLr equivalent

A var1 IF __NFC THEN __RLO:=__RLO AND (var1 OR __OR); ELSE __RLO:=var1 OR __OR; END_IF;
__STA:=var1; __NFC:=TRUE;

A(__nsRLO[8]:=__nsRLO[7]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO OR NOT __NFC;
__nsOR[8] := __nsOR[7]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=__OR AND __NFC;
__nsFC2[8]:=__nsFC2[7]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=FALSE;
__nsFC1[8]:=__nsFC1[7]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=FALSE;
__nsFC0[8]:=__nsFC0[7]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=FALSE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

>I __OR:=FALSE; __NFC:=TRUE;
__RLO:=(__ACCU1<__ACCU2); __CC0:=(__ACCU1>__ACCU2); __CC1:=(__ACCU1<__ACCU2);

L var1 __ACCU2 := __ACCU1; __ACCU1 := var1;

With this extension, each STL instruction (e.g. bit logic and comparison operations, conversions,

jumps, arithmetic instructions, load and transfer instructions) can be represented in SCLr, by making

all implicit effects of the STL instructions explicit in SCLr. For this purpose, we have identified the

semantics of each STL instruction by checking on real PLCs what the results of the instruction for

every possible initial state are (i.e. for each valuation of the read registers and variables). The identified

semantics of the STL instructions are generic, not specific to our case studies. Some examples of this

translation with different complexities are in Table 3.1. A short description of the used registers is in

Table D.1 (p. 136).

As each STL statement can be translated into SCLr, it can be seen inductively that each STL pro-

gram can be translated into SCLr as well. In other words, SCLr can emulate all STL programs, and

consequently all FBD and LD programs too.

Furthermore, it is worth to note that SCLr can be regarded as a textual concrete syntax of the

PLCverif intermediate model, therefore there is no theoretical difference if we translate STL programs

to the intermediate model directly or through SCLr; translating STL through SCLr or directly to IM

does not impose any theoretical difference. The main challenge is the same in both cases: determining

the semantics of STL, which is targeted in Section 3.6.2.2.

A more detailed discussion of the memory model of STL and the registers can be found in [j1].

3.6.2.2 Determining the Semantics of STL10

Certain documentations are provided by Siemens about the semantics of the STL language. However,

these are informal, incomplete descriptions. Often it is not possible to determine the precise semantics

of each STL instruction (e.g. which variables and registers they modify and rely on).

In order to discover the precise semantics, we execute the instructions in all possible combinations,

i.e. checking the results of each instruction in each possible situation. Of course, testing the behaviour

of each instruction with each possible memory content is not feasible. However, each instruction

depends only on certain registers and certain parts of the memory. These dependencies are defined in

the description or status word influence part of [Sie98a; Sie10]. It is also defined (or can be assumed

based on the description), which registers and memory locations might be altered by the execution

of a certain instruction
11
. Reproducing all possible combinations of the registers and parameters that

10

This section is an extended version of the Section 6 of [j1].

11

It is precisely defined which status bits can be modified by the instruction, but the same information is not given for

other registers or memory locations.

56

3.6. Extensions for the Verification of Safety-Critical PLC Programs

1 L a
2 L b
3 >=I
4 = r

(a) Source STL code

1 r := (a >= b);

(b) Equivalent SCL code

1 __ACCU2 := __ACCU1; __ACCU1 := a;
2

3 __ACCU2 := __ACCU1; __ACCU1 := b;
4

5 __OR := FALSE; __NFC := TRUE;
6 __RLO := (__ACCU1 <= __ACCU2);
7 __CC0 := (__ACCU1 > __ACCU2);
8 __CC1 := (__ACCU1 < __ACCU2);
9

10 IF __MCR THEN r := __RLO; END_IF;
11 __OR := FALSE; __STA := r; __NFC := FALSE;

(c) Generated SCLr code

Figure 3.10: Illustration of code blow-up caused by STL-to-SCLr translation [j1]

affect a specific instruction and checking the new values of the altered affected registers and memory

locations is feasible [j1]. On certain PLCs it is possible to modify the value of the status word. It is also

possible to determine the current values of the status bits and registers on a breakpoint using a real

PLC or the official Siemens PLC simulator software. Therefore we can generate test programs which

execute a given instruction for each “interesting” valuation.

An example is given in Appendix D.1 (p. 135) showing the steps of determining the semantics

of a STL instruction. This example demonstrates also that there may be discrepancies between the

intuitive meaning of the informal descriptions (defined e.g. in [Sie02]) and the observed behaviour,

thus the STL-to-SCLr translation cannot rely only on the informal description of the instructions.

The proposed approach to demonstrate the correctness of this STL to SCL transformation is sum-

marised in Appendix D.3 (p. 137) based on [j1]. Three steps are performed to show the semantic cor-

respondence: (i) the formal semantics of SCL is drawn up, (ii) the formal semantics of base STL (e.g.

variable access, sequence of statements; but the semantics of the statements is omitted) is sketched

up, then (iii) a proof strategy is given that shows that the SCLr equivalent of the STL instructions will

cause exactly the same memory modifications as the STL statements in the systematic observations.

For this last step, each observation table is formalised using the base STL semantics row by row.

3.6.3 Code Size Blow-Up and Reductions

Representing the registers as local variables allows the inductive mapping of STL programs to the SCL

language, allowing to reuse the PLCverif workflow and toolchain. However, it raises a new concern: a

single STL instruction may read and modify several registers. This causes a significant code size blow-

up, as illustrated in Figure 3.10. The original sample STL code contains 4 instructions (Figure 3.10(a)),

which can be represented by one single statement in SCL (Figure 3.10(b)). However, the STL code

translated to SCLr has 13 variable assignments (Figure 3.10(c)). Note that these assignments represent

the storage of (intermediate) results that are not necessarily needed by the subsequent statements.

The extremities of this are the nesting Boolean operators (e.g. A(). They store some intermediate

computation results in the so-called nesting stack, helping the developers to handle complex Boolean

operations. Therefore a single STL statement might be translated to 40–50 SCLr assignments (see

instruction A(for example in Table 3.1 that is represented using 43 SCLr statements).

This blow-up effect can be reduced by developing new automated reduction heuristics, similarly

to the ones already included in the verification workflow described in the previous sections.

• Expression propagation can help to reduce the number of assignments. For example, the second

assignment of line 1 in Figure 3.10(c) can be removed and the first assignment of line 3 can be

57

3. Model Checking Critical PLC Programs

replaced by ACCU2 := a; without modifying the behaviour of the program, i.e. without

modifying the variable values at the end of any PLC cycle.

• Assignments without any observable effect can be removed. For example, the first assignment of

line 1 in Figure 3.10(c) can be removed, as its effect is hidden by the first assignment of line 3.

• The non-used variables are deleted by the already existing cone of influence reduction. For ex-

ample, the CC0 and CC1 register-representing variables can be removed, as they are never

read in Figure 3.10(c).

• The expression propagation can result in complex Boolean expressions, which can be reduced

by Boolean factoring and other Boolean expression reduction methods. If the simplified expression

refers to fewer variables, these reductions may help the cone of influence reduction. Neverthe-

less, even if they do not reduce the state space, the Boolean expression simplification makes the

other reductions faster and decreases the memory needs.

• A new element-of relation was also introduced in the IM language. This makes the representa-

tion of the recurring a = 1 OR a = 2 OR a = 5 OR ... pattern more efficient by repre-

senting as a ∈ {1, 2, 5, ...} .

By using these reduction heuristics, the code in Figure 3.10(c) can be automatically reduced to the

one in Figure 3.10(b), assuming that the registers are not read by any further part of the code. Note

that each reduction is applied only if it preserves the satisfaction of the requirement that is currently

under evaluation.

Publications related to this section. This section is mainly based on [c9] that presented the first safety-critical verifica-

tion case study using our procedure. Details about the semantics and the transformation of the STL language are published

in [c11; j1].

3.7 Implementation12

The presented verification workflow was implemented in the PLCverif tool. In this section we

overview the main features of the PLCverif, focusing on the user’s point of view. The structure of

this section follows the normal workflow of a user.

The typical user workflow of the PLCverif tool consists of four steps:

1. Defining (importing or writing) the PLC code to be checked,

2. Defining the requirement to be verified using requirement patterns,

3. Executing the verification (including IM generation, reductions and the execution of the se-

lected external model checker), and

4. Evaluating the results of the verification based on the provided verification report.

In the following paragraphs, each step is described in detail.

Defining the PLC code. The PLCverif tool provides an editor for PLC programs. Currently the

tool mainly supports SCL programs. Additionally, programs in SFC and STL are partially supported

through SCL, with automated conversion. The code editor of PLCverif (Figure 3.11) provides the main

features required nowadays in modern development tools, e.g. syntax highlighting, content assist,

support for refactoring. The PLC program to be verified can either be written in this PLC code editor,

or imported if the program already exists.

12

This section is an extended and adapted version of [c13].

58

3.7. Implementation

Figure 3.11: PLC program editor PLCverif [c13]

Defining the requirement. Similarly to test cases in testing, a verification case should be defined

by the user that contains all necessary information for the verification. The user has to:

• Provide the general information of the verification case (ID, name, description),

• Select the source code to be checked,

• Define the requirement to be checked, and

• Select the external model checker tool to be used.

In addition, the user has the possibility to fine-tune the verification workflow by setting some

parameters (e.g. the settings for the mode selection reduction, or the variables treated as inputs). The

mandatory parameters are set automatically using various heuristics.

The verification case can be edited on a form that is shown in Figure 3.12. The user should choose

a requirement pattern that corresponds to the requirement to be checked. Then the gaps of the pattern

have to be filled. Each gap has to be filled by an expression containing constants, variables, and logic,

arithmetic, and/or comparison operators.

Verification process. After loading or writing the PLC code and providing the verification case, the

verification procedure is fully automated. In the background PLCverif performs the following steps,

completely hidden from the user:

1. The formal requirement (in LTL or CTL) is produced based on the given information.

2. The PLC code is parsed and translated into an intermediate model.

3. The intermediate model is reduced. The reductions depend on the given requirement, conse-

quently, for each requirement a unique verification model is produced.

4. The reduced intermediate model and the given requirement is then converted to the input syn-

tax of the selected model checker tool.

5. When the model and the requirement are produced, the model checker tool is invoked. All its

outputs, including the error messages are stored for the later report generation.

Evaluating the results. The output of the model checker tools (the diagnostic traces) are typically

difficult to understand. For example, the counterexamples can be extremely large, they have to be

reduced before manual analysis. Besides, the referred variable names can be different from the ones

59

3. Model Checking Critical PLC Programs

defined in the PLC code due to the automated generation process and the various restrictions of the

formalisms. These have to be replaced with names that are meaningful to the user.

The result of this phase is the verification report (see Figure 3.13 for example): a self-contained

document produced automatically that includes the details of the verification case, the result of the

verification and the reduced diagnostic trace, if applicable.

Continuous verification. Besides the graphical user interface, PLCverif offers a command line

interface too. It allows to set up a “continuous verification” (regression verification) workflow imple-

mented using Jenkins
13
, where a job automatically rechecks all verification cases on each commit to

the version control system, then the results are sent by e-mail
14
. This ensures that every version of

the source code is automatically checked, furthermore the verification will not be skipped due to lack

of time or computational resources, therefore it helps the acceptance and usage of the verification

workflow in practice.

Figure 3.12: PLCverif verification case definition

form (based on [c13])

Figure 3.13: PLCverif verification report

(based on [c13])

Publications related to this section. This section is based on [c13], a tool paper about PLCverif. Additional discussion

about the chosen technologies can be found in the technical report [r24]. A detailed overview of the verification workflow

through a real case study is presented in [c16].

3.8 Case Studies

This section is dedicated to the case studies related to the presented verification workflow. First, the

verification of non-safety-critical reusable PLC modules is presented in Section 3.8.1, then the verifi-

cation of a safety logic is discussed in Section 3.8.2.

13https://jenkins-ci.org/
14

The implementation required for the integration of PLCverif with Jenkins was a joint work with M. Lettrich and C.

Tsiplaki Spiliopoulou.

60

https://jenkins-ci.org/

3.8. Case Studies

The primary goal of these case studies is to demonstrate that the verification of real-life PLC

programs is feasible using the proposed verification workflow, furthermore problems can be found in

this way. It is also presented that the proposed reduction techniques are useful and beneficial, they

make the verification feasible in practice.

Each described measurement was executed on a PC with the following configuration: Intel Core

i7-3770 3.4 GHz CPU, 8 GBmemory, HGST Travelstar Z7K500 HDDwithWindows 7 x64 and .NET 4.0

framework. For the measurements PLCverif 2.0.3 and nuXmv 1.1.1 tool versions were used.

3.8.1 Usage for UNICOS Baseline Objects

One of the original motivations of this work was the verification of the reusable, basic components of

the PLC applications used at CERN. This part describes UNICOS, the PLC framework used at CERN

and the verification of certain base components of UNICOS.

UNICOS. UNICOS
15
(Unified Industrial Control System) is a CERN in-house framework to develop

PLC-based industrial control applications. It mainly covers the supervision and the control layers of

the classical industrial process control systems [Bla+11].

This framework consists of a library of generic objects, a development methodology, and a code

generation tool. The resource package of UNICOS for continuous process control (UNICOS-CPC
16
)

contains 24 generic objects, the so-called baseline objects. These basic building blocks represent I/O

objects (e.g. digital and analogue inputs and outputs), interface objects (parameters and statuses ex-

changed between the supervision and control layers), field objects (representations of physical equip-

ments, e.g. valves, motors, heaters, etc.) and control objects (e.g. alarms, PID control). These are the

basic components of every UNICOS program. Besides the baseline objects, each UNICOS project con-

sists of application-specific specification files and the implementation of custom logic. The specifica-

tion describes the instantiation of the baseline objects and the connections between them. The custom

logic contains the application-specific PLC code. Based on the baseline objects and the application-

specific data, the source code for the supervision and control layers can be generated automatically.

This makes the application development easier and faster, moreover makes the different applications

across CERN uniform to ease themaintenance and operation. Furthermore, it reduces the risk of faults

by reducing the amount of handwritten source code.

UNICOS-based applications are used widely at CERN in large installations, such as the LHC, par-

ticle detectors (e.g. ALICE, CMS, ATLAS) and other experimental facilities (e.g. ISOLDE) mainly for

the control of the auxiliary systems such as cooling, gas, cryogenics, and vacuum systems. UNICOS

has also been applied in other areas, such as interlock-based applications (e.g. LHC collimators) or

motion systems (e.g. winding machines).

As it was described earlier, every UNICOS application is based on the same baseline objects. The

source code of these objects has been created manually based on a non-formal specification. As they

are common components of every UNICOS application, it is crucial to ensure that the code of these

components is correct. Indeed, manual and automated testing is already applied for the baseline ob-

jects, however, no formal verification was used since their development.

Verification examples. The verification workflow and PLCverif was used for various parts of UNI-

COS, and various aspects of these verifications were reported in [c16; j3; c14; c15].

15

Visit http://cern.ch/unicos/ for more details about UNICOS. This introduction of UNICOS is an extended version of an

excerpt from [r24].

16http://cern.ch/ucpc-resources/

61

http://cern.ch/unicos/
http://cern.ch/ucpc-resources/

3. Model Checking Critical PLC Programs

Informal description: If there is a rising edge on A, and B is true, then C shall be true.

Precise description:
If in Cycle N : A is false and B is true, and

in Cycle N + 1: A is true and B is true,

then C shall be true (in Cycle N + 1).

Tabular description:
Cycle N Cycle N + 1

Assume (at the end of the cycle) ¬A ∧ B A ∧ B
Check (at the end of the cycle) — C

Figure 3.14: Requirement pattern with rising edge detection

Here an updated version of the verification case discussed in [c16] is presented. This verification

case was targeting the OnOff UNICOS baseline object that represents a field object with binary state,

e.g. a heater, valve or motor. This object can be operated in various modes, and changes between these

modes were analysed. A requirement was extracted from the documentation of this baseline object.

The informal requirement was formalised using the pattern shown in Figure 3.14.

This allowed the formalisation of the informal requirements. Furthermore, it was possible to au-

tomatically generate the IM based on the given SCL program code. Table 3.2 shows the key metrics of

the IM before and after reductions. It can be seen that the non-reducedmodel contains many variables,

causing a large potential state space (PSS). The size of PSS is an upper estimation of the reachable state

space size, as the state space exploration of the non-reduced model was not possible with the available

model checker tools. After the various reductions, the model size dropped significantly, as depicted

in Figure 3.15(a) for the key IM elements. Of course, this increases the model generation time, but the

difference is negligible compared to the gain in the execution time of the verification. This is a clear

evidence of how the reductions can make the verification faster, and in most cases feasible at all.

After the reductions and the generation of the concrete syntax for the nuXmv model checker

tool, the given requirement was evaluated in less than a second. The requirement was not satisfied

and a counterexample was given. Using the counterexample, together with the UNICOS experts, we

identified the cause of this violation. Later, this behaviour was identified as correct and we realised

that the documentation of the verified object was incorrect, which was then fixed. A more detailed,

step-by-step discussion of this verification case is in [c16], from formalisation of the implementation

and the requirement, through model generation and reduction, until finding and fixing the cause of

the error.

Table 3.2: Key metrics of the OnOff IMs with the given requirement

Metric Non-reduced model Reduced model

Potential state space 3.83× 10242 8.72× 108

Number of variables 259 28
Model reduction time — 0.12 s

Total model generation time 0.09 s 0.21 s

Total run time (out of memory) 0.9 s

The usage of the verification workflow showed real development problems too, additionally to

incorrect specifications. In another case the formal verification of a baseline object revealed an issue

62

3.8. Case Studies

which was caused by a missing parenthesis and/or wrong operator precedence assumption in a com-

plex requirement (see Listing 3.2, the outmost parentheses in yellow were not included originally).

This problem may block the operation of the represented equipment (e.g. a pump) in certain special

cases. When it was first revealed, the experts judged this as a false positive, a condition that is prac-

tically impossible. Months later, after a long investigation of a real issue in the cooling system of the

LHC, the same root cause was found, proving that the identified problem might occur in reality. After

this, the baseline object was corrected and the absence of this issue in the new version was proven us-

ing formal verification. The issue occurred once more nearly a year later in production, in a non-LHC

experiment’s cooling system, where the fix of the baseline object was not deployed yet.

1 IF ((PEnRstart AND (E_MEnRstartR OR AuRstart) AND NOT FuStopISt) OR (PEnRstart AND PRstartFS
AND (E_MEnRstartR OR AuRstart))) AND NOT fullNotAcknowledged THEN

2 EnRstartSt := TRUE;
3 END_IF;

Listing 3.2: Extract of the source code causing the violation of the requirement

To facilitate the use of formal verification and to better integrate PLCverif into the development

workflow, a continuous verification workflow was set up. Currently, every time a new version of any

baseline object is committed to the version control system, all previously defined verification cases

are checked on the new implementation. This is completely transparent to the user and it does not

consume local computation resources, as the verification is performed on remote servers. If any of

the requirements are not satisfied by the new implementation, an e-mail notifies the developers.

These integration and usability efforts together allowed some of our developers to directly use

PLCverif. They were able to find, analyse and fix problems in the baseline objects autonomously,

without requiring assistance from formal verification experts. The usage of PLCverif and the discus-

sion of the results by the UNICOS baseline object experts raised a wide variety of questions related to

requirements, intended behaviour, consistency and correctness of implementation. Thus the advan-

tage of using formal verification is not only to find hidden issues in the implementation, but also an

increased understanding of the behaviour, with a special focus on the corner cases.

3.8.2 Usage for Safety Controller17

The operation of the LHC at high energies requires strong magnetic fields to bend the particle beams.

This is achieved by using superconducting dipole magnets. These magnets should be tested before

putting them into production. For this, CERN has a unique testing facility (so-called SM18 Cryogenic

Test Facility) where the magnets can be tested at low temperature (1.8 kelvins, achieved by liquid

helium and nitrogen), high currents (up to 14 kiloamperes) and vacuum. Testing the magnets is a

safety-critical task, as a failure may cause serious damage or injury. Therefore a safety instrumented

system is in use to allow or forbid the magnet tests based on whether their preconditions are met.

The SM18-PLCSE (PLC pour la sécurité, safety PLC) is responsible to ensure the safety of some of the

magnet tests by allowing or forbidding them based on the current status of the various auxiliary sys-

tems (vacuum, cryogenics, etc.). In this project we have applied formal methods from the beginning of

the development. The STL implementation (generated from the LAD implementation by the Siemens

development environment) of this safety logic is relatively complex, consisting of about 9,500 STL

statements. The SCLr representation of this program contains about 125,000 SCL statements, due to

the complex logic, resulting in many nesting stack operations.

17

The following introduction and the measurements are based on Sections 1 and 4 of [c9].

63

3. Model Checking Critical PLC Programs

After the successful representation of the safety logic in SCLr language, we have captured pattern-

based requirements from the tabular specification provided by the client of the project. As this was

the first safety-critical PLC program verification project at CERN, the requirements were extracted

by the author, closely collaborating with the developers, rather than by the PLC program developers

autonomously. In total 24 different requirements were extracted and formalised using requirement

patterns. Some of them are fairly simple, while some others contain references to up to 50 different

variables. In these cases even with the help of the requirement patterns, it was difficult to express the

intended requirements.

In each case the verification was successfully executed, thanks to the requirement-specific and

general reductions that reduced both the number of variables and automaton locations. These reduc-

tions were able to eliminate all register-representing variables in every case. The typical verification

run time of each requirement was 150–170 s, including the model generation, the model reductions

and the execution of the external model checker (nuXmv). In case of some requirements, only a small

part of the model was enough for the verification of the given requirement, therefore the reductions

were able to eliminate a large part of the IM, resulting a total run time of 4–5 s. The total run time

of all 24 verification cases together was 43 minutes. The peak memory consumption of PLCverif was

2926 MB, however as the implementation is in Java, this number is an upper estimation of the re-

quired memory. The peak memory consumption of nuXmv was 570 MB. In these cases the reductions

performed the significant part of the verification, the external model checker was easily able to cope

with the reduced model. Even the longest nuXmv execution time was shorter than 30 s, and in many

cases it was less than a second. However, according to our experiments, the model checking could not

be possible at all without these reductions.

Some key metrics of the verification of two selected requirements are presented in Table 3.3.

Furthermore, Figures 3.15(b) and 3.15(c) show the effects of iterative IM reduction loops. For example,

the number of IM locations was reduced from the initial 125,000 to 10 in case of Requirement 1, to 26

in case of Requirement 1.

Requirement 1 is a simpler safety requirement that can be evaluated based on only a fraction of

a model, and most of the variables can be easily removed by the COI reduction. Requirement 2 is a

complex safety requirement expressing that the main power converter can only be turned on if all

the necessary conditions are satisfied.

Table 3.3: Key metrics of the SM18-PLCSE IMs with the given requirements

Metric Non-reduced model Reduced model

Requirement 1 Requirement 2

Potential state space 3.4× 10978 1.44× 1018 1.16× 10104

Number of variables 588 10 91
Model reduction time — 7.6 s 162 s

Total model generation time 12.2 s 9.7 s 167 s

Total run time (nuXmv crashed) 9.0 s 186 s

Similarly to the previous example, a continuous verification workflow was set up here as well to

ensure that each new version is verified, also to discharge the development machines from the heavy

load of the verification process.

After performing the case study we have concluded that the verification was successful, as it

was possible to model and verify the critical part of the PLC program. We have applied an iterative

workflow: every time the model checking pointed out a problem, we have suspended the verification

64

3.9. Related Work

process until the root cause of the problem was identified and fixed. Then the verification process

restarted with the new code version. In total 12 issues were directly identified using this verification

workflow. We have classified the problems found into the following main categories:

• 4 requirement misunderstanding problems. In these cases the formalisation of the requirements

pointed out ambiguous or contradictory elements in the non-formal specification provided by

the customer, overlooked during implementation.

• 3 functionality problems. In these cases the problem could have caused unexpected behaviours,

but not dangerous situations.

• 3 safety problems. In these cases the problem could have caused dangerous situations, i.e. a

magnet test might be permitted when it should not be allowed.

• 2 mixed functionality-safety problems.

All these problems were found before on-site testing of the PLC program. As the (re)deployment

and the on-site testing are time-consuming operations, model checking provided an efficient verifi-

cation method. Furthermore, model checking does not involve the use of real hardware, therefore no

dangerous situations can happen, contrarily to on-site testing.

As testing in lab and on site provides the state-of-the-practice in the verification of PLC-based

systems, we have checked whether the problems identified using formal methods could have been

possibly found using the typically applied testing methods. Setting up a test scenario on-site may

take up to hours, therefore only the main functionalities and their most critical errors are targeted,

potentially omitting problems. Out of the 8 functionality or safety issues, 4 could have been found

using testing. In the other 4 cases it was practically impossible to find the problem using our regular

testing approach, as the testing is not exhaustive in practice.

Publications related to this section. The PLCverif model checking workflow was first applied to UNICOS baseline

objects in [r24]. A detailed verification case study of the UNICOS OnOff object is in [c16]. The case study of the verification

of the SM18-PLCSE system is described in [c9].

3.9 Related Work

The formal verification, and more specifically the model checking of PLC programs is an interest-

ing topic both in academia and industry. A plethora of various approaches were proposed since the

mid-1990s for formal verification of PLC programs. Over the following 20 years various solutions

were proposed to verify PLC programs in different languages, using various approaches to ensure

scalability. However, the application of model checking is still far from wide-spread in the PLC-based

industrial control software development. Many of the proposed solutions are summarised and clas-

sified in [Ova+16; FL00]. These surveys focus on the technical aspects of the methods (Which model

checker is used? Which PLC languages are supported?). While these are valid and important aspects,

the current discussion is focused more on usability aspects. Thus the main question is the following:

Which approaches can be used in practice without excessive effort required?

As it was discussed in Section 3.2, for real-life usability the method should not rely on manu-

ally created formal models. There are interesting approaches with manual modelling: e.g. Nellen et al.

[NÁW15] model the SFC program and the model of the controlled plant together with hybrid au-

tomata, Soliman et al. [SF11] verify the safety function block library defined in PLCopen manually

using UPPAAL. However, in the following we restrict the discussion to methods that rely on PLC

programs as inputs. The most relevant related works are summarised in Table 3.4.

65

3. Model Checking Critical PLC Programs

0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Locations

Transitions

Variables

Variable assignments

0

200

400

Reduction iterations

N
u
m
b
e
r
o
f
e
l
e
m
e
n
t
s

Element

Locations

Transitions

Variables

Variable assignments

(a) Effects of the reductions on the OnOff baseline object with the given requirement

0 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8

Locations

Transitions

Variables (×100)

Variable assignments

0

1×10
4

2×10
4

3×10
4

4×10
4

5×10
4

6×10
4

7×10
4

8×10
4

9×10
4

1×10
5

1.1×10
5

1.2×10
5

1.3×10
5

Reduction iterations

N
u
m
b
e
r
o
f
e
l
e
m
e
n
t
s

Element

Locations

Transitions

Variables (×100)
Variable assignments

(b) Effects of the reductions on the SM18-PLCSE safety logic with the requirement (1)

10

10
2

10
3

10
4

10
5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Iteration

N
u
m
b
e
r
o
f
e
l
e
m
e
n
t
s

Element

Locations

Transitions

Variables

Variable assignments

(c) Effects of the reductions on the SM18-PLCSE safety logic with the requirement (2)

Figure 3.15: Effects of reductions

66

3.9. Related Work

Table 3.4: Automated formal verification approaches based on PLC programs

Supported Demonstrated
Reference Tool languages scalability Verifier

Barbosa (U. Rio Grande do Norte, BR) [Bar12] − IL, ST, SFC, LD, FBD • ProB

Biallas et al. (RWTH Aachen, DE) [BBK12; BKS12; Bia16] + IL, ST, STL ••• Arcade

Canet et al. (ENS Cachan, FR) [Can+00] − IL • CaSMV

Gourcuff et al. (ENS Cachan, FR) [GSF08] − ST •• NuSMV

Helder (TU Eindhoven, NL) [Hel16] − SCL •• CBMC, . . .

Huuck (U. Kiel, DE) [Huu03] − IL, SFC •• CaSMV

Jee, Yoo et al. (Korea AIST, KR) [YCJ08; Jee+10] + FBD ••• CaSMV

Lange et al. (RWTH Aachen, DE) [LNN13] − IL •• Z3

Pavlović et al. (Siemens, DE) [PPK07; PE10] − STL, FBD •• NuSMV

Sadolewski (TU Rzeszow, PL) [Sad11] − ST • Why

Sarmento et al. (U. São Paulo, BR) [Sar+08] − LD • UPPAAL

Sülflow et al. (U. Bremen, DE) [SD08] − IL •• MiniSat

Darvas, Fernández et al. (TU Budapest, HU & CERN, CH) [j3] + SCL, STL, . . . ••• multiple

Usability and tool support. The main feature of our presented work and the PLCverif tool is that

the complete verification workflow is hidden from the user, as this is a key feature for the usability of

the approaches. The column “Tool” in Table 3.4 denotes by “+” the methods including tool support for

the complete verification workflow. In many cases, only the model generation is supported by tools. For

example, according to [Huu03], the CaSMV model representation of the PLC programs is generated

by their command line tool SFChecker, however it seems that this tool does not provide support for

the complete verification workflow.

While the generation of the formal model is one of the most cumbersome phases in the verifi-

cation, the users should not be exposed directly to the verification tools. Besides PLCverif, only two

tools provide such overall support: Arcade.PLC [BBK12] and FBD Verifier [Jee+10].

The closest to our work is Arcade.PLC by Biallas et al. [BBK12]. This is a model checker tool

supporting multiple PLC languages (different variants of IL and ST) and includes built-in reductions

(CEGAR, predicate abstraction). The verification is performed by their verification engine and not by

external model checkers, which causes significant differences in the design decisions. “Arcade.PLC

is the first tool to combine fully automatic verification, efficient abstraction techniques, support for

different PLC programming languages and a graphical user interface” [BBK12]. The scalability and

the efficiency of the reduction methods were proven in [BKS12]. The recent thesis of Biallas [Bia16]

shed light to many underlying techniques of the Arcade.PLC tool. This work, similarly to the current

work, presents an intermediate representation and various model reductions. According to [Bia16],

besides CTL formulae, Arcade.PLC supports the evaluation of requirements given as safety automata,

aiming to facilitate the requirement specification for non-expert users.

The FBD Verifier tool provides also support for various phases of the verification workflow: model

generation (including the FBD to Verilog translation) and counterexample visualisation are discussed

in [Jee+10].

Neither Arcade.PLC, nor FBD Verifier provide adequate solution for the user-friendly requirement

specification that could hide temporal logic expressions from the users. The lack of support for SCL is

another aspect why these tools could not be used in the practice of CERN. By using the requirement

patterns, our method implemented in PLCverif covers the complete verification workflow hiding all

formal details.

67

3. Model Checking Critical PLC Programs

Languages. Most of the methods focus on single PLC languages, as it can be seen in column “Sup-

ported languages” of Table 3.4. Exceptions are [Bar12] (supporting all standard languages, but assum-

ing that they are provided in a convenient XML representation), [BBK12] (supporting IL, ST and SCL)

and [PPK07; PE10] (supporting STL and FBD via STL). Furthermore, most related approaches support

the standard version of the languages [I61131-3], only [BBK12; Hel16; PPK07; PE10] consider the dif-

ferences between the standard language definitions and the Siemens implementations. While this is

understandable from the scientific point of view, the lack of support for e.g. Siemens PLCs and for the

variants of the ST language reduce the wider applicability of any model checking method. Both SCL

and STL contain features compared to their standard equivalents (ST, IL) that need special support.

Our presented verification workflow provides support for multiple languages thanks to its inter-

mediate model, also to the native support of SCL which is not present in any other known approaches

besides the recent work [Hel16].

Intermediate representations. The approach presented in this thesis is not the only one using an

intermediate verification model. Arcade.PLC contains an intermediate representation (IR; cf. [Bia16,

Sec. 3.4.4]). However, this targets abstractions and representations for SAT solvers, while our IM aims

to be suitable for external model checker tools. Šusta [Šus03] formally defined APLC, an abstract

PLC machine, which can serve as an intermediate representation between the real PLC code and a

timed automaton representation. Syntactically and semantically APLC is close to low-level IL (STL)

language. This approach is not a complete PLC model checking solution, thus it is omitted from Ta-

ble 3.4.

Reductions and scalability. To compare the related works, a key aspect is the scalability of the

approaches. Many of the described verification workflows do not provide any specific way to reduce

or optimise the models, to simplify the verification problem. Typically, these methods cannot scale up

to real, industrial cases.

Certain works paid special attention to the reductions and the scalability. In [GSF08] a compact

modelling was suggested for PLC programs, where practically the output variable values are directly

expressed using the input values and stored values. This was proven to be an efficient modelling

for some cases, but it also imposes certain restrictions (e.g. loops and non-Boolean variables are not

supported). Additionally, blocks with complex logic (such as the UNICOS baseline objects) may result

in highly complex expressions using this method. [BBK12; Bia16] provide counterexample-guided

abstraction refinement (CEGAR), predicate abstraction and slicing. As they rely on their own model

checker, the reductions are more tightly integrated with the verification engine than in our case. The

solution in [LNN13] implements constant folding based on interval analysis, program slicing, forward

expression propagation, etc. Some of these reductions are similar to the ones included in the current

work.

The implementation of the referred works are not available (except Arcade.PLC), therefore the

assessment of the scalability can only be done based on the case studies and usage examples described

in the cited papers. For this reason, instead of a precise comparison, only a three-level scale is used in

the “Demonstrated scalability” column of Table 3.4 (where • means the lowest level of demonstrated

scalability, ••• the highest). For example, [Sad11] provided an example with 15 lines of ST code,

[LNN13] with up to 250 IL statements and [YCJ08] with thousands of function blocks and variables.

Thanks to the reduction heuristics included in our verification workflow, it was possible to verify

for example the safety logic of the SM18-PLCSE system, whose implementation consists of about 9,500

STL statements that were translated into more than 120,000 SCLr statements (see Section 3.8.2).

68

3.10. Summary and Future Work

Verification approach. Many of the works in Table 3.4 parse the PLC programs, which are then

translated to state machine-like formalisms, e.g. to NuSMV or UPPAAL models. Some other works

translate the programs to ANSI C and verify using existing theorem proving tools ([Sad11]) or verifi-

cation tools for C programs ([Hel16]). Lange et al. [LNN13] perform bounded model checking using

the Microsoft Z3 solver. Barbosa [Bar12] constructs B models of the PLC programs and uses the ProB

model checker.

The used verification approach influences the requirement specification possibilities too. The ap-

proaches using NuSMV, CaSMV or UPPAAL as underlying verifiers (see the “Verifier” column of Ta-

ble 3.4) can benefit from the CTL and LTL model checking included in the tools (restricted CTL only

in case of UPPAAL). Some other methods ([LNN13; Sad11; Hel16]) support only assertions (practically

reachability properties only). An exception is [SD08]: they use the SystemC models generated from

the PLC code to perform equivalence checking between the implementation and a reference model.

The definition of the reference model is not discussed in [SD08].

It has to be noted that according to the reviewed papers, none of these approaches support require-

ment patterns for the specification of requirements that was found to be helpful in our experience.

Semantics of STL programs. Certain works targeted the verification of STL (Siemens IL) pro-

grams. For example, Sülflow and Drechsler [SD08] discussed the problem of STL semantics when they

translated the STL programs into SystemC for verification. A SystemC-based semantics representa-

tion is given for certain instructions, but for example the nested logic statements were not targeted.

Pavlović et al. [PPK07] target the formal and informal STL semantics too and provide similar repre-

sentations as presented here in Appendix D.2 (p. 137). However, determining the precise semantics

despite the lack of formal semantics definition is not discussed, and therefore the nesting stack was

not targeted in their work. Meulen [Meu10] provides formal semantics for the STL language. The

discussion of the instructions is more complete here than in [PPK07; SD08], but the instructions with

more complex semantics are not targeted here either.

Contrarily, the verification workflow presented in this dissertation provides a simple way to sys-

tematically explore the semantics of the STL instructions. By doing this for the Boolean and arithmetic

instructions, the verification of certain safety-critical Siemens PLC programs was made possible.

3.10 Summary and Future Work

This chapter discussed a verification workflow specifically targeting the model checking of PLC pro-

grams. The workflow is centred around an intermediate model that makes the method easily exten-

sible. It also helps to apply reduction techniques, improving the performance of the model checking.

This verification workflowwas extended to support safety-critical PLC programs through the STL

language. This required the identification of the precise semantics of STL and development of new

reductions.

The implementation of the verification workflow and the real-life usability were demonstrated by

showing real use cases where PLCverif, the implementation of the verification workflow was able to

identify problems in the requirements and the implementations.

Correctness of the approach and implementation. In this chapter the proof of correctness was

not targeted. It is a difficult task to formally prove the complete workflow and its implementation.

The translation between the PLC program code and the intermediate model, the model reductions,

the translation from the IM to the concrete syntax of the model checkers and the external model

69

3. Model Checking Critical PLC Programs

checkers were tested on numerous real examples and special examples implementing corner cases.

More thorough verification would be possible for the parts of the workflowwhich are implemented by

me, but not for the external model checker tools. However, as the PLCverif tool does not aim to certify

or prove the correctness of the checked PLC programs, furthermore the complete workflow could not

be proven to be correct (due to the dependence on external model checkers), more extensive correct-

ness checking was not a priority so far. It is worth noting that we have not observed any false positive

verification results in real use cases caused by problems with the workflow or the implementation.

The contributions targeted in this chapter were the following.

Thesis 2 I contributed to the development of a generic, flexible workflow to apply model

checking to PLC programs without requiring extensive formal methods knowledge from the

users. I designed essential parts of this workflow, as follows.

2.1 I designed an intermediate model (IM) language that can represent PLC programs and can

act as a pivot language for different model checkers. The IM-based model checking is a

fully automated method that can be used by developers who are not familiar with formal

verification techniques.

2.2 I developed heuristics to automatically reduce the size of the intermediate models, making

the model checking workflow less resource-demanding.

2.3 I extended this model checkingworkflow (originally developed only for SCL programming

language) to support the PLC programming languages used in the development of safety

PLCs: FBD and LAD, via the STL language.

2.4 I implemented the proposed model checking workflow in the PLCverif tool, providing

push-button verification to the developers based on the source code of the PLC program

and the pattern-based requirement specification. I evaluated the real-life applicability of

this workflow using various PLC modules and applications developed and used at CERN.

Thesis 2.1 was discussed in Section 3.3 which presented the IM language used in the verification

workflow. The various IM reduction heuristics were shown in Sections 3.5 and 3.6.3 (Thesis 2.2). The-

sis 2.3, the extensions to support safety-critical PLC systems (and therefore the STL programming

language) was described in Section 3.6. Finally, Section 3.7 described PLCverif, the tool implementing

the described verification workflow and Section 3.8 presented real-life case studies about the applica-

bility of the verification workflow (Thesis 2.4).

Future work. Currently, PLCverif is in a prototype phase, therefore it is used only at CERN. Future

work includes additional development in order to make it stable, and publicly available. This would

open the door to wider usage. The wider usage will necessarily impose PLCverif to additional types

of PLC programs, and certainly some of them will require the design and development of new or

improved reduction methods and the integration of additional model checker tools, which are also

planned for the future. In addition, it is planned to relax the assumptions on the input PLC programs,

e.g. to allow the usage of pointers.

The planned generalisation of B-I-Sat will allow to include the work described in Chapter 2 in

PLCverif and the detailed performance evaluation of B-I-Sat for model checking PLC programs.

70

Chapter4

Formal Specification for PLC Modules

Motivation. Software faults are inevitable part of the any development process. Formal verification,

e.g. model checking can be a solution to improve the quality of the produced software. The work

presented in the previous chapters demonstrates that model checking can be applied for verification

of industrial control software.

However, any verification technique depends on requirements to be verified. “Until we know the

right properties, the best verification technology imaginable will do us no good.”
1
This is an important

challenge in the verification of PLC programs too. Most often the available specification is high-level,

informal and ambiguous; sometimes non-existing or out-of-date. Incomplete, ambiguous and wrong

specifications are the sources of many bugs in every software. Certain authors estimate that up to (or

over) 60% of the software faults are made in requirements and design phases [SW89].

In Chapter 3 the usage of requirement patterns reduced the gap between the available informal

requirement descriptions and the formal requirements needed by the model checker tools. However,

this does not solve the issues related to the source of the requirements. In many of our previous

verification case studies on real systems, the source of the problems was the specification, not the

implementation. In other words, we have found many discrepancies between the specification/docu-

mentation and the implementation, but because the specification was ambiguous, partial or incorrect.

This finding does not mean that the implementation is correct and only the specification is wrong,

that – from the operation point of view – would not be a serious issue. It rather shows that the precise

specification is a bottleneck of formal verification, and it is difficult to extract or formalise complex

requirements against which the implementation could be checked.

The lack of precise specifications and therefore the missing detailed verification of the implemen-

tation is especially crucial in two cases: if a programmodule has a higher criticality (e.g. safety-critical

PLC programs), or in case of often-reused modules (e.g. UNICOS-CPC baseline objects), where a fault

may affect a large number of installations. Therefore in this chapter we are focusing on the specifica-

tion of PLC modules and simple safety logics, rather than on large, complex PLC applications.

Use cases. Various use cases of formal specification are targeted in this chapter. The most obvious

of them is the development of new software, where in the future formal specification could be used

instead of the current practice of using informal, textual descriptions. Besides, the methods proposed

should provide solutions for already existing (legacy) applications, where the implementation cannot

1

Quote from Pamela Zave. Personal communication, 9 August 2014, Marktoberdorf.

71

4. Formal Specification for PLC Modules

be changed. Furthermore, situations should be kept in mind in which the manual implementation is

mandatory, e.g. for safety-critical PLC programs.

Goal. The goal of the work presented in this chapter is to propose a behaviour specification lan-

guage that is adequate for the specification of PLC modules. These specifications should be formal,

but easy to understand, specific for the domain; improving the quality of the specified software and

the communication between the customers and the developers (process and control engineers) at the

same time.

Such specification language should target various use cases and provide different advantages:

• An appropriate formal specification language can help the precise description of requirements

which can increase the understanding of the behaviour, and therefore aid the development and

the communication with the clients.

• The well-formedness and consistency of a formal specification can be checked, furthermore the

satisfaction of pre-defined invariant properties may be precisely analysed.

• A complete, formal specification can be the source of code generation, reducing the need for

manual work.

• In some cases code generation cannot be applied. To check the correspondence between the

implementation and the specification, conformance checking can be used.

It is worth noting that by complete specification we do not mean specifying everything, especially

because “[i]n general, it is impossible, when writing specifications, to include everything you want”

[Smi85].We are only focusing on describing the complete behaviour of PLC programs, i.e. the expected

outputs for any inputs in each state.

A plethora of formal specification languages has been proposed over the last decades. However,

the methods to be proposed in this chapter follow the same principles as in Chapter 3: they should be

practice-oriented, easy-to-use, and adapted to the targeted domain [c8].

Structure of this chapter. The structure of this chapter is as follows. Section 4.1 overviews the

general and domain-specific requirements for a formal specification language that can be used for

PLC modules. Section 4.2 is dedicated to the related work on formal specification and conformance

checking methods, with a special focus on the PLC-related languages. Section 4.3 introduces PLC-

specif, a novel formal behaviour specification language for PLC modules. This section discusses the

syntax and semantics of the language. Section 4.4 presents some of the verification possibilities pro-

vided with PLCspecif. Section 4.5 describes the code generation based on a PLCspecif specification.

Section 4.6 introduces conformance relations and the method for conformance checking. Section 4.7

provides evaluation and real-life examples of the usage of PLCspecif. Section 4.8 concludes and sum-

marises the chapter.

4.1 Requirements Towards a Specification Language2

This section overviews the general and domain-specific requirements which have to be satisfied by a

formal specification language in order to be practically usable in the PLC software development. The

already existing specific formalisms will be discussed later, in Section 4.2.

2

This section is a extended and modified version of the Section II of [e19].

72

4.1. Requirements Towards a Specification Language

4.1.1 General Requirements

Previous work in the literature can point to necessary requirements and best practices of develop-

ing a new, domain-specific specification language. In this part the most relevant general works are

summarised.

First of all, a (formal) specification should satisfy obvious general requirements, e.g. it has to be

correct, unambiguous, consistent and verifiable [I830].

A formal specification by itself may help the development, however the support for verification

can largely improve the quality of the specification and the implementation. For example, support for

consistency and well-formedness checking may reveal specification problems and could ensure that

the specification is not contradictory. Supporting the definition and verification of invariant prop-

erties can further improve the quality of the specification. Equivalence and conformance checking

between the implementation and specification can prove that the implementation matches the spec-

ified behaviour.

In 2000, van Lamsweerde published a survey [Lam00] on existing formal specification languages

and a roadmap for the future. The conclusion of the paper is that “formal specification techniques

suffer a number of weaknesses”. Such weaknesses are for example:

• Limited scope (i.e. the specification can only capture a part of the system),

• Poor separation of concerns (i.e. the intended properties, the environmental assumptions and

the properties of the application domain overlap),

• Too low-level ontologies,

• High cost, and

• Poor tool support.

Van Lamsweerde states that future formal specification languages should be lightweight (i.e. not

requiring deep formal methods expertise), at least partially domain-specific, structured, multiparadigm

and multiformat (i.e. integrating multiple languages and letting the specifier use the best for the cur-

rent needs, thus for each subsystem the most appropriate language shall be chosen, or different lan-

guages might be necessary for specifying functional and extra-functional requirements). The general

advices like the “average software engineer” should be the target (not the formal methods expert)

or that the specification should “provide reasonably fast and visible reward” seem to be obvious, but

often overseen. The expected benefits of formalising the specification method are “a higher degree of

precision in the formulation [. . .], precise rules for their interpretation and much more sophisticated

forms of validation and verification” [Lam09]. Van Lamsweerde writes also that “there is a long way

to go before formal specifications can be used by the average software engineer to provide reasonably

fast and visible reward.” Despite this statement being made 15 years ago, it seems to still be true.

Knight et al. approached the question “Why formal methods are not used widely?” more practi-

cally. In [Kni+97] they designed an evaluation framework to assess formal specification languages.

Furthermore, they selected three specification languages (Z, PVS, Statecharts) and applied them for

a subsystem of a nuclear reactor. Then, the specifications were assessed by nuclear engineers and by

developers not expert in formal methods. After a short training period, the general idea and the main

advantages of formal specification were welcomed and understood. For the nuclear engineers Z and

PVS were too complex, but Statecharts were claimed to be effective for communication and easy to

learn, although difficult to search and navigate. The authors emphasise that often overseen features

are also recommended to help the industrial usage. These comprise the support for documentation

and readability, e.g. by including free-text annotations connected to the elements of the specification.

A possible reason why Statecharts [Har87] are often welcomed by the non-computer engineers can be

the fact that it was not developed in a purely academic environment, but in strong collaboration with

73

4. Formal Specification for PLC Modules

avionics engineers, taking their habits and knowledge into account [Har07]. This language was based

on the informal, explanatory figures drawn by the engineers, thus the starting point of the language

was close to the engineer’s way of thinking.

A good example of Statechart-based languages is the RSML (Requirements State Machine Lan-

guage) formalism. In [HLR98] the authors discuss some lessons learned, like simplicity and readability

are “extremely important” [HLR98]. The lessons learned in this project are summarised in [LHR99],

where five key problems are listed: (i) the large semantic distance between the constructedmodels and

the reviewer’s mental model, (ii) the difficulty of focusing on requirements instead of implementation

(building black box models), (iii) the error-prone features of formal specification languages, (iv) the

expensiveness of producing formal specifications, and (v) the inability to detect incompleteness and

other problems in the requirements. Our current work focuses on the specification of low-level mod-

ules, thus the requirements and the implementation are close to each other, but the rest of the findings

are useful.

The relevant work of Teufl et al. collects needs of the industrial practitioners towards a model-

based requirements engineering tool for embedded systems [TKM13]. In their survey the highest

ranked requirements were the support for various different representations, document generation,

expression of non-functional requirements, and for maintaining traceability links; not formal verifi-

cation or automated code generation.

Pang et al. presented a recent survey [Pan+16] on user-friendly specification languages that can

be used directly by the industrial practitioners. They conclude that “for requirement formalisation,

templates and patterns based on domain ontologies can greatly simplify the composition of FSL [for-

mal specification language] formulae.” This was also demonstrated in Chapter 3, where the usage

of requirement patterns made model checking accessible to the non-expert developers. Furthermore,

Pang et al. emphasise the need for “syntaxes and notations close to the domain languages used by

industry practitioners” [Pan+16] and the importance of tool support and visual languages.

Summary of general requirements. Based on the previous overview, the following key general

requirements can be collected.

GRa. Lightweight method. The specification formalism should be easy to learn and easy to use

without the need of deep formal methods expertise.

GRb. Domain-specific method. The specification should be close to the mental model of the users

and the practices of the domain. This reduces the required specification effort and improves the

usability.

GRc. Reduced expressivity. Rich languages can provide rich features, but also more space for prob-

lems and they can require longer training period. The reduced expressivity helps to avoid the

usage of error-prone features. We are looking for a specification method with a “Goldilocks ex-

pressivity”: a formalism that is expressive enough for the specification of the targeted systems,

but not too expressive, in order to reduce the chance of errors.

GRd. Variety of supported languages. This is a consequence of the previous two needs. To provide
domain-specific languages with reduced expressivity, multiple formalisms might be needed, as

the same description method cannot fit all uses. This way for each specified part the most

appropriate formalism can be used. This reduces the need for rich, general-purpose languages.

GRe. Support for verification. Support for checking the requirements (consistency, completeness,

etc.) is needed.

GRf. Support for documentation. Support for documentation and readability is required.

74

4.1. Requirements Towards a Specification Language

4.1.2 Domain-Specific Requirements

The motivation of this work is a real insufficiency in the PLC domain, therefore it is indispensable to

address the existing problems and particularities of the domain. Many specification language-related

requirements can be extracted from the previously developed PLC programs and by discussing the

challenges with the developers. The main domain-specific needs and challenges are summarised be-

low based on the experience gained at CERN.

DRa. Events with proper semantics. Although the execution of PLC programs is cyclic and not

event-triggered (interrupt-driven), the concept of events still exists (in a latent way). In fact,

many Boolean inputs represent events or external actions aiming to modify the internal state

of the controller. Events should be treated as “first-class citizens” in the specification. It is also

important to adopt an event semantics that is appropriate for the PLC domain. Due to the cyclic

behaviour, we cannot have the assumption which is usual in event-triggered systems that all

previous events are fully handled before a new event is triggered. As in a PLC multiple events

can happen simultaneously, the priority of events has to be defined. If multiple contradictory

events happen (e.g. both the “open valve” and “close valve” events occur), the one with the

highest priority should suppress the events with lower priorities, but several independent events

may trigger in the same cycle.

DRb. Clean core logic. PLC programs work directly with physical input and output (I/O) signals,

therefore a significant part of the programs has to perform input and output handling. While

this task is unavoidable, decoupling the I/O-handling helps to focus on the core logic. As the

PLCs have limited resources, the developers try to minimise the number of variables, but this

approach is not needed to be followed in the specification. In the specification, it is important

to use “concepts” rather than expressions, i.e. it is better to define named expressions (practically

internal variables for specification purposes only) defined by expressions on the input variables,

and to use these named expressions in the definition of the logic.

DRc. Hierarchical, modular structure. To support reuse and the abstract design of specification,

the language should provide a hierarchical, modular structure. Hierarchy and modularity helps

to “divide and conquer”, to have a simple logic in the leaf modules (i.e. modules that are not

further decomposed), and to avoid the duplicated specification of the same submodules.

DRd. Time-dependent behaviour. As PLCs can have time-dependent behaviour, the proposed for-

malism should support timed models. This behaviour is generally captured by timers in PLCs.

Three types of timers are defined in the corresponding standard [I61131-3]: TP (signal puls-

ing), TON (on delay), TOF (off delay). Each timer type has a different semi-formal semantics

described in [I61131-3]. These standardised timers should be part of the language as modules,

because they are widely used and well-known by the automation engineers.

DRe. Relaxed conformance relations. Verifiability is an important property of any formal speci-

fication language. Equivalence and conformance checking are powerful tools to check the cor-

respondence between the specification and the implementation. However, in case of control

software sometimes the strict equivalence is not mandatory, as the reaction time of the phys-

ical process might be orders of magnitudes slower than the controller’s cycle time. Therefore

relaxed, more permissive conformance relations might help the developers to focus on the real

differences and exclude the acceptable differences between the specification and the implemen-

tation.

Publications related to this section. The general and domain-specific requirements towards an appropriate practice-

oriented, PLC-specific formal specification language were discussed in [e19], also briefly in [c12].

75

4. Formal Specification for PLC Modules

4.2 Related Work

This section overviews the previous work related to formal specification methods. First, the widely-

known languages are discussed (Section 4.2.1), after the various earlier equivalence and conformance

checking methods are targeted (Section 4.2.2).

4.2.1 Formal Specification Languages

The specification of various systems is always crucial, especially in the field of safety- or mission-

critical systems. Thus obviously the different specification methods are deeply studied and various

languages are proposed.

General-purpose formal specification languages. There are several well-known, general-

purpose formal specification languages that are relatively widely used in computer science. The For-

mal Specification Languages working group of the International Organization for Standardization

(ISO) maintains two standardised formal specification notations: the VDM-SL (Vienna Development

Method Specification Language) [I13817-1] and the Z Notation [I13568]. There are other widely-

known formal specification notations, such as the AbstractMachine Notation of the B-Method, Alloy
3
,

communicating sequential processes [Hoa85], or PVS (Prototype Verification System) [ORS92] speci-

fication language. Thesemethods require deep knowledge from the user. However, they are not purely

theoretical, there are many published industrial case studies: for example, the B-Method was used in

the development process of automatic subway systems [Beh+99] or for car diagnostics [Pou03].

The Lustre [Hal+91] and Esterel [BG92] formal languages were made known and used by ANSYS

(originally: Esterel Technologies) SCADE, a software suite for model-based control software design,

targeting highly critical uses, such as avionics, railway industries or defence. SCADE is a “quite rare

success story in the domain of formal methods” [Hal05]. Although the languages and the tools were

designed targeting control engineers specifically, in the ICS domain the usage of SCADE would need

too high effort and resources, not justified for the experienced level of criticality.

Most of these specification languages have a common issue: their usage needs deep expertise in

the field of formal methods and mathematics, thus typically they cannot be used in cooperation with

the domain experts. This fact restricts their usage to some special cases where the cost of a failure

would be extremely high, and where for this reason involving specialists and higher training costs

are justifiable. Therefore these methods cannot be used directly in typical PLC software development

processes. Furthermore, these languages are not targeting industrial control software specifically. For

this reason, even after considerable training effort the specification using these languages is a difficult,

complex task, as these languages do not satisfy most of the domain-specific requirements discussed

in Section 4.1.2.

Different extended versions of state machines, such as Harel’s Statecharts [Har87] or the UML

(Unified Modeling Language) state machines [UML11] are more commonly used and accepted, par-

tially because the knowledge level required for their usage is significantly lower. The original State-

chart formalism suffered from some serious problems, which induced new formalisms: Beeck in 1994

compared already 20 different variants of Statechart [Bee94]. An interesting specification language

based on the Statechart formalism is RSML (Requirements State Machine Language) which extends

Statechart among others with tabular expression definition methods. It was used for the specification

of the TCAS II (Traffic Collision Avoidance System) of airplanes [HLR98]. Tabular notations, provid-

ing cleaner expression definitions, were already proposed by Parnas in [Par92], then later for state

3http://alloy.mit.edu/alloy/citations/case-studies.html

76

http://alloy.mit.edu/alloy/citations/case-studies.html

4.2. Related Work

machines in [HKB08]. A common weakness of the Statechart variants is the lack of unambiguous

formal semantics and that they cannot capture all kinds of requirements efficiently (e.g. data-flows),

thus they are not suitable on their own for the specification of arbitrary industrial control software.

Moreover, the semantics is not defined formally, although there were various attempts to formalise

different subsets of the Statechart or UML state machine formalisms, e.g. [LMM99; Pin07; DDd03;

Liu+13; Bee02]. Furthermore, the provided solutions do not fit to the PLC domain and using only a

Statechart-like formalism does not provide a convenient method for specifying PLC programs, e.g.

behaviour of modules with many numeric state variables are difficult to be captured.

The Simulink Stateflow is another Statechart-like, widely-used formalism. It originally does not

have a formal semantics definition, but later attempts were made for its formalisation [Ham05]. Initial

experiments showed that it has a semantics even richer than the original Statecharts which – without

special adaptation to the industrial controls software – makes its usage error-prone and cumbersome.

Other works target the problem of describing individual requirements or scenarios instead of

providing complete behaviour specifications. CTL and LTL were already introduced in Chapter 2 as

languages capable of precisely describing requirements. Improvements and extensions to expressivity

were proposed for example in [EF18] to make temporal logics more practical. The Property Specifi-

cation Language (PSL) is a more user-oriented assertion language that can describe desired invariant

properties, mainly targeting concurrent systems [FMW05; Gla+07]. Requirements can also be de-

scribed using various requirement patterns [DAC99; CMS08], as discussed before. Other languages,

such as the Message Sequence Charts (MSCs) and Live Sequence Charts (LSCs) provide formalisms

to describe visually possible, necessary and forbidden behaviours [HT03; DH01].

These languages provide means to describe individual requirements. This is definitely useful for

the formal verification, but our motivation for using formal specification languages is to provide a

complete description of the behaviour of certain PLC modules. Therefore these languages are not

directly applicable in our case.

After realising that the widely-used specification languages do not provide appropriate solutions

for the considered use case, the focuswas set to domain-specific formal specification languages, specif-

ically targeting the industrial control software.

PLC-specific specification languages. Even though there are many clear advantages of using

formal specifications, this is not a common practice for the development of industrial control software.

A survey for the MEDEIA European project in 2009 stated that the most widely used specification

tool for these systems is Microsoft Word [CLS09]. Semi-formal methods, such as UML are used in

addition in some cases.Writing textual specificationsmay not need special expertise, but its ambiguity

can cause misunderstanding, incorrect implementation, thus increased verification and maintenance

effort.

Several researches target specifically the (semi-formal or formal) specification of PLC programs

[Lju+10; KLC06; ZGS11; GCG10; Wan+09] (see Table 4.1 for a brief summary). Even if they contain

valuable ideas, (i) they propose rather mathematical formalisms that need high level of expertise in

the formal methods field; (ii) the semantics is not clear or not appropriate; or in other cases (iii) the

solutions are too close to the implementation level.

The column “Easy to learn” is a subjective classification of how easy it is to master the formalism

(• denotes the most difficult, ••• the easiest). The “Precise semantics” column indicates whether there

is a precise, formal semantics definition available. This also determines if the formal verification is

77

4. Formal Specification for PLC Modules

possible based on the method. The “Code generation” column indicates whether the method incor-

porates automated implementation synthesis (+) or not (−). The “*” indicates that restrictions apply,

detailed in the following.

Grafcet is a widely-used, standardised [I60848] specification language that has been developed

for about 40 years. Even though Grafcet has its roots in Petri nets, it does not have a defined formal

semantics and various authors proposed different formal semantics [PRF11a]. Furthermore, it targets

only certain specific types of control software, therefore it could not be used in our development

process. The SFC language defined in [I61131-3] is based on Grafcet, and has a wide tool support.

As SFC programs can be directly executed on most PLCs (or compiled to the appropriated format),

Grafcet is implementable in practice. However, the semantics of the different SFC variants do not fully

match the semantics of Grafcet.

ST-LTL [Lju+10] is a PLC-specific adaptation of the LTL formalism. This is a formal language that

can be easily checked on the implementation, as the requirements are close to the formal requirements

needed by model checkers. On the other hand, the ST-LTL formalism is not close to the automation

engineers’ general knowledge. Furthermore, it is difficult to scale with the growing size and com-

plexity of the module to be specified, and it might be difficult for the developer to see whether the

specification is consistent and complete [e19].

Another method relying on LTL is G4LTL-ST [Che+14]. It uses a set of LTL requirements and

based on them it synthesises a satisfying implementation in standard ST language. While the promise

of automated code generation based on declarative requirements can be appreciated, defining precise

behaviour with a set of LTL requirements is extremely difficult even for users experienced in for-

mal methods. In an experiment small snippets of real PLC code used at CERN were specified using

LTL. By the time the specification became complete it was too complex to handle and the generated

implementation was also hundreds of times longer than the original code.

NuSCR, based on SCR (Software Cost Reduction) is a formal specification language targeting

the requirements of real-time embedded software, especially in nuclear domain [Yoo+05a; Yoo+05b].

The NuSCR method is incorporated in NuSEE (Nuclear Software Engineering Environment), an “in-

tegrated environment for software specification and V&V for PLC based safety-critical systems”

[Koo+06]. NuSCR provides a visual, state machine-based formalism with tabular extensions, then

based on the specification automated generation of PLC program in FBD. In [Yoo+05b] a formal se-

mantics definition is also provided. However, it seems that NuSCR does not provide appropriate solu-

tion for (sub)modules that are difficult to describe using state machines. Moreover, the state machines

of NuSCR can easily become complex, thus error-prone. Furthermore, the level of details given in the

cited paper does not allow a precise evaluation of the method.

ProcGraph [GLK13; Luk+13] is a recent approach to the specification of PLC programs. This is

also a state machine-based solution that can be convenient for certain cases, however based on the

presented examples it seems that ProcGraph provides only a partial solution for specification and

a large amount of PLC code is included directly in the specification. ProcGraph provides means to

generate PLC programs implementing the specification automatically, but the lack of formal semantics

definition reduces the possibility of verifying the specification.

A similar, state machine-based specification is GrafTab [So95], but it lacks the formal semantics

definition too. Furthermore, it includes only an informal overview of the implementation, but it seems

that the automated implementation generation is not targeted.

It is worth to mention the safety automata formalism used in Arcade.PLC to specify safety re-

quirements. This is a non-deterministic automata-based notation that can recognise all acceptable

behaviour of a program [Bia16]. The expressivity of this formalism is reduced, thus it does not aim to

78

4.2. Related Work

Table 4.1: PLC-specific specification languages

Base Easy to Precise Code
Language/Method formalism learn semantics generation

Grafcet [I60848] Petri net ••• − +*

ST-LTL [Lju+10; LÅF10; Lju11] LTL • + −
G4LTL-ST [Che+14] LTL • + +*

NuSCR [Yoo+05b] state machine, tables •• + +
ProcGraph [GLK13; Luk+13] state machine •• − +
GrafTab [So95] state machine, tables •• − −*

PLCspecif multiple •• + +

be a complete specification method, instead it facilitates the description of safety properties for model

checking.

Many authors provided UML or SysML-based specification, design and implementation solutions,

e.g. [VWK05; TF11b; Vog+14; Häs13]. Even if they can help to reduce the semantic difference between

the design phase and the implementation phase, an important gap remains between themodelling lan-

guage and the developer or customer. UML is often considered to be part of the “common knowledge”

of computer and software engineers, thus it can be used as a base language. However, this is not true

for the targeted domain, as “UML is not familiar to most process control practitioners and is perceived

as too complex” [Luk+13]. The UML or SysML-based approaches cannot be fully adapted to the do-

main or reuse the already used formalisms, thus we do not further discuss these approaches. A more

complete overview of the various UML or SysML-based approaches can be found in [Luk+13].

Besides, certain specification works target explicitly the PLC-based systems based on the

IEC 61499 standard [I61499-1]. As this standard is not widely supported by the PLC vendors yet,

we do not consider these approaches appropriate for our usage.

Others (e.g. in [TF11a]) try to develop specification methods based on the piping and instrumenta-

tion diagrams (P&ID) that is an IEC standard diagram [I62424] representing the process equipments

and instrumentations along with their interconnections. Although P&IDs do not carry all the nec-

essary information for the implementation of a control software, this might be an interesting and

appropriate approach for the user-friendly specification of complete control applications. However,

it does not provide solution for the specification of PLC modules, which is the target of this work.

4.2.2 Equivalence and Conformance Checking4

Equivalence and conformance relations have a long history. Already in 1981, Back summarised and

described various refinement and equivalence relations in [Bac81]. Tretmans described the ioco rela-
tion [Tre96] a decade later to check the conformance between a specification and an implementation.

[Lam+11; Pha13] are recent works introducing newer relations responding to various needs. How-

ever, all of these works target mainly reactive systems, where the level of required conformance is

typically high. In cyclic transformational systems, such as PLC-based control systems this leads to

numerous discrepancies that are considered to be “false positives”, i.e. not relevant from the practical

point of view.

Sülflow and Drechsler [SD08] applied strict, non-timed equivalence checking based on a SAT

solver to verify PLC programs against their specifications. Provost et al. [PRF14] check the strict con-

formance between a specification (given as a Mealy machine [PRF11b]) and an implementation by

4

This discussion is based on the Section VI of [c6].

79

4. Formal Specification for PLC Modules

generating test sequences. Equivalence checking between FBD programs were targeted through Ver-

ilog in [YCJ09], between FBD programs and ANSI C programs in a similar fashion in [LYL11]. Besides

these works, applying equivalence and conformance relations specifically to PLC-based systems was

not targeted until the very recent works of Weigl, Beckert, Ulewicz et al. [Bec+15; Ule+15; Wei15].

Their goal is to perform regression verification on PLC programs, i.e. to check the conformance of

two different PLC programs. For this purpose two relations are defined: the perfect equivalence, when

the two PLC programs should give the same output sequence if the same input sequence was given;

and the conditional equivalence, which relaxes the requirements of perfect equivalence: the two im-

plementations should produce the same output only if a certain condition is met (practically the two

implementations can give different output for impossible input scenarios).

One of the goals of their work is to complement testing by defining and checking sensitive confor-

mance relations. For example, a one-cycle-long delay in the output might mean a delay of 1–100 ms

on the output which needs high precision measurements to be checked using testing. However, in

many cases such a small delay does not affect the controlled process in an observable way, therefore

in these cases the two compared artefacts can be considered as conformant to each other despite the

minor differences. Therefore more permissive conformance relations are needed.

4.3 Syntax and Semantics of PLCspecif5

Based on the analysis of the requirements and the related work, no suitable formal specification

method was found that could help the development of ICS in practice without excessive effort. This

observation resulted in a project of designing a new, PLC-specific specification language according

to the requirements discussed before. This section describes PLCspecif, the result of this work: a new

behaviour specification language for PLC programs.

The discussion starts with the structure of the PLCspecif specifications (Section 4.3.1). Then the

expression description methods (Section 4.3.2) and the core logic description methods (Section 4.3.3)

are presented. Finally, an informal semantics is presented in Section 4.3.4.

This section provides only an informal overview of the specification language. For the detailed

formal syntax and semantics definition the reader is referred to the technical report [r22].

4.3.1 Structure of the Specification

Themain building block of a PLCspecif specification is themodule that is either a compositemodule (its

behaviour is described by several submodules) or a leaf module (its behaviour is directly described).

To provide a specification method that is familiar for the PLC developers, the leaf module descriptions

are based on three widely-known formalisms: state machines, data-flow diagrams, and standard PLC

timers. Typically the behaviour described by the composite modules is the sequential composition of

the submodules’ behaviours. An exception is the alternative module, where based on a condition one

of the submodules will determine the behaviour.

Each module (both composite and leaf modules) is further decomposed into three main parts:

(i) input definitions, (ii) core logic description, and (iii) output definitions. According to the semantics

of PLCspecif, these parts are executed sequentially in a loop, following a structure similar to the cyclic

execution scheme of the PLCs.

In the input definitions part, named expressions can be defined to simplify the specifi-

cation. For example, if there are three digital inputs representing three buttons (Button1,

5

This section is an adapted excerpt from [c12].

80

4.3. Syntax and Semantics of PLCspecif

«abstract»

Module

«abstract»

LeafModule
CompositeModule

submodules

0..*

AltModule
– condition :

BooleanExpression

1 onTrue

1 onFalse

StatemachineModule IoConnectionModule «abstract»

TimerModule

Figure 4.1: Abstract syntax (metamodel) of PLCspecif module structure [e19]

Button2, Button3), but the program provides the same response to pressing any button, writing

Button1 OR Button2 OR Button3 in the core logic makes the understanding more difficult. In-

stead, the user can specify a ButtonPressed expression that is defined once and used later in the

core logic. This helps to decouple the physical structure (i.e. three digital inputs) from the concepts to

be used in the core logic (i.e. one of the buttons was pressed). Some special inputs, called event inputs,

can also be defined. An event input is an expression with Boolean type that has a priority assigned.

The input definitions are followed by the core logic description part. Several formalisms can be

used here that are introduced later, in Section 4.3.3.

The output definitions part is responsible to assign values to the output variables, based on the

input values and the core logic (e.g. the current state of a state machine). This helps to keep the core

logic clean. Including the output variable assignments in a state machine (as entry/exit actions or as

transition actions) might make the state machine difficult to overview, therefore it is error-prone
6
.

Optionally, the output definitions part can be followed by invariant properties. These are addi-

tional requirements and assumptions identified during the specification phase that are not obviously

described by the core logic, but have to be satisfied by the module.

4.3.2 Expression Descriptions

The input or output definitions may contain complex expressions. While the arithmetic form is suit-

able to describe simple expressions (e.g. a OR b), it does not scale up well. PLCspecif supports the

usage of other expression description methods: AND/OR tables and switch-case tables.

AND/OR tables were introduced in the RSML formalism [Lev+91], but were not widely used since.

In an AND/OR table each column represents a case, which is true if in all the rows the value of the

expression in the row header equals to the value in the corresponding cell of the case. The whole

expression is the disjunction (or-connection) of the defined cases. The symbol “·” denotes a “do not

care” value. Figure 4.2(a) shows an example, representing the a AND NOT b AND (c OR NOT d)

(a ∧ ¬b ∧ (c ∨ ¬d)) expression in a tabular format.

Switch-case tables are based on similar principles as the CASE constructs of various programming

languages. Figure 4.2(b) shows an example, representing Value, limited by lower limit PMin and

upper limit PMax. The formal semantics of these tabular descriptions can be found in [r22].

6

It has to be noted that the timer and input-output connection modules may assign certain variables, while the state

machine modules cannot assign any variables.

81

4. Formal Specification for PLC Modules

Case 1 Case 2

a true true

b false false

c true ·
d · false

(a) AND/OR table

Value Value

< PMin > PMax Result

Case 1 true · PMin

Case 2 false true PMax

Case 3 false false Value

(b) Switch-case table

Figure 4.2: Tabular expression description examples [c12]

4.3.3 Core Logic Descriptions

A single formalism cannot conveniently fit the different types of modules (with state-based, data flow-

oriented and time-dependent behaviours). Therefore three different types of core logic descriptions

are included in PLCspecif: state machines, input-output connection descriptions and PLC timers. They

are discussed in the following paragraphs.

In the following we focus on the state machine module due to space restrictions. The input-output

connection and timer modules are introduced informally, and for further information the reader is

referred to [r22].

State machine module. A state machine module is composed of hierarchical states and transitions.

A state can be single (that cannot be further decomposed) or composite (grouping several basic states

together). A single state is either a basic state or a deep history pseudostate. A basic state represents a

real state of the module. A deep history state can store the last active basic state in a composite state,

similarly to UML State Machines. A deep history state may never be active and it should not have any

outgoing transitions.

A transition can go from any state to a single state
7
(basic or deep history state). It can have

a Boolean expression as guard condition: the transition can fire only if the expression is evaluated

to true. There are two types of transitions: event-triggered (that has an attached trigger event) and

non-event-triggered (without trigger event).

The structure of the state machine module may look similar to UML State Machines. However,

there are some important differences, e.g. the event-triggered transitions and their semantics, no ac-

tions can be attached to transitions or to entering or exiting states, or the restrictions on the target of

transitions. The precise structure (metamodel) of the state machine modules is shown in Figure 4.3.

An example state machine can be seen in the core logic part of Figure 4.5.

Input-output connection module. State machines are suitable for modules that are stateful and

the state to be stored can conveniently represented by a handful of states in the specification. However,

if the state can only be described by some integers or real numbers (e.g. storing previous measure-

ments or value requests), state machines are inappropriate and we propose the usage of input-output

connection modules. The idea of the input-output connection module is inspired by Function Block

Diagrams (FBDs) [I61131-3] and similar data flow-like formalisms. It graphically defines how the out-

puts of the module should be assigned based on the current inputs and outputs from the previous

cycles.

7

Transitions going to composite states are not allowed as they could make the semantics of a state machine more

difficult to understand.

82

4.3. Syntax and Semantics of PLCspecif

«abstract»

LeafModule

StatemachineModule

Transition
– name : String

Event
– name : String
– priority : int = 0

Expression

Expression

«abstract»

AbstractState
– name : String

«abstract»

SingleState
CompositeState

BasicState DeepHistoryStatedefaultState

1

initialState 1

rootState 1

parentModule

0..1

containedStates

1..*

containerState 0..1

transitions 0..*

trigger

0..1

transitions

0..*

triggerExpression 1

guard 0..1

events 0..*

outTransitions

0..*

from

1

to

1

0..* inTransitions

Figure 4.3: Metamodel of the PLCspecif state machine modules (based on [r22])

This module description consists of pins representing input and output values, and edges repre-

senting data connections between pins. Furthermore, it contains blocks, representing common func-

tions (e.g. logic operations, arithmetic operations, selection), user-defined functions, and platform

functions.

Figure 4.4 shows a simple example
8
. Here, the variable ValueOutput keeps its previous value

if the Boolean input Sample is false. If Sample=true, the new value of ValueOutput will be

−1× ValueRequest.

New values

ValueOutput

ValueRequest

ValueOutput

Sample

Multiply
in1

in2

out

Select

on true

on false

?

Old values

−1

(×)

(MUX)

Figure 4.4: Input-output connection core logic example [c12]

PLC timers. The state machines and input-output connection modules of PLCspecif do not contain

timed behaviours in order to keep their description and semantics simple. However, it is crucial to be

able to define time-related operations. Statemachines are often extended by clock variables to describe

time, but this method is error-prone. It also does not fit to the existing knowledge of the target group.

8

The example is practically an n-bit latch (where n depends on the used data types), which stores the multiplicative

inverse of the data input, when it is enabled.

83

4. Formal Specification for PLC Modules

ExampleModule
This module represents value limiter. If it is enabled, the output value is within the limits given

as parameters. If disabled, the output is always 0.

Assigned inputs:
• ValueReq : INT16 Value to be limited.

• EnableReq_fromLogic : BOOL

• EnableReq_fromScada : BOOL

• EnableReq_fromField : BOOL

• DisableReq : BOOL

• PMin : INT16 param Lower limit.

• PMax : INT16 param Upper limit.

Assigned outputs:
• Value : INT16
• Status : BOOL

Input signal definitions: — (none)

Event input definitions:
•@disable⇐ rising edge(DisableReq) (pri=1)

•@enable⇐ EnableReq_fromLogic OR EnableReq_fromScada OR EnableReq_fromField (pri=2)

Core logic (state machine)

Disabled Enabled

@enable

@disable

Output signal definitions:
• _Value = ValueReq ValueReq

< PMin > PMax result
T · PMin

T PMax
F F ValueReq
F

• Value = in_state(Enabled) result
T _Value
F 0

• Status = in state(Enabled)

Invariant properties:
• ALWAYS PMin ≤ Value ≤ PMax ASSUMING PMin ≤ PMax

If the limit values are valid, the output is always within the limits.

Figure 4.5: Example module specification [c12]

Instead, we propose to use PLC timers defined in IEC 61131-3 [I61131-3] (TP, TON, TOF) as separate

PLCspecif modules. Their semantics is well-known by the developers and they can use these timers

confidently.

Example. Figure 4.5 shows the specification of a simple state machine module. The described compo-

nent is a combination of a flip-flop and a multiplexer. If the module is enabled, its Value output is the

ValueReq input, limited by PMin and PMax. The module can be enabled by having a “true” signal in one

of the EnableReq inputs. If there is a rising edge on the DisableReq input, the module will be disabled,

and in this state the Value output will be 0. Disabling the module has priority over enabling. The module

keeps its state if no enable or disable request is received.

In the example one can observe the structure and general elements of the specification, the decoupled

input/output handling, and the different ways of specifying expressions. To help the understanding, each

part of the specification can be annotated by textual descriptions.

84

4.3. Syntax and Semantics of PLCspecif

4.3.4 Semantics of PLCspecif9

This part presents the informal semantics of PLCspecif. The detailed formal semantics definition is

described in [r22]. In addition, Appendix E (p. 145) provides an illustration of the formal semantics

by defining the underlying automata formalism, and the pseudocode of the translation algorithm for

the state machine modules.

The semantics of the specification language could be formalised in various ways, e.g. by giving

operational or axiomatic semantics. Instead a more practical approach was chosen and the formal se-

mantics of PLCspecif is defined based on automata theory, as a construction of equivalent automata.

Automata have well-defined formal semantics, and can be easily extended by variables and variable

assignments. The semantics of a PLCspecif specification defined as an automaton extended with vari-

ables can be mapped easily to the control flow graph (or control flow automaton) of its implementa-

tion, helping to design a code generator that follows the formal semantics. Furthermore, by defining

the semantics based on automata, this semantics definition is close to the IM language that is used

for model checking in the verification workflow presented in Chapter 3. This allows the development

of a “PLCspecif to IM” translation which then helps to provide verification methods for PLCspecif, as

it will be discussed later in this chapter. The precise definition of the timed automata considered as

underlying formalism is in Appendix E.1 (p. 145).

The rest of this section discusses the semantics of the main features of PLCspecif: the general

representation of the composite and leaf modules, then the semantics of the statemachines and timers.

The semantics is described in a top-down manner, starting from the general module representation.

4.3.4.1 General Module Representation

Each module follows the same structure, therefore their semantics (the corresponding automata) are

also structured in the same way. The execution of both the leaf and composite modules start with

the evaluation of the input signal definitions and (in case of leaf modules) event input definitions.

Then, the module-specific part is executed. For a composite module, this is the sequential execution

of each submodule in their pre-defined order. For a leaf module, the core logic can be described as

a state machine, an input-output connection diagram or a PLC timer description. The semantics of

these specific parts are discussed later. After the module-specific part, the output values are set based

on the output signal definitions in their predefined order.

These common parts (i.e. the input and output signal definitions) are unconditional variable as-

signments, therefore they are represented as one single path in the automaton, where the consecutive

variable assignments are attached to consecutive transitions. The core logic between the input and

output definitions is defined separately for each module type. Figure 4.6 illustrates the structure of

the constructed automaton.

4.3.4.2 State Machine Representation

The syntax of the state machine module is similar to any hierarchical state machine formalism, but

the semantics is simplified and adapted to the needs observed in the PLC program development. For

instance, parallel regions are not allowed in the state machine, implying that there is always exactly

one active basic state in the module. The active composite states are implied by the active basic state

(all parent composite states of the active basic state are active too), therefore the active state configu-

ration can be represented by the active basic state only. This will be represented in the automaton by

9

This part is a modified and extended version of Section III-E of [c7] and [r22].

85

4. Formal Specification for PLC Modules

. . .

Input definitions

Event definitions

Output definitions

(only for leaf

Core logic definition

. . .

. . .

. . .

. . .
Submodule 1

Submodule n

ESF step 1

ESF step 2

Event-triggered

for composites for state machines

modules)

. . .
transitions

ℓ2

ℓ3

ℓ1

ℓ4

Figure 4.6: Illustration for semantics definition based on automata extended with variables [c7]

the variable activeStatewhose type is an enumeration of all basic states of the module. The default

value of this variable is the initial basic state of the module.

Enablement of transitions. A transition is enabled, if (i) its source state is currently active, (ii) the

condition of the transition is evaluated to true, and (iii) if it is event-triggered, the connected event

triggers (i.e. it is enabled and there is no enabled event with higher priority in that module). When an

enabled transition fires, the current active state of the state machine is changed to the target state of

the transition. A transition firing cannot cause any other effects (e.g. it cannot provoke actions or do

variable assignments, unlike for example in UML State Machines [UML11]).

Phases of transition firing. The execution of the state machine (i.e. firing of transitions) has three

phases: (i) an “exhaustive stabilisation firing step” (ESF step), (ii) the firing of at most one event-trig-

gered transition, and (iii) a second ESF step. The goal of the ESF steps is to ensure a stable state (to

leave transient states and reach a tangible state configuration in which the state machine waits for

the next event input), while the event-triggered transitions are the reactions to the incoming requests.

Note that in PLC specifications transient states having non-event-triggered transitions are typically

used for error handling purposes.

• In Phase 1, the ESF step exhaustively fires all enabled non-event-triggered transitions tNT. Here
we assume that the specification respects the well-formedness rules (defined in [r22]), including

that only a finite number of transitions can fire in any ESF step (thus infinite firing sequences

are not possible) and in each state at most one non-event-triggered transition can be enabled

(non-determinism is prohibited in the ESF step, but several non-event-triggered transitions may

fire consecutively).

The ESF step is represented by a location ℓ1 in the automaton (see Figure 4.6) and an

f = ⟨ℓ1 → ℓ1, g, v⟩ loop edge
10

for each non-event-triggered transition tNT of the state ma-

chine. The guard of tNT is represented by the automaton guard g of f , while the state change
caused by tNT (updating activeState) is denoted by the assignment v of edge f .

10

To avoid the confusion, we will consistently use transition for transitions that are defined in PLCspecif state machines

and edge for the state transitions in the constructed automaton.

86

4.4. Checking Invariant and Well-Formedness Properties on PLCspecif

• If there are nomore enabled non-event-triggered transitions, Phase 1 is over. This is represented

by an edge ℓ1 → ℓ2 in the automaton. The guard of this edge represents that nomore non-event-

triggered transitions are enabled. Then, in Phase 2, at most one event-triggered transition fires:

the enabled transition that is triggered by the triggering event input. According to the well-

formedness rules of PLCspecif, for each state of the state machine module, any event input e
cannot have multiple outgoing transitions triggered to e where the guards can be evaluated

to true at the same time. For each event-triggered transition tET we have an edge ℓ2 → ℓ3
with guard representing that (i) the source state of tET is active, (ii) the guard of tET is true

and (iii) its triggering event input is active. According to the assumption above, this automaton

representation does not have any non-determinism. If none of the event-triggered transitions

can fire, we proceed to the next phase without any state modification.

• Finally, in Phase 3, a second ESF step finishes the execution of the state machine in ℓ3. This
step can be skipped if there was no event-triggered transition firing. The ℓ3 → ℓ4 edge with

its guard represents that the second ESF step is over, there are no more enabled non-event-

triggered transitions.

The principles discussed up to this point are illustrated in Figure 4.6. More information can be

found in Appendix E.2 (p. 146) about the construction of a corresponding automaton for a PLCspecif

specification.

4.3.4.3 PLC Timers

We recall that PLC programs defined in PLCspecif may have timed behaviours that are isolated and

contained in timer modules (TimerModule in Figure 4.1). As these modules follow the standard timer

semantics defined in IEC 61131, we do not need an automata description for the semantics definition

or for the implementation. However, the formal verification requires a consistent model describing

both the non-timed and timed parts. The semantics of the PLCspecif timer modules are defined based

on timed automata [BY04] in [r22]. Accordingly, the semantics of state machine modules can also be

represented by timed automata, but without any clock variables. We defined these timed automata

in a straightforward way that matches the previously used automaton semantics. This way we can

have a consistent semantics for verification, but we do not have to face additional complexity in the

implementation or if no timers are used.

Publications related to this section. The high-level ideas of the structure of PLCspecif were published first in [e19].

Later, [c12] provided a more detailed discussion of the specification language, focusing on the point of view of the users.

The technical report [r22] provided a detailed syntax and formal specification definition.

4.4 Checking Invariant and Well-Formedness Properties on
PLCspecif

Motivation. A formal specification language allows the users to write unambiguous, precise spec-

ifications. However, this does not mean that the specification will be correct, i.e. it matches the inten-

tions of the specifier. In this section two different cases are considered.

• The base formalisms selected for PLCspecif, e.g. the state machines provide intuitive, easy-

to-understand descriptions of certain behaviours. However, some aspects of the specification

87

4. Formal Specification for PLC Modules

might remain hidden. For example, the functionality may be well-represented by state ma-

chines, but invariant (safety) properties may remain hidden (e.g. two given output variables

cannot have “true” values at the same time). These requirements can be additionally specified

in PLCspecif, which can then be verified on the specification itself.

• Formal specifications are prone to human errors, in the sameway as informal specifications. The

main advantage of using formal methods is the possibility of mathematically sound analysis.

For example, the satisfaction of various well-formedness rules can be checked. This can help to

write correct specifications without contradictions, forbidden constructs or certain unintended

behaviours.

The rest of this section discusses these two verification solutions and their applicability in more detail.

4.4.1 Verification of Invariant Properties

In line with the presentation in Section 4.3.1 each PLCspecif module can be extended with a set of

invariant properties. The goal of these declarative requirement specifications is to complement the

rather imperative function descriptions. If the specifier realises an invariant property to be respected

(e.g. two given variables should not be “true” at the same time or an output value should be within

certain limits) but based on the core logic definition it is not clear whether the property is always re-

spected or not, it can be explicitly included in the description. To formalise these invariant properties,

we can use requirement patterns as in Chapter 3.

It is not enough to define these requirements, their satisfaction should also be checked. Easy to

observe that checking these invariant properties is similar to the verification problem in Chapter 3.

The overview of this invariant checking workflow is shown in Figure 4.7. The only main difference

is that the source of the verification model is not the implementation, but a specification [c5].

IM generation

TL representation

of the property

IM reduction

External

verification

Reporting

Formal specification

Invariant property

Verif. report

Figure 4.7: Overview of the PLC invariant checking workflow

Mapping PLCspecif specifications to IM. Section 4.3.4 discussed that the formal semantics defi-

nition of PLCspecif was designed in a way that it is close to the IM of the verification workflow, thus

the PLCspecif specifications can also be represented by the intermediate model language.

The semantics of PLCspecif is formalised as a transformation to a timed automaton (as described

in Appendix E (p. 145)). Clocks and invariants are used only to describe the PLC timers (TON, TOF,

TP). An automaton corresponding to a PLCspecif specification without any timer modules can always

be translated to an IM, because the rest of the elements in the timed automaton (e.g. locations, edges,

variables) can systematically be translated to the corresponding elements (locations, transitions, vari-

ables) in IM. This systematic translation is described in Appendix E.3 (p. 152). If the IM is constructed

by mapping the elements of the TA to the corresponding elements of the IM, then the behaviour of

the IM and TA will be the same, as the semantics of the corresponding elements coincides on the level

of state-transition graphs (this way having the same small-step operational semantics).

88

4.4. Checking Invariant and Well-Formedness Properties on PLCspecif

The automaton describing a PLCspecif module cannot have conflict between two transitions,

therefore there could not be any semantic mismatch due to the different handling of non-determinism

between the timed automata formalism defined for PLCspecif and the IM.

For verification purposes, we represent the timers used in PLCspecif specifications as proposed

in Section 3.3.1. The same restrictions apply for the validity of the verification results as discussed

before.

This allows to reuse themodel checkingworkflow for invariant checkingwith no additional devel-

opment effort besides the implementation of the “PLCspecif to IM” translation. However, as it will be

discussed later in this chapter, other verification approaches (conformance checking) can also benefit

from this IM representation. As the verification workflow is practically the same in this case too as in

Chapter 3, we omit the further discussion of this method.

Example. The example specification in Figure 4.5 contains an invariant property: “ALWAYS PMin ≤
Value ≤ PMax ASSUMING PMin ≤ PMax”. This requirement seems to be obvious: the value Value is

assigned such that it is always within the limits specified by PMin and PMax. However, by verifying this

property formally it can be shown that the property is not always satisfied. If the interval between PMin

and PMax does not include 0, the requirement is violated when the module is disabled, as in that case the

output Value will be set to zero.

4.4.2 Static Analysis of Well-Formedness Rules

The formal abstract syntax definition of PLCspecif [r22] describes the metamodel of the specification

language, but also a set of well-formedness constraints (currently 72 different rules). These rules de-

scribe additional constraints that are not expressed by the metamodel. Any valid specification shall

respect all the well-formedness rules.

Most rules are simple, e.g. requiring name uniqueness, restricting data types, forbidding certain

connections. These rules can be checked by traversing the abstract syntax tree of any specification

and looking for violations of these constraints [c5].

Some constraints are more complex. For example, ruleWF-SM-8 in [r22] describes that the guards

of the non-triggered transitions leaving a given state should be mutually exclusive, i.e. there should

be at most one enabled transition leaving a given state. This ensures the lack of non-determinism. An-

other well-formedness constraint (WF-SM-6) describes that it should be forbidden to have an infinite

ESF step, i.e. there should not be any infinite firing sequence of non-triggered transitions possible.

These more complex requirements could be checked using model checkers, similarly to Sec-

tion 4.4.1. However, these rules can be formalised as Boolean satisfiability problems (SAT). For exam-

ple, consider having a state s with outgoing non-triggered transitions t1, t2, If these transitions
have guards g1, g2, . . . , respectively, then checking the well-formedness is equivalent to checking the

satisfiability of

∨
∀i,j : i ̸=j gi∧gj . The satisfaction of this formula can be checked by a SAT solver, such

as Z3 [MB08] that is used in our proof-of-concept implementation. If the given formula is satisfiable,

the well-formedness constraint is violated. The “witness” (model) returned by the SAT solver gives

an indication of the source of the problem (i.e. which transition pair is in conflict).

In this analysis it is assumed that all variables in the requirements are independent from each

other. This allows the lightweight, quick check of the well-formedness constraints, but this might

introduce false positives, reports of false well-formedness violations. If necessary, by representing

the complete specification in IM and using the model checkers can provide a more precise answer,

but typically it is more resource-consuming.

89

4. Formal Specification for PLC Modules

Publications related to this section. A brief overview of the verification methods related to PLCspecif was presented in

[c12; c7]. More details are provided in [c5].

4.5 Code Generation11

Motivation. A complete, concrete behaviour specification language (such as PLCspecif) may be the

source of automated implementation generation, which can greatly reduce the manual implementa-

tion effort. However, lowering the amount of manual work is only one of the motivations of providing

a code generation method for the proposed specification language. An additional reason for that is

to demonstrate that PLCspecif specifications are implementable (either manually or automatically).

Furthermore, this feature can be a justification for the increased specification effort required by using

a formal specification language (compared to the current informal specification practices), therefore

this may foster the acceptance of formal specification.

Requirements. The primary requirement towards a code generation method is to provide correct

code, more precisely an implementation whose behaviour corresponds to the behaviour described by

the specification. In the process control domain, a secondary, but still important requirement is to

generate an understandable code that can eventually be modified manually. In cases when the PLC

program should bemodifiedwithout stopping the PLC (e.g. urgent intervention), for technical reasons

the whole application cannot be redeployed, therefore the expert developers shall be able to read and

manually modify the code.

Example. To illustrate the concepts of code generation, a simple R-S flip-flop component has been selected

as an example. This flip-flop has two reset inputs and a set input. If one of the reset inputs is “true”, the

normal output (Q) of the component will become “false”. If the Set input is “true”, the output Q becomes

“true”. The outputs keep their state if there is no reset or set input. The reset input has priority over the

set input. Besides the normal output Q, its negated value should be also produced (notQ)12. The PLCspecif

specification of this component is presented in Figure 4.8.

Both transitions in Figure 4.8 are event-triggered, therefore in one execution at most one of them

can fire. Although there is a cycle in the state machine, an infinite firing sequence is not possible. In

this example, there is no ESF step. The automaton constructed following the semantics definition for this

example specification can be seen in Figure 4.9. As there is no ESF step in this example, the self-loops such

as ℓ1 → ℓ1 in Figure 4.6 are not present. The labels and colours correspond to Figure 4.6.

4.5.1 Overview of the Code Generation Method

Both the source and target languages (in our case PLCspecif and SCL code, respectively) have a con-

crete syntax, an abstract syntax and underlying semantics. The abstract syntax plays a central role,

as typically the concrete syntax and the semantics of the language are both defined based on that.

The code generation problem is to provide an implementation (i.e. source code) in concrete syntax for

a given specification in concrete syntax having corresponding semantics. The link to be established

is illustrated by the arrow a) in Figure 4.10. However, the implementation of the code generation is

typically a model-to-text (M2T) transformation from the abstract syntax of the specification or model

11

This section is an extended and adapted version of Section IV of [c7].

12

Defining both notQ and Q seems to be redundant, but it illustrates the fact that PLC programs often define several

similar outputs for convenience.

90

4.5. Code Generation

RSFlipFlop
This module represents a flip-flop with two reset

inputs and an edge-driven set input.

Assigned inputs:
• AutoReset : BOOL
•ManualReset : BOOL

• Set : BOOL

Assigned outputs:
• Q : BOOL

• notQ : BOOL

Input signal definitions: — (none)

Event input definitions:
•@reset⇐ AutoReset OR ManualReset (pri=1)

•@set⇐ Set (pri=2)

Core logic (state machine)

Off On

@set

@reset

Output signal definitions:
• Q = in state(On)

• notQ = NOT in state(On)

Invariant properties:
• ALWAYS Q ̸= notQ

Figure 4.8: R-S flip-flop module specification [c7]

@reset := AutoReset OR ManualReset

ℓ1 = ℓ2

@set := set AND NOT(AutoReset OR ManualReset)

[@reset AND

activeState=On]

activeState:=Off

[@set AND activeState=Off]

activeState:=On
[else]

Q := (activeState = On)

notQ := NOT(activeState = On)

Input definition

Core logic

Output definition

ℓ3

Figure 4.9: Automaton (extended with variables) describing the semantics of module RSFlipFlop [c7]

91

4. Formal Specification for PLC Modules

Specification Implementation

Concrete syntax

Abstract syntax

Semantics

Concrete syntax

Semantics

Abstract syntax

a)

b)

c)

(1)

(2) (3)

(4)

(PLCspecif) (SCL code)

(SCL code)

(SCL AST)

(CFA)(automaton)

L
e
g
e
n
d Existing connections (1–4)

Definition of code generation (a)

Implementation of code generation (b, c)

Figure 4.10: Overview of the definition and implementation of code generation (based on [c7])

to the concrete syntax of the implementation (arrow b) in Figure 4.10). To ensure that the seman-

tics of the generated code matches the semantics of the specification, the transformation should be

constructed based on the semantics definitions.

To provide the link a) of Figure 4.10, the following steps are needed (see also the green numbers and

arrows in Figure 4.10).

1. The concrete syntax of the specification (given by the specified) is internally represented using

its abstract syntax. This was briefly presented in Section 4.3.

2. The abstract syntax of the specification has to have well-defined semantics. In our case, the

semantics of the specification is based on its translation into an automaton (extended with

variables) which has a precise semantics. Section 4.3.4 already discussed this step.

3. The semantics of the implementation should correspond to the semantics of the specification.

The automaton-based semantics of the specification is systematically mapped to the control

flow automaton of the implementation, thus this is the basis of establishing the link. This step

is described in Section 4.5.2.

4. The concrete and abstract syntax of the implementation should correspond to the control flow

automaton semantics. This can be achieved as presented in Section 4.5.3.

4.5.2 Semantics Based on Control Flow Automata

We consider a control flow automaton as a generic low-level representation of program code, provid-

ing semantics for the programs.

Definition 4.1 (Control flow automaton, based on [Sut08]). A control flow automaton

(CFA) is a tuple CFA = ⟨Q, q0, qout , V,→⟩, where:
• Q is a finite set of locations,

• q0 ∈ Q is the initial (entry) location,

• qout ∈ Q is the exit location,

• V is the finite set of variables, and

• →⊆ (Q×G ×Q) ∪ (Q×VA×Q) is the finite set of transitions.
Each transition is labelled by a guard g ∈ G or a variable assignment a ∈ A. A guard is an

expression evaluated on the variables to a Boolean value. A variable assignment determines the

92

4.5. Code Generation

new values of the variables based on their current valuations. �

A CFA is similar to a control flow graph (CFG) [All70], but the operations label the edges instead

of the nodes, thus the nodes of a CFA serve only as “junction points”. Notice that a CFA cannot model

certain aspects of the programs, such as pointers, recursion, threads [Sut08].

The automaton extended with guards and variable assignments, as the one used for the semantics

description of PLCspecif is close to a control flow automaton defined above. The typical constructs

used in the automaton can be mapped to CFA structures. The generated code is based on the code

representation of these CFA constructs.

• The linear paths of the automaton (without any junction, e.g. the input and output definitions)

can be represented as sequential variable assignments.

• The loops used for the ESF steps of the state machines can be realised using loops in the CFA

(corresponding to WHILE loops in the abstract syntax tree (AST), where the exit condition of

the WHILE loop is the guard of the one single transition that leaves the location with the loop).

As the guards of the different loop edges in the automata should be mutually exclusive, their

order (the order of the corresponding state changes) can be arbitrary.

• The parallel transitions representing event-triggered transitions of the state machine module

can be represented using one or more conditional branches. The conditions of the automata

transitions represent checking the actual state of the state machine, the active event input and

the guard of the corresponding event-triggered transitions. The variable assignment connected

to an automaton transition alters only the active state of the state machine. As the guards of

these transitions are mutually exclusive, it does not matter in which order they are checked in

the implementation.

• Timed transitions and clocks are used only in the timer modules. As they are defined to match

the semantics of standard PLC timers, they can be represented directly with their standard

implementation, their timed automata representation is only used for verification purposes.

4.5.3 Generating the Concrete Implementation

In the previous sections we described the main concepts of the transformation to the implementation.

Section 4.5.2 presented which constructs of the concrete syntax could provide the required CFAs.

However, some questions were left open and it is practical to make some modifications.

Representing enumerated types. PLCspecif and the underlying automata formalism support

enumerated types for variables, e.g. activeState was defined with an enumerated type on all the

basic states of the module. The programming languages of some PLC manufacturers do not support

enumerated types, in these cases these variables can be implemented by an integer, or by n Booleans,

with an 1-of-n encoding. It is also possible to give a more compact encoding using ⌈log2 n⌉ Booleans.

Loop unfolding. The ESF step is essentially a loop until no more non-event-triggered transition

can be fired. While it is straightforward to implement this as a while loop, the usage of loops is often

regarded as bad practice in PLC programs since it is difficult to predict the execution time of a loop at

compilation time. The ESF steps are expected to be short, as they typically represent error-handling

related behaviour (e.g. maintaining a “healthy state”). Therefore we unfold these ESF steps, explicitly

representing each possible firing sequence. This allows the demonstration of the absence of infinite

loops.

93

4. Formal Specification for PLC Modules

1 FUNCTION_BLOCK RS_FF
2 VAR_INPUT
3 AutoReset : BOOL; // Reset request from logic

4 ManualReset : BOOL; // Reset request from operator

5 Set : BOOL; // Set request

6 END_VAR
7 VAR_OUTPUT
8 Q : BOOL; // Normal (positive) output

9 notQ : BOOL; // Negated output

10 END_VAR
11 // Events

12 VAR
13 _E_reset : BOOL; // Event Resets the RS flip-flop.

14 _E_set : BOOL; // Event Sets the RS flip-flop.

15 END_VAR
16 // State variables

17 VAR
18 s_Off : BOOL := TRUE;
19 s_On : BOOL;
20 END_VAR
21

22 // RS FF (RSFlipFlop)

23 // ==

24 // This module represents a flip-flop with two reset inputs and an edge-driven set input.

25 // ——————————–

26 // Events

27 _E_reset := (AutoReset OR ManualReset); // Event reset (pri=1)

28 _E_set := Set AND NOT _E_reset; // Event set (pri=2)

29

30 IF _E_reset AND s_On THEN // Transition tReset

31 s_On := FALSE; s_Off := TRUE;
32 END_IF;
33 IF _E_set AND s_Off THEN // Transition tSet

34 s_Off := FALSE; s_On := TRUE;
35 END_IF;
36

37 // Outputs

38 Q := s_On;
39 notQ := NOT (s_On);
40 // End of RS FF

41 END_FUNCTION_BLOCK

Listing 4.1: Code generated from the R-S flip-flop example specification

Event-triggered transitions. To obtain a CFA that exactly matches the automaton semantics, the

implementation of firing the (at most one) event-triggered transition between the two ESF steps would

consist of one single IF-THEN-ELSIF-ELSE block. A big monolithic block like this can be difficult

to read and understand. Instead, we split it into several conditional blocks based on the triggering

events. As at most one event can be active in an execution, this does not modify the semantics of the

implementation.

The code generated for the R-S flip-flop example (Figure 4.9) can be found in Listing 4.1. The

variables starting with s represent the currently active state in a 1-of-2 encoding. The variables

starting with E represent the currently active (at most one) event input.

94

4.5. Code Generation

4.5.4 Providing Readable Code

The code generation based on the principles discussed before satisfies the primary (correctness) re-

quirement. However, it did not take the requirement of providing readable code into account. To

tackle this problem, this secondary requirement should be further refined. The code generated based

on PLCspecif provides the following features to fulfil the secondary requirement.

• Readability. The code is indented correctly and uses whitespaces consistently.

• Understandability. The code is easily understandable. It follows a general structure similar to

the specifications’ structure, it is formatted to support the meaning (e.g. expressions are well-

formatted, an expression described by an AND/OR table in the specification follows a similar

structure in the implementation too).

• Configurability. The developer is able to configure the way of implementation, where the used

solution can be chosen from a set of possible ones (e.g. representing an enumeration using an

INT or several BOOL variables).

• Simplicity. The code should be regular, but as simple as reasonably possible. For example,

redundant variables should be avoided. Furthermore, unnecessary constructs, such as always

true expressions (tautologies) and unnecessary if statements should be avoided, trivial nested

conditional statements should be flattened, etc. This can be achieved by different configuration

options and by using simplification algorithms on the implementation (cf. Section 4.5.5).

Example. In case of Listing 4.1, it is unnecessary to have two separated variables for s On and

Q. In some cases, merging these variables could help the user to easier understand the code, and it

also reduces the memory consumption. In other cases, this could have the opposite effect, causing

difficulty in understanding. Therefore the user is able to configure these options.

4.5.5 Generation Process

Most of these requirements towards generating readable code can be satisfied by having a model-to-

text (M2T) transformation. The input of the transformation is the specification in abstract syntax, and

the output is implementation in concrete syntax, in our case the SCL code representation (represented

by arrow b) in Figure 4.10). This is the workflow we have chosen for our current, proof-of-concept

code generator.

However, some advanced features might benefit from a more complex workflow. For example,

merging the variables with the same meaning or simplification of conditional statements can make

the simple M2T code generator much more complex, thus more error-prone. Decoupling the sim-

plifications from the core code generation features may solve this issue, but then a new, three-step

workflow is necessary. First, the AST of the implementation is generated (model-to-model transfor-

mation). Then the simplifications can be made on this AST, and finally the AST is translated to the

real implementation using a M2T transformation. This is represented by arrow c) in Figure 4.10.

Decoupling the two transformations can also help to solve the portability problem of PLCs. Even

if the IEC 61131-3 standard defines the syntax of the PLC programming languages, each manufacturer

has slightly different variants of the programming languages, making it difficult to change the hard-

ware supplier. By having a manufacturer-independent abstract syntax and a manufacturer-dependent

M2T transformation to generate the program code, the problem of vendor-incompatibility could be

reduced. Currently this three-step generation method is a future work.

95

4. Formal Specification for PLC Modules

Publications related to this section. The applicability of PLCspecif in code generation was briefly discussed in [c12],

then later a detailed description was provided in [c7].

4.6 Conformance Relations and Conformance Checking13

A correct code generation tool ensures that the behaviour of the implementation generated matches

the specified behaviour. However, using only generated code is not always feasible. Due to the typi-

cally long lifespan of the industrial control systems it is unavoidable to support legacy systems. Fur-

thermore, code generation may be forbidden for certain cases, for example in case of safety-critical

systems based on Siemens PLCs (see Section 3.6). For these cases an additional analysis solution has

to be provided which can assess the conformance between the implementation and the specification.

Various behavioural equivalence relations were introduced in the past for these purposes, such

as the widely-known trace equivalence, (bi)simulation, and ioco relations [Bac81; Par81; Tre96]. For

reactive systems [HP85] these relations are useful in practice, but this is not always the case for ICS.

A PLC with a typical cycle time of 1–100 ms may control a slow process (e.g. a cryogenic plant) where

certain responses of the plant are expected within minutes or even later. For many signals, a delay by

1–100 ms has no significant impact. Furthermore, these slight changes of the outputs, often caused by

code reorganisation, cannot be easily avoided in a complex application. These acceptable differences

appear as false positives in the equivalence checking. As typically only a single counterexample is

provided, it is difficult to identify and exclude all these cases.

Our key observation is that the widely-known conformance relations and even the PLC-specific

conformance relations (e.g. in [Ule+15]) are typically too strict. The ICS domain needs conformance

relations with configurable sensitivity to be useful in the development process. In summary, devel-

opment of new conformance relations specifically targeting the PLC-based industrial control software is

needed to make conformance checking useful in practice.

The rest of this section introduces new conformance relations with different levels of permis-

sivity, which are suitable for the control software development domain. The methods to check the

satisfaction of these methods will also be provided in this section.

4.6.1 Domain Requirements

This section overviews the special needs
14
of the industrial control systems domain to provide moti-

vation for our work.

Use cases. We consider three main cases of applying conformance checking:

• Specification–implementation. An implementation and the corresponding specification can

be compared to check the conformance of a manually developed implementation and the spec-

ification. Comparing a specification and an implementation can also be useful if the implemen-

tation is generated, but the code had to be manually altered. After performing the modifications

on the specification too, the consistency can be re-established between the implementation and

the specification.

• Implementation–implementation. For instance, two implementations can be compared to

check different implementations of the same specification, or to check that an extended ver-

sion of an implementation still provides the previous behaviour (in addition to some new be-

haviours).

13

This section is an adapted version of [c6].

14

In this section, “needs” will always refer to the requirements for conformance relations.

96

4.6. Conformance Relations and Conformance Checking

HeaterOn

Temperature

100 ms
t

(a) A delay of one PLC cycle often causes an un-

noticeable difference.

out ′

1 cycle
t

out

out ′′

(b) The allowed delays can be constant (same

for the whole execution, out ′) or varying

(out ′′).

out

1 cycle
t

out ′

(c) The varying delaymaymodify the amount

of rising/falling edges.

out

1 cycle
t

out ′

(d) For some signals the edge number preser-

vation is more important than the pulse du-

ration preservation.

1 cycle
t

1 cycle
t

timer1

timer2

timer ′1

timer ′2

(fixed length) (variable length)

timer2’s
delay time

(e) The fixed PLC cycle length can hide some behaviours. The timeouts (rising edges) of

timer1 and timer2 never happen in the same cycle using fixed lengths, but it is possible

using variable cycle length (timer ′1 and timer ′2).

Figure 4.11: Motivational examples [c6]

• Specification–specification. For example, two specifications can be compared to be sure that

the new version of the specification preserves the behaviour given by the previous version, or

an optimised/reorganised specification still behaves in the same way as the previous version.

In the following, we focus mainly on the specification–implementation use case.

Permissibility of the relations. We have extracted some motivational examples from CERN’s

PLC-based control systems (Figure 4.11). The main observation is the fact that small differences of

the control outputs may be observable, but practically equivalent from the point of view of the prop-

erties of the control functions in certain cases (Figure 4.11(a)). Accordingly, if those differences are

identified as problems, they are often treated as false positives by the developers. This might reduce

the applicability and acceptance of a formal verification method. Focusing on the relevant differences

implies the need for permissive conformance relations. However, this need co-exists with the need for

strict equivalence, depending on the role of the outputs. Often some outputs are insensitive to small

delays (e.g. an output used only for information by the supervision system or controlling slow pro-

cesses), while others might not allow any differences. Therefore the conformance relations should not

be selected for two compared artefacts (specification or implementation), but for pairs of outputs (one

output per compared artefact).

The level of permissibility is given separately for each output pair, and not included in the speci-

fication. This way the specification can be kept “clean”, describing the ideal required behaviour. Also,

97

4. Formal Specification for PLC Modules

this makes the comparison of two implementations possible. Being able to select different relations

for different output pairs also gives flexibility in checking artefacts (specification or implementation)

with different input/output signatures. For instance, the behaviour of an artefactM can be compared

toM ′, which isM extended with new outputs. By selecting conformance relations only for the vari-

able pairs contained in both M and M ′ it is possible to analyse if the extension had any side-effect

on the base behaviour. However, this does not mean that only one variable pair’s conformance can

be checked in a single model checking run, the checks for several variable pairs can be conjuncted.

Even if an output may allow some delay, in some cases the amount of allowed delay should be

fixed during the whole execution (e.g. out
′
compared to out in Figure 4.11(b)), in other cases the delay

may vary during an execution (e.g. out
′′
compared to out in Figure 4.11(b)). The allowed differences

depend on the usage of the signal. Moreover, for some signals, the sum of pulse durations should be

equal to call them conformant (Figure 4.11(c)), for some other signals the pulse duration is secondary,

but the number of rising or falling edges should be the same (Figure 4.11(d)).

Based on the discussion above, the following three main conformance relation categories are de-

fined, depending on the permissibility of the conformance.

• Strict equivalence relation. This relation requires the same output sequences for the same

input sequences under the same timing conditions in the two artefacts (specification or imple-

mentation).

• Permissive conformance relations with fixed delay. These relations permit delays by cer-

tain number of PLC cycles between the outputs of the two artefacts for the same inputs and

timing, however the delay should be constant, therefore the shape of the two output signals

will be practically identical.

• Permissive conformance relationswith variable delay.These relations also allow delays in

the outputs, and the amount of delay may vary during the execution (within the defined limits).

In certain cases such relation provides enough restriction for the conformance checking, e.g. in

case of status outputs used for informative purposes in the supervision systems.

Cycle time. Although PLCs may have interrupts, interrupt-driven reactive behaviour seems to be

uncommon in practice. Here we do not consider user-defined interrupts andwe treat PLCs as transfor-

mational systems [HP85], transforming an input sequence to an output sequence under some timing

conditions. However, e.g. communication- or operating system-related interrupts may occur during

execution. A side effect of them is that the length of a scan cycle may vary in most of the PLCs. This

causes non-determinism in the otherwise deterministic execution. As the PLC timers’ delay param-

eters are defined in physical time units, not in number of cycles, this can have observable collateral

effects (Figure 4.11(e)). The length of a scan cycle also depends on the number and type of executed in-

structions, or on the used hardware. Accordingly, we consider variable cycle lengths (cycle durations)

during the execution. However, we assume that the two compared artefacts process the same sequence

of inputs (otherwise they will be trivially inequivalent). To assure this, during equivalence checking

we consider the same input and cycle length sequences for both artefacts. Note that programs running

on non-fail-safe PLCs typically do not have fixed cycle length, therefore the implementation should

not rely on the exact value of the cycle length (this is typically treated as non-deterministic by the

developers), therefore these assumptions should not pose any restriction.

98

4.6. Conformance Relations and Conformance Checking

4.6.2 Conformance Relations

This section introduces the conformance relations defined upon the identified needs. Section 4.6.2.1

describes the modelling and formalisation of the artefacts and conformance checking problem. Sec-

tion 4.6.2.2 defines the conformance relations.

In this section the usage of PLCspecif specification will be assumed, but the defined conformance

relations are more generally applicable to PLC-based control systems and they could be used with

other formal specification languages too.

4.6.2.1 Formalisation and Assumptions

For the formal definition of conformance relations, we provide the formalisation of behaviour seman-

tics of PLC programs and we introduce the necessary symbols.

Time assumptions. As mentioned previously, a good compromise had to be found between pre-

cision and performance of verification for time modelling. The assumption that the PLC cycle length

is fixed is too vague (cf. Figure 4.11(e)), and it may hide possible behaviours. On the other hand, if the

time is modelled precisely, checking the conformance relations becomes troublesome. We follow an

approach similar to the realistic approach discussed in Section 3.3.1: the length of each PLC cycle is

non-deterministic with an accuracy of 1 ms (same as the accuracy of the PLC timers in most imple-

mentations). We do not model a finer granularity of time, i.e. the global clock does not advance during

a cycle in our models. In other words, our PLC cycle model has two phases: a non-deterministic delay

without any computation and the real execution modelled with execution time 0.

Generic modelling for different artefacts. Section 4.6.1 presented different use cases, involving

checking of specifications and implementations in arbitrary combinations. As all combinations of

artefacts might be compared, it is useful to have a common representation for both specifications

and implementations. Based on the discussions in Chapter 3 and Section 4.4 it can be seen that the

intermediate model language can provide a representation both for implementation and specification

artefacts for verification purposes. As using the IM it is also possible to benefit from the reductions

and model checker integrations already implemented in PLCverif, we will use the IM as common

verification representation for conformance checking in the following. From this point, we often do

not distinguish between implementation and specification, as typically they are represented in the

same way and can be used interchangeably. In this case, we refer to both as artefact and we denote

them by M or M ′.

Formalisation of the semantics. To be able to formally define the conformance relations, first the

model and behaviour of PLC artefacts should be defined. We do this in a generic way, covering both

specifications and implementations.

Definition 4.2 (Model of a PLC artefact). The model of a PLC artefact is a structure M =
⟨VI , VO, VL, val, π, s0⟩, where VI is the set of input variables, VO is the set of output variables,

VL is the set of internal variables, val : (VI∪VO∪VL) → 2Val is the set of possible values for each
variable (where Val is the set of all representable values, typically Boolean and bounded integer

values in PLCs), π is the behaviour description (source code or specification) of the artefact with

an initial state s0. �

99

4. Formal Specification for PLC Modules

Let us denote the input value space
15
by I , the output value space by O, the internal state space

by S (similarly to [Bec+15]) and the set of potential cycle lengths in ms by T = {1, . . . τ} (where τ
is a configurable upper limit on the cycle length, enforced by the PLC’s watchdog). Then Iω is the

set of possible infinite input sequences. i = (i1, i2, . . .) ∈ Iω denotes an infinite input sequence,

where each ij is a vector assigning values for each input variable v ∈ VI of the artefact, thus can also

be considered as a function VI → Val (∀v, ij : ij(v) ∈ Val(v)). The definitions of Oω
, o, Tω

and t
are similar. The vector ij represents the input values observed (sampled) at the beginning of cycle j,
which has a length of tj and after this tj time will provide outputs as defined in oj . Based on these

symbols, the trace semantics of a PLC artefact can be drawn up.

Definition 4.3 (Semantics of a PLC artefact, based on [Bec+15]). The observable beha-

viour bM of a PLC artefactM is the function bM : Iω × Tω → Oω
, defined by (π, s0). �

Notice that behaviour description (π, s0) containmore information than the observable behaviour

bM . Furthermore, bM is a simplified view of the real behaviour for conformance checking purposes,

due to the way of time modelling.

4.6.2.2 Definition of Conformance Relations

In this section we define in total six conformance relations (pconf1, . . . , pconf6) in three categories,

with different levels of permissibility, reflecting to the previously discussed needs. We recall that dif-

ferent output variables might need different levels of conformance: for some outputs we may require

strict equivalence, while some other outputs may be allowed to be delayed. Therefore each of the

conformance relations targets the conformance of two corresponding output variables, not whole

modules. They can also be separately parametrised.

To keep the formal definitions short, the following symbols are defined: w , Πv(bM (i, t)) and
w′ , Πv′(bM ′(i, t)), where Πv denotes projection of the behaviour of the PLC artefact to variable v,
i.e. w is the sequence of values of output variable v given by M for the sequences i, t16. We assume

that variables v and v′ are corresponding to each other in M and M ′, respectively, thus the set of

their possible values are the same (val(v) = val(v′)).

Strict equivalence. Strict equivalence (M pconfv,v
′

1 M ′) is the simplest and strictest conformance

relation between two variables of two artefacts defined here. It is satisfied if the two artefacts, M
and M ′, assign always the same value to the output variables v and v′, if the same input sequence is

provided under the same timing conditions. This relation is similar to the perfect equivalence relation

of [Bec+15], with the previously discussed time extensions.

Definition 4.4 (pconf1). M pconfv,v
′

1 M ′ ⇐⇒ ∀i ∈ Iω, t ∈ Tω : w = w′. �

Permissive conformance relations with fixed delay. As mentioned previously, the fixed per-

missive conformance relations allow delays between the corresponding outputs of the two compared

artefacts. More precisely,M pconfv,v
′,n

2 M ′ is satisfied, if the delay of output variable v′ compared to

v is exactly n ∈ Z cycles. If n is positive, the output v′ of M ′ is delayed compared to the output v of

M .

15

Each element of I assigns a value for each input variable of the artefact.

16

Notice that w is a function of i, t, v,M and w′
is a function of i, t, v′,M ′

. However, we omit to denote this in the

following to keep the definitions compact and readable.

100

4.6. Conformance Relations and Conformance Checking

For the formalisation the following notation is introduced. If w = (w1, w2, w3, . . .) is the out-

put sequence of variable v, then w−1 = (∗, w1, w2, . . .), i.e. w−1 will correspond to the output

sequence of the variable v delayed by one cycle. The symbol ∗ denotes a “do not care” value.

Any equality should be evaluated to true that contains a ∗ (e.g. 2 = ∗ is true). More generally:

w−n = (∗, . . . , ∗︸ ︷︷ ︸
n

, w1, w2, . . .) and w+n = (w1+n, w2+n, . . .). Notice that w = w′+n ⇐⇒ w−n = w′.

Definition 4.5 (pconf2). M pconfv,v
′,n

2 M ′ ⇐⇒ ∀i ∈ Iω, t ∈ Tω : w = w′−n. �

Example. In Figure 4.11(b), the out and out ′ signals do not violate M pconfout ,out
′,1

2 M ′ (assuming

that out ′ keeps the same constant shift compared to out infinitely), butM pconfout ,out
′′,1

2 M ′ cannot be
satisfied (no matter what is the rest of the signal).

The relation pconfv,v
′,K

3 generalises pconfv,v
′,n

2 . The parameter K of pconfv,v
′,K

3 is a set K ∈ 2Z

instead of a single number. M pconfv,v
′,K

3 M ′ iff M pconfv,v
′,n

2 M ′ holds for an n ∈ K . Using these

notations, the formal definition of this conformance relation is the following.

Definition 4.6 (pconf3). M pconfv,v
′,K

3 M ′ ⇐⇒ ∃n ∈ K : M pconfv,v
′,n

2 M ′. �

Permissive conformance relations with variable delay. Certain modifications in the specifica-

tion or the implementation cause shifts only in certain cycles of the execution, not consistently (see

Figure 4.11(b) for example). If these are acceptable differences, the previously defined conformance

relations are still too strict. Therefore we introduce a relation allowing variable shifts in the output

sequences.

The key idea of pconfv,v
′,K

4 is the following. Given the two output sequences w = (w1, w2, . . .)
and w′ = (w′1, w

′
2, . . .), and a set of allowed delaysK = {k1, k2, . . . }, the two sequences are consid-

ered as conformant if for each wi there is a w
′
j = wi in i’s K-surrounding, i.e. wi = w′i+k1

∨ wi =
w′i+k2

∨ . . . ; and for each w′i there is a wj = w′i in i’s “−K”-surrounding (where −K is the element-

wise negation of K).

In the formal definition we use ϕ(w,w′,K) which stands for “for each wi there is a w
′
j = wi in

i’sK-surrounding”. Formally (for infinite vectors):

ϕ(w,w′,K) ⇐⇒ ∀i = 1, . . . : ∃s ∈ K : 1 ≤ i+ s ∧ wi = w′i+s.

An illustration of ϕ can be seen in Figure 4.12. It shows that for the given example vectors u, u′

the ϕ(u, u′, {−1, 0, 1, 2}) is not satisfied because there is no match for u6 = 1 in u′. However,
ϕ(u′, u, {−2,−1, 0, 1}) is satisfied for the same vectors, as there is a match for each u′i in u (indi-

cated by the arrows in Figure 4.12). The shaded area illustrates the range in which the corresponding

value is searched, e.g. in the first example, u2 should equal to any of u
′
1, . . . , u

′
4 to satisfy the relation

ϕ.

Definition 4.7 (pconf4). M pconfv,v
′,K

4 M ′ ⇐⇒ ∀i ∈ Iω, t ∈ Tω : ϕ(w,w′,K) ∧
ϕ(w′, w,−K). �

Example. The signals in Figure 4.11(b) do not violate M pconf
out ,out ′,{−1,0,1}
4 M ′, neither

M pconf
out ,out ′′,{−1,0,1}
4 M ′, assuming that the shown signals are repeated infinitely. It is worth noting

that to argue about the satisfaction of these relations, the output sequences should be compared for any

possible input sequence.

101

4. Formal Specification for PLC Modules

1 0 0 0 0 01 1 1 1

10 1 10 00 0 0 0

· · ·

· · ·

[

[

u =

u′ =

ϕ(u, u′, {−1, 0, 1, 2}) = false:

1 0 0 0 0 01 1 1 1

10 1 10 00 0 0 0

· · ·

· · ·

[

[

u =

u′ =

ϕ(u′, u, {−2,−1, 0, 1}) = true:

1 2 3 4 5 76 8 9 10Cycle:

Figure 4.12: Example of relation ϕ (based on [c6])

Following the ideas described in Section 4.6.1, we define two additional restrictions to pconfv,v
′,K

4 .

The relation pconfv,v
′,K

5 requires total pulse duration preservation in addition to pconfv,v
′,K

4 , thus for

each allowed value of v their number of occurrences should be the same for the outputs of the two

artefacts for every possible execution. More precisely, for infinite many finite prefixes of the output

sequences of v and v′, the difference in the occurrence numbers of each allowed value is zero.

The number of occurrences of value e in vector w is denoted by w#e in the formal definition. Let

us introduce also w[a,b] , (wa, . . . , wb) (b ≥ a), i.e. w[1,n] is the n-long prefix of the vector w.

Definition 4.8 (pconf5). M pconfv,v
′,K

5 M ′ ⇔ M pconfv,v
′,K

4 M ′ ∧ ∀i ∈ Iω, t ∈
Tω : for infinitely many n ∈ {1, 2, . . . },∀e ∈ val(v) : w[1,n]#e = w′[1,n]#e. �

Example. M pconf
out ,out ′,{−1,0,1}
5 M ′ is not violated by the output pair shown in Figure 4.11(c) (as-

suming that the same signal shape is repeated infinitely), but M pconf
out ,out ′,{−1,0,1}
5 M ′ is violated in

Figure 4.11(d) with the same assumption, as the total pulse duration for out ′ is shorter than for out .

In other cases, the total pulse duration is not important, but differences in the number of rising or

falling edges might have an impact on the behaviour. The relation pconfv,v
′,K

6 reflects the common

usage of edge-driven signals, thus it is only defined for Boolean variables. The additional restriction

of pconfv,v
′,K

6 compared to pconfv,v
′,K

4 is that the number of rising edges should be the same in the

two outputs for every possible execution. To formalise this, we introduce the rising edge vector

↑(w) = (e1, e2, . . .), where ei is true iff i > 1, wi−1 = false and wi = true.

Definition 4.9 (pconf6). M pconfv,v
′,K

6 M ′ ⇔ M pconfv,v
′,K

4 M ′ ∧ ∀i ∈ Iω, t ∈
Tω : for infinitely many n ∈ {1, 2, . . . } :↑(w[1,n])#true = ↑(w′[1,n])#true. �

Example. In Figure 4.11(c), M pconf
out ,out ′,{−1,0,1}
5 M ′ is violated, as out ′ has fewer rising edges

than out (with the same assumptions as in the previous examples). However, in Figure 4.11(d),

M pconf
out ,out ′,{−1,0,1}
5 M ′ is not violated, assuming that the same signal is repeated infinitely.

Notice that we focus on checking whether the two compared artefacts are conformant given the

same inputs and cycle lengths. Consequently, we cannot show differences between two programs

implementing the same specification with different complexity, thus with different execution times.

A stricter relation could show these differences, but it could evenmark any code non-conformant with

itself, as on different hardware the execution time is different. We use a higher abstraction level, not

taking the internal interrupts and hardware differences into account. In practice, the developers do

likewise: if some deterministic, physical time conditions have to be satisfied, PLC timers are used, or

102

4.6. Conformance Relations and Conformance Checking

a fixed cycle time can be assumed in a fail-safe PLC. On the other hand, the relations introduced here

can show the differences when the two artefacts give different outputs for the same inputs (wrong

functionality) or when the delay between the two corresponding outputs (in number of cycles) is out

of the given acceptable range.

4.6.3 Checking the PLC Conformance Relations

Obviously, to make the conformance checking useful in practice it is not enough to define the con-

formance relations. A method has to be established to check if two artefacts are conformant or not.

Section 4.6.3.1 overviews the proposed conformance checking approach. It consists of generating

models (detailed in Section 4.6.3.2) and temporal logic (TL) expressions (detailed in Section 4.6.3.3),

then evaluating the conformance using a model checker.

It has to be noted that checking the conformance could be done based on other approaches as well,

for example test cases could be generated to evaluate the correspondence between the implementation

and the specification. However, for the advantages of model checking that were already discussed,

model checking was chosen as the underlying technique to check conformance.

4.6.3.1 Overview of the Conformance Checking Approach

We recall the primary needs affecting the implementation of conformance checking: the method

should be generic to support different use cases, thus different artefacts, and it should be able to

scale up to large input artefacts.

The previously introduced verification workflow (described in Section 3.4) and the PLCverif tool

implementing it already provide a solution for efficient model checking – using requirement-specific

reductions – of PLC programs through the intermediate model language. It was already discussed

in Section 4.3.4 that the PLCspecif specifications can also be represented by IM for verification. We

have decided to reuse and to build on these solutions, thus to use model checking for conformance

checking. An advantage of reusing the PLCverif intermediate models is that we can benefit from

its built-in model reductions [c15]. The model (and the TL expression) can also be translated to the

concrete syntax of various model checkers by PLCverif, thus we can use different model checkers for

conformance checking.

To reuse the workflow of PLCverif, the following steps have to be executed:

1. Generating (compatible) verification models representing the two artefacts to be compared,

2. Building composite verification models for conformance checking,

3. Generating temporal logic expressions representing the conformance criteria (i.e. the confor-

mance relation is valid between the two models iff the temporal logic expressions are satisfied

on the composite verification model), and

4. Performing model checking using the composite verification models and the generated temporal

logic expressions.

The Steps 1 and 4 are already supported by PLCspecif and PLCverif as discussed in Chapter 3

and Section 4.4. The composite model construction (Step 2) will be discussed in Section 4.6.3.2, the

temporal logic expression representation of the conformance relations (Step 3) will be presented in

Section 4.6.3.3. The complete conformance checking workflow is illustrated in Figure 4.13.

103

4. Formal Specification for PLC Modules

IM generation

IM generation

Construction of

composite IM
IM reduction

External

verification

Reporting

Representa-

tion in TL

Section 4.6.3.3

Section 4.6.3.2 Section 3.5

Artefact 1

Artefact 2

Report

Conformance

relations

Figure 4.13: Overview of the proposed conformance checking workflow

4.6.3.2 Composite Model Generation

As mentioned before, the applied toolchain can produce models separately for the compared artefacts

M and M ′. The additional task is to generate a composite verification model ΓM,M ′ on which the

evaluation of a TL expression can decide the satisfaction of the selected conformance relations.

First trials showed that in case of certain model checkers (e.g. nuXmv) the performance may

significantly drop when complex temporal logic expressions are checked. Similar observation was

already made for mode selection in Section 3.5.1. Therefore the model ΓM,M ′ is constructed in a way

that it contains some parts of the conformance criteria directly, as described in the following.

• The corresponding input variables (identified manually or using heuristics) are merged: one of

them is deleted and the other is used in bothM and M ′17 (see Figure 4.14(a)).
• The cycle time representation (sequence of cycle times) is merged in a similar way (M andM ′

will have the same, non-deterministic PLC cycle length, given by t).
• If the TL expression refers to delayed variables, i.e. it uses not only the current, but a previous

cycle’s value of a certain variable (cf. Section 4.6.3.3), the delayed variables are also included as

new output variables in ΓM,M ′ , as illustrated in Figure 4.14(b). v−1 represents a variable whose
value equals to the value of v in the previous cycle.

• For pconfv,v
′,K

5 and pconfv,v
′,K

6 some other helper variables (P v, Qv
) are defined (see later, in

Section 4.6.3.3).

4.6.3.3 Temporal Logic Expression Generation

The next task is to represent the required conformance relations in TL according to the definitions of

the relations. As ΓM,M ′ is constructed in a way that the two compared artefacts have the same inputs

and timing conditions (that is required by every conformance relation), the TL expressions need to

express only the comparison of outputs.

Here we overview briefly the ideas behind each of the six relations’ TL representation. The formal

definitions can be found in Table 4.2.

• The representation of the strict equivalence relation (pconfv,v
′

1) is trivial, only the values of the

two corresponding output variables (v, v′) have to be compared.

• To check pconfv,v
′,n

2 , the shifted values should be taken into account too, thus additional output

variables should be generated during the construction of ΓM,M ′ , as discussed in Section 4.6.3.2.

It has to be noted that the outputs can only be delayed, the future values (e.g. v+1) should not

be referred in the TL expressions.

17

This implies the assumption that variables representing physical inputs are not modified by the user program.

104

4.6. Conformance Relations and Conformance Checking

M

i
n
p
u
t
s

outputs

compare

inn

t

in1

...

...

out1

outm

t

v
(1)
I

v
(n)
I

v
(1)
O

v
(m)
O

M′

inn

t

in1

...

...

out1

outm

v
(1)′
O

v
(m)′
O

l
e
n
g
t
h

c
y
c
l
e

.

.

. .
.
.

.

.

.

(a) Structure of the composite verification model ΓM,M′

M

i
n
p
u
t
s

outputs

inn

t

in1

...

...

out1

outm

t

v
(1)
I

v
(n)
I

v
(1)
O = v

v
(m)
O

l
e
n
g
t
h

v−1

v−2

c
y
c
l
e

.

.

. .
.
.

(b) Representation of delayed variables

Figure 4.14: Modelling methods [c7]

• To check pconfv,v
′,K

3 it is enough to check if pconfv,v
′,n

2 holds for at least one n ∈ K .

• The main idea of checking pconfv,v
′,K

4 is already introduced by defining the function ϕ in Sec-

tion 4.6.2.2. However, this could cause looking ahead in time (see Figure 4.12). To avoid this and

the complex TL expressions imposed by looking ahead, we determine the largest look-aheads

(denoted by µ(K) and µ(−K)) and we shift all comparisons towards the past by these amounts

of cycles.

• Checking relation pconfv,v
′,K

5 requires additionally to check the different values of the output

variables. In the model generation phase we automatically introduce a variable P v
for Boolean

variables in the verification model ΓM,M ′ . This variable is incremented by one if v is “true” at

the end of a cycle and decremented by one if v′ is “true” at the end of the cycle. ThereforeP v = 0
means that v and v′ were “true” for the same amount of cycles. The additional requirement is

expressed as P v
has to go back to zero always in the future.

Checking this relation for non-Boolean variables can also be achieved, by a simple extension

of the verification model. Let us add a new variable Sv
to ΓM,M ′ with the same type as v. The

value of Sv
should be non-deterministic and this value should be kept during an execution. In

this way the previously introduced P v
can count the differences in how many times v and v′

had the value Sv
. Practically, this is a universal quantification of the expression to be checked

without the need of more expressive language than CTL.

• Checking relation pconfv,v
′,K

6 requires additionally to check the number of rising edges on the

Boolean outputs v and v′. We introduce a variable Qv
in the model ΓM,M ′ that is incremented

by one if v has a rising edge at the end of a cycle and decremented by one if v′ has a rising edge

105

4. Formal Specification for PLC Modules

Table 4.2: CTL representations of the pconf relations [c7]

M pconf M ′ ⇐⇒ Satisfaction of the CTL representation

1. pconfv,v
′

1 ΓM,M′ � AG(v = v′)

2. pconfv,v
′,n

2

 ΓM,M′ � AG(v = v′−n) if n ≥ 0

ΓM,M′ � AG(vn = v′) if n < 0

3. pconf
v,v′,{k1,k2,... }
3

∨
i∈{k1,k2,... } M pconfv,i2 M ′

4. pconfv,v
′,K

4

ΓM,M′ � AG(
(
∨

i∈K v−µ(K) = v′i−µ(K)) ∧
(
∨

i∈K v−i−µ(−K) = v′−µ(−K)))

where µ(K) , max(K ∪ {0})

5. pconfv,v
′,K

5 M pconfv,v
′,K

4 M ′ ∧ AG AF(P v = 0)

6. pconfv,v
′,K

6 M pconfv,v
′,K

4 M ′ ∧ AG AF(Qv = 0)

Table 4.3: Translation of CTL temporal operators (based on [c7])

Expression on PLC model Expression on verification model (IM)
(1 transition = 1 cycle) (1 transition = 1 computation)

AF(α) AF(EoC ∧ α)
AG(α) AG(EoC → α)
A[α U β] A[(α ∨ ¬EoC) U (EoC ∧ β)]
AX(α) AX A[(¬EoC) U (EoC ∧ α)]

at the end of the cycle. Therefore Qv = 0 means that v and v′ had the same number of rising

edges in the preceding cycles. The additional requirement is expressed as “Qv
has to go back

to zero always in the future”.

Verification model semantics. The CTL expressions in Table 4.2 were defined assuming that one

transition in the verification model represents one PLC cycle, e.g. AG(v = v′) means that v and v′

equal to each other at the end of all PLC cycles. The semantics of the intermediate model is defined dif-

ferently: one transition in ΓM,M ′ represents only one computation. However, the states representing

ends of PLC cycles are labelled by the labelEoC (end of cycle). Based on that the CTL expressions can

be systematically transformed to have the same meaning on the verification model as before. These

transformations can be seen in Table 4.3. The idea of the translation is general and can be extended

to all LTL temporal operators as well.

Publications related to this section. The detailed discussion of conformance checking and the need for permissive

conformance relations were presented in [c6]. The case study in [c9] used PLCspecif and conformance checking to verify

a real-life safety logic.

106

4.7. Evaluation and Usage Examples

4.7 Evaluation and Usage Examples

This section is dedicated to the evaluation of the proposed formal specification language and the con-

nected methods. First, Section 4.7.1 compares the proposed specification language and the connected

methods to the design requirements discussed in Section 4.1. After that, usage examples of the speci-

fication and analysis methods discussed in this chapter. The examples focus mainly on conformance

checking, but they also implicitly demonstrate the feasibility and applicability of the proposed spec-

ification methods in the mentioned cases. The examples are from the development of the previously

introduced UNICOS framework’s reusable baseline objects and from the development of the SM18-

PLCSE system. For the introduction of the use cases (UNICOS baseline objects and SM18-PLCSE) the

reader is referred to Section 3.8.

It has to be noted that the implementation of PLCspecif is in a proof-of-concept phase at the

moment, the production-ready implementation is a future work and not in the scope of this thesis.

The described measurements were executed on a PC with the following configuration: Intel Core i7-

3770 3.4 GHz CPU, 8 GB memory with Windows 7 x64 and .NET 4.0 framework. The underlying tools

were the following: PLCverif 2.0.3, nuXmv 1.1.1 and Z3 4.3.0.

4.7.1 Comparison of PLCspecif and the Collected Requirements

This section overviews the requirements collected in Section 4.1 and shows how does PLCspecif re-

spond to them.

GRa. Lightweight method. PLCspecif builds on the available domain knowledge by reusing for-

malisms that are familiar to the targeted users. Furthermore, it has a simplified semantics that

needs only short training for new users.

GRb. Domain-specific method. PLCspecif targets the development of the PLC software modules

from the beginning. The semantics is heavily adapted to the cyclic PLC programs. See later the

details, at DRa.–DRe.

GRc. Reduced expressivity. Tomake the language less error-prone, the base formalisms are kept as

simple as reasonably possible. For example, the state machine formalism does not allow the use

of actions that could make the semantics complex and confusing. Besides, timing aspects are

kept isolated, further simplifying the semantics. This also means that the certain programs can-

not be described using state machine modules, but in these cases the input-output connection

modules are typically more suitable.

GRd. Variety of supported languages. As previously mentioned, different formalisms may be suit-

able to describe different behaviours. This is why state machines, input-output connection dia-

grams and timer modules are all available to the user, who can choose the most appropriate one.

Similarly, besides the common arithmetic format of the expressions, two tabular representations

are supported which are more suitable for the description of complex expressions.

GRe. Support for verification. PLCspecif contains built-in support for verification. For example,

the consistency and the well-formedness can be directly checked on the specification using

static analysis. Invariant properties can be defined in the specification that can be verified di-

rectly on the formal specification, reusing the verification workflow presented in Chapter 3

and implemented in PLCverif. This is thanks to the semantics of PLCspecif which is designed

in a way that an automaton representation of the specification can be easily generated. Fur-

thermore, PLCspecif supports equivalence or conformance checking that is a powerful tool to

compare for example an implementation and a specification, without the need of describing

any requirements.

107

4. Formal Specification for PLC Modules

GRf. Support for documentation. PLCspecif supports free-text annotations which help the users

to understand the specifications. The concrete syntax of PLCspecif is designed so that it can

serve as a documentation too. The same annotations are present in the generated code, which

also follows the structure of the specification.

DRa. Events with proper semantics. PLCspecif explicitly supports the definition of events. The

events have priorities and in each (sub)module at most one event can trigger. This makes the

execution deterministic and responds to the duality that PLC programs are not event-triggered

(interrupt-driven), yet several input signals represent event-like operations. The strict prece-

dence of events helps also to make the specification less error-prone and easier to understand.

DRb. Clean core logic. PLCspecif decouples the input handling, the output handling and the core

logic description. This helps the specifier and the reader of the specification to focus on the key

behaviour aspect, and then later on the precise definition of inputs and outputs.

DRc. Hierarchical, modular structure. PLCspecif is organised into modules which build up a hi-

erarchy. This helps the specifier and the reader of the specification to focus on one aspect at a

time first, then see greater and greater parts of the specification. The modularity also helps to

reuse already existing submodules.

DRd. Time-dependent behaviour. As PLC programs often contain timing (using real time), spe-

cial support is given for describing the time-dependent behaviour. However, handling time in

state machines or data-flow representations may make the semantics complex and potentially

confusing. Therefore time-dependent behaviour is extracted to isolated timer modules. These

modules follow the standard semantics of the PLC timers defined in [I61131-3], thus they are

familiar to the targeted users.

DRe. Relaxed conformance relations. Equivalence checking is an important verification tool to

compare a specification and its implementation. However, in reality the strict equivalence

checking reveals many differences that are acceptable in practice. To make it practically us-

able, more permissive conformance relations and their checking based on model checkers were

defined, specifically targeting the domain of industrial control systems.

4.7.2 UNICOS Re-engineering18

To show the capabilities, the usage of PLCspecif and the related verificationmethods is described here.

The library of baseline objects in UNICOS has been used for more than ten years. As the requirements

often change, many extensions and modifications were made. In certain cases some constraints were

applied to the modifications, thus currently the implementation is suboptimal. Furthermore, many

specifications documentations are now out-of-date, causing discrepancies between the implementa-

tion and the informal documentations. This is partially because the behaviour of the objects became

too complex, and it is difficult describe them in a specification. For example, see Figure 4.15(a) that is

the specification of a state-based submodule of a baseline object. At a first glance it might look like

a precise definition, but a closer look at the state machine and the implementation reveal that there

are various discrepancies, missing information, unresolved conflicts, etc. Furthermore, the analysis of

the source code can show that there is no strict precedence between the various signals. Although

this mode manager submodule is used in all applications, interviews with the developers revealed

that they are not confident about the behaviour of the object in special cases. Figure 4.15(b) shows the

complete description of the same submodule in PLCspecif (only the core module description is shown,

18

This part is an extension of the relevant part of Section V of [c6].

108

4.7. Evaluation and Usage Examples

the thicker green edges represent the non-event-triggered transitions). This description is clean and

unambiguous.

The verification workflow proposed in Chapter 3 was applied to check certain properties of these

baseline modules. If a problem was found, its root cause was fixed. However, this only provides small

functionality fixes, but not the rethinking of the overall expected behaviour. Therefore, to improve the

quality of the implementation and the specification, the following approach was proposed. PLCspecif

could be used to formally capture the intended behaviour of the baseline objects. After the specifica-

tions are developed, the conformance between the legacy code and the new formal specification can

be performed. It is known that certain behaviours of the objects are non-intuitive or inconsistent, and

we could benefit from this re-engineering campaign to reconcile these problematic parts. Therefore

in certain cases strict equivalence will not be required. After the formal specifications are ready, the

new implementations can be generated using the code generators.

Experiments for this project were started by capturing the formal specifications of certain base-

line objects. It showed that it is feasible to develop PLCspecif specifications for the UNICOS baseline

objects, also that conformance checking and code generation is feasible based on these models. How-

ever, during specification many problematic parts were identified, which require the detailed analysis

of the domain experts. While this means that this experimental project will run for a long time, it

has already been shown that constructing formal specifications – although this needs significantly

more effort and time than writing informal specifications, even if the specification method is targeting

specifically the application domain – may reveal deep, hidden design flaws.

It has to be noted that certain submodules of these baseline objects describe complex behaviours,

for example the one in Figure 4.15(b). The generated source code corresponds to the specified be-

haviour and follows the structure of the specification, but is not optimal and too long. This is due to

the simple text-to-text transformation which does not check the satisfiability of the generated con-

ditions. By eliminating the conditional statements with unsatisfiable conditions, the generated code

could be made much more practical, but optimisation of the generated code is a future work after the

AST-based code generation workflow will be implemented.

Usage of the permissive relations in practice. In the following a certain aspect of this work

will be shown: the usage of permissive relations in practice (based on [c6]). In this case we used

an object from the UNICOS framework’s object library, widely used at CERN for PLC software. We

introduced a small modification in the code causing a one-cycle-long delay in two of the outputs used

for informational purposes, i.e. a delay that does not cause any problems. By using strict equivalence

checking, the two code versions differed, a difference was found in less than a second
19
.

Without permissive conformance relations the conformance checking would get stuck: having

and analysing only a single counterexample, it is not known whether any other important differences

exist, i.e. if the modification caused any relevant side-effect.

We repeated the conformance checking, but taking into account that various conformance re-

lations can be used for the different outputs. First, we identified the level of required conformance

between each of the corresponding output pairs. We selected a permissive conformance relation

(pconf
v,v′,{−1,0,1}
4) for the two outputs where the strict equivalence is not required. After this, the

conformance checking demonstrated in less than a second that the two code versions are confor-

mant, there is no inequivalence besides the permissible delay of the above-mentioned variables. This

example shows the advantage of the permissive conformance relations: using them the developer can

19

This validation example is published, refer to DOI 10.5281/zenodo.45415.

109

http://doi.org/10.5281/zenodo.45415

4. Formal Specification for PLC Modules

(a) Current description (source: http://cern.ch/ucpc-resources/
1.8.0/objects/on-off.html)

Not_HLD

HLD

[AuIhMMo]
pri=1

@AuAuMoR

@MAuMoR

@MMMoR

@MFoMoR

@MSoftLDR

[AuIhFoMo]
pri=1

H*

[HLD and PHLD]
pri=0

[not HLD or not PHLD]
pri=0

Auto

Manual

Forced

SoftLD

HLD

(b) Proposed description in PLCspecif

Figure 4.15: Representations of the mode manager submodule of the field objects

be sure that his modifications did not affect any other behaviours, and also it did not cause intolerable

changes in the “informative” outputs.

The reachable state space of each PLC program model was around 108 states (before reductions),
while the composite model contained only 7× 104 reachable states (after reductions). The execution
time of the nuXmv model checker was 0.6 s for the conformance checking using both strict and

permissive relations.

4.7.3 SM18-PLCSE Safety Controller

To show the applicability of the PLCspecif specifications and the connected methods, we refer back

to the SM18-PLCSE safety controller, already introduced in Section 3.8.2. This case also shows that

the proposed conformance checking workflow may scale up to models with large state spaces.

When the development of the new SM18-PLCSE safety controller started, the PLCspecif specifi-

cation and the connected analysis methods were not ready yet to be used. Therefore at the beginning

of the development we used only requirement patterns for formal requirements specification, and

PLCverif to verify these requirements. As discussed in Section 3.8.2, the requirement pattern-based

description of the requirements was a complex task and it demonstrated that the detailed analysis of

such systems needs different methods.

Conformance checking. Later, when PLCspecif became ready, the formal specification of the

safety logic of SM18-PLCSEwas developed based on the semi-formal requirements given by the client.

This safety logic has a simple structure, however it uses many input and output variables. The be-

haviour in PLCspecif wasmostly described using the tabular expression representations. This resulted

in a specification similar to the original semi-formal requirement table, but with precise, formal se-

mantics and verification possibilities. Then conformance checking between the specification and the

implementation was performed. It has to be noted that as this is a stateless safety logic, there was no

110

http://cern.ch/ucpc-resources/1.8.0/objects/on-off.html
http://cern.ch/ucpc-resources/1.8.0/objects/on-off.html

4.8. Summary and Future Work

need to use the permissive conformance relations, instead strict equivalence checking was applied.

Using PLCverif and requirement patterns we found 12 issues which were fixed in the implementation.

We gained confidence in the correctness of the implementation by extensively using model checking.

The conformance checking was performed only to try the novel methods.

Although the implementation was already checked using model checking, by comparing the spec-

ification and the implementation, two additional discrepancies were found. These problems were not

covered by the requirements before, underlining that providing a complete behaviour description us-

ing temporal logic or requirement patterns only is extremely difficult, even for users experienced in

formal verification. After fixing these two problems, the conformance of the specification and the

implementation was proven. The composite IM generated for this case was more complex than the

IMs generated for the verification of single requirements. Therefore the verification run time was

longer as well, proving the conformance (evaluating the CTL expression representing the selected

conformance relations on the composite model) took 482 s [c6]. However, this verification had to be

done only once, while the requirement pattern-based approach required 24 separate runs for the 24

different requirements. Therefore although the conformance checking took more time in this case

than verifying a single requirement, the overall verification was faster using conformance checking.

It has to be noted that as conformance checking typically results in more complex models with

larger state spaces, in certain cases the conformance checking will not be feasible, while verifying

individual requirements might be still possible. Furthermore, developing formal specification might

need significant effort compared to defining certain critical requirements, butmay imply a higher level

of confidence in the correctness of the developed software. This shows that requirement pattern-based

model checking and formal specification-based conformance checking are complementary methods

with different strengths and weaknesses.

The SM18-PLCSE safety controller is in use since August 2015. To this day no issues were found

related to the implementation of the safety logic.

Code generation. In case of safety-critical PLCs provided by Siemens the programs have to be

manually developed in graphical languages, both code generation and the usage of the SCL language

are restricted. However, in order to check the code generation workflow and the different use cases of

conformance checking, an SCL implementation of the safety logic was generated from the PLCspecif

specification. Then conformance checking was performed between the real (STL) and the generated

(SCL) implementation. The conformance was proven in this scenario too, and the execution time was

nearly identical to the specification to implementation comparison.

The generated code is only 279 lines long, and most of it consists of variable and constant defini-

tions. The implementation itself mainly consists of some complex but consistent variable assignments,

following the structure of the specification. Unfortunately, the generated code cannot be used in prac-

tice, as safety Siemens PLCs have to be programmed manually in FBD or LAD.

Publications related to this section. Conformance checking-related uses were reported in [c6]. Different aspects of the

SM18-PLCSE conformance checking case study were presented in [c6; c9].

4.8 Summary and Future Work

This chapter describes PLCspecif, a formal behaviour specification language that has been specifically

designed for the development needs of PLC software modules. Besides the unambiguous, domain-

specific behaviour description, PLCspecif allows the usage of various methods:

111

4. Formal Specification for PLC Modules

• Static analysis. To check the well-formedness of the specification, I defined a set of well-

formedness rules. Most of the checks for the rules are implemented using simple graph al-

gorithms. For some others I provided translations into SAT problems.

• Verifying invariant properties. When a PLC developer cannot be sure that the imperative

behaviour description satisfies some desired invariant properties, it is possible to include these

properties explicitly in the specification. Based on the semantics definition of PLCspecif, I gave

a translation to PLCverif’s intermediate model formalism. The previously discussed pattern-

based requirement specification is used for the definition of invariant properties.

• Code generation. As a PLCspecif specification describes the complete behaviour of a PLC

program, it is possible to generate automatically an equivalent implementation. I defined the

formal semantics of PLCspecif in a way that it is close to a control flow graph (or control flow

automaton). Based on this, I designed and developed a code generation method that builds

Siemens SCL code for a given PLCspecif specification. Formaintainability reasons the generated

code is designed to be readable and understandable, following the structure of the specification.

• Conformance checking. PLCspecif supports the conformance checking between the specifi-

cation and implementation. For this, I reused the previously described method to translate the

specification into intermediate models used by PLCverif and designed a way create a composite

model of the two artefacts. With this composite model a model checker via PLCverif can show

or refute the equivalence.

In practice, PLCs are often used to control slow processes, where small delays in the output do

not have any observable effect on the controlled process. Requiring a strict equivalence between

two artefacts in these cases results in false positives, i.e. differences that are acceptable for the

users. I identified typical cases when strict equivalence is not required between a pair of outputs

in the checked artefacts, and I defined more permissive conformance relations. This way the

PLC developers can define for each output pair the level of conformance they require.

The contributions targeted in this chapter were the following.

Thesis 3 I designed PLCspecif, a formal behaviour specification language adapted to the needs

identified in PLC program development. This language is designed to be used for code generation

and verification purposes.

3.1 I designed the main language concepts, then I defined the precise syntax and semantics

of this language. The design of the language is based on collecting the requirements by

analysing the literature of formal specification methods and on the feedback from the PLC

developer community at CERN.

3.2 I developed a transformation from the PLCspecif specification to the intermediate model

(IM) language used by PLCverif. This allows the usage of various model checkers to verify

the invariant properties of the specification.

3.3 I designed and implemented an automated code generationmethod for the PLCspecif spec-

ification language based on its formal semantics. This code generation method is flexible

and configurable, and produces Siemens SCL code that is systematically derived from the

formal specification.

3.4 I designed new conformance relations, which can be used in the PLC software develop-

ment domain and allow designers to define acceptable discrepancies between the specified

112

4.8. Summary and Future Work

and implemented behaviours (such as short delays in output signals). I defined a confor-

mance checking method based on model checking to determine whether or not a rela-

tion holds for an implementation-specification pair. Accordingly, these relations provide

means to verify a legacy implementation or a manually-modified generated code against

a specification. I provided an implementation for checking these relations and evaluated

their practical applicability.

The design requirements, and the syntax and semantics of PLCspecif (Thesis 3.1) were discussed

in Sections 4.1 and 4.3. The verification of invariant properties (Thesis 3.2) using model checkers

was discussed in Section 4.4. The code generation method (Thesis 3.3) that can automatically pro-

vide implementation for a given PLCspecif specification was presented in Section 4.5. The design

and implementation of various conformance relations and the corresponding conformance checking

methods (Thesis 3.4) were presented in Section 4.6.

Future work. PLCspecif is currently in a proof-of-concept implementation phase. This allowed to

evaluate certain aspects of the language and the attached methods, but more work is needed in order

to make it usable in the everyday development, directly by the industrial practitioners. The main

future works are the following.

• A production-ready implementation is needed that can be given directly to the users. After this,

the method can be validated with PLC developers who are not experienced in formal methods.

• PLCspecif could be used with additional methods too, for example [Uni15] provided an initial

approach to generate test cases based on this specification language.

• The performance of the conformance relations should be improved. While it was possible to

check the conformance between the specification and the implementation in case of the large

SM18-PLCSE implementation, smaller objects with complex behaviours cause too long run

times in some cases.

• To make the code generator production-ready, the simple text-to-text generation should be re-

placed by a generation through the AST of the target language. This would allow to simplify the

code before generation, e.g. removing the conditional statements with unsatisfiable conditions.

• In the future, PLCspecif should be included in a broader specification and verification method-

ology that provides solution for the specification of complete PLC control applications, not only

for PLC modules.

113

Chapter5

Summary of the Research Results

This final chapter reviews the presented new contributions of this work. The challenges discussed in

Section 1.1.3 will be revisited together with the given solutions in Section 5.1. Section 5.2 summarises

the various applications of model checking in this work. Finally, Section 5.3 concludes the chapter

with the theses of this dissertation.

This dissertation proposed various improvements for formal methods to make them more appli-

cable in the development of PLC-based industrial control software, targeting both the performance

and usability issues.

Performance improvements. Chapter 2 presents an extension of the saturation-based model

checking techniques, which resulted in B-I-Sat, a novel bounded saturation-based CTL model check-

ing algorithm. This verification method is based on direct modelling, thus targets scenarios when

the development of a dedicated workflow is not feasible or not efficient. This novel algorithm im-

proved the performance of CTLmodel checking inmany cases compared to the original, non-bounded

saturation-based CTL model checking.

In some cases the usability and performance improvements overlap: if the verification takes ex-

cessive amount of time, the method is not usable in practice. The workflow introduced in Chapter 3

mainly targets the improvement of usability. However, for this reason automated reductions were

included, improving the performance of the workflow.

Usability improvements. Chapters 3 and 4 provided formal verification and specificationmethods

specifically designed for and adapted to the needs of industrial control software development. In these

cases direct modelling or usage of verification tools is not needed, thus these are suitable solutions for

developers without extensive formal methods knowledge. Different methods with different use cases

were proposed which are summarised in Table 5.1.

The verification workflow presented in Chapter 3 and implemented in the PLCverif tool targets

case 1 of Table 5.1. It is applicable when no formal specification is available and it can be used based on

the available implementation and some informal specification, which is adapted to the requirement

pattern-based inputs of the workflow by the user.

The second and third use cases consider situations when a formal specification is available. In

Chapter 4 PLCspecif, a novel formal specification language was introduced that specifically targets

the complete behaviour description of PLC modules or logics. Conformance checking (case 2 in Ta-

ble 5.1) provides away to formally check the correspondence between the specification and amanually

115

5. Summary of the Research Results

developed implementation. This may be the appropriate solution for the cases with legacy applica-

tions or when manual implementation is mandatory. Case 3 of Table 5.1 targets projects where the

development is started by creating a formal specification. This specification can be checked using

static analysis techniques, then a code generator may automatically produce an implementation with

equivalent behaviour.

By supporting various use cases it is possible to find themost appropriate solution for the different

development situations and requirements. This variety of proposed solutions also helps the step-by-

step introduction of formal methods to the development processes [c8].

Table 5.1: Use cases for application of formal methods without direct modelling [c8]

Available

Informal Manual Formal
specification implementation specification Action

(1) + + Model checking of the manual implementation

(2) + + +
Conformance checking between manual implementation

and formal specification

(3) + + Code generation based on checked formal specification

5.1 Responses to the Challenges

In the following the various responses given to the initial challenges are summarised.

Challenge 1: Designing model checking algorithms combining bounded and saturation-
based techniques to improve their performance. Both bounded model checking and satura-

tion-based techniques increase the set of models on which verification is feasible compared to basic

explicit model checking algorithms. Is it possible to combine these two approaches? Does it improve

the performance with respect to the original saturation-based model checking?

The work presented in Chapter 2 introduces B-I-Sat, a saturation-based bounded CTL model

checking algorithm. It shows the feasibility of designing an efficient algorithm combining

bounded model checking techniques with saturation-based techniques. The measurements in

Section 2.6 demonstrate that B-I-Sat provides lower execution times and better scalability in

certain cases, when the given formal requirement can be evaluated by exploring only a part of

the model.

Challenge 2: Makingmodel checking easily accessible to the PLC developers.Model checking

is rarely used for industrial control software, mainly because of the enormous effort needed to create

formal models and requirements, furthermore to learn the usage of the model checker tools. How

can model checking be made accessible and practically applicable in the PLC program development

process? How can model checking be used without excessive effort, without exposing the users (PLC

developers) to formal details, to complex mathematical formalisms?

The response to this challenge was the design of a verification workflow introduced in Sec-

tions 3.2 and 3.4 that hides the complex, formal details of model checking. The basic design of

the workflow was a joint work with B. Fernández. Chapter 3 discusses the own contributions:

the detailed design of the workflow and the development of PLCverif, a tool whichmakes model

116

5.1. Responses to the Challenges

checking accessible to the developers without extensive training. To be able to do this, auto-

mated transformations and intermediate model formalisms were developed. The result is a ver-

ification workflow that relies on the implementation and requirements given by filling require-

ment patterns, and that produces the results as verification reports in an easy-to-understand

format.

Challenge 3: Making the PLC model checking applicable to real-world PLC programs. The
formal models of real PLC modules or programs and their state spaces tend to be extremely large,

making the model checking infeasible using general-purpose model checker tools. Could heuristic

model reductions reduce the performance needs of model checking and therefore cope with a bigger

set of models?

In order to make the verification workflow described in Chapter 3 practically feasible, reduc-

tion heuristics were designed and developed based on the intermediate model language that

is a model checker-independent behaviour description of the software to be verified (see Sec-

tion 3.5). This way every supportedmodel checkermay benefit of the reductions. The evaluation

in Sections 3.5 and 3.8 demonstrates that the reductions can make the verification of real-life

PLC programs feasible, which could not be done without the reductions in the presented cases.

Challenge 4: Extending the model checking approach to safety-critical PLC programs. The
original PLC model checking workflow supported the Siemens SCL language only, which – being a

high-level language – is more suitable for the implementation of complex programs. However, the

development of PLCs used in safety-critical settings has specific procedures and restrictions, such as

the mandatory usage of FBD or LAD languages (in case of Siemens PLCs). How can model check-

ing be adapted to these lower-level programming languages used in safety-critical PLC program

development?

The verification workflow and the implementation initially targeted the analysis of PLC pro-

grams written in SCL language. To support the verification of safety-critical PLCs, support for

the low-level STL language was developed. The verification of FBD and LAD programs is also

possible through this language. For this reason, the precise semantics of STL was analysed and

explored, a partial translation between STL and SCL languages was developed that targets the

verification of simple safety programs, and the set of reduction heuristics was extended (see

Section 3.6). These works allowed to apply the proposed verification workflow for example

to the SM18-PLCSE safety logic, a safety-critical controller developed and used at CERN. The

formal verification of SM18-PLCSE successfully revealed various problems before putting the

system into production.

Challenge 5: Providing lightweight formal specification for PLC software modules. Unam-

biguous requirements are essential for any development or verification activity. Formal specifi-

cations may reduce the ambiguity, but the general-purpose formal specification methods are too

complex and non-intuitive to be used in the PLC development domain with a reasonable effort.

What are the requirements towards a formal specification language specially adapted to the PLC

domain? What formal specification method can aid the PLC program development process?

Sections 4.1 and 4.2 provide an overview of the available formal specification methods and

the requirements towards a method that can be applicable to the industrial control software

development. Based on this overview a new formal specification language (PLCspecif) was

designed, which is described in Section 4.3. This complete behaviour specification language is

suitable for the development and verification of the targeted software. As PLCspecif is designed

117

5. Summary of the Research Results

specifically to describe PLC modules, its usage does not require deep formal methods expertise.

Challenge 6: Providing verification solutions based on formal specification.How could formal

specification improve the PLC program verification? What verification methods can be used to

check the conformance between a PLC program and its formal specification? How can this be made

useful in practice, without excessive amount of false positives (i.e. without having a high number

of detected differences that are considered to be acceptable by the developers)?

The PLCspecif formal specification language is incorporated with a variety of additional verifi-

cation and development methods: code generation, static analysis, and conformance checking.

Conformance checking allows the precise comparison of the two artefacts’ behaviours, i.e. the

behaviour of a given specification and implementation. This is especially important when code

generation is not applicable. In industrial control software it is often observed that the strict

equivalence between the specification and the implementation is not required, as the controlled

process might be orders of magnitudes slower than the controller, thus small delays might be

acceptable. Therefore various, more permissive conformance relations and methods to evaluate

their satisfaction were designed and presented in Section 4.6.

5.2 Summary of the Proposed Verification Methods

The different contributions propose the usage of model checking in various settings, e.g. using dif-

ferent models and requirements. Figure 5.1 and Table 5.2 compare the main aspects of the proposed

approaches for various use cases.

1. Direct model checking (Thesis 1). In the first thesis, model checking is used without any ad-

ditional aid or adaptation. The formal models and requirements are created manually, in this

case using Petri nets and CTL. Then the B-I-Sat model checking algorithm (implemented in the

PetriDotNet framework [c10]) is executed and its results are evaluated manually. This is a suit-

able method, for example, when a non-deterministic model is needed that over-approximates

the set of behaviours, or when the verification is a rare event and it is not efficient to develop a

dedicated toolchain for the given platform, e.g. in case of the verification of the so-called PRISE

safety logic. This approach is illustrated in Figure 5.1(a).

2. Model checking based on requirement patterns and PLC code (Thesis 2). The inputs of

this workflow (implemented in PLCverif [c13]) are the implementation (PLC code) and a filled

requirement pattern. Both are understandable for the PLC developers. The implementation is

then automatically translated to an intermediate model (IM). A wrapper of the model checker

takes care of transforming the model and requirement from an intermediate representation to

the concrete syntax of the model checker. The result of the verification process is a verification

report, readable for the users. This workflow is suitable for users without extensive formal

verification knowledge. Additionally, thanks to the automation and adaptation, this method can

be included in the PLC development process efficiently, without excessive effort. This approach

is illustrated in Figure 5.1(b).

3. Conformance checking (Thesis 3). Conformance checking takes a formal specification be-

sides the PLC code as input. Both artefacts can be transformed into IM, then reduced and com-

bined into a composite model in order to perform conformance checking. Based on the selected

conformance relations a temporal logic requirement is generated. Then the wrapped model

118

5.3. Summary of the Theses

checker evaluates the satisfaction of this requirement on the composite model, similarly to use

case #2. The result is presented in a verification report. If a formal specification is available, con-

formance checking provides an easy-to-use and thoroughway to compare the implemented and

the expected behaviour. This approach is illustrated in Figure 5.1(c).

4. Code generation and invariant property checking (Thesis 3). If the implementation is gen-

erated using a correct code generator, there is no need to compare the behaviours of the im-

plementation and the specification. However, in this case model checking can be used in the

specification phase to ensure the satisfaction of invariant and/or safety properties. For this, the

formal specification is transformed into IM, like in use case #3. The invariant properties are

defined using requirement patterns. Then the wrapped model checker evaluates the satisfac-

tion of the given invariant properties and a report is generated. This approach is illustrated in

Figure 5.1(d).

Table 5.2: Overview of the proposed model checking methods

Model

Model checker

Requirement

Result

model checking model checking

#3 Conformance checking #4 Invariant checking

IM from implementation

IM from formal specif.

IM from implementation IM from formal specif.Direct modelling

Composition Reduction ReductionReduction

Manual From requirement pattern From requirement patternFrom conformance relation

Unwrapped Wrapped Wrapped Wrapped

Raw Verification report Verification report Verification report

#1 Direct #2 PLC code

5.3 Summary of the Theses

This section overviews the theses and the corresponding own publications.

Thesis 1 I designed B-I-Sat (Bounded Iterative Saturation), a novel computation tree logic

(CTL) model checking algorithm, that efficiently combines bounded model checking with

saturation-based techniques.

1.1 I defined the building blocks, and based on them the B-I-Sat algorithm to perform bounded

CTL model checking using saturation-based techniques. I defined two strategies for B-I-

Sat: the restarting and continuing strategies.

1.2 I defined termination conditions for the B-I-Sat algorithm using three-valued logic.

1.3 I developed an advanced incremental search strategy, the so-called compacting strategy

to reduce the memory consumption of the B-I-Sat algorithm.

1.4 I evaluated the performance of the B-I-Sat algorithm with the different strategies on var-

ious benchmark models and an industrial example.

The results of Thesis 1 are presented in Chapter 2 of the dissertation. Related publications are the

following: [j2; j4; c10; c17; c18; e20; e21].

119

5. Summary of the Research Results

Model checking

Unwrapped Wrapped

Requirement (TL)

Manual

From requirement pattern

From conformance relation

Verification model

Direct modelling

Via intermediate model (IM)

From implementation

From formal specification

+

Composition Reduction

Result

Raw

Verification report

(a) B-I-Sat model checking method (Thesis 1)

Model checking

Unwrapped Wrapped

Requirement (TL)

Manual

From requirement pattern

From conformance relation

Verification model

Direct modelling

Via intermediate model (IM)

From implementation

From formal specification

+

Composition Reduction

Result

Raw

Verification report

(b) Model checking PLC programs (Thesis 2)

Model checking

Unwrapped Wrapped

Requirement (TL)

Manual

From requirement pattern

From conformance relation

Verification model

Direct modelling

Via intermediate model (IM)

From implementation

From formal specification

+

Composition Reduction

Result

Raw

Verification report

(c) Checking invariant properties (Thesis 3)

Model checking

Unwrapped Wrapped

Requirement (TL)

Manual

From requirement pattern

From conformance relation

Verification model

Direct modelling

Via intermediate model (IM)

From implementation

From formal specification

+

Composition Reduction

Result

Raw

Verification report

(d) Conformance checking (Thesis 3)

Figure 5.1: Overview of the proposed model checking methods

120

5.3. Summary of the Theses

Thesis 2 I contributed to the development of a generic, flexible workflow to apply model

checking to PLC programs without requiring extensive formal methods knowledge from the

users. I designed essential parts of this workflow, as follows.

2.1 I designed an intermediate model (IM) language that can represent PLC programs and can

act as a pivot language for different model checkers. The IM-based model checking is a

fully automated method that can be used by developers who are not familiar with formal

verification techniques.

2.2 I developed heuristics to automatically reduce the size of the intermediate models, making

the model checking workflow less resource-demanding.

2.3 I extended this model checkingworkflow (originally developed only for SCL programming

language) to support the PLC programming languages used in the development of safety

PLCs: FBD and LAD, via the STL language.

2.4 I implemented the proposed model checking workflow in the PLCverif tool, providing

push-button verification to the developers based on the source code of the PLC program

and the pattern-based requirement specification. I evaluated the real-life applicability of

this workflow using various PLC modules and applications developed and used at CERN.

The results of Thesis 2 are presented in Chapter 3 of the dissertation. Related publications are the

following: [j1; j3; c8; c9; c11; c13; c14; c15; c16; r23; r24].

Thesis 3 I designed PLCspecif, a formal behaviour specification language adapted to the needs

identified in PLC program development. This language is designed to be used for code generation

and verification purposes.

3.1 I designed the main language concepts, then I defined the precise syntax and semantics

of this language. The design of the language is based on collecting the requirements by

analysing the literature of formal specification methods and on the feedback from the PLC

developer community at CERN.

3.2 I developed a transformation from the PLCspecif specification to the intermediate model

(IM) language used by PLCverif. This allows the usage of various model checkers to verify

the invariant properties of the specification.

3.3 I designed and implemented an automated code generationmethod for the PLCspecif spec-

ification language based on its formal semantics. This code generation method is flexible

and configurable, and produces Siemens SCL code that is systematically derived from the

formal specification.

3.4 I designed new conformance relations, which can be used in the PLC software develop-

ment domain and allow designers to define acceptable discrepancies between the specified

and implemented behaviours (such as short delays in output signals). I defined a confor-

mance checking method based on model checking to determine whether or not a rela-

tion holds for an implementation-specification pair. Accordingly, these relations provide

means to verify a legacy implementation or a manually-modified generated code against

a specification. I provided an implementation for checking these relations and evaluated

their practical applicability.

The results of Thesis 3 are presented in Chapter 4 of the dissertation. Related publications are the

following: [c5; c6; c7; c8; c9; c12; e19; r22].

121

AppendixA

Precise Definitions for the B-I-Sat

Algorithm

In the following, the preliminaries intuitively introduced for Thesis 1 in Chapter 2 are precisely de-

fined. This section is reusing the author’s earlier work [a30].

Definition A.1 (Model checking problem [Cla08]). Let M be a Kripke structure (i.e. state-

transition graph). Let f be a formula of temporal logic (i.e. the specification or property to be

checked). Find all states s ofM such thatM, s � f .
The goal of model checking is to find the {s ∈ S : M, s � f} set (where S is the set of

possible states in M , and the meaning of M, s � f is “the behaviour of the model M starting

from state s (as an initial state) satisfies the property f”).
Model checking is often considered as a decision problem, when the goal is to decide whether

f is true for the initial state s0 of the model M or not [CGP99][a30]. In these cases we call a

requirement f satisfied iff s0∈{s ∈ S : M, s � f} (or more precisely if S0 ⊆ {s ∈ S : M, s � f},
if multiple initial states S0 exist). Otherwise, the requirement is not satisfied. �

Definition A.2 (Kripke structure [CGP99]). A Kripke structure is a labelled directed graph,

where the labelled nodes represent states, the edges represent possible state transitions. Given

a set of propositions AP , it is a 4-tupleM = ⟨S,S0,N , L⟩, where:
• S = {s1, . . . , sn} is a finite set of states;

• S0 ⊆ S is a set of initial states;

• N ⊆ S × S is the set of possible state transitions; and

• L : S → 2AP
is the labelling function. �

Definition A.3 (Distance of a state). Given a Kripke structure M = ⟨S,S0,N , L⟩, the dis-

tance of a state s ∈ S is δ(s):

δ(s) =

{
0 if s ∈ S0,

min{δ(s′) : (s′, s) ∈ N}+ 1 otherwise. �

123

A. Precise Definitions for the B-I-Sat Algorithm

Definition A.4 (Petri net). A Petri net is a 5-tuple PN = ⟨P, T,E,w,M0⟩, where:
• P is a finite set of places;

• T is a finite set of transitions (P ∩ T = ∅ and P ∪ T ̸= ∅);
• E ⊆ (P × T) ∪ (T × P) is a set of arcs;
• w : E → Z+

is a weight function; and

• M0 : P → N is the initial marking (a marking is a function assigning token numbers to

places) [Mur89].

A transition t is enabled, if each input place pin of t is marked with at least w(pin , t) tokens
[Mur89]. If an enabled transition t fires, it removes w(pin , t) tokens from each input place pin
of t and it adds w(t, pout) tokens to each output place pout of t, resulting in a new marking. �

Definition A.5 (Computation tree). Let M be a model with the set of states S and let N be

the set of possible state-state transitions in themodel. A state path is a (finite or infinite) sequence

of states (s0, s1, . . .) such that ∀i : (si, si+1) ∈ N . For any state s0 ∈ S , a computation tree is a

tree prefix rooted at s0 containing every state path.

Note that computation trees are acyclic, therefore multiple nodes can represent the same

state. Moreover, the computation tree is often infinite. �

Definition A.6 (CTL formula [CGP99]). ACTL formula (state formula) can be defined by the

following rules:

• Every P atomic proposition is a state formula.

• If p and q are state formulae, then ¬p, p ∨ q, and p ∧ q are state formulae too.

• If p and q are state formulae, then X p, F p, G p, and p U q are path formulae.

• If s is path formula, then E s and A s are state formulae.

The given definition permits eight possible temporal operator pairs: EX, EF, EU, EG, AX,
AF, AU, AG. These are the building blocks of the CTL formulae. The intuitive semantics of these

operator pairs are the following:

• EF p: p is true for at least one state on some (at least one) path;

• EG p: p is true for all states on some path;

• EX p: p is true for at least one of the next states;

• E[p U q]: p is true for a state on some path and for all intermediate states on those path q
is true;

• AF p: p is true for at least one state on all paths;

• AG p: p is true for all states on all paths;

• AX p: p is true for all next states;

• A[p U q]: p is true for a state on all paths and for all intermediate states in all paths q is

true.

Notice that a state formula with a temporal operator pair is also a state formula, thus

“nesting” temporal operators is allowed. For example, the following is a valid CTL formula:

AG (q ∨ AF p). �

Definition A.7 (Bounded model checking (generalised)). Given a Kripke structure M =
⟨S,S0,N , L⟩, the submodel within distance b is a structureM[0;b] = ⟨S[0;b],S0,N[0;b], L⟩, where:

• b ∈ N;

124

• S[0;b] , {s : s ∈ S, δ(s) ≤ b}, i.e. the states in S within distance b;

• N[0;b] , {(s, s′) : (s, s′) ∈ N , s ∈ S[0;b], s
′ ∈ S[0;b]}, i.e. the state transitions between

states in S[0;b].

Then the generalised bounded model checking problem is determining whetherM, s � f holds,

based on modelsM[0;0],M[0;1], �

Definition A.8 (Multivalued decision diagram [Cia07][j25]). A multivalued decision dia-

gram (MDD) encodes a function f : (×i=K,...,1Di) → {0, 1}, where each Di is a finite do-

mainDi = {0, 1, . . . , ni}. This is achieved by a structureMDD = ⟨V, level , r, children, value⟩,
where:

• V is a finite set of nodes;

• level : V → 0, 1, . . . ,K is a function assigning level numbers to each node (Vi , {v ∈
V : level(v) = i});

• r ∈ V is the root node (v ∈ V : level(v) = K ⇒ v = r);
• children : Vi × Di → V<i is a function defining edges between nodes, labelled by items

of Di (V<i =
⋃i−1

j=0 Vj ; children(v, d) = w it is often denoted by v[d] = w);
• value : V0 → {0, 1} is a function assigning a binary value to each terminal node (i.e. nodes

at level 0). �

Definition A.9 (Edge-valued decision diagram [CS02][a30]). An edge-valued decision dia-

gram (EDD) encodes a function f : (×i=K,...,1Di) → (N ∪ {∞}), where each Di is a finite

domain Di = {0, 1, . . . , ni}.
This is achieved by a structure EDD = ⟨V, level , r, children, value, ρ⟩, where:
• V = V ′∪{⊥} is a finite set of nodes, where⊥ is the only terminal node (leaf), every other

v ∈ V ′ nodes are non-terminal nodes (⊥ /∈ V ′;Vi , {v ∈ V : level(v) = i});
• level : V → {0, 1, . . . ,K} is a function assigning level numbers to each node (level(⊥) =
0, ∀v ∈ V ′ : level(⊥) > 0);

• r ∈ V is the only root node (v ∈ V : level(v) = K ⇒ v = r);
• children : Di×V → V<i×N∪{∞} is a function defining edges between nodes, labelled

by items of Di (V<i =
⋃i−1

j=0 Vj) and non-negative integers or infinity (children(d, v) =
(s, w) is often denoted by v[d].node = w, v[d].label = s or v[d] = ⟨s, w⟩);

• The root node r has a “virtual” incoming edge with a label ρ assigned to it. This ρ value

is the so-called dangling edge weight. �
See Def. A.10 and Def. A.11 for special EDDs and Def. A.12 for the semantics of EDDs.

Definition A.10 (Canonical EDD [CS02][a30]). An EDD is canonical if for every v ∈ V ′

there is at least one outgoing edge labelled with zero [CS02]. �

Definition A.11 (Quasi-reduced EDD [CS02][a30]). An EDD is quasi-reduced if (i) it is

canonical, (ii) there are no duplicates on a level (i.e. if for v, w ∈ V level(v) = level(w) and
∀i ∈ Dlevel(v): v[i] = w[i], then v = w.), and (iii) for every v ∈ V ′ every outgoing edge points

to a node on level level(v)− 1 [CS02]. �

125

A. Precise Definitions for the B-I-Sat Algorithm

Definition A.12 (Semantics of an EDD [a30]). For simplicity, let us assume ⊥[i] = ⟨∞,⊥⟩
for any i. Informally, the r-rooted quasi-reduced EDD (with a dangling edge labelled with ρ)
represents the following f(xn, . . . , x1) function:

f(in, . . . , i1) = m ⇔ r[in] = ⟨mn−1, vn−1⟩,
vn−1[in−1] = ⟨mn−2, vn−2⟩,
. . . ,

v1[i1] = ⟨m1,⊥⟩,
m = m1 + . . .+mn−1 + ρ

�

126

AppendixB

Pseudocode of the Bounded Saturation

Algorithms

The following part describes the proposed B-I-Sat algorithm and the different strategies in more de-

tail. The pseudocode is based on the author’s earlier work [a30]. The pseudocode uses the structure

BoundedSaturationData, presented in Figure B.1. This represents the interface of the basic EDD-based

bounded state space exploration algorithm, extended by the constrained and negated constrained

saturations’ extra checks.

By invoking the BoundedSaturation() method of BoundedSaturationData, the state space explo-

ration with the previously set parameters will be executed. Before the execution, the following fields

have to be set: bound that determines the current bound value, initial that is the root edge of

the initial state space (encoded as EDD), the pruningMethod that determines the applied pruning

method (exact or approximate). Optionally, two constraints can also be defined using their MDD’s

root node: constraint for constrained saturation and negConstraint for the negated constrained

saturation. After execution, the stateSpace field will determine the root edge of the state space EDD,

and topLevelNumber will identify the level number of the topmost level in the state space EDD.

BoundedSaturationData
+ bound : int
+ initial : EDDEdge
+ pruningMethod : PruningMethod
+ constraint : MDDNode
+ negConstraint : MDDNode
+ stateSpace : EDDEdge
+ topLevelNumber : int {readonly}

+ BoundedSaturation()

Figure B.1: Simplified public interface of the unified bounded saturation algorithm [a30]

127

B. Pseudocode of the Bounded Saturation Algorithms

B.1 Restarting Bounded Saturation

The restarting saturation is a simple iterative version of the EDD-based bounded state space explo-

ration algorithm, using the initial state of the Petri net as initial state for each iteration.

Algorithm B.1: RestartingSaturation

input : B: int
output : result of model checking

1 sd ← new BoundedSaturationData;
2 sd .pruningMethod ← TruncateExact; // sets the pruning method

3 sd .initial ← EDD representation of Petri net’s initial marking;

4 sd .constraint ← 1; // no constraint

5 sd .negConstraint ← 0; // no negated constraint

6 int i← 1; // iteration counter

7 while true do
8 sd .bound ← i ·B; // sets the current bound for exploration

9 sd .BoundedSaturation();
10 ModelChecking(sd .stateSpace.AsMDD());
11 if result is representative to full model then
12 return result of model checking;

13 i← i+ 1;

B.2 Continuing Bounded Saturation

As it can be seen, there is only small difference between the restarting saturation (Algorithm B.1) and

the continuing saturation (Algorithm B.2). To implement the continuing saturation, the base bounded

algorithms had to be extended. The simple saturation-based bounded state space exploration algo-

rithm assumes that the initial state set has exactly one element, which has the encoding (0, 0, . . . , 0).
To support initial state sets with more elements, this special case had to be generalised. The main

differences compared to Algorithm B.1 are indicated by “∗”.

Algorithm B.2: ContinuingSaturation

input : B: int
output : result of model checking

1 sd ← new BoundedSaturationData;
2 sd .pruningMethod ← TruncateExact; // sets the pruning method

3 sd .initial ← EDD representation of Petri net’s initial marking;

4 sd .constraint ← 1; // no constraint

5 sd .negConstraint ← 0; // no negated constraint

6 int i← 1; // iteration counter

7 while true do
8 sd .bound ← i ·B; // sets the current bound for exploration

9 sd .BoundedSaturation();
10 ModelChecking(sd .stateSpace.AsMDD());
11 if result is representative to full model then
12 return result of model checking;

∗ 13 // Continue the next iteration from the state space of this iteration.

∗ 14 sd .initial ← sd .stateSpace ;
15 i← i+ 1;

128

B.3. Compacting Bounded Saturation

B.3 Compacting Bounded Saturation

Compacting saturation is a more complex strategy for the B-I-Sat algorithm. The detailed description

of the algorithm can be found in Section 2.4. The algorithm relies on the SubsetAtGivenDistance func-

tion which returns a subset of a given EDD where each encoded tuple has the given value. This is

applied to produce the frontier state set of the explored state space. The main differences compared

to Algorithm B.1 are indicated by “∗”.

Algorithm B.3: CompactingSaturation

input : B: int
output : result of model checking

1 sd ← new BoundedSaturationData;
2 sd .pruningMethod ← TruncateExact; // sets the pruning method

3 sd .initial ← EDD representation of Petri net’s initial marking;

4 sd .constraint ← 1; // no constraint

5 sd .negConstraint ← 0; // no negated constraint at the beginning

6 int i← 1; // iteration counter

∗ 7 MDDNodeM← 0;

8 while true do
9 sd .bound ← i ·B;

10 sd .BoundedSaturation();
∗ 11 M←M∪ sd .stateSpace.AsMDD();
∗ 12 ModelChecking(M);

13 if result is representative to full model then
14 return result of model checking;

15 else
∗ 16 EDDEdge F ← SubsetAtGivenDistance(sd .stateSpace, incr); // computes the frontier

∗ 17 sd .initial ← F ; // sets the frontier state set as initial state for next iteration

∗ 18 sd .negConstraint ←M; // exclusion of already explored states

129

B. Pseudocode of the Bounded Saturation Algorithms

Algorithm B.4: SubsetAtGivenDistance

input : ⟨v, p⟩ : EDDEdge,D : int
output : EDDEdge

1 if v > D then
2 // It is impossible to find any states with δ = D in this subgraph.

3 return ⟨∞,⊥⟩;
4 if p.level = 0 ∧ v ̸= D then
5 // This path encodes a global state and its distance ̸= D.

6 return ⟨∞,⊥⟩;
7 if p.level = 0 ∧ v = D then
8 // This path encodes a global state but its distance = D.

9 return ⟨v, p⟩;
10 if CacheFind(DISTEQ , ⟨v, p⟩, out p′) then
11 return ⟨v, p′⟩;
12 EDDNode n← NewNode(p.level);
13 foreach i ∈ Sp.level do
14 EDDEdge r ← SubsetAtGivenDistance(⟨v + p[i].value, p[i].node⟩);
15 n[i]← ⟨r.value − v, r.node⟩;
16 if p was checked in then
17 n← CheckIn(p.level, n);
18 PutIntoCache(DISTEQ , ⟨v, p⟩, n);
19 return ⟨v, n⟩;

130

AppendixC

Metamodel of the Intermediate

Representations of PLCverif

C.1 Intermediate Model

In the following the metamodel of the intermediate model (IM) language is briefly described, partially

based on [r24].

The core part of the IM metamodel (the full metamodel without the expression’s metamodel) is

depicted in Figure C.1. The metamodel of the expressions used in IM can be seen in Figure C.2. In the

following, a brief overview can be read about the IM metamodel and its usage.

The root element of the metamodel is AutomataSystem. It represents the whole network of au-

tomata. This element contains the automata (automata), the synchronisations (synchronisations)

and optionally global variables (variables). The AutomataSystem has a main automaton

(mainAutomaton), the automaton that represents the main cycle. The last location of this automaton

will be labelled withEoC (meaning “end of PLC cycle”). The execution is started with this automaton.

The other automata should wait for synchronisation in their initial location.

The AutomataInstance represents a single automaton. It contains locations (locations),

transitions (transitions) and variables (variables). The initial location is also set here

(initialLocation). Semantically there is no difference between the variables of an automaton and

the variables of the whole system: even the variables of an automaton can be accessed from every

other automaton to match the PLC semantics.

The Location represents a location in an automaton. A Transition connects two locations (from

and to). It may also have a guard (guard) attached, represented by anAutomataExpression, and one or

more variable assignments (assignments). A Transition is enabled if its source location is active and

its guard condition is evaluated to true. The Synchronisation can express a constraint on the firing

of transitions. In every step, either (a) an active transition fires that has no synchronisation attached,

or (b) two active transitions fire at the same time if they are connected by a synchronisation.

The transitions can have variable assignments described by a VariableAssignment object. It
refers to a variable that is modified and an expression that will be the new value of the variable. If

there are multiple variable assignments connected to the same transition, their execution order is not

defined. The generated models are created in a way that any execution order results in the same final

state, no dependent variable assignments are attached to the same transition.

The automata are extended by variables. AVariable describes a variable with a given type (type)
and default value (defaultValue). As it was previously stated, a variable can be attached to an au-

131

C. Metamodel of the Intermediate Representations of PLCverif

«abstract»

VariableContainer
– name : String

AutomataSystem Synchronisation

– name : String

AutomatonInstance Transition
– name : String

Location
– name : String

Variable
– name : String
– type : String

VariableAssignment
VariableExpression

AutomataExpression

AutomataExpression

AConstant

mainAutomaton 1 automata 0..*

system 1

synchronisations

0..*

transitions

0..*

automaton

1

initialLocation 1

locations

0..*

automaton 1

to

1

incoming 0..*

from

1

outgoing 0..*
variables 0..*

container 1

assignments 0..*

variable

1

guard 0..1

assignments

0..*

transition 0..1

variable 1 defaultValue 0..1

expression 0..1

transitions 2

synchronisations 0..*

Figure C.1: IM metamodel core

«enumeration»

AOperator

AND

OR

XOR

ADD

EQUALS

SUBTRACT

DIVIDE

MULTIPLY

LT

GT

GEQ

LEQ

NOTEQUALS

«abstract»

AutomataExpressionBuiltInFunction
– function : String operands

0..*

AOperation

– operator : AOperator operands

0..*

ANegate
expression

1

VariableExpression

– variable : Variable

AConstant
– value : String

ARandomValue

ARestrictedRandomValue
– lowerBound : int
– upperBound : int

Figure C.2: IM expression metamodel

132

C.2. Other Intermediate Representations

tomaton or globally to the automata network. The type of the variable is given by a string. The valid

type names are those that are defined in the IEC 61131-3 standard [I61131-3].

The expressions used as guard conditions, variable assignments, etc. are all descendants of the

abstract AutomataExpression class. An expression can be:

• A constant (AConstant),
• A variable (VariableExpression),
• A built-in PLC function (BuiltInFunction),
• A random value of a chosen type (ARandomValue) or a random integer value from a given

range of numbers (ARestrictedRandomValue),
• A negation of any expression (ANegate),
• An operation on any Boolean expression (AOperation). The possible operators are defined in

the AOperator enumeration.

C.2 Other Intermediate Representations

To wrap the external model checkers, it is not enough to provide a model checker-independent verifi-

cation model representation. It is also required to have an independent representation of the output of

the model checker which can be used in the report generation. The GenerationResults class stores all

information that was created during the model generation and verification process, mainly the result,

the counterexample and the generation log.

GenerationResults is the main class of this data structure. It contains the abstract syntax tree

of the PLC code (plcAst), the generated IM model representation (im), the result of the verification

(result), and the counterexample (counterexample), if available. This class stores the mapping be-

tween the variables in the PLC code, in the IM model and in the concrete syntax representation. For

each variable in the automata, aVariableMapping is created that stores its different names and refer-

ences to the corresponding objects. Furthermore, it can store the output of the verification tool written

to the standard output (executionOutput) or to standard error output (executionErrorOutput).

It contains the size of the potential state space of the IM model (pssSize). Through the setSetting

and getSettingmethods, key-value pairs can be stored for each plug-in. The GenerationResults also

provides a solution for logging. The GenerationLog can contain two types of log entries. There will

be exactly one StageLogItem entry for each stage describing if the stage was successful or not. This

is handled by the verification framework. GenerationLogItem entries can be added by any plug-in.

It can store the stage to which it belongs (stage), its severity (severity), a message for the user

(message), and optionally an exception (exception). The time field will be set automatically.

If the verification tool produces a counterexample (diagnostic trace), the wrapper of the model

checker should parse it. A counterexample is represented as a Counterexample object. This object

can store the name (name) and the requirement expression (expression) of the counterexample. In

addition, it contains one or more CexSteps. A CexStep describes one step in the counterexample that

should represent one PLC cycle, storing the variable values at the end of each PLC cycle. One step

consists of many VariableValuePairs, each describing a variable (with its internal fully qualified

name, variableFqn) and its value (value).

133

C. Metamodel of the Intermediate Representations of PLCverif

GenerationResults
– executionErrorOutput : String
– executionOutput : String
– im : AutomataSystem
– plcAst : EObject
– pssSize : double
– result : ResultEnum
+ getSetting(toolId : String, key : String) : String
+ getAllSettings() : List<String>
+ setSetting(toolId : String, key : String, value : String)

GenerationLog

+ log(logItem : GenerationLogItem)

+ addStageLogItem(item : StageLogItem)

+ successfulStage(stage : GenerationLogItem)

log

1

StageLogItem

– stage : GenerationStage
– status : StageStatus
–message : String
– time : Date
– lengthNs : long

GenerationLogItem

– stage : GenerationStage
– severity : PlcverifSeverity
–message : String
– time : Date
– exception : Throwable

Counterexample

– name : String
– expression : String

counterexample 0..1

CexStep

– name : String
steps

1..*

VariableValuePair
– variableFqn : String
– value : String

values

1..*

VariableMappings

+ getMappingImFqn(imFqn : String) : VariableMapping
+ getMappingByCsName(csName : String) : VariableMapping
+ setConcreteSyntaxName(mapping : VariableMapping, csName : String)

variableMappings

1

VariableMapping

– imFqn : String
– displayName : String
– imVariable : Variable
– descriptor : VariableDesc
– concreteSyntaxName : String

mappings 0..*

«enumeration»

GenerationStage

Initialisation

SourceCodeParsing

IMBuilding

Reductions

CSBuilding

CSVerification

VisualOutputBuilding

VisualOutputExecution

Finalisation

«enumeration»

PlcverifSeverity

Error

Warning

Info

Debug

«enumeration»

ResultEnum
NotSatisfied

Satisfied

Unknown

«enumeration»

StageStatus

Successful

Unsuccessful

Skipped

Figure C.3: Metamodel of the generation results and logging structure

134

AppendixD

Details About the STL to SCLr

Translation
1

D.1 Semantics of the STL Instructions

This part shows an example of determining the semantics of STL instructions. The meaning of the

used registers is described informally in Table D.1
2
.

We use the A(instruction as an example to present the method. According to the documentation,

“A((AND nesting open) saves the RLO and OR bits and a function code into the nesting stack. Amaximum

of seven nesting stack entries are possible” [Sie02]. This instruction does not have any parameters.

According to [Sie10] the A(instruction depends on the BR, OR, RLO and nFC status bits and it sets

the STA bit to true, and the OR and nFC bits to false. The instruction does not depend on any of the

other status bits and it does not modify any other status bits. However, it may depend or affect other

data. Based on the informal description, the A(modifies the contents of the nesting stack.

In order to determine the semantics of the A(, all possible combinations of BR, OR, RLO and

nFC status bits should be reproduced by a test program, then the resulting values of STA, OR and

nFC registers and the nesting stack should be checked. We have generated an STL test code for the

A(instruction. The STL code snippet corresponding to a check for a single valuation can be seen in

Listing D.1. This specific code snippet can help us to determine the behaviour of the instruction when

the BR bit is false, and the OR, RLO and nFC bits are true.

By generating and performing similar checks for all 24 combinations, the data in Table D.2 can be

obtained. Row 8 of the table was determined by executing the test program in Listing D.1. According

to the documentation, the STA, OR and nFC bits are set to constant values unconditionally. However,

we have already observed mistakes and contradictions in the official documentations, thus it is worth

to check the values of STA,OR and nFC too. In the current case the status bit values observed after the

execution matched the defined values, therefore they are omitted from the table. Based on Table D.2

and the documentation the effects of the A(instruction can be summarised:

• It sets the OR and nFC status bits to false (0),

• It sets the STA status bit to true (1),

• It creates a new nesting stack entry, where:

– The value of OR bit is OR ∧ nFC,

1

This chapter is a modified and adapted excerpt from [j1].

2

Here we omit the registers not necessary for simple STL programs, such as the BR (binary result), OV (overflow), OS
(stored overflow) bits and the address registers.

135

D. Details About the STL to SCLr Translation

Table D.1: Main registers in Siemens PLCs (based on [Sie98b])

Register SCLr name Purpose

RLO RLO Result of last logic operation.

OR OR Helper bit for the “and before or” logical operation (O instruction).

nFC NFC Not first computation. If it is false, the current value of RLO is not taken into account.

STA STA Status bit. Stores the value of a bit that is referenced.

CC0, CC1 CC0, CC1 Condition codes. The result of the last comparison or other operations.

ACCU1, . . . ACCU* Accumulators.

nested stack ns*[] Nesting stack. Temporarily stores register values (nsRLO, nsOR) and the last Boolean

operation (nsFC*) while a nested Boolean computation is in progress.

1 L 2#00001011 // BR=0, OR=1, RLO=1, nFC=1

2 T STW
3 A(
4 NOP 0 // place breakpoint here to check the result

5) // to restore the empty nesting stack

6 NOP 0

Listing D.1: Test code to determine the semantics of the A(instruction

Table D.2: Observed behaviour of the A(instruction

Before execution After execution
(new nesting stack entry)

BR OR RLO nFC nsBR nsOR nsRLO nsFC2,1,0
0 0 0 0 0 0 1 0,0,0

0 0 0 1 0 0 0 0,0,0

0 0 1 0 0 0 1 0,0,0

0 0 1 1 0 0 1 0,0,0

0 1 0 0 0 0 1 0,0,0

0 1 0 1 0 1 0 0,0,0

0 1 1 0 0 0 1 0,0,0

0 1 1 1 0 1 1 0,0,0

1 0 0 0 1 0 1 0,0,0

1 0 0 1 1 0 0 0,0,0

1 0 1 0 1 0 1 0,0,0

1 0 1 1 1 0 1 0,0,0

1 1 0 0 1 0 1 0,0,0

1 1 0 1 1 1 0 0,0,0

1 1 1 0 1 0 1 0,0,0

1 1 1 1 1 1 1 0,0,0

136

D.2. Identified Correspondences Between STL and SCL

– The value of RLO bit is RLO ∨ ¬nFC,
– The value of BR bit is BR3

,

– The value of function encoding is (0, 0, 0), corresponding to the A(instruction [Sie98a],

and

• It pushes this new nesting stack entry into the nesting stack.

It is worth noting that contrarily to the straightforward meaning of the description, based on our

systematic checks the A(instruction does not store the exact values of the RLO and the OR bits (i.e.

the nsRLO does not equal to RLO in every case). This demonstrates that the STL to SCLr translation

cannot rely only on the informal description of the instructions.

D.2 Identified Correspondences Between STL and SCL

The identified correspondences between STL and SCL [j1] are described in Tables D.3, D.4 and D.5.

D.3 Concepts of the Correctness Proof

In this section we present the main concepts of a method to prove the correctness of the translation

from STL to SCLr, i.e. if the SCLr equivalents have the same behaviour as the corresponding STL

statements according to the experiments. For this, we perform the following steps:

• Defining the formal semantics of SCLr (Section D.3.1),

• Defining the formal semantics of STL (Section D.3.2), and

• Giving a proof strategy to show the equivalence (Section D.3.3).

The following discussion focuses on the principles of this proof strategy and does not provide a

complete correctness proof.

D.3.1 Formal Semantics for SCLr

In this section we draw up an operational semantics for the SCL (SCLr) language. We will denote

the context of an SCL statement by σ. This is a function σ : V → D, i.e. a function that assigns a

value from pre-defined domains to each defined variable. The program P executed from an initial

context σ0 results in σ1 which will determine the values of the physical outputs and the initial values

of retained variables for the following PLC cycle.

At the beginning of the program execution, each variable has an explicitly or implicitly defined

default value (the implicit default values are 0 or false). Then at the beginning of each cycle the non-

local variables keep their previously set values, while the initial values of local variables are undefined.

The execution ends when the final configuration (⟨skip;⟩, σ) is reached (“skip;” denotes that there
is no more program code to be executed).

An intuitive formalisation of the SCL statements’ semantics is presented in Figure D.1. This is a

small-step semantics, i.e. it defines the operation of a program step by step. The semantics definition

in Figure D.1 consists of a set of inference rules. Each inference rule consists of some (zero or more)

premises (above the line) and a conclusion (below the line). The operation of a given program with

a given initial context can be determined by applying the inference rules one after another until the

final configuration (⟨skip;⟩, σ) is reached.
3

We were not able to observe directly the BR value of the nesting stack entry. Instead, we have checked the value of

the BR status bit after the) instruction. The result (i.e. the BR bit of the nesting stack entry equals to the value of the BR
status bit) is in accordance with our expectations based on the informal descriptions.

137

D. Details About the STL to SCLr Translation

Table D.3: SCLr representation of logical operations

STL SCLr equivalent
A var1 IF __NFC THEN __RLO:=__RLO AND (var1 OR __OR); ELSE __RLO:=var1 OR __OR; END_IF;

__STA:=var1; __NFC:=TRUE;
AN var1 IF __NFC THEN __RLO:=__RLO AND (NOT var1 OR __OR); ELSE __RLO:=NOT var1 OR __OR;

END_IF;
__STA:=var1; __NFC:=TRUE;

O var1 IF __NFC THEN __RLO:=__RLO OR var1; ELSE __RLO:=var1; END_IF;
__OR:=FALSE; __STA:=var1; __NFC:=TRUE;

ON var1 IF __NFC THEN __RLO:=__RLO OR (NOT var1); ELSE __RLO:=NOT var1; END_IF;
__OR:=FALSE; __STA:=var1; __NFC:=TRUE;

X var1 IF __NFC THEN __RLO:=__RLO XOR var1; ELSE __RLO:=var1; END_IF;
__OR:=FALSE; __STA:=var1; __NFC:=TRUE;

XN var1 IF __NFC THEN __RLO:=__RLO XOR (NOT var1); ELSE __RLO:=NOT var1; END_IF;
__OR:=FALSE; __STA:=var1; __NFC:=TRUE;

O __STA:=TRUE; __OR:=__NFC AND (__OR OR __RLO); __NFC:=__RLO AND __NFC;
= var1 IF __MCR THEN var1:=__RLO; ELSE var1:=FALSE; END_IF;

__OR:=FALSE; __STA:=var1; __NFC:=FALSE;
S var1 IF __MCR AND __RLO THEN var1:=TRUE; END_IF;

__OR:=FALSE; __STA:=var1; __NFC:=FALSE;
R var1 IF __MCR AND __RLO THEN var1:=FALSE; END_IF;

__OR:=FALSE; __STA:=var1; __NFC:=FALSE;
FP var1 __OR:=FALSE; __STA:=__RLO; __NFC:=TRUE;

IF NOT var1 AND __RLO THEN
var1:=__RLO; __RLO:=TRUE;

ELSE
var1:=__RLO; __RLO:=FALSE;

END_IF;
FN var1 __OR:=FALSE; __STA:=__RLO; __NFC:=TRUE;

IF var1 AND NOT __RLO THEN
var1:=__RLO; __RLO:=TRUE;

ELSE
var1:=__RLO; __RLO:=FALSE;

END_IF;
NOT __RLO:=NOT __RLO OR __OR; __STA:=TRUE;
CLR __RLO:=FALSE; __OR:=FALSE; __STA:=FALSE; __NFC:=FALSE;
SET __RLO:=TRUE; __OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;
SAVE __BR:=__RLO;
MCRA __MCR:=TRUE;
MCRD __MCR:=FALSE;

Table D.4: SCLr representation of numeric operations

STL SCLr equivalent
L var1 __ACCU2 := __ACCU1; __ACCU1 := var1;
T var1 IF __MCR THEN var1:=__ACCU1; ELSE var1:=0; END_IF;
>D __OR:=FALSE; __NFC:=TRUE; __RLO:=(__ACCU1<__ACCU2);

__CC0:=(__ACCU1>__ACCU2); __CC1:=(__ACCU1<__ACCU2);
__OV:=FALSE; __OR:=FALSE; __NFC:=TRUE; __STA:=__RLO;

>=D __OR:=FALSE; __NFC:=TRUE; __RLO:=(__ACCU1<=__ACCU2);
__CC0:=(__ACCU1>__ACCU2); __CC1:=(__ACCU1<__ACCU2);
__OV:=FALSE; __OR:=FALSE; __NFC:=TRUE; __STA:=__RLO;

<D __OR:=FALSE; __NFC:=TRUE; __RLO:=(__ACCU1>__ACCU2);
__CC0:=(__ACCU1>__ACCU2); __CC1:=(__ACCU1<__ACCU2);
__OV:=FALSE; __OR:=FALSE; __NFC:=TRUE; __STA:=__RLO;

<=D __OR:=FALSE; __NFC:=TRUE; __RLO:=(__ACCU1>=__ACCU2);
__CC0:=(__ACCU1>__ACCU2); __CC1:=(__ACCU1<__ACCU2);
__OV:=FALSE; __OR:=FALSE; __NFC:=TRUE; __STA:=__RLO;

==D __OR:=FALSE; __NFC:=TRUE; __RLO:=(__ACCU1=__ACCU2);
__CC0:=(__ACCU1>__ACCU2); __CC1:=(__ACCU1<__ACCU2);
__OV:=FALSE; __OR:=FALSE; __NFC:=TRUE; __STA:=__RLO;

138

D.3. Concepts of the Correctness Proof

Table D.5: SCLr representation of nesting stack operations

STL SCLr equivalent
A(__nsRLO[7]:=__nsRLO[6]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO OR NOT __NFC;

__nsOR[7] := __nsOR[6]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=__OR AND __NFC;
__nsBR[7] := __nsBR[6]; ... __nsBR[2] := __nsBR[1]; __nsBR[1] :=__BR;
__nsFC2[7]:=__nsFC2[6]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=FALSE;
__nsFC1[7]:=__nsFC1[6]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=FALSE;
__nsFC0[7]:=__nsFC0[6]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=FALSE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

AN(__nsRLO[7]:=__nsRLO[6]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO OR NOT __NFC;
__nsOR[7] := __nsOR[6]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=__OR AND __NFC;
__nsBR[7] := __nsBR[6]; ... __nsBR[2] := __nsBR[1]; __nsBR[1] :=__BR;
__nsFC2[7]:=__nsFC2[6]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=FALSE;
__nsFC1[7]:=__nsFC1[6]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=FALSE;
__nsFC0[7]:=__nsFC0[6]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=TRUE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

O(__nsRLO[7]:=__nsRLO[6]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO AND __NFC;
__nsOR[7] := __nsOR[6]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=FALSE;
__nsBR[7] := __nsBR[6]; ... __nsBR[2] := __nsBR[1]; __nsBR[1] :=__BR;
__nsFC2[7]:=__nsFC2[6]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=FALSE;
__nsFC1[7]:=__nsFC1[6]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=TRUE;
__nsFC0[7]:=__nsFC0[6]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=FALSE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

ON(__nsRLO[7]:=__nsRLO[6]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO AND __NFC;
__nsOR[7] := __nsOR[6]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=FALSE;
__nsBR[7] := __nsBR[6]; ... __nsBR[2] := __nsBR[1]; __nsBR[1] :=__BR;
__nsFC2[7]:=__nsFC2[6]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=FALSE;
__nsFC1[7]:=__nsFC1[6]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=TRUE;
__nsFC0[7]:=__nsFC0[6]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=TRUE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

X(__nsRLO[7]:=__nsRLO[6]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO AND __NFC;
__nsOR[7] := __nsOR[6]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=FALSE;
__nsBR[7] := __nsBR[6]; ... __nsBR[2] := __nsBR[1]; __nsBR[1] :=__BR;
__nsFC2[7]:=__nsFC2[6]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=TRUE;
__nsFC1[7]:=__nsFC1[6]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=FALSE;
__nsFC0[7]:=__nsFC0[6]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=FALSE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

XN(__nsRLO[7]:=__nsRLO[6]; ... __nsRLO[2]:=__nsRLO[1]; __nsRLO[1]:=__RLO AND __NFC;
__nsOR[7] := __nsOR[6]; ... __nsOR[2] := __nsOR[1]; __nsOR[1] :=FALSE;
__nsBR[7] := __nsBR[6]; ... __nsBR[2] := __nsBR[1]; __nsBR[1] :=__BR;
__nsFC2[7]:=__nsFC2[6]; ... __nsFC2[2]:=__nsFC2[1]; __nsFC2[1]:=TRUE;
__nsFC1[7]:=__nsFC1[6]; ... __nsFC1[2]:=__nsFC1[1]; __nsFC1[1]:=FALSE;
__nsFC0[7]:=__nsFC0[6]; ... __nsFC0[2]:=__nsFC0[1]; __nsFC0[1]:=TRUE;
__OR:=FALSE; __STA:=TRUE; __NFC:=FALSE;

) __OR:=__nsOR[1]; __NFC:=TRUE; __STA:=TRUE; __BR:=__nsBR[1];
IF (NOT __nsFC2[1] AND NOT __nsFC1[1] AND NOT __nsFC0[1])THEN

__RLO:=(__nsRLO[1] AND __RLO)OR __OR[1]; //A(instruction , FC =(0,0,0)

ELSIF (NOT __nsFC2[1] AND NOT __nsFC1[1] AND __nsFC0[1])THEN
__RLO:=(__nsRLO[1] AND NOT __RLO)OR __OR[1]; //AN(instruction, FC =(0,0,1)

ELSIF (NOT __nsFC2[1] AND __nsFC1[1] AND NOT __nsFC0[1])THEN
__RLO:=__nsRLO[1] OR __RLO; //O(instruction , FC =(0,1,0)

ELSIF (NOT __nsFC2[1] AND __nsFC1[1] AND __nsFC0[1])THEN
__RLO:=__nsRLO[1] OR (NOT __RLO); //ON(instruction , FC =(0,1,1)

ELSIF (__nsFC2[1] AND NOT __nsFC1[1] AND NOT __nsFC0[1])THEN
__RLO:=__nsRLO[1] XOR __RLO; //X(instruction , FC =(1,0,0)

ELSE
__RLO:=__nsRLO[1] XOR (NOT __RLO); //XN(instruction , FC =(1,0,1)

END_IF;
__nsRLO[1]:=__nsRLO[2]; ... __nsRLO[6]:=__nsRLO[7]; __nsRLO[7]:=FALSE;
__nsOR[1] := __nsOR[2]; ... __nsOR[6] := __nsOR[7]; __nsOR[7] :=FALSE;
__nsBR[1] := __nsBR[2]; ... __nsBR[6] := __nsBR[7]; __nsBR[7] :=FALSE;
__nsFC2[1]:=__nsFC2[2]; ... __nsFC2[6]:=__nsFC2[7]; __nsFC2[7]:=FALSE;
__nsFC1[1]:=__nsFC1[2]; ... __nsFC1[6]:=__nsFC1[7]; __nsFC1[7]:=FALSE;
__nsFC0[1]:=__nsFC0[2]; ... __nsFC0[6]:=__nsFC0[7]; __nsFC0[7]:=FALSE;

139

D. Details About the STL to SCLr Translation

Note that the expression evaluation is not presented in Figure D.1 in detail (only the OR and AND

operators are defined as illustration), furthermore only the variable assignment and the IF statements

are presented. In the rules v1 denotes a variable, e1, e2 are expressions, c1, c2 are constant values,

s1 and s2 are SCL statements or SCL statement lists. We distinguish between arithmetic or logic

evaluation (denoted by −→a) and single-step program evaluations (denoted by −→). If a program

evaluation is possible in more steps we will denote it by −→∗. Let us denote by σ[v1 7→ c1] the
function that is equivalent to σ except that σ(v1) = c1. Formally:

σ[v1 7→ c1](x) =

{
σ(x) if x ̸= v1

c1 if x = v1.

For the sake of readability, we will use the following comma-separated format too: σ[v1 7→
c1, . . . , vn 7→ cn] =

(
(σ[v1 7→ c1]) · · ·

)
[vn 7→ cn].

σ(v1) = c1

(v1, σ) −→a c1
SCL Variable value

(e1, σ) −→a c1 (e2, σ) −→a c2

(⟨e1 OR e2⟩, σ) −→a c1 ∨ c2
SCL OR expression

(e1, σ) −→a c1 (e2, σ) −→a c2

(⟨e1 AND e2⟩, σ) −→a c1 ∧ c2
SCL AND expression

(⟨s1;⟩, σ) −→ (⟨skip;⟩, σ′)

(⟨s1;s2;⟩, σ) −→ (⟨s2;⟩, σ′)
SCL Seqence

(e1, σ) −→a c1

(⟨v1:=e1;⟩, σ) −→ (⟨skip;⟩, σ[v1 7→ c1])
SCL Assignment

(e1, σ) −→a ⊤
(⟨ IF e1 THEN s1 ELSE s2 END_IF; ⟩, σ) −→ (s1, σ)

SCL If (1)

(e1, σ) −→a ⊥
(⟨ IF e1 THEN s1 ELSE s2 END_IF; ⟩, σ) −→ (s2, σ)

SCL If (2)

Figure D.1: Simplified SCL semantics

D.3.2 Formal Semantics for STL

In this section the goal is to describe the formal semantics of STL, similarly to the semantics of SCL

in the previous section. We will denote the context of an SCL statement by σ, ρ. The first function

is σ : V → D that assigns a value from pre-defined domains to each defined variable, similarly to

the SCL semantics. The second function is ρ : R → D that assigns values to the set of registers

R = {MCR, nFC,RLO, STA, . . . , nsRLO[1], nsOR[1], . . . , nsFC0[7]}.
At the beginning of the program execution, each variable has an explicitly or implicitly defined

default value in σ (the implicit default values are 0 or false). Then at the beginning of each cycle

the non-local variables keep their previously set values, while the initial values of local variables are

undefined. The registers are initialised to their default values at the beginning of each cycle. The

default values of the registers are false, except forMCR, RLO and STA which are initialised to true at

the beginning of each cycle.

140

D.3. Concepts of the Correctness Proof

σ(v1) = c1

(v1, σ, ρ) −→a c1
STL Variable value

ρ(r1) = c1

(r1, σ, ρ) −→a c1
STL Register value

(⟨s1⟩, σ, ρ) −→ (⟨skip⟩, σ′, ρ′)

(⟨s1 s2⟩, σ, ρ) −→ (⟨s2⟩, σ′, ρ′)
STL Seqence

Figure D.2: Simplified base STL semantics

We define the basics of semantics, such as the variable and register values, or the semantics of the

sequence of instructions, as follows in Figure D.2. In the rules v1 is a variable, c1 is a constant value,
s1 and s2 are STL statements or STL statement lists.

Formalising the discovered STL semantics. As it was discussed previously, the semantics of

the STL instructions are not defined precisely. In our method we conduct systematic experiments to

determine the semantics of the STL instructions in each possible configuration. The STL semantics is

known only through these observed semantics. This was summarised in tables, similarly to Table D.2.

These tables can be systematically transformed into inference rules. Each row of the table can be

represented as a single inference rule, therefore the semantics of a given STL instruction will be

formalised as a set of inference rules, one for each possible initial configuration. This is demonstrated

by the following example.

Example. Here we will use a simple “or” operation O v1 as an example, where v1 is a variable. The

observed semantics of O v1 , obtained through a series of tests as described before, can be seen in

Table D.6.

Table D.6: Observed STL semantics for O v1

Before execution After execution
RLO nFC v1 v1 OR STA RLO nFC
0 0 0 0 0 0 0 1

0 0 1 1 0 1 1 1

0 1 0 0 0 0 0 1

0 1 1 1 0 1 1 1

1 0 0 0 0 0 0 1

1 0 1 1 0 1 1 1

1 1 0 0 0 0 1 1

1 1 1 0 0 1 1 1

Each row of this table describes the semantics of the O v1 statement with different preconditions.

For example, row 2 defines the following formal semantics:

ρ(RLO) = ⊥ ρ(nFC) = ⊥ σ(v1) = ⊤
(⟨O v1⟩, ρ, σ) −→ (⟨skip⟩, ρ[OR 7→⊥,STA 7→⊤,RLO 7→⊤, nFC 7→⊤], σ)

STL O v1 (2)

After formalising the SCL and STL semantics, the only remaining step is to prove that the sug-

gested SCLr representations of the STL statements will provide the same results. This proof will be

drawn up in the next section.

141

D. Details About the STL to SCLr Translation

1 IF __NFC THEN
2 __RLO:=__RLO OR v1;
3 ELSE
4 __RLO:=v1;
5 END_IF;
6 __OR:=FALSE;
7 __STA:=v1;
8 __nFC:=TRUE;

Listing D.2: SCLr equivalent of the O v1 STL statement

D.3.3 Strategy for the Correctness Proof

Now it is possible to define formally the correctness of the STL to SCL translation. Formally, the goal

is to prove the following:(
(PSTL, σ1, ρ1) −→∗ (⟨skip⟩, σ2, ρ2)

)
=⇒

(
(PSCL, σ

′
1) −→∗ (⟨skip;⟩, σ′2)

)
,

where PSCL is the SCLr representation of the STL code PSTL, and σ′i is the representation of σi, ρi
such that:

σ′i(x) =

{
σi(x) if x is a real variable

ρi(y) if x is the SCLr variable representing the register y (y=x).

The program PSTL is a sequence of STL statements. Based on the SCL Seqence and STL Se-

qence inference rules of the semantics definitions discussed before, it is enough to prove that the

behaviour of each STL instruction corresponds to their SCLr representations’ behaviour. We have to

show that the proposed SCLr equivalent of a certain STL instruction provides the same semantics as

the original STL instruction. As the semantics of a given STL instruction is formalised as a set of infer-

ence rules (as discussed in the previous section), the goal is to show that for each STL inference rule

given the same premises (equivalent initial contexts), given the SCLr representation, and using the

inference rules of the SCL semantics, the reached final configuration of the SCLr program corresponds

to the final configuration of the STL instruction. This is demonstrated by the following example.

Example. Based on Table D.6, the SCLr equivalent presented in Listing D.2 can be proposed for O v1 .

For each row of Table D.6 it is possible to formally prove based on the defined SCLr semantics that the

proposed SCLr equivalent provides the same result. The inference tree in Figure D.3 proves that the above

SCLr code matches the previously discussed STL O v1 (2) semantic rule. This proof shows that from the

same premises (σ(nFC) = ⊥, σ(RLO) = ⊥, σ(v1) = ⊤), by applying the inference rules of the SCL

semantics, the reached configuration corresponds to the one reached by the execution of the STL statement:

the context σ′[OR 7→ ⊥, STA 7→ ⊤, RLO 7→ ⊤, nFC 7→ ⊤] reached by the SCLr code emulates the

final configuration in the STL semantics definition (ρ[OR 7→⊥,STA 7→⊤,RLO 7→⊤, nFC 7→⊤], σ).
It can also be seen in Figure D.3 that the result does not depend on the value of the RLO register,

therefore the same proof can be used for the STL O v1 (6) semantic rule, describing row 6 of Table D.6:

ρ(RLO) = ⊤ ρ(nFC) = ⊥ σ(v1) = ⊤
(⟨O v1⟩, ρ, σ) −→ (⟨skip⟩, ρ[OR 7→⊥, STA 7→⊤,RLO 7→⊤, nFC 7→⊤], σ)

STL O v1 (6).

142

D
.3
.
C
o
n
c
e
p
t
s
o
f
t
h
e
C
o
r
r
e
c
t
n
e
s
s
P
r
o
o
f

σ(nFC) = ⊥
(__NFC, σ) −→a ⊥

(⟨IF __NFC THEN __RLO:=__RLO OR v1;
ELSE __RLO:=v1; END_IF;⟩, σ) −→

(⟨__RLO:=v1;⟩, σ)
σ(v1) = ⊤

(v1, σ) −→a ⊤
(⟨IF __NFC THEN __RLO:=__RLO OR v1;
ELSE __RLO:=v1; END_IF;⟩, σ) −→

(⟨skip;⟩, σ[RLO 7→⊤])

·
(⟨__OR:=FALSE;⟩, σ[RLO 7→⊤]) −→
(⟨skip;⟩, σ[OR 7→⊥, RLO 7→⊤])

(⟨IF __NFC THEN __RLO:=__RLO OR v1; ELSE __RLO:=v1; END_IF; __OR:=FALSE;⟩, σ) −→
(⟨skip;⟩, σ[OR 7→⊥, RLO 7→⊤])

σ(v1) = ⊤
(v1, σ) −→a ⊤

(⟨__STA:=v1;⟩, σ[OR 7→⊥, RLO 7→⊤]) −→
(⟨skip;⟩, σ[OR 7→⊥, STA 7→⊤, RLO 7→⊤])

(⟨IF __NFC THEN __RLO:=__RLO OR v1; ELSE __RLO:=v1; END_IF; __OR:=FALSE; __STA:=v1;⟩, σ) −→
(⟨skip;⟩, σ[OR 7→⊥, STA 7→⊤, RLO 7→⊤])

·
(⟨__NFC:=TRUE;⟩, σ[OR 7→⊥, STA 7→⊤, RLO 7→⊤]) −→
(⟨skip;⟩, σ[OR 7→⊥, STA 7→⊤, RLO 7→⊤, nFC 7→⊤])

(⟨IF __NFC THEN __RLO:=__RLO OR v1; ELSE __RLO:=v1; END_IF; __OR:=FALSE; __STA:=v1; __nFC:=TRUE;⟩, σ) −→
(⟨skip;⟩, σ[OR 7→⊥, STA 7→⊤, RLO 7→⊤, nFC 7→⊤])

Figure D.3: Proof of semantic equivalence between the SCLr representation of O v1 and the semantic rule STL O v1 (2)

1
4
3

AppendixE

Semantics of PLCspecif

This chapter provides a brief overview of PLCspecif’s formal semantics. The description in this chap-

ter is an excerpt of the own work [r22], which provides a more complete syntax and semantics defi-

nition.

The formal semantics of PLCspecif is defined as a construction of a variant of the widely-known

timed automata formalism. Timed automaton has a well-defined formal semantics, and it is a rela-

tively high-level formalism, thus it is convenient for describing the formal semantics of PLCspecif.

Furthermore, the semantic of a specification defined as an automaton is close to the control flow graph

of its implementation, helping to design a code generator that follows the formal semantics.

E.1 Timed Automata

A timed automaton [BY04] is essentially a set of locations, clocks, and edges (transitions), each having

a source and target location, and a clock constraint. To make the usage of the formalism more con-

venient, we extended the TA definition with data variables that can be used in conditions of edges,

also firing transitions represented by the edges can assign new values to data variables. The seman-

tics definition is based on the timed automaton defined below, which is an extension of the timed

automata formalism defined in [BY04]. These extensions do not increase the expressive power of the

formalism, but simplify the discussion.

Definition E.1 (Timed automaton with data variables (extended, based on [BY04])). A
timed automaton (TA) is a tuple TA = ⟨L, ℓ0, C,A,E, I, V, v0, U⟩ where:

• L is a set of locations;

• ℓ0 ∈ L is the initial location;

• C is the set of clocks;

• A is a set of actions, co-actions and the internal τ -action;
• E ⊆ L×A×Bbool(C)×Bbool(V)×(V → (B′(V)∪{·}))×2C×L is a set of edges between

locations with an action, a guard and a set of clocks to be reset (if (ℓ, a, cg, vg,m, r, ℓ′) ∈ E

then it is denoted as ℓ
a,cg,vg,m,r−−−−−−−→ ℓ′, where a ∈ A is the action, cg ∈ Bbool(C) is the guard

on clocks, vg ∈ Bbool(V) is the guard on data variables, m : V → (B′(V) ∪ {·}) is the
change of data variable values (where ·means “no change”), and r ∈ 2C is the set of clocks

to reset);

• I : L → Bbool(C) assigns invariants to locations;

145

E. Semantics of PLCspecif

• V is the set of data variables;

• v0 : V → D assigns initial values to the variables (D is the set of possible variable values);

• U ⊆ L is the set of urgent locations.

N.b.: Bbool(C) is a clock constraint of form x ∼ n or x − y ∼ n for x, y ∈ C,∼∈
{≤, <,=, >,≥} and n ∈ N. B′(V) is an expression on data variables in V and/or constants.

Bbool(V) ⊂ B′(V) is a Boolean expression using data variables in V and/or constants. �

The operation semantics defined for this timed automaton is the following:

Definition E.2 (Semantics of TA with data variables (based on [BY04])).
Let ⟨L, ℓ0, C,A,E, I, V, v0, U⟩ be a timed automaton. The semantics is defined as a labelled

transition system ⟨S, s0,→⟩, where:
• S ⊆ L× RC × (V → D) is the set of states;
• s0 = (ℓ0, u0, v0) ∈ S is the initial state;

• →⊆ S × (R≥0 ∪A)× S is the transition relation such that:

– (delay transition) (ℓ, u, v)
d−→ (ℓ, u + d, v) if ∀d′ : 0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(ℓ) and

ℓ /∈ U ,

– (action transition) (ℓ, u, v)
a−→ (ℓ′, u′, v′) if there exists ℓ

a,cg,vg,m,r−−−−−−−→ ℓ′ inE such that

u ∈ cg, v ∈ cg, v′ = m(v), u′ = [r � 0]u, and u′ ∈ I(ℓ′),
where for d ∈ R≥0, u+dmaps each clock x ∈ C to the value u(x)+d, and u′ = [r � 0]u
denotes the clock valuation which maps each clock in r to 0 and agrees with u over C \ r.
The notation v ∈ cg means cg guards are evaluated to true having the v data variable

values. v′ will be the evaluation ofmwhile having current data variable values as defined

in v. For each variable i ∈ V , the definition of v′ = m(v) is the following:

(m(v))(i) = v′(i) =

{
v(i) if m(i) = ·
m(i) else �

If the timed automaton has only the internal action τ , then the semantics can be defined based

on a Kripke structure instead of a labelled transition system (LTS). The set of states, initial states

and transitions are the obvious translations of the ones defined for LTS. The labelling for each state

s = (ℓ, u, v) should (at least) contain all the atomic propositions that are true for the variables u, v.
Obviously, there can be a large number of these atomic propositions. It has to be noted that in most

cases the time-related features of the defined formalism are not used, only if a precise and consistent

modelling is required for verification purposes.

As the formal semantics definition is presented as a pseudocode, we provide a (reduced) meta-

model of the timed automaton corresponding to the definition above. The metamodel can be found

in Figure E.1.

E.2 Translation Algorithms

This section presents the precise pseudocode of the transformation from PLCspecif modules to (timed)

automata. The algorithms are illustrated by non-formal figures to help the reader to understand the

main ideas. In the following we focus only on the translation of state machine modules. For this, two

main algorithms are shown:

• The general representation for any module:

TranslateRec(Module, TALocation, TALocation, inout TA) – Algorithm E.1, and

146

E.2. Translation Algorithms

TA
initial_location : TALocation

TALocation
name : String = ""

urgent : Boolean = false

invariant : BooleanExpression = true

ta 1

locations

0..*

TATransition
name : String = ""

from : TALocation
to : TALocation
clock_guard : BooleanExpression
data_guard : BooleanExpression
var_chng : set of (TAVariable → value)
clocks_to_reset : set of TAClock

ta 1

transitions 0..*

TAVariable
name : String = ""

type : TAType
default_value : value

ta

1

variables 0..*

TAClock
name : String

ta

1

clocks

0..*

Figure E.1: Metamodel of the timed automata

• The specific representation of state machine modules:

TranslateRecSpec(StatemachineModule, TALocation, TALocation, inout TA) – Algorithm E.2

These functions are illustrated in Figure E.2.

Furthermore, some utility functions used in the presented pseudocode are also given. The repre-

sentation of other module types can be found in [r22]. The report [r22] also contains the full meta-

model of PLCspecif, of which an excerpt was shown in Figures 4.1 and 4.3. Please note that the follow-

ing pseudocode uses a simplified notation for building expression trees. For example, a ∨ b denotes
the current value of the expression, while ⟨a ∨ b⟩ denotes the expression tree encoding a ∨ b, and
the variables a and b refer to variables in the timed automata (thus their values are not known at

translation time).

147

E. Semantics of PLCspecif

Algorithm E.1: TranslateRec
input :m : Module, ℓ1, ℓ5 : TALocation
inout : a : TA // The TA representation

1 // This algorithm translates the modules recursively. The representation will be inserted between

the two given TA locations (ℓ1, ℓ5).

2 // Creating intermediate locations

3 ℓ4 ← new TALocation(ta: a);

4 // Translating input definitions

5 ℓ
from
← ℓ1;

6 foreach vde ∈ m.O_inputDefinitions do
7 ℓto ← new TALocation(ta: a);
8 new TATransition(from: ℓ

from
, to: ℓto, clock_guard: ∅, data_guard: ∅, var_chng:

⟨mapping(vde.variable, TAVariable) := translate(vde.expression)⟩, ta: a);
9 ℓ

from
← ℓto;

10 ℓ2 ← ℓ
from

;

11 // Translating event definitions and their computations (only for LeafModules)

12 if m is a LeafModule then
13 ℓ

from
← ℓ2;

14 foreach e ∈ m.events do
15 ℓto ← new TALocation(ta: a);
16 v ← new TAVariable(name: e.name, type: bool, ta: a);
17 P ← {e′ ∈ m.events : e′.priority < e.priority}; // Higher priority events

18 h← ⟨
∧

e′∈P ¬e′.triggerExpression⟩; // Higher priority events are not active

19 new TATransition(from: ℓ
from

, to: ℓto, clock_guard: ∅, data_guard: ∅, var_chng: ⟨v := (e.triggerExpression ∧ h)⟩, ta: a);
20 mapping(e, TAVariable)← v;
21 ℓ

from
← ℓto;

22 ℓ3 ← ℓ
from

;

23 else
24 ℓ3 ← new TALocation(ta: a);
25 new TATransition(from: ℓ2, to: ℓ3, clock_guard: ∅, data_guard: ∅, var_chng: ∅, ta: a);

26 // Module-specific translation (different for each type)

27 TranslateRecSpec(m, ℓ3, ℓ4, a);

28 // Translating output definitions

29 ℓ
from
← ℓ4;

30 foreach vde ∈ m.O_outputDefinitions do
31 ℓto ← new TALocation(ta: a);
32 new TATransition(from: ℓ

from
, to: ℓto, clock_guard: ∅, data_guard: ∅, var_chng: ⟨vde.variable := vde.expression⟩, ta: a);

33 ℓ
from
← ℓto;

34 new TATransition(from: ℓ
from

, to: ℓ5, clock_guard: ∅, data_guard: ∅, var_chng: ∅, ta: a);

148

E.2. Translation Algorithms

Algorithm E.2: TranslateRecSpec
input :m : StatemachineModule, ℓ1, ℓ4 : TALocation
inout : a : TA // The TA representation

1 // This algorithm translates a StatemachineModule module recursively. The representation will be

inserted between the two given TA locations.

2 // Creating intermediate locations

3 ℓ2 ← new TALocation(ta: a);
4 ℓ3 ← new TALocation(ta: a);

5 // Creating TA variables

6 activeState ← new TAVariable(type: enum of basicStatesIn(m), defaultValue: m.initialState, ta: a);
7 foreach s ∈ allPseudoStatesOf(m.rootState) do
8 if s is a DeepHistoryState then
9 v ← new TAVariable(type: enum of basicStatesIn(m), defaultValue: s.defaultState, ta: a);

10 mapping(s,TAVariable)← v;

11 B ← false;

12 // Translating non-triggered transitions as TA transitions

13 foreach t ∈ m.transitions do
14 if t.trigger = ∅ then
15 srcActive ← sourceActive(t, activeState);
16 // Collecting the potential conflicting transitions (where the priority would disable t)
17 conf ← {t′ ∈ m.transitions | t′ ̸= t ∧ basicStatesOf(t′.from) ∩ basicStatesOf(t.from) ̸= ∅ ∧ t′.priority <

t.priority};
18 higherPriorityDisables ← ⟨

∨
t′∈conf sourceActive(t

′, activeState) ∧ t′.guard⟩;
19 g ← ⟨srcActive ∧ t.guard ∧ ¬higherPriorityDisables⟩; // t can fire if the source is active and

guard is true and no conflicting transition with higher priority disables it

20 B ← ⟨B ∨ g⟩; // B is a symbolic expression (not evaluated in transformation time)

21 // After firing the target state will be activated

22 if ¬(t.to is a DeepHistoryState) then
23 vc ← ⟨activeState := literal(t.to)⟩;
24 foreach h ∈ historyStatesToUpdate(t.to) do
25 // ◦ is the concatenation operator, e.g.

(a1, . . . , an) ◦ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).
26 vc ← vc ◦ ⟨mapping(h, TAVariable) := literal(t.to)⟩; // Saving history

27 else
28 vc ← ⟨activeState := mapping(t.to, TAVariable)⟩; // Restoring state from history

29 t1 ← new TATransition(from: ℓ1, to: ℓ1, clock_guard: ∅, data_guard: g, var_chng: vc, ta: a);
30 t2 ← new TATransition(from: ℓ3, to: ℓ3, clock_guard: ∅, data_guard: g, var_chng: vc, ta: a);

31 // Translating triggered transitions as TA transitions

32 B′ ← false;

33 foreach t ∈ m.transitions do
34 if t.trigger ̸= ∅ then
35 srcActive ← sourceActive(t, activeState);
36 g ← ⟨srcActive ∧ mapping(t.trigger, TAVariable) ∧ t.guard⟩; // t can fire if the source is active and

guard is true and the event is triggered

37 B′ ← ⟨B′ ∨ g⟩; // B′ is a symbolic expression (not evaluated in transformation time)

38 // After firing the target state will be activated

39 if ¬(t.to is a DeepHistoryState) then
40 vc ← ⟨activeState := literal(t.to)⟩;
41 foreach h ∈ historyStatesToUpdate(t.to) do
42 // ◦ is the concatenation operator, e.g.

(a1, . . . , an) ◦ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).
43 vc ← vc ◦ ⟨mapping(h, TAVariable) := literal(t.to)⟩; // Saving history

44 else
45 vc ← ⟨activeState := mapping(t.to, TAVariable)⟩; // Restoring state from history

46 t3 ← new TATransition(from: ℓ2, to: ℓ3, clock_guard: ∅, data_guard: g, var_chng: vc, ta: a);

47 // If none of the triggered transition could fire, skip this phase and the second ESF step

48 new TATransition(from: ℓ2, to: ℓ4, clock_guard: ∅, data_guard: ¬B′
, var_chng: vc, ta: a);

49 // When the exhaustive stabilisation firing step is over

50 new TATransition(from: ℓ1, to: ℓ2, clock_guard: ∅, data_guard: ¬B, var_chng: ⟨⟩, ta: a);
51 new TATransition(from: ℓ3, to: ℓ4, clock_guard: ∅, data_guard: ¬B, var_chng: ⟨⟩, ta: a);

149

E. Semantics of PLCspecif

ℓ1

Place for input definitions

Place for events

Module-specific part,

to be filled

by TranslateRecSpec

Place for output definitions

ℓ2

ℓ3

ℓ4

ℓ5

(a) Illustration of the function TranslateRec

(Algorithm E.1)

ℓ1 Place for transitions in the first ESF step

[¬B]

Place for triggered transitions

[¬B′]
Place for transitions in

[¬B]

ℓ2

ℓ3

ℓ4

the second ESF step

(b) Illustration of the function TranslateRecSpec for Statema-
chineModules (Algorithm E.2)

Figure E.2: Illustration of the translation functions

Algorithm E.3: sourceActive
1 // This algorithm returns a Boolean expression that is true iff the source state (or any of its

basic states, if it is compound) of the given transition is active.

input : t : Transition, activeState : TAVariable
output : b : TAExpression

2 return ⟨
∨

s′∈basicStatesOf(t.from) (activeState = literal(s′))⟩;

Algorithm E.4: allLeafmodulesOf

1 // Collects recursively all leaf modules of m, including m if it is a LeafModule.

input : m :Module
output : set of Module

2 if m is a LeafModule then
3 return {m};
4 else if m is a AlternativeModule then
5 return {allLeafmodulesOf(m.onTrue), allLeafmodulesOf(m.onFalse)};
6 else if m is a CompositeModule then
7 SM ← ∅;
8 foreach m′ ∈ m.submodules do
9 SM ← SM ∪ allLeafmodulesOf(m′);

10 return SM ;

11 return error;

150

E.2. Translation Algorithms

Algorithm E.5: allParentStatesOf
1 // Collects all container CompositeStates of s, not including s itself.

input : s : AbstractState
output : PS : set of CompositeState

2 PS ← ∅;
3 s′ ← s;
4 while s′.containerState ̸= undefined do
5 PS ← PS ∪ s′.containerState;
6 s′ ← s′.containerState;

Algorithm E.6: allPseudoStatesOf
input : s : AbstractState
output : set of PseudoState

1 PS ← ∅;
2 if s is a PseudoState then
3 PS ← {s};
4 else if s is a CompositeState then
5 foreach s′ ∈ s.containedStates do
6 PS ← PS ∪ allPseudoStatesOf(s′);

7 return PS ;

Algorithm E.7: basicStatesIn
1 // Collects all basic states defined for a given StatemachineModule m.

input :m : StatemachineModule
output : set of BasicState

2 return basicStatesOf(m.rootState);

Algorithm E.8: basicStatesOf
input : s : AbstractState
output : set of BasicState

1 AS ← ∅;
2 if s is a BasicState then
3 AS ← {s};
4 else if s is a CompositeState then
5 foreach s′ ∈ s.containedStates do
6 AS ← AS ∪ basicStatesOf(s′);

7 return AS ;
8 // If s is a PseudoState, AS remains empty.

Algorithm E.9: historyStatesToUpdate
input : s : AbstractState // s is the newly activated state

output : PS : set of PseudoState

1 PS ← ∅;
2 foreach m ∈ allParentStatesOf(s) do
3 foreach s′ ∈ m.containedStates do
4 if s′ is a DeepHierarchyState then
5 PS ← PS ∪ s;

151

E. Semantics of PLCspecif

E.3 Mapping from PLCspecif Semantics to IM

Table E.1 briefly describes the correspondence between the automata formalism used for the semantics

definition of PLCspecif and the intermediate model used in PLCverif. The table uses the naming of the

metamodels presented in Figure E.1 (timed automatonmetamodel) and Figure C.1 (IMmetamodel). As

it was discussed earlier, the timed parts of the TA used to describe the PLC timers are not used for the

IM representation. Instead, the PLC timer modules are represented using the principles introduced in

Section 3.3.1.

Table E.1: Correspondence between the TA and IM metamodels

TA element Corresponding IM element(s)

TA AutomatonInstance (mainAutomaton in an AutomataSystem)

– initial location – initialLocation (Location corresponding to the

TA’s initial location)

TAVariable Variable (contained by the single automaton instance)

– name – name

– type – type (corresponding type)

– default value – defaultValue (AConstant describing the
TA’s default value)

TALocation Location (contained by the single automaton instance)

– name – name

– urgent not used in non-timed models (always false)

– invariant not used in non-timed models (always true)

TATransition Transition
– name – name

– from – from (Location corresponding to the TA’s from TALocation)
– to – to (Location corresponding to the TA’s to TALocation)
– clock guard not used in non-timed models

– data guard – guard (AutomataExpression describing the TA’s data guard)

– var chng – assignments (one or more equivalent VariableAssignments)
– clocks to reset not used in non-timed models

TAClock not used in non-timed models

– name not used in non-timed models

152

AppendixF

List of Abbreviations

ALICE A Large Ion Collider Experiment (LHC experiment at CERN)

AST abstract syntax tree

ATLAS A Toroidal LHC Apparatus (LHC experiment at CERN)

BDD binary decision diagram

BFS breadth-first search

BPCS basic process control systems

BUTE Budapest University of Technology and Economics

CERN European Organization for Nuclear Research

CFA control flow automaton

CFG control flow graph

CMS Compact Muon Solenoid (LHC experiment at CERN)

COI cone of influence reduction

CPC continuous process control

CPN coloured Petri net

CPU central processing unit

CSP communicating sequential processes

CTL computation tree logic

DFS depth-first search

EDD edge-valued decision diagram

ESF exhaustive stabilisation firing

FBD Function Block Diagram (IEC 61131 PLC programming language)

FMS flexible manufacturing system (benchmark Petri net model)

HDD hard disk drive

ICS industrial control systems

IEC International Electrotechnical Commission

IL Instruction List (IEC 61131 PLC programming language)

IM intermediate model

ISO International Organization for Standardization

ISOLDE Isotope Mass Separator On-Line Facility (radioactive ion beam facility at CERN)

LAD Ladder Diagram (Siemens PLC programming language)

LD Ladder Diagram (IEC 61131 PLC programming language)

LHC Large Hadron Collider (particle collider at CERN)

153

F. List of Abbreviations

LTL linear temporal logic

LTS labelled transition system

MDD multivalued decision diagram

PC personal computer

PLC programmable logic controller

PLCSE PLC pour la sécurité, safety PLC

PN Petri net

PRISE primary-to-secondary leakage (malfunction of a nuclear power plant)

PSL property specification language

PSS potential state space

PVS Prototype Verification System (specification language)

RLO result of last logic operation (status bit of Siemens PLCs)

RSML Requirements State Machine Language (specification language)

RSS reachable state space

SAT Boolean satisfiability problem

SCADA supervisory control and data acquisition

SCL Structured Control Language (Siemens PLC programming language)

SCLr Structured Control Language with explicit register representations

SFC Sequential Function Chart (IEC 61131 / Siemens PLC programming language)

SIL safety integrity level

SR slotted ring (benchmark Petri net model)

ST Structured Text (IEC 61131 PLC programming language)

STL Statement List (Siemens PLC programming language)

TA timed automaton

TCAS Traffic Collision Avoidance System (safety system in aviation)

TL temporal logic

TOF off-delay timer (IEC 61131 standard timer function block)

TON on-delay timer (IEC 61131 standard timer function block)

TP pulse timer (IEC 61131 standard timer function block)

UML Unified Modeling Language

UNICOS Unified Industrial Control System

VDM-SL Vienna Development Method Specification Language (specification language)

154

Publications

Number of publications: 29

Number of peer-reviewed journal papers (written in English): 6

Number of articles in journals indexed by WoS or Scopus: 6

Number of publications (in English) with at least 50% contribution of the author: 3

Number of peer-reviewed publications: 22

Number of independent citations: 23

Publications Linked to the Theses

Journal International conference Local Technical

papers and workshop papers events reports

Thesis 1 [j2],[j4] [c10],[c17],[c18] [e20],[e21] —

Thesis 2 [j1],[j3] [c8]*,[c9]*,[c11],[c13],[c14],[c15],[c16] — [r23],[r24]

Thesis 3 — [c5],[c6],[c7],[c8]*,[c9]*,[c12] [e19] [r22]

* These publications are attached to multiple theses.

This classification follows the faculty’s Ph.D. publication score system.

Journal Papers

[j1] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. PLC program translation for verifi-

cation purposes. Periodica Polytechnica, Electrical Engineering and Computer Science, 2017. url:

http://mit.bme.hu/~darvas/publications/PerPol2017_DarvasEtAl.pdf. Accepted, under publica-
tion.

◃ Own contribution, joint paper with Ph.D. supervisors.

[j2] Dániel Darvas, András Vörös, and Tamás Bartha. Improving saturation-based bounded model

checking. Acta Cybernetica 22(3), 2016, pp. 573–589. doi: 10.14232/actacyb.22.3.2016.2.
◃ Own contribution, joint paper with M.Sc. thesis supervisors.

[j3] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles Tournier, Simon

Bliudze, Jan Olaf Blech, and Víctor M. González Suárez. Applying model checking to industrial-

sized PLC programs. IEEE Transactions on Industrial Informatics 11(6), 2015, pp. 1400–1410. doi:

10.1109/TII.2015.2489184. IF2014 = 8.78.

155

http://mit.bme.hu/~darvas/publications/PerPol2017_DarvasEtAl.pdf
http://dx.doi.org/10.14232/actacyb.22.3.2016.2
http://dx.doi.org/10.1109/TII.2015.2489184

Publications

◃ The intermediate representation of the SFC language and the intermediate model is my con-

tribution. The PLC behaviour description and the variable abstraction method are contributions of

B. Fernández Adiego. The rest of the verification method is a joint work with B. Fernández Adiego.

The contribution of J.O. Blech is the discussion about the correctness of the approach. E. Blanco

Viñuela, J-C. Tournier, S. Bliudze and V.M. González Suárez were helping the work as advisors.

[j4] András Vörös, Dániel Darvas, and Tamás Bartha. Bounded saturation-based CTL model check-

ing. Proceedings of the Estonian Academy of Sciences 62(1), 2013, pp. 59–70. doi: 10.3176/proc.
2013.1.07. IF2013 = 0.37.

◃ Own contribution, joint paper with M.Sc. thesis supervisors.

International Conference and Workshop Papers

[c5] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Well-formedness and invariant

checking of PLCspecif specifications. In: Proceedings of the 24th PhDMini-Symposium, Budapest

University of Technology and Economics, Department of Measurement and Information Sys-

tems, 2017. In press.

◃ Own contribution, joint paper with Ph.D. supervisors.

[c6] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Conformance checking for pro-

grammable logic controller programs and specifications. In: 11th IEEE International Symposium

on Industrial Embedded Systems (SIES), pp. 29–36. IEEE, 2016. doi: 10.1109/SIES.2016.7509409.
◃ Own contribution, joint paper with Ph.D. supervisors.

[c7] Dániel Darvas, Enrique Blanco Viñuela, and István Majzik. PLC code generation based on a

formal specification language. In: 14th IEEE International Conference on Industrial Informatics

(INDIN), pp. 389–396. IEEE, 2016. url: http://mit.bme.hu/~darvas/publications/INDIN2016_
DarvasEtAl.pdf.

◃ Own contribution, joint paper with Ph.D. supervisors.

[c8] Dániel Darvas. Practice-oriented formal methods for PLC programs of industrial control sys-

tems. In: Proceedings of the PhD Symposium at iFM’16 on Formal Methods: Algorithms, Tools

and Applications (PhD-iFM’16), Reykjavik University, 2016. url: http://mit.bme.hu/~darvas/
publications/PhD-iFM2016_Darvas.pdf. Extended abstract. Accepted and presented, in press.

[c9] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Formal verification of safety PLC

based control software. In: Erika Ábrahám andMarieke Huisman (eds.), Integrated Formal Meth-

ods, Lecture Notes in Computer Science, vol. 9681, pp. 508–522. Springer, 2016. doi: 10.1007/978-
3-319-33693-0_32.

◃ Own contribution, joint paper with Ph.D. supervisors.

[c10] András Vörös, Dániel Darvas, Vince Molnár, Attila Klenik, Ákos Hajdu, Attila Jámbor, Tamás

Bartha, and István Majzik. PetriDotNet 1.5: Extensible Petri net editor and analyser for educa-

tion and research. In: Fabrice Kordon and Daniel Moldt (eds.), Application and Theory of Petri

Nets and Concurrency, Lecture Notes in Computer Science, vol. 9698, pp. 123–132. Springer,

2016. doi: 10.1007/978-3-319-39086-4_9.
◃ The implementation of the PetriDotNet framework is a joint work of the authors, based on the

original work of Bertalan Szilvási. The saturation-based model checking algorithms were developed

by D. Darvas and A. Jámbor, supervised by A. Vörös and T. Bartha. The design and development of

bounded saturation-based algorithms are my contributions, supervised by A. Vörös and T. Bartha.

156

http://dx.doi.org/10.3176/proc.2013.1.07
http://dx.doi.org/10.3176/proc.2013.1.07
http://dx.doi.org/10.1109/SIES.2016.7509409
http://mit.bme.hu/~darvas/publications/INDIN2016_DarvasEtAl.pdf
http://mit.bme.hu/~darvas/publications/INDIN2016_DarvasEtAl.pdf
http://mit.bme.hu/~darvas/publications/PhD-iFM2016_Darvas.pdf
http://mit.bme.hu/~darvas/publications/PhD-iFM2016_Darvas.pdf
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-33693-0_32
http://dx.doi.org/10.1007/978-3-319-39086-4_9

[c11] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Generic representation of PLC pro-

gramming languages for formal verification. In: Proceedings of the 23rd PhD Mini-Symposium,

pp. 6–9. Budapest University of Technology and Economics, Department of Measurement and

Information Systems, 2016. doi: 10.5281/zenodo.51064.
◃ Own contribution, joint paper with Ph.D. supervisors.

[c12] Dániel Darvas, Enrique Blanco Viñuela, and István Majzik. A formal specification method for

PLC-based applications. In: Lou Corvetti, Kathleen Riches, and Volker R.W. Schaa (eds.), Proceed-

ings of the 15th International Conference on Accelerator and Large Experimental Physics Control

Systems, pp. 907–910. JACoW, 2015. doi: 10.18429/JACoW-ICALEPCS2015-WEPGF091.
◃ Own contribution, joint paper with Ph.D. supervisors.

[c13] Dániel Darvas, Borja Fernández Adiego, and Enrique Blanco Viñuela. PLCverif: A tool to verify

PLC programs based on model checking techniques. In: Lou Corvetti, Kathleen Riches, and

Volker R.W. Schaa (eds.), Proceedings of the 15th International Conference on Accelerator and

Large Experimental Physics Control Systems, pp. 911–914. JACoW, 2015. doi: 10.18429/JACoW-
ICALEPCS2015-WEPGF092.

◃ The high-level ideas of the presented workflow are joint work of the authors. The detailed

design and development of the tool is my contribution.

[c14] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles Tournier, Víctor

M. González Suárez, and Jan Olaf Blech. Modelling and formal verification of timing aspects in

large PLC programs. In: Edward Boje and Xiaohua Xia (eds.), Proceedings of the 19th IFACWorld

Congress, IFAC Proceedings Volumes, vol. 47 (3), pp. 3333–3339. Elsevier, 2014. doi: 10.3182/
20140824-6-ZA-1003.01279.

◃ The concrete time representation (“realistic approach”, Section 4.1) is a joint contribution with

B. Fernández Adiego. The abstract time representation (Section 4.2) is my own contribution. The

refinement between the two approaches is the contribution of J.O. Blech.

[c15] Dániel Darvas, Borja Fernández Adiego, András Vörös, Tamás Bartha, Enrique Blanco Viñuela,

and Víctor M. González Suárez. Formal verification of complex properties on PLC programs.

In: Erika Ábrahám and Catuscia Palamidessi (eds.), Formal Techniques for Distributed Objects,

Components, and Systems, Lecture Notes in Computer Science, vol. 8461, pp. 284–299. Springer,

2014. doi: 10.1007/978-3-662-43613-4_18.
◃ The high-level ideas of the verification workflow are joint work of the authors. The develop-

ment and analysis of the model reduction methods (Section 3) are my own contributions.

[c16] Borja Fernández Adiego, Dániel Darvas, Jean-Charles Tournier, Enrique Blanco Viñuela, and

Víctor M. González Suárez. Bringing automated model checking to PLC program development

– A CERN case study. In: Jean-Jacques Lesage, Jean-Marc Faure, José E. Ribiero Cury, and Bengt

Lennartson (eds.), Proceedings of the 12th InternationalWorkshop on Discrete Event Systems, IFAC

Proceedings Volumes, vol. 47 (2), pp. 394–399. Elsevier, 2014. doi: 10 .3182/20140514- 3- FR-
4046.00051.

◃ The case study presented in this paper is a joint contribution based on my detailed definition

and implementation of the verification workflow.

[c17] Dániel Darvas, András Vörös, and Tamás Bartha. Efficient saturation-based bounded model

checking of asynchronous systems. In: Ákos Kiss (ed.), Proceedings of the 13th Symposium on

Programming Languages and Software Tools, SPLST’13, pp. 259–273. Szeged, Hungary: Univer-

sity of Szeged, 2013. url: http : / / petridotnet . inf . mit . bme . hu / publications / SPLST2013 _

157

http://dx.doi.org/10.5281/zenodo.51064
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01279
http://dx.doi.org/10.3182/20140824-6-ZA-1003.01279
http://dx.doi.org/10.1007/978-3-662-43613-4_18
http://dx.doi.org/10.3182/20140514-3-FR-4046.00051
http://dx.doi.org/10.3182/20140514-3-FR-4046.00051
http://petridotnet.inf.mit.bme.hu/publications/SPLST2013_DarvasVorosBartha.pdf
http://petridotnet.inf.mit.bme.hu/publications/SPLST2013_DarvasVorosBartha.pdf
http://petridotnet.inf.mit.bme.hu/publications/SPLST2013_DarvasVorosBartha.pdf

Publications

DarvasVorosBartha.pdf.
◃ Own contribution, joint paper with M.Sc. thesis supervisors.

[c18] András Vörös, Dániel Darvas, and Tamás Bartha. Bounded saturation based CTL model check-

ing. In: Jaan Penjam (ed.), Proceedings of the 12th Symposium on Programming Languages and

Software Tools, SPLST’11, pp. 149–160. Tallinn, Estonia: Tallinn University of Technology, Insti-

tute of Cybernetics, 2011. url: http://petridotnet.inf.mit.bme.hu/publications/SPLST2011_
VorosDarvasBartha.pdf.

◃ Own contribution, joint paper with B.Sc. thesis supervisors.

Local Conference and Workshop Papers

[e19] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. Requirements towards a formal

specification language for PLCs. In: Proceedings of the 22nd PhD Mini-Symposium, pp. 18–21.

Budapest University of Technology and Economics, Department of Measurement and Informa-

tion Systems, 2015. doi: 10.5281/zenodo.14907.
◃ Own contribution, joint paper with Ph.D. supervisors.

[e20] Dániel Darvas and András Vörös. Szaturációalapú tesztbemenet-generálás színezett Petri-

hálókkal [in Hungarian; Saturation-based test input generation using coloured Petri nets]. In:

Mesterpróba 2013. Konferenciakiadvány, pp. 48–51. Budapest University of Technology and Eco-

nomics, 2013. url: http://petridotnet.inf.mit.bme.hu/publications/Mesterproba2013_Darvas.
pdf.

◃ Own contribution in frame of the R3-COP project, joint paper with M.Sc. thesis supervisor.

[e21] Dániel Darvas. Szaturáció alapú korlátos modellellenőrzési technikák Petri-hálók analízisére

[in Hungarian; Saturation based bounded model checking methods for the analysis of Petri

nets]. In: XVII. Fiatal Műszakiak Tudományos Ülésszaka, pp. 83–86. Cluj Napoca, Romania: Erdé-

lyi Múzeum-Egyesület Műszaki Tudományok Szakosztálya, 2012. url: http://petridotnet.inf.
mit.bme.hu/publications/FMTU2012_Darvas.pdf.

Technical Reports

[r22] Dániel Darvas, Enrique Blanco Viñuela, and István Majzik. Syntax and semantics of PLCspecif.

Report EDMS 1523877. CERN, 2015. url: https://edms.cern.ch/document/1523877.
◃ Own contribution, joint report with Ph.D. supervisors.

[r23] Borja Fernández Adiego, Dániel Darvas, Jean-Charles Tournier, Enrique Blanco Viñuela, Jan

Olaf Blech, and Víctor M. González Suárez. Automated generation of formal models from ST

control programs for verification purposes. Internal Note CERN-ACC-NOTE-2014-0037. CERN,

2014. url: http://cds.cern.ch/record/1708853/.
◃ The formal definition of the IM language is my contribution. The transformation of PLC

programs to IM is a joint contribution of the authors.

[r24] Dániel Darvas, Borja Fernández Adiego, and Enrique Blanco Viñuela. Transforming PLC pro-

grams into formal models for verification purposes. Internal Note CERN-ACC-NOTE-2013-0040.

CERN, 2013. url: http://cds.cern.ch/record/1629275/.
◃ The definition of the IM language is my contribution. The transformation of PLC programs

to IM and the NuSMV representation of the IM are joint contributions of the authors.

158

http://petridotnet.inf.mit.bme.hu/publications/SPLST2013_DarvasVorosBartha.pdf
http://petridotnet.inf.mit.bme.hu/publications/SPLST2013_DarvasVorosBartha.pdf
http://petridotnet.inf.mit.bme.hu/publications/SPLST2013_DarvasVorosBartha.pdf
http://petridotnet.inf.mit.bme.hu/publications/SPLST2011_VorosDarvasBartha.pdf
http://petridotnet.inf.mit.bme.hu/publications/SPLST2011_VorosDarvasBartha.pdf
http://dx.doi.org/10.5281/zenodo.14907
http://petridotnet.inf.mit.bme.hu/publications/Mesterproba2013_Darvas.pdf
http://petridotnet.inf.mit.bme.hu/publications/Mesterproba2013_Darvas.pdf
http://petridotnet.inf.mit.bme.hu/publications/FMTU2012_Darvas.pdf
http://petridotnet.inf.mit.bme.hu/publications/FMTU2012_Darvas.pdf
https://edms.cern.ch/document/1523877
http://cds.cern.ch/record/1708853/
http://cds.cern.ch/record/1629275/

Additional Publications (Not Linked to Theses)

Journal Papers

[j25] Vince Molnár, András Vörös, Dániel Darvas, Tamás Bartha, and István Majzik. Component-

wise incremental LTL model checking. Formal Aspects of Computing 28(3), 2016, pp. 345–379.

doi: 10.1007/s00165-015-0347-x. IF2014 = 0.80.

[j26] András Vörös, Dániel Darvas, Attila Jámbor, and Tamás Bartha. Advanced saturation-based

model checking ofwell-formed coloured Petri nets. Periodica Polytechnica, Electrical Engineering

and Computer Science 58(1), 2014, pp. 3–13. doi: 10.3311/PPee.2080.

International Conference and Workshop Papers

[c27] Vince Molnár, Dániel Darvas, András Vörös, and Tamás Bartha. Saturation-based incremental

LTL model checking with inductive proofs. In: Christel Baier and Cesare Tinelli (eds.), Tools and

Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer Science,

vol. 9035, pp. 643–657. Springer, 2015. doi: 10.1007/978-3-662-46681-0_58.

[c28] Tamás Bartha, András Vörös, Attila Jámbor, and Dániel Darvas. Verification of an industrial

safety function using coloured Petri nets and model checking. In: Proceedings of the 14th In-

ternational Conference on Modern Information Technology in the Innovation Processes of the In-

dustrial Enterprises (MITIP 2012), pp. 472–485. Hungarian Academy of Sciences, Computer and

Automation Research Institute, 2012. url: http: / /petridotnet . inf .mit .bme.hu/publications/
MITIP2012_BarthaEtAl.pdf.

[c29] András Vörös, Tamás Bartha, Dániel Darvas, Tamás Szabó, Attila Jámbor, and Ákos Horváth.

Parallel saturation based model checking. In: Proceedings of the 10th International Symposium on

Parallel andDistributed Computing (ISPDC), pp. 94–101. IEEE, 2011. doi: 10.1109/ISPDC.2011.23.

Additional Work

[a30] Dániel Darvas. Incremental extension of the saturation algorithm-based bounded model check-

ing of Petri nets. Master’s thesis. Budapest University of Technology and Economics, 2014. url:

http://petridotnet.inf.mit.bme.hu/publications/Diplomaterv2013_Darvas.pdf.

[a31] Dániel Darvas. Petri-háló alapú formális modellek analízise hatékony korlátos modellel-

lenőrzési technikák segítségével [in Hungarian; Efficient bounded model checking techniques

for Petri net based formal models]. Bachelor’s thesis. Budapest University of Technology and

Economics, 2011.

[a32] Dániel Darvas and Attila Jámbor. Komplex rendszerek modellezése és verifikációja [in Hun-

garian; Modeling and verification of complex systems]. Scientific Students’ Association Report.

2011. url: http://petridotnet.inf.mit.bme.hu/publications/TDK2011_DarvasJambor.pdf.
◃ The extension of the saturation algorithms to coloured Petri nets is the contribution of A.

Jámbor. The saturation-based bounded model checking algorithm is my own contribution.

[a33] Dániel Darvas. Szaturáció alapú automatikus modellellenőrző fejlesztése aszinkron rendsz-

erekhez [in Hungarian; Implementing a saturation-based model checker of asynchronous sys-

tems]. Scientific Students’ Association Report. 2010. url: http://petridotnet.inf.mit.bme.hu/
publications/OTDK2011_Darvas.pdf.

159

http://dx.doi.org/10.1007/s00165-015-0347-x
http://dx.doi.org/10.3311/PPee.2080
http://dx.doi.org/10.1007/978-3-662-46681-0_58
http://petridotnet.inf.mit.bme.hu/publications/MITIP2012_BarthaEtAl.pdf
http://petridotnet.inf.mit.bme.hu/publications/MITIP2012_BarthaEtAl.pdf
http://dx.doi.org/10.1109/ISPDC.2011.23
http://petridotnet.inf.mit.bme.hu/publications/Diplomaterv2013_Darvas.pdf
http://petridotnet.inf.mit.bme.hu/publications/TDK2011_DarvasJambor.pdf
http://petridotnet.inf.mit.bme.hu/publications/OTDK2011_Darvas.pdf
http://petridotnet.inf.mit.bme.hu/publications/OTDK2011_Darvas.pdf

Bibliography

[Abr96] Jean-Raymond Abrial. The B-book: Assigning Programs to Meanings. Cambridge Univer-

sity Press, 1996.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science

126(2), 1994, pp. 183–235. doi: 10.1016/0304-3975(94)90010-8.

[All70] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices 5(7), 1970, pp. 1–19. doi:

10.1145/390013.808479.

[Aml+05] Nina Amla, XiaoqunDu, Andreas Kuehlmann, Robert P. Kurshan, and Kenneth L.McMil-

lan. An analysis of SAT-based model checking techniques in an industrial environment.

In: Dominique Borrione and Wolfgang Paul (eds.), Correct Hardware Design and Verifica-

tion Methods, Lecture Notes in Computer Science, vol. 3725, pp. 254–268. Springer, 2005.

doi: 10.1007/11560548_20.

[Amn+01] Tobias Amnell et al. UPPAAL – Now, next, and future. In: Modeling and Verification of

Parallel Processes, Lecture Notes in Computer Science, vol. 2067, pp. 99–124. Springer,

2001. doi: 10.1007/3-540-45510-8_4.

[Avi+04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic con-

cepts and taxonomy of dependable and secure computing. IEEE Transactions on Depend-

able and Secure Computing 1(1), 2004, pp. 11–33. doi: 10.1109/TDSC.2004.2.

[Bac81] Ralph-Johan R. Back. On correct refinement of programs. Journal of Computer and System

Sciences 23(1), 1981, pp. 49–68. doi: 10.1016/0022-0000(81)90005-2.

[Bar12] Haniel Moreira Barbosa. Formal verification of PLC programs using the B Method. Mas-

ter’s thesis. Federal University of Rio Grande do Norte, 2012.

[BBK12] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. Arcade.PLC: A verification plat-

form for programmable logic controllers. In: Proceedings of the 27th IEEE/ACM Inter-

national Conference on Automated Software Engineering, pp. 338–341. IEEE, 2012. doi:

10.1145/2351676.2351741.

[Bec+15] Bernhard Beckert, Mattias Ulbrich, Birgit Vogel-Heuser, and Alexander Weigl. Regres-

sion verification for programmable logic controller software. In: Michael Butler, Syl-

vain Conchon, and Fatiha Zaïdi (eds.), Formal Methods and Software Engineering, Lecture

Notes in Computer Science, vol. 9407, pp. 234–251. Springer, 2015. doi: 10.1007/978-3-
319-25423-4_15.

161

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1007/11560548_20
http://dx.doi.org/10.1007/3-540-45510-8_4
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1016/0022-0000(81)90005-2
http://dx.doi.org/10.1145/2351676.2351741
http://dx.doi.org/10.1007/978-3-319-25423-4_15
http://dx.doi.org/10.1007/978-3-319-25423-4_15

Bibliography

[Bee02] Michael von der Beeck. A structured operational semantics for UML-statecharts. Soft-

ware and Systems Modeling 1(2), 2002, pp. 130–141. doi: 10.1007/s10270-002-0012-8.

[Bee94] Michael von der Beeck. A comparison of Statecharts variants. In: Hans Langmaack,

Willem-Paul de Roever, and Jan Vytopil (eds.), Formal Techniques in Real-Time and Fault-

Tolerant Systems, Lecture Notes in Computer Science, vol. 863, pp. 128–148. Springer,

1994. doi: 10.1007/3-540-58468-4_163.

[Beh+99] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor: A successful

application of B in a large project. In: Jeannette M. Wing, JimWoodcock, and Jim Davies

(eds.), FM’99 – Formal Methods, Lecture Notes in Computer Science, vol. 1708, pp. 369–

387. Springer, 1999. doi: 10.1007/3-540-48119-2_22.

[Bel+10] Houda Bel Mokadem, Béatrice Bérard, Vincent Gourcuff, Olivier de Smet, and Jean-Marc

Roussel. Verification of a timed multitask system with UPPAAL. IEEE Transactions on

Computers Transactions on Automation Science and Engineering 7(4), 2010, pp. 921–932.

doi: 10.1109/TASE.2010.2050199.

[BG92] Gérard Berry and Georges Gonthier. The ESTEREL synchronous programming lan-

guage: Design, semantics, implementation. Science of Computer Programming 19(2), 1992,

pp. 87–152. doi: 10.1016/0167-6423(92)90005-V.

[BG99] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with 3-valued

temporal logics. In: Computer Aided Verification, Lecture Notes in Computer Science,

vol. 1633, pp. 274–287. Springer, 1999. doi: 10.1007/3-540-48683-6_25.

[Bha13] Sriman Kumar Bhattacharya. Control Systems Engineering. 3rd edition. Pearson India,

2013.

[Bia16] Sebastian Biallas. Verification of programmable logic controller code using model check-

ing and static analysis. Ph.D. thesis. RWTH Aachen, 2016.

[Bie+03] Armin Biere, Alessandro Cimatti, EdmundM. Clarke, Ofer Strichman, and Yunshan Zhu.

Boundedmodel checking. In: Advances in Computers, vol. 58, pp. 117–148. Elsevier, 2003.

doi: 10.1016/S0065-2458(03)58003-2.

[Bie+99] Armin Biere, Alessandro Cimatti, EdmundM. Clarke, and Yunshan Zhu. Symbolic model

checking without BDDs. In: W. Rance Cleaveland (ed.), Lecture Notes in Computer Sci-

ence, vol. 1579, pp. 193–207. Springer, 1999. doi: 10.1007/3-540-49059-0_14.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. TheMIT Press, 2008.

[BKS12] Sebastian Biallas, Stefan Kowalewski, and Bastian Schlich. Range and value-set analysis

for programmable logic controllers. In: 11th International Workshop on Discrete Event

Systems, IFAC Proceedings Volumes, vol. 45 (29), pp. 378–383. IFAC, 2012. doi: 10.3182/
20121003-3-MX-4033.00060.

[Bla+11] Enrique Blanco Viñuela, Jean-Michel Beckers, Benjamin Bradu, Philippe Durand, Borja

Fernández Adiego, Silvia M. Izquierdo Rosas, Alexey Merezhin, Jeronimo Ortola Vidal,

Jacques Rochez, and DavidWilleman. UNICOS evolution: CPC version 6. In: Marie Robi-

chon et al. (eds.), Proceedings of the 12th International Conference on Accelerator & Large

Experimental Physics Control Systems, pp. 786–789. JACoW, 2011. url: http://cds.cern.
ch/record/1402490.

162

http://dx.doi.org/10.1007/s10270-002-0012-8
http://dx.doi.org/10.1007/3-540-58468-4_163
http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1109/TASE.2010.2050199
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1007/3-540-48683-6_25
http://dx.doi.org/10.1016/S0065-2458(03)58003-2
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.3182/20121003-3-MX-4033.00060
http://dx.doi.org/10.3182/20121003-3-MX-4033.00060
http://cds.cern.ch/record/1402490
http://cds.cern.ch/record/1402490

Bibliography

[BMP15] Sandrine Blazy, Andre Maroneze, and David Pichardie. Verified validation of program

slicing. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, pp. 109–

117. ACM, 2015. doi: 10.1145/2676724.2693169.

[Bol15] William Bolton. Programmable Logic Controllers. 6th edition. Newnes, 2015.

[BS93] Jonathan Bowen and Victoria Stavridou. Safety-critical systems, formal methods and

standards. Software Engineering Journal 8(4), 1993, pp. 189–209. doi: 10.1049/sej.1993.
0025.

[Bur+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.

Symbolic model checking: 10
20

states and beyond. Information and Computation 98(2),

1992, pp. 142–170. doi: 10.1016/0890-5401(92)90017-A.

[But02] Michael Butler. A system-based approach to the formal development of embedded con-

trollers for a railway. Design Automation for Embedded Systems 6(4), 2002, pp. 355–366.

doi: 10.1023/A:1016503426126.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In:

Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg (eds.), Lectures on Concurrency

and Petri Nets, Lecture Notes in Computer Science, vol. 3098, pp. 87–124. Springer, 2004.

doi: 10.1007/978-3-540-27755-2_3.

[Can+00] Géraud Canet, Sandrine Couffin, Jean-Jacques Lesage, Antoine Petit, and Philippe Sch-

noebelen. Towards the automatic verification of PLC programswritten in instruction list.

In: IEEE International Conference on Systems, Man & Cybernetics, vol. 4, pp. 2449–2454.

IEEE, 2000. doi: 10.1109/ICSMC.2000.884359.

[Cav+14] Roberto Cavada et al. The nuXmv symbolic model checker. In: Computer Aided Verifi-

cation, Lecture Notes in Computer Science, vol. 8559, pp. 334–342. Springer, 2014. doi:

10.1007/978-3-319-08867-9_22.

[CE82] EdmundM. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-

tons using branching-time temporal logic. In: Logic of Programs, Lecture Notes in Com-

puter Science, vol. 131, pp. 52–71. Springer, 1982. doi: 10.1007/BFb0025774.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: Algorithmic

verification and debugging. Communications of the ACM 52(11), 2009, pp. 74–84. doi:

10.1145/1592761.1592781.

[CGP99] EdmundM. Clarke, OrnaGrumberg, andDoronA. Peled.Model Checking. TheMIT Press,

1999.

[Cha+02] Pankaj Chauhan, Edmund M. Clarke, James Kukula, Samir Sapra, Helmut Veith, and

Dong Wang. Automated abstraction refinement for model checking large state spaces

using SAT based conflict analysis. In: Mark D. Aagaard and John W. O’Leary (eds.), For-

mal Methods in Computer-Aided Design, Lecture Notes in Computer Science, vol. 2517,

pp. 33–51. Springer, 2002. doi: 10.1007/3-540-36126-X_3.

[Che+14] Chih-Hong Cheng, Chung-Hao Huang, Harald Ruess, and Stefan Stattelmann. G4LTL-

ST: Automatic generation of PLC programs. In: Armin Biere and Roderick Bloem (eds.),

Computer Aided Verification, Lecture Notes in Computer Science, vol. 8559, pp. 541–549.

Springer, 2014. doi: 10.1007/978-3-319-08867-9_36.

163

http://dx.doi.org/10.1145/2676724.2693169
http://dx.doi.org/10.1049/sej.1993.0025
http://dx.doi.org/10.1049/sej.1993.0025
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1023/A:1016503426126
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1109/ICSMC.2000.884359
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/1592761.1592781
http://dx.doi.org/10.1007/3-540-36126-X_3
http://dx.doi.org/10.1007/978-3-319-08867-9_36

Bibliography

[Cia07] Gianfranco Ciardo. Data representation and efficient solution: A decision diagram ap-

proach. In: Marco Bernardo and Jane Hillston (eds.), Formal Methods for Performance

Evaluation, Lecture Notes in Computer Science, vol. 4486, pp. 371–394. Springer, 2007.

doi: 10.1007/978-3-540-72522-0_9.

[Cim+12] Alessandro Cimatti, Raffaele Corvino, Armando Lazzaro, Iman Narasamdya, Tiziana

Rizzo, Marco Roveri, Angela Sanseviero, and Andrei Tchaltsev. Formal verification and

validation of ERTMS industrial railway train spacing system. In: Computer Aided Verifi-

cation, Lecture Notes in Computer Science, vol. 7358, pp. 378–393. Springer, 2012. doi:

10.1007/978-3-642-31424-7_29.

[Cla08] Edmund M. Clarke. The birth of model checking. In: Orna Grumberg and Helmut Veith

(eds.), 25 Years of Model Checking, Lecture Notes in Computer Science, vol. 5000, pp. 1–

26. Springer, 2008. doi: 10.1007/978-3-540-69850-0_1.

[CLS00] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Efficient symbolic state-space

construction for asynchronous systems. In: Mogens Nielsen and Dan Simpson (eds.),

Application and Theory of Petri Nets 2000, Lecture Notes in Computer Science, vol. 1825,

pp. 103–122. Springer, 2000. doi: 10.1007/3-540-44988-4_8.

[CLS01] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An efficient iter-

ation strategy for symbolic state-space generation. In: Tools and Algorithms for the Con-

struction and Analysis of Systems, Lecture Notes in Computer Science, vol. 2031, pp. 328–

342. Springer, 2001. doi: 10.1007/3-540-45319-9_23.

[CLS09] Marco Colla, Tiziano Leidi, and Mario Semo. Design and implementation of industrial

automation control systems: A survey. In: 7th IEEE International Conference on Industrial

Informatics (INDIN), pp. 570–575. 2009. doi: 10.1109/INDIN.2009.5195866.

[CMS03] Gianfranco Ciardo, Robert Marmorstein, and Radu Siminiceanu. Saturation unbound.

In: Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in

Computer Science, vol. 2619, pp. 379–393. Springer, 2003. doi: 10.1007/3-540-36577-X_27.

[CMS06] Gianfranco Ciardo, Robert Marmorstein, and Radu Siminiceanu. The saturation algo-

rithm for symbolic state-space exploration. International Journal on Software Tools for

Technology Transfer 8(1), 2006, pp. 4–25. doi: 10.1007/s10009-005-0188-7.

[CMS08] José C. Campos, José Machado, and Eurico Seabra. Property patterns for the formal

verification of automated production systems. In: Proceedings of the 17th IFAC World

Congress, IFAC Proceedings Volumes, vol. 41 (2), pp. 5107–5112. Elsevier, 2008. doi: 10.
3182/20080706-5-KR-1001.00858.

[CNQ05] Gianpiero Cabodi, Sergio Nocco, and StefanoQuer. Are BDDs still alivewithin sequential

verification? International Journal on Software Tools for Technology Transfer 7(2), 2005,

pp. 129–142. doi: 10.1007/s10009-004-0172-7.

[Cop+01] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Armando Tacchella,

and Moshe Y. Vardi. Benefits of bounded model checking at an industrial setting. In:

Gérard Berry, Hubert Comon, and Alain Finkel (eds.), Computer Aided Verification, Lec-

ture Notes in Computer Science, vol. 2102, pp. 436–453. Springer, 2001. doi: 10.1007/3-
540-44585-4_43.

164

http://dx.doi.org/10.1007/978-3-540-72522-0_9
http://dx.doi.org/10.1007/978-3-642-31424-7_29
http://dx.doi.org/10.1007/978-3-540-69850-0_1
http://dx.doi.org/10.1007/3-540-44988-4_8
http://dx.doi.org/10.1007/3-540-45319-9_23
http://dx.doi.org/10.1109/INDIN.2009.5195866
http://dx.doi.org/10.1007/3-540-36577-X_27
http://dx.doi.org/10.1007/s10009-005-0188-7
http://dx.doi.org/10.3182/20080706-5-KR-1001.00858
http://dx.doi.org/10.3182/20080706-5-KR-1001.00858
http://dx.doi.org/10.1007/s10009-004-0172-7
http://dx.doi.org/10.1007/3-540-44585-4_43
http://dx.doi.org/10.1007/3-540-44585-4_43

Bibliography

[CS02] Gianfranco Ciardo and Radu Siminiceanu. Using edge-valued decision diagrams for sym-

bolic generation of shortest paths. In: Formal Methods in Computer-Aided Design, Lecture

Notes in Computer Science, vol. 2517, pp. 256–273. Springer, 2002. doi: 10.1007/3-540-
36126-X_16.

[CS03] Gianfranco Ciardo and Radu Siminiceanu. Structural symbolic CTL model checking of

asynchronous systems. In: Computer Aided Verification, Lecture Notes in Computer Sci-

ence, vol. 2725, pp. 40–53. Springer, 2003. doi: 10.1007/978-3-540-45069-6_4.

[CT12] Keith D. Cooper and Linda Torczon. Engineering a Compiler. 2nd edition. Morgan Kauf-

mann, 2012.

[CY05] Gianfranco Ciardo and Andy Jinqing Yu. Saturation-based symbolic reachability analysis

using conjunctive and disjunctive partitioning. In: Correct Hardware Design and Verifica-

tion Methods, Lecture Notes in Computer Science, vol. 3725, pp. 146–161. Springer, 2005.

doi: 10.1007/11560548_13.

[CZJ12] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. Ten years of saturation: A Petri net

perspective. In: Transactions on Petri Nets and Other Models of Concurrency V, Lecture

Notes in Computer Science, vol. 6900, pp. 51–95. Springer, 2012. doi: 10.1007/978-3-642-
29072-5_3.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property spec-

ifications for finite-state verification. In: Proceedings of the 21st International Conference

on Software Engineering, pp. 411–420. ACM, 1999. doi: 10.1145/302405.302672.

[DDd03] Alexandre David, Johann Deneux, and Julien d’Orso. A formal semantics for UML state-

charts. Tech. rep. 2003-010. Uppsala University, 2003. url: http://www.it.uu.se/research/
reports/2003-010/.

[DH01] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts. For-

mal Methods in System Design 19(1), 2001, pp. 45–80. doi: 10.1023/A:1011227529550.

[Dij01] Edsger W. Dijkstra. The end of computing science? Communications of the ACM 44(3),

2001, p. 92. doi: 10.1145/365181.365217.

[Din+06] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Bonnie Webber. Extracting formal spec-

ifications from natural language regulatory documents. In: Johan Bos and Alexander

Koller (eds.), Inference in Computational Semantics ICoS-5, pp. 17–26. 2006. url: http :
//anthology.aclweb.org/W/W06/W06-3902.pdf.

[DKW08] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of automated tech-

niques for formal software verification. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 27(7), 2008, pp. 1165–1178. doi: 10 . 1109 /TCAD.2008 .
923410.

[Dub11] Alpana Dubey. Evaluating software engineering methods in the context of automa-

tion applications. In: 9th IEEE International Conference on Industrial Informatics (INDIN),

pp. 585–590. IEEE, 2011. doi: 10.1109/INDIN.2011.6034944.

[EF18] Cindy Eisner and Dana Fisman. Temporal logic made practical. In: Edmund M. Clarke,

Thomas A. Henzinger, and Helmut Veith (eds.), Handbook of Model Checking, Springer,

2018. url: http://www.cis.upenn.edu/~fisman/documents/EF_HBMC14.pdf. To appear.

[Fer14] Borja Fernández Adiego. Bringing automated formal verification to PLC program devel-

opment. Ph.D. thesis. University of Oviedo, 2014. url: http://cds.cern.ch/record/1983193.

165

http://dx.doi.org/10.1007/3-540-36126-X_16
http://dx.doi.org/10.1007/3-540-36126-X_16
http://dx.doi.org/10.1007/978-3-540-45069-6_4
http://dx.doi.org/10.1007/11560548_13
http://dx.doi.org/10.1007/978-3-642-29072-5_3
http://dx.doi.org/10.1007/978-3-642-29072-5_3
http://dx.doi.org/10.1145/302405.302672
http://www.it.uu.se/research/reports/2003-010/
http://www.it.uu.se/research/reports/2003-010/
http://dx.doi.org/10.1023/A:1011227529550
http://dx.doi.org/10.1145/365181.365217
http://anthology.aclweb.org/W/W06/W06-3902.pdf
http://anthology.aclweb.org/W/W06/W06-3902.pdf
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1109/INDIN.2011.6034944
http://www.cis.upenn.edu/~fisman/documents/EF_HBMC14.pdf
http://cds.cern.ch/record/1983193

Bibliography

[Fix08] Limor Fix. Fifteen years of formal property verification in Intel. In: Orna Grumberg and

Helmut Veith (eds.), 25 Years of Model Checking, Lecture Notes in Computer Science,

vol. 5000, pp. 139–144. Springer, 2008. doi: 10.1007/978-3-540-69850-0_8.

[FL00] Georg Frey and Lothar Litz. Formal methods in PLC programming. In: IEEE International

Conference on Systems, Man, and Cybernetics, vol. 4, pp. 2431–2436. IEEE, 2000. doi: 10.
1109/ICSMC.2000.884356.

[FMW05] Harry Foster, Erich Maschner, and YaronWolfsthal. IEEE 1850 PSL: The next generation.

In: Proceedings of the Design and Verification Conference and Exhibition (DVCON), 2005.

url: http://212.199.43.83/papers/ieee1850psl-the_next_generation.pdf.

[Fok00] Wan Fokkink. Introduction to Process Algebra. 1st edition. Springer, 2000. doi: 10.1007/
978-3-662-04293-9.

[GCG10] Eugen Ioan Gergely, Laura Coroiu, and Alexandru Gacsadi. Design of safe PLC programs

by using Petri nets and formal methods. In: Recent Advances in Automation & Information

– Proceedings of the 11th WSEAS International Conference on Automation & Information,

pp. 86–91. WSEAS, 2010.

[Gla+07] Ziv Glazberg, Mark Moulin, Avigail Orni, Sitvanit Ruah, and Emmanuel Zarpas. PSL:

Beyond hardware verification. In: S. Ramesh and Prahladavaradan Sampath (eds.), Next

Generation Design and Verification Methodologies for Distributed Embedded Control Sys-

tems, pp. 245–260. Springer, 2007. doi: 10.1007/978-1-4020-6254-4_19.

[GLK13] Giovanni Godena, Tomaž Lukman, and Gregor Kandare. A new approach to control sys-

tems software development. In: Stanko Strmčnik and Ðani Juričić (eds.), Case Studies in

Control, pp. 363–406. Springer, 2013. doi: 10.1007/978-1-4471-5176-0_12.

[Gre94] A. Greenway. A user’s perspective of programmable logic controllers (PLCs) in safety-

related applications. In: Felix Redmill and Tom Anderson (eds.), Technology and Assess-

ment of Safety-Critical Systems, pp. 1–20. Springer, 1994. doi: 10.1007/978-1-4471-2082-
7_1.

[GSF08] Vincent Gourcuff, Olivier de Smet, and Jean-Marc Faure. Improving large-sized PLC pro-

grams verification using abstractions. In: Proceedings of the 17th IFAC World Congress,

IFAC Proceedings Volumes, vol. 41 (2), pp. 5101–5106. Elsevier, 2008. doi: 10 . 3182 /
20080706-5-KR-1001.00857.

[Hal+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous

dataflow programming language LUSTRE. Proceedings of the IEEE 79(9), 1991, pp. 1305–

1320. doi: 10.1109/5.97300.

[Hal05] Nicolas Halbwachs. A synchronous language at work: The story of Lustre. In: Proceedings

of the Third ACM and IEEE International Conference on Formal Methods andModels for Co-

Design (MEMOCODE), pp. 3–11. IEEE, 2005. doi: 10.1109/MEMCOD.2005.1487884.

[Ham05] Grégoire Hamon. A denotational semantics for Stateflow. In: Proceedings of the 5th ACM

International Conference on Embedded Software, pp. 164–172. ACM, 2005. doi: 10.1145/
1086228.1086260.

[Har07] David Harel. Statecharts in the making: A personal account. In: Proceedings of the Third

ACM SIGPLAN Conference on History of Programming Languages, 5-1–5-43. ACM, 2007.

doi: 10.1145/1238844.1238849.

166

http://dx.doi.org/10.1007/978-3-540-69850-0_8
http://dx.doi.org/10.1109/ICSMC.2000.884356
http://dx.doi.org/10.1109/ICSMC.2000.884356
http://212.199.43.83/papers/ieee1850psl-the_next_generation.pdf
http://dx.doi.org/10.1007/978-3-662-04293-9
http://dx.doi.org/10.1007/978-3-662-04293-9
http://dx.doi.org/10.1007/978-1-4020-6254-4_19
http://dx.doi.org/10.1007/978-1-4471-5176-0_12
http://dx.doi.org/10.1007/978-1-4471-2082-7_1
http://dx.doi.org/10.1007/978-1-4471-2082-7_1
http://dx.doi.org/10.3182/20080706-5-KR-1001.00857
http://dx.doi.org/10.3182/20080706-5-KR-1001.00857
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/MEMCOD.2005.1487884
http://dx.doi.org/10.1145/1086228.1086260
http://dx.doi.org/10.1145/1086228.1086260
http://dx.doi.org/10.1145/1238844.1238849

Bibliography

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming 8(3), 1987, pp. 231–274. doi: 10.1016/0167-6423(87)90035-9.

[Häs13] David Hästbacka. Developing modern industrial control applications: On information

models, methods and processes for distributed engineering. Ph.D. thesis. Tampere Uni-

versity of Technology, 2013.

[Hav+00] Klaus Havelund, Mike Lowry, Seung Joon Park, Charles Pecheur, John Penix, Willem

Visser, and Jon L. White. Formal analysis of the Remote Agent before and after flight.

In: C. Michael Holloway (ed.), Lfm2000: Fifth NASA Langley Formal Methods Workshop,

pp. 163–174. NASA, 2000.

[Hax10] Anne E. Haxthausen. An introduction to formal methods for the development of safety-

critical applications. Tech. rep. Technical University of Denmark, 2010. url: http://www2.
imm.dtu.dk/courses/02263/F13/Files/FormalMethodsNoteTS.pdf.

[Hel16] Petra van den Helder. Verification of PLC code used at CERN. Master’s thesis. Eindhoven

University of Technology, 2016.

[HK99] Alexander Holt and Ewan Klein. A semantically-derived subset of English for hardware

verification. In: Proceedings of the 37th Annual Meeting of the Association for Computa-

tional Linguistics on Computational Linguistics, pp. 451–456. Association for Computa-

tional Linguistics, 1999. doi: 10.3115/1034678.1034747.

[HKB08] Markus Herrmannsdörfer, Sascha Konrad, and Brian Berenbach. Tabular notations for

state machine-based specifications. CrossTalk 21(3), 2008, pp. 8–23.

[HLR98] Mats P.E. Heimdahl, Nancy G. Leveson, and Jon D. Reese. Experiences from specifying

the TCAS II requirements using RSML. In: Proceedings of the 17th AIAA/IEEE/SAE Digital

Avionics Systems Conference, vol. 1, pp. C43/1–C43/8. IEEE, 1998. doi: 10.1109/DASC.
1998.741499.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985. url: http://www.
usingcsp.com/cspbook.pdf.

[HP85] David Harel and Amir Pnueli. On the development of reactive systems. In: Krzysztof

R. Apt (ed.), Logics and Models of Concurrent Systems, NATO ASI, vol. 13, pp. 477–498.

Springer, 1985. doi: 10.1007/978-3-642-82453-1_17.

[HT03] David Harel and P. S. Thiagarajan. Message sequence charts. In: Luciano Lavagno, Grant

Martin, and Bran Selic (eds.), UML for Real, pp. 77–105. Kluwer Academic Publishers,

2003. doi: 10.1007/0-306-48738-1_4.

[Huu03] Ralf Huuck. Software verification for programmable logic controllers. Ph.D. thesis. Uni-

versity of Kiel, 2003.

[I1012] IEEE Std 1012-2012 – IEEE Standard for system and software verification and validation.

IEEE, 2012.

[I13568] ISO/IEC 13568 Information technology – Z formal specification notation – Syntax, type

system and semantics. ISO/IEC, 2002.

[I13817-1] ISO/IEC 13817-1 Information technology – Programming languages, their environments and

system software interfaces – Vienna Development Method – Specification Language – Part

1: Base language. ISO/IEC, 1996.

[I60848] IEC 60848 – GRAFCET specification language for sequential function charts. IEC, 2013.

167

http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://www2.imm.dtu.dk/courses/02263/F13/Files/FormalMethodsNoteTS.pdf
http://www2.imm.dtu.dk/courses/02263/F13/Files/FormalMethodsNoteTS.pdf
http://dx.doi.org/10.3115/1034678.1034747
http://dx.doi.org/10.1109/DASC.1998.741499
http://dx.doi.org/10.1109/DASC.1998.741499
http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf
http://dx.doi.org/10.1007/978-3-642-82453-1_17
http://dx.doi.org/10.1007/0-306-48738-1_4

Bibliography

[I61131-3] IEC 61131-3 Programmable controllers – Part 3: Programming languages. IEC, 2013.

[I61499-1] IEC 61499-1 Function blocks – Part 1: Architecture. IEC, 2012.

[I61508-2] IEC 61508-2 Functional safety of electrical/electronic/programmable electronic safety-

related systems – Part 2: Requirements for electrical/electronic/programmable electronic

safety-related systems. IEC, 2010.

[I61508-3] IEC 61508-3 Functional safety of electrical/electronic/programmable electronic safety-

related systems – Part 3: Software requirements. IEC, 2010.

[I61511-1] IEC 61511-1 Functional safety – Safety instrumented systems for the process industry sector

– Part 1: Framework, definitions, system, hardware and software requirements. IEC, 2003.

[I61511-2] IEC 61511-2 Functional safety – Safety instrumented systems for the process industry sector

– Part 2: Guidelines for the application of IEC 61511-1:2016. IEC, 2016.

[I62424] IEC 62424 – Representation of process control engineering – Requests in P&I diagrams and

data exchange between P&ID tools and PCE-CAE tools. IEC, 2008.

[I830] IEEE Std 830-1998 – IEEE Recommended Practice for Software Requirements Specifications.

IEEE, 1998.

[I8807] ISO 8807 Information processing systems – Open Systems Interconnection – LOTOS – A

formal description technique based on the temporal ordering of observational behaviour.

ISO, 1989.

[Int14] Intel. Intel reports record third-quarter revenue of $14.6 billion. News release. 2014. url:

https://newsroom.intel.com/news-releases/intel-reports-record-third-quarter-revenue-
of-14-6-billion/.

[Jee+10] Eunkyoung Jee, Seungjae Jeon, Sungdeok Cha, Kwangyong Koh, Junbeom Yoo, Geeyong

Park, and Poonghyun Seong. FBDVerifier: Interactive and visual analysis of counterex-

ample in formal verification of function block diagram. Journal of Research and Practice

in Information Technology 42(3), 2010, pp. 171–188. url: http : / /ws . acs . org . au / jrpit /
JRPIT42.3.171.pdf.

[Kai+09] Roope Kaivola et al. Replacing testing with formal verification in Intel® Core™ i7 proces-

sor execution engine validation. In: Ahmed Bouajjani and Oded Maler (eds.), Computer

Aided Verification, Lecture Notes in Computer Science, vol. 5643, pp. 414–429. Springer,

2009. doi: 10.1007/978-3-642-02658-4_32.

[Kan+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van

Dijk. LTSmin: High-performance language-independent model checking. In: Christel

Baier and Cesare Tinelli (eds.), Tools and Algorithms for the Construction and Analysis

of Systems, Lecture Notes in Computer Science, vol. 9035, pp. 692–707. Springer, 2015.

doi: 10.1007/978-3-662-46681-0_61.

[KLC06] Jin-Hyun Kim, Na Young Lee, and Jin-Young Choi. Formal specification and verification

of PLC for certification. ACM SIGBED Review 3(4), 2006. http://www.cs.virginia.edu/
sigbed/archives/2006-10/08_ITCES06_Kim_Lee_Choi.pdf.

[Kle52] Stephen C. Kleene. Introduction to Metamathematics. Bibliotheca mathematica. North-

Holland, 1952.

168

https://newsroom.intel.com/news-releases/intel-reports-record-third-quarter-revenue-of-14-6-billion/
https://newsroom.intel.com/news-releases/intel-reports-record-third-quarter-revenue-of-14-6-billion/
http://ws.acs.org.au/jrpit/JRPIT42.3.171.pdf
http://ws.acs.org.au/jrpit/JRPIT42.3.171.pdf
http://dx.doi.org/10.1007/978-3-642-02658-4_32
http://dx.doi.org/10.1007/978-3-662-46681-0_61
http://www.cs.virginia.edu/sigbed/archives/2006-10/08_ITCES06_Kim_Lee_Choi.pdf
http://www.cs.virginia.edu/sigbed/archives/2006-10/08_ITCES06_Kim_Lee_Choi.pdf

Bibliography

[Kni+97] John C. Knight, Colleen L. DeJong, Matthew S. Gibble, and Luís G. Nakano. Why are

formal methods not used more widely? In: C. Michael Holloway and Kelly J. Hayhurst

(eds.), Fourth NASA Langley Formal Methods Workshop (LFM), pp. 1–12. 1997. url: http:
//www.cs.virginia.edu/~jck/publications/lfm.97.pdf.

[Koo+06] Seo Ryong Koo, Poong Hyun Seong, Junbeom Yoo, Sung Deok Cha, Cheong Youn, and

Hyun-Chul Han. NuSEE: An integrated environment of software specification and V&V

for PLC based safety-critical systems. Nuclear Engineering and Technology 38(3), 2006,

pp. 259–276.

[KSK15] Shrawan Kumar, Amitabha Sanyal, and Uday P. Khedker. Value slice: A new slicing con-

cept for scalable property checking. In: Christel Baier and Cesare Tinelli (eds.), Tools

and Algorithms for the Construction and Analysis of Systems, Lecture Notes in Computer

Science, vol. 9035, pp. 101–115. Springer, 2015. doi: 10.1007/978-3-662-46681-0_7.

[LÅF10] Oscar Ljungkrantz, Knut Åkesson, and Martin Fabian. Practice of industrial control logic

programming using library components. In: Programmable Logic Controller, pp. 17–32.

Intech, 2010. doi: 10.5772/7191.

[Lam+11] Thomas Lambolais, Anne-Lise Courbis, Hong-Viet Luong, and Thanh-Liem Phan. Inter-

operability analysis of systems. In: Proceedings of the 18th IFAC World Congress, IFAC

Proceedings Volumes, vol. 44 (1), pp. 7879–7884. Elsevier, 2011. doi: 10.3182/20110828-
6-IT-1002.03523.

[Lam00] Axel van Lamsweerde. Formal specification: A roadmap. In: Anthony Finkelstein (ed.),

Proceedings of the Conference on The Future of Software Engineering (ICSE), pp. 147–159.

ACM, 2000. doi: 10.1145/336512.336546.

[Lam09] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to

Software Specifications. Wiley, 2009.

[Lev+91] Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, Jon D. Reese, and Ruben Ortega.

Experiences using Statecharts for a system requirements specification. In: Proceedings of

the Sixth International Workshop on Software Specification and Design, pp. 31–41. IEEE,

1991. doi: 10.1109/IWSSD.1991.213079.

[LHR99] Nancy G. Leveson, Mats P.E. Heimdahl, and Jon D. Reese. Designing specification lan-

guages for process control systems: Lessons learned and steps to the future? In: Oscar

Nierstrasz andMichel Lemoine (eds.), Software Engineering – ESEC/FSE ’99, Lecture Notes

in Computer Science, vol. 1687, pp. 127–146. Springer, 1999. doi: 10.1007/3-540-48166-
4_9.

[Liu+13] Shuang Liu, Yang Liu, Étienne André, Christine Choppy, Jun Sun, BimleshWadhwa, and

Jin Song Dong. A formal semantics for complete UML state machines with communica-

tions. In: Einar Broch Johnsen and Luigia Petre (eds.), Integrated Formal Methods, Lecture

Notes in Computer Science, vol. 7940, pp. 331–346. Springer, 2013. doi: 10.1007/978-3-
642-38613-8_23.

[Lju+10] Oscar Ljungkrantz, Knut Åkesson, Martin Fabian, and Chengyin Yuan. A formal specifi-

cation language for PLC-based control logic. In: Proceedings of the 8th IEEE International

Conference on Industrial Informatics (INDIN), pp. 1067–1072. 2010. doi: 10.1109/INDIN.
2010.5549591.

169

http://www.cs.virginia.edu/~jck/publications/lfm.97.pdf
http://www.cs.virginia.edu/~jck/publications/lfm.97.pdf
http://dx.doi.org/10.1007/978-3-662-46681-0_7
http://dx.doi.org/10.5772/7191
http://dx.doi.org/10.3182/20110828-6-IT-1002.03523
http://dx.doi.org/10.3182/20110828-6-IT-1002.03523
http://dx.doi.org/10.1145/336512.336546
http://dx.doi.org/10.1109/IWSSD.1991.213079
http://dx.doi.org/10.1007/3-540-48166-4_9
http://dx.doi.org/10.1007/3-540-48166-4_9
http://dx.doi.org/10.1007/978-3-642-38613-8_23
http://dx.doi.org/10.1007/978-3-642-38613-8_23
http://dx.doi.org/10.1109/INDIN.2010.5549591
http://dx.doi.org/10.1109/INDIN.2010.5549591

Bibliography

[Lju11] Oscar Ljungkrantz. On formal specification and verification of function block applica-

tions in industrial control logic development. Ph.D. thesis. Chalmers University of Tech-

nology, 2011.

[LMM99] Diego Latella, István Majzik, and Mieke Massink. Towards a formal operational seman-

tics of UML statechart diagrams. In: Formal Methods for Open Object-Based Distributed

Systems, IFIP – The International Federation for Information Processing, vol. 10, pp. 331–

347. Kluwer, 1999. doi: 10.1007/978-0-387-35562-7_25.

[LNN13] Tim Lange,Martin R. Neuhäußer, and ThomasNoll. Speeding up the safety verification of

programmable logic controller code. In: Hardware and Software: Verification and Testing,

Lecture Notes in Computer Science, vol. 8244, pp. 44–60. Springer, 2013. doi: 10.1007/
978-3-319-03077-7_4.

[LSP07] Thierry Lecomte, Thierry Servat, and Guilhem Pouzancre. Formal methods in safety-

critical railway systems. In: Proceedings of the 10th Brasilian Symposium on Formal Meth-

ods (SBMF), 2007. url: http://rodin.cs.ncl.ac.uk/Publications/fm_sc_rs_v2.pdf.

[Luk+13] Tomaž Lukman, Giovanni Godena, Jeff Gray, Marjan Heričko, and Stanko Strmčnik.

Model-driven engineering of process control software – Beyond device-centric abstrac-

tions. Control Engineering Practice 21(8), 2013, pp. 1078–1096. doi: 10.1016/j.conengprac.
2013.03.013.

[LYL11] Dong-Ah Lee, Junbeom Yoo, and Jang-Soo Lee. Equivalence checking between func-

tion block diagrams and C programs using HW-CBMC. In: Francesco Flammini, Sandro

Bologna, and Valeria Vittorini (eds.), Computer Safety, Reliability, and Security, Lecture

Notes in Computer Science, vol. 6894, pp. 397–408. Springer, 2011. doi: 10.1007/978-3-
642-24270-0_29.

[Mar94] John J. Marciniak. Encyclopedia of Software Engineering. Vol. 1. John Wiley & Sons, 1994.

doi: 10.1002/0471028959.

[MB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In: C. R. Ramakr-

ishnan and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of

Systems, Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer, 2008. doi:

10.1007/978-3-540-78800-3_24.

[Meu10] Maarten G. Meulen. Verification of PLC source code using propositional logic. Mas-

ter’s thesis. Eindhoven University of Technology, 2010. url: http : / / redesign . esi . nl /
publications/falcon/meulen2010.pdf.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE

77(4), 1989, pp. 541–580. doi: 10.1109/5.24143.

[MW99] AngelikaMader andHannoWupper. Timed automatonmodels for simple programmable

logic controllers. In: Proceedings of the 11th Euromicro Conference on Real-Time Systems,

pp. 106–113. IEEE, 1999. doi: 10.1109/EMRTS.1999.777456.

[NÁW15] Johanna Nellen, Erika Ábrahám, and Benedikt Wolters. A CEGAR tool for the reacha-

bility analysis of PLC-controlled plants using hybrid automata. In: Thouraya Bouabana-

Tebibel and Stuart H. Rubin (eds.), Formalisms for Reuse and Systems Integration, Ad-

vances in Intelligent Systems and Computing, vol. 346, pp. 55–78. Springer, 2015. doi:

10.1007/978-3-319-16577-6_3.

170

http://dx.doi.org/10.1007/978-0-387-35562-7_25
http://dx.doi.org/10.1007/978-3-319-03077-7_4
http://dx.doi.org/10.1007/978-3-319-03077-7_4
http://rodin.cs.ncl.ac.uk/Publications/fm_sc_rs_v2.pdf
http://dx.doi.org/10.1016/j.conengprac.2013.03.013
http://dx.doi.org/10.1016/j.conengprac.2013.03.013
http://dx.doi.org/10.1007/978-3-642-24270-0_29
http://dx.doi.org/10.1007/978-3-642-24270-0_29
http://dx.doi.org/10.1002/0471028959
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://redesign.esi.nl/publications/falcon/meulen2010.pdf
http://redesign.esi.nl/publications/falcon/meulen2010.pdf
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/EMRTS.1999.777456
http://dx.doi.org/10.1007/978-3-319-16577-6_3

Bibliography

[NB09] Erzsébet Németh and Tamás Bartha. Formal verification of safety functions by reinter-

pretation of functional block based specifications. In: Formal Methods for Industrial Crit-

ical Systems, Lecture Notes in Computer Science, vol. 5596, pp. 199–214. Springer, 2009.

doi: 10.1007/978-3-642-03240-0_17.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verification sys-

tem. In: Deepak Kapur (ed.), Automated Deduction – CADE-11, Lecture Notes in Com-

puter Science, vol. 607, pp. 748–752. Springer, 1992. doi: 10.1007/3-540-55602-8_217.

[Ova+16] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Osman Ünver. An overview of model

checking practices on verification of PLC software. Software and Systems Modeling 15(4),

2016, pp. 937–960. doi: 10.1007/s10270-014-0448-7.

[Pan+16] Cheng Pang, Antti Pakonen, Igor Buzhinsky, and Valeriy Vyatkin. A study on user-

friendly formal specification languages for requirements formalization. In: 14th IEEE In-

ternational Conference on Industrial Informatics (INDIN), pp. 676–682. IEEE, 2016.

[Par03] E. Andrew Parr. Programmable Controllers: An Engineer’s Guide. 3rd edition. Newnes,

2003.

[Par10] David L. Parnas. Really rethinking ‘formal methods’. Computer 43, 2010, pp. 28–34. doi:

10.1109/MC.2010.22.

[Par81] David Park. Concurrency and automata on infinite sequences. In: Peter Deussen (ed.),

Theoretical Computer Science, Lecture Notes in Computer Science, vol. 104, pp. 167–183.

Springer, 1981. doi: 10.1007/BFb0017309.

[Par92] David L. Parnas. Tabular representation of relations. Tech. rep. CRL Report No. 260. http:
//www.cas.mcmaster.ca/serg/papers/newtab.printer.pdf. Telecommunications Research

Institute of Ontario, Communications Research Laboratory, 1992.

[PE10] Olivera Pavlović and Hans-Dieter Ehrich. Model checking PLC software written in func-

tion block diagram. In: Proceedings of the International Conference on Software Testing,

Verification and Validation, pp. 439–448. IEEE, 2010. doi: 10.1109/ICST.2010.10.

[Pha13] Thanh-Liem Phan. Modeling and verification techniques for incremental development of

UML architectures. In:Doctoral Symposium of the European Conference on Object-Oriented

Programming, 2013. url: http://www.lirmm.fr/ecoop13/images/ds/8-paper- thanh%
20liem%20phan.pdf.

[Pin07] Gergely Pintér. Model based program synthesis and runtime error detection for depend-

able embedded systems. Ph.D. thesis. Budapest University of Technology and Economics,

2007.

[Pou03] Guilhem Pouzancre. How to diagnose a modern car with a formal B model? In: Didier

Bert, Jonathan P. Bowen, Steve King, and Marina Waldén (eds.), ZB 2003: Formal Specifi-

cation and Development in Z and B, Lecture Notes in Computer Science, vol. 2651, pp. 98–

100. Springer, 2003. doi: 10.1007/3-540-44880-2_7.

[PPK07] Olivera Pavlović, Ralf Pinger, and Mail Kollmann. Automated formal verification of PLC

programswritten in IL. In: Bernhard Beckert (ed.), 4th International VerificationWorkshop

(VERIFY’07), CEUR-WS, vol. 259, pp. 152–163. 2007. url: http://ceur-ws.org/Vol-259/
paper13.pdf.

171

http://dx.doi.org/10.1007/978-3-642-03240-0_17
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/s10270-014-0448-7
http://dx.doi.org/10.1109/MC.2010.22
http://dx.doi.org/10.1007/BFb0017309
http://www.cas.mcmaster.ca/serg/papers/newtab.printer.pdf
http://www.cas.mcmaster.ca/serg/papers/newtab.printer.pdf
http://dx.doi.org/10.1109/ICST.2010.10
http://www.lirmm.fr/ecoop13/images/ds/8-paper-thanh%20liem%20phan.pdf
http://www.lirmm.fr/ecoop13/images/ds/8-paper-thanh%20liem%20phan.pdf
http://dx.doi.org/10.1007/3-540-44880-2_7
http://ceur-ws.org/Vol-259/paper13.pdf
http://ceur-ws.org/Vol-259/paper13.pdf

Bibliography

[PRF11a] Julien Provost, Jean-Marc Roussel, and Jean-Marc Faure. A formal semantics for Grafcet

specifications. In: IEEE Conference on Automation Science and Engineering (CASE),

pp. 488–494. IEEE, 2011. doi: 10.1109/CASE.2011.6042457.

[PRF11b] Julien Provost, Jean-Marc Roussel, and Jean-Marc Faure. Translating Grafcet specifica-

tions into Mealy machines for conformance test purposes. Control Engineering Practice

19(9), 2011, pp. 947–957. doi: 10.1016/j.conengprac.2010.10.001.

[PRF14] Julien Provost, Jean-Marc Roussel, and Jean-Marc Faure. Generation of single input

change test sequences for conformance test of programmable logic controllers. IEEE

Transactions on Industrial Informatics 10(3), 2014, pp. 1696–1704. doi: 10.1109/TII.2014.
2315972.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent sys-

tems in CESAR. In: Mariangiola Dezani-Ciancaglini and Ugo Montanari (eds.), Interna-

tional Symposium on Programming, Lecture Notes in Computer Science, vol. 137, pp. 337–

351. Springer, 1982. doi: 10.1007/3-540-11494-7_22.

[Sad11] Jan Sadolewski. Conversion of ST control programs to ANSI C for verification purposes.

e-Informatica 5(1), 2011, pp. 65–76. doi: 10.2478/v10233-011-0031-3.

[Sar+08] Cleber A. Sarmento, José R. Silva, Paulo E. Miyagi, and Diolino J. Santos Filho. Modeling

of programs and its verification for programmable logic controllers. In: Proceedings of

the 17th IFAC World Congress, IFAC Proceedings Volumes, vol. 41 (2), pp. 10546–10551.

Elsevier, 2008. doi: 10.3182/20080706-5-KR-1001.01786.

[SD08] André Sülflow and Rolf Drechsler. Verification of PLC programs using formal proof tech-

niques. In: Géza Tarnai and Eckehard Schnieder (eds.), Formal Methods for Automation

and Safety in Railway and Automotive Systems, pp. 43–50. L’Harmattan, 2008. url: http:
//www.informatik.uni-bremen.de/agra/doc/konf/08_forms_VerificationPLCPrograms.
pdf.

[SF11] Doaa Soliman and Georg Frey. Verification and validation of safety applications based

on PLCopen safety function blocks. Control Engineering Practice 19(9), 2011, pp. 929–946.

doi: 10.1016/j.conengprac.2011.01.001.

[Sie02] Siemens. SIMATIC Statement List (STL) for S7-300 and S7-400 Programming. A5E00171232-

01. Siemens, 2002.

[Sie10] Siemens. S7-300 Instruction List. A5E02354744-03. Siemens, 2010. url: http: / / support .
industry.siemens.com/cs/document/31977679.

[Sie11] Siemens. Standards compliance according to IEC 61131-3. 2011. url: http : / / support .
industry.siemens.com/cs/document/50204938.

[Sie14] Siemens. SIMATIC Industrial Software SIMATIC safety – Configuring and programming.

A5E02714440-AD. Programming and operating manual. Siemens, 2014. url: http : / /
support.industry.siemens.com/cs/document/54110126.

[Sie98a] Siemens. SIMATIC Statement List (STL) for S7-300 and S7-400 Programming. C79000-

G7076-C565. Reference manual. Siemens, 1998. url: http://support. industry.siemens.
com/cs/document/18653496.

[Sie98b] Siemens. Statement List (STL) for S7-300/S7-400. C79000-G7076-C565-01. Reference man-

ual. Siemens, 1998. url: http://support.industry.siemens.com/cs/document/18653496.

172

http://dx.doi.org/10.1109/CASE.2011.6042457
http://dx.doi.org/10.1016/j.conengprac.2010.10.001
http://dx.doi.org/10.1109/TII.2014.2315972
http://dx.doi.org/10.1109/TII.2014.2315972
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.2478/v10233-011-0031-3
http://dx.doi.org/10.3182/20080706-5-KR-1001.01786
http://www.informatik.uni-bremen.de/agra/doc/konf/08_forms_VerificationPLCPrograms.pdf
http://www.informatik.uni-bremen.de/agra/doc/konf/08_forms_VerificationPLCPrograms.pdf
http://www.informatik.uni-bremen.de/agra/doc/konf/08_forms_VerificationPLCPrograms.pdf
http://dx.doi.org/10.1016/j.conengprac.2011.01.001
http://support.industry.siemens.com/cs/document/31977679
http://support.industry.siemens.com/cs/document/31977679
http://support.industry.siemens.com/cs/document/50204938
http://support.industry.siemens.com/cs/document/50204938
http://support.industry.siemens.com/cs/document/54110126
http://support.industry.siemens.com/cs/document/54110126
http://support.industry.siemens.com/cs/document/18653496
http://support.industry.siemens.com/cs/document/18653496
http://support.industry.siemens.com/cs/document/18653496

Bibliography

[Smi85] Brian Cantwell Smith. The limits of correctness. ACM SIGCAS Computers and Society

15(1–3), 1985, pp. 18–26. doi: 10.1145/379486.379512.

[So95] So-Ming So. GrafTab: An innovative requirements specification method for a PLC sys-

tem. Master’s thesis. The University of British Columbia, 1995. url: https://circle.ubc.
ca/bitstream/handle/2429/4059/ubc_1995-0646.pdf.

[Sou+09] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification of

avionics software products. In: Ana Cavalcanti and Dennis R. Dams (eds.), FM 2009: For-

mal Methods, Lecture Notes in Computer Science, vol. 5850, pp. 532–546. Springer, 2009.

doi: 10.1007/978-3-642-05089-3_34.

[SS05] Tobias Schuele and Klaus Schneider. Three-valued logic in bounded model checking. In:

Proceedings of the 2nd ACM/IEEE International Conference on Formal Methods and Models

for Co-Design, pp. 177–186. IEEE, 2005. doi: 10.1109/MEMCOD.2005.1487912.

[SS11] David J. Smith and Kenneth G.L. Simpson. The meaning and context of safety integrity

targets. In: Safety Critical Systems Handbook. Elsevier, 2011. doi: 10.1016/B978- 0- 08-
096781-3.10001-X.

[Šus03] Richard Šusta. Verification of PLC programs. Ph.D. thesis. Czech Technical University in

Prague, 2003. url: http://susta.cz/fel/publications/sustathesis.pdf.

[Sut08] Grégoire Sutre. Software Verification. Talk at the Summer School on Verification Tech-

nology, Systems & Applications. 2008. url: http : / / resources . mpi - inf . mpg . de /
departments/rg1/conferences/vtsa08/slides/sutre1.pdf.

[SW89] David J. Smith and Kenneth B. Wood. Engineering Quality Software. Springer, 1989. doi:

10.1007/978-94-009-1121-5.

[TF11a] Kleanthis Thramboulidis and Georg Frey. An MDD process for IEC 61131-based in-

dustrial automation systems. In: Zoubir Mammeri (ed.), Proceedings of 2011 IEEE 16th

Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, 2011. doi:

10.1109/ETFA.2011.6059118.

[TF11b] Kleanthis Thramboulidis and Georg Frey. Towards a model-driven IEC 61131-based de-

velopment process in industrial automation. Journal of Software Engineering and Appli-

cations 4(4), 2011, pp. 217–226. doi: 10.4236/jsea.2011.44024.

[TKM13] Sabine Teufl, Maged Khalil, and Dongyue Mou. Requirements for a model-based require-

ments engineering tool for embedded systems: Systematic literature review and survey.

White paper. fortiss GmbH, 2013. url: http : / /af3 . fortiss . org / research /2013 /MbRE_
tool_requirements_for_embedded_systems.pdf.

[Tót09] Zsófia Tóth Heinemann. Diszkrét ipari irányítórendszerek modellezése és ellenőrzése

formális módszerekkel [in Hungarian]. Master’s thesis. Budapest University of Technol-

ogy and Economics, 2009.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software

– Concepts and Tools 17(3), 1996, pp. 103–120.

[Ule+15] Sebastian Ulewicz, Birgit Vogel-Heuser, Mattias Ulbrich, AlexanderWeigl, and Bernhard

Beckert. Proving equivalence between control software variants for programmable logic

controllers. In: 20th IEEE International Conference on Emerging Technologies and Factory

Automation, IEEE, 2015. doi: 10.1109/ETFA.2015.7301603.

173

http://dx.doi.org/10.1145/379486.379512
https://circle.ubc.ca/bitstream/handle/2429/4059/ubc_1995-0646.pdf
https://circle.ubc.ca/bitstream/handle/2429/4059/ubc_1995-0646.pdf
http://dx.doi.org/10.1007/978-3-642-05089-3_34
http://dx.doi.org/10.1109/MEMCOD.2005.1487912
http://dx.doi.org/10.1016/B978-0-08-096781-3.10001-X
http://dx.doi.org/10.1016/B978-0-08-096781-3.10001-X
http://susta.cz/fel/publications/sustathesis.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa08/slides/sutre1.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa08/slides/sutre1.pdf
http://dx.doi.org/10.1007/978-94-009-1121-5
http://dx.doi.org/10.1109/ETFA.2011.6059118
http://dx.doi.org/10.4236/jsea.2011.44024
http://af3.fortiss.org/research/2013/MbRE_tool_requirements_for_embedded_systems.pdf
http://af3.fortiss.org/research/2013/MbRE_tool_requirements_for_embedded_systems.pdf
http://dx.doi.org/10.1109/ETFA.2015.7301603

Bibliography

[UML11] Unified Modeling Language 2.4.1 – Superstructure specification. Object Management

Group, 2011. url: http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[Uni15] Milán Unicsovics. Test generation based on state machine models. Master’s thesis. Bu-

dapest University of Technology and Economics, 2015.

[Val+08] Francesco Valentini, Tomasz Ladzinski, Pierre Ninin, and Luigi Scibile. Safety testing for

LHC access system. In: Proceedings of the 11th European Particle Accelerator Conference,

pp. 532–534. EPS-AG, 2008.

[Val+13] Francesco Valentini, Timo Hakulinen, Louis Hammouti, Tomasz Ladzinski, and Pierre

Ninin. Formal methodology for safety-critical systems engineering at CERN. In: Proceed-

ings of the 14th International Conference on Accelerator & Large Experimental Physics Con-

trol Systems, pp. 918–921. JACoW, 2013. url: http://accelconf.web.cern.ch/AccelConf/
ICALEPCS2013/papers/tucoca04.pdf.

[Vog+14] Birgit Vogel-Heuser, Daniel Schütz, Timo Frank, and Christoph Legat. Model-driven en-

gineering of manufacturing automation software projects – A SysML-based approach.

Mechatronics 24(7), 2014, pp. 883–897. doi: 10.1016/j.mechatronics.2014.05.003.

[VWK05] Birgit Vogel-Heuser, Daniel Witsch, and Uwe Katzke. Automatic code generation from a

UML model to IEC 61131-3 and system configuration tools. In: International Conference

on Control and Automation (ICCA), vol. 2, pp. 1034–1039. IEEE, 2005. doi: 10.1109/ICCA.
2005.1528274.

[Wan+09] Rui Wang, Ming Gu, Xiaoyu Song, and Hai Wan. Formal specification and code genera-

tion of programable logic controllers. In: 14th IEEE International Conference on Engineer-

ing of Complex Computer Systems, pp. 102–109. IEEE, 2009. doi: 10.1109/ICECCS.2009.41.

[Wan+13] RuiWang, Yong Guan, Luo Liming, Xiaojuan Li, and Jie Zhang. Component-based formal

modeling of PLC systems. Journal of Applied Mathematics 2013, 2013. doi: 10.1155/2013/
721624.

[Wei15] Alexander Weigl. Regression verification for programmable logic controller software.

Master’s thesis. Karlsruhe Institute of Technology, 2015. url: https://formal.iti.kit.edu/
improve/pubs/weigl_thesis.pdf.

[Wei81] Mark Weiser. Program slicing. In: Proceedings of the 5th International Conference on Soft-

ware Engineering, pp. 439–449. IEEE, 1981.

[Wie+12] VirginieWiels, Rémi Delmas, David Doose, Pierre-Loïc Garoche, Jacques Cazin, and Guy

Durrieu. Formal verification of critical aerospace software. AerospaceLab, 4 2012, pa-

per AL04–10. url: http : / /www.aerospacelab - journal . org / sites /www.aerospacelab -
journal.org/files/AL04-10_1.pdf.

[Woo+09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal meth-

ods: Practice and experience. ACM Computing Surveys 41(4), 2009, 19:1–19:36. doi: 10.
1145/1592434.1592436.

[WSG07] Rui Wang, Xiaoyu Song, and Ming Gu. Modelling and verification of program logic con-

trollers using timed automata. IET Software 1(4), 2007, pp. 127–131. doi: 10.1049/iet-sen:
20070009.

[YCJ08] Junbeom Yoo, Sungdeok Cha, and Eunkyoung Jee. A verification framework for FBD

based software in nuclear power plants. In: Proceedings of the 15th Asia-Pacific Software

Engineering Conference, pp. 385–392. IEEE, 2008. doi: 10.1109/APSEC.2008.26.

174

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tucoca04.pdf
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/papers/tucoca04.pdf
http://dx.doi.org/10.1016/j.mechatronics.2014.05.003
http://dx.doi.org/10.1109/ICCA.2005.1528274
http://dx.doi.org/10.1109/ICCA.2005.1528274
http://dx.doi.org/10.1109/ICECCS.2009.41
http://dx.doi.org/10.1155/2013/721624
http://dx.doi.org/10.1155/2013/721624
https://formal.iti.kit.edu/improve/pubs/weigl_thesis.pdf
https://formal.iti.kit.edu/improve/pubs/weigl_thesis.pdf
http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL04-10_1.pdf
http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL04-10_1.pdf
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1145/1592434.1592436
http://dx.doi.org/10.1049/iet-sen:20070009
http://dx.doi.org/10.1049/iet-sen:20070009
http://dx.doi.org/10.1109/APSEC.2008.26

Bibliography

[YCJ09] Junbeom Yoo, Sungdeok Cha, and Eunkyoung Jee. Verification of PLC programs written

in FBD with VIS. Nuclear Engineering and Technology 41(1), 2009, pp. 79–90.

[YCL09] Andy Jinqing Yu, Gianfranco Ciardo, and Gerald Lüttgen. Decision-diagram-based tech-

niques for bounded reachability checking of asynchronous systems. International Journal

on Software Tools for Technology Transfer 11(2), 2009, pp. 117–131. doi: 10.1007/s10009-
009-0099-0.

[Yoo+05a] Junbeom Yoo, Sungdeok Cha, Chang Hwoi Kim, and Duck Yong Song. Synthesis of FBD-

based PLC design from NuSCR formal specification. Reliability Engineering & System

Safety 87(2), 2005, pp. 287–294. doi: 10.1016/j.ress.2004.05.005.

[Yoo+05b] Junbeom Yoo, Taihyo Kim, Sungdeok Cha, Jang-Soo Lee, and Han Seong Son. A formal

software requirements specification method for digital nuclear plant protection systems.

Journal of Systems and Software 74(1), 2005, pp. 73–83. doi: 10.1016/j.jss.2003.10.018.

[ZC09] Yang Zhao and Gianfranco Ciardo. Symbolic CTL model checking of asynchronous sys-

tems using constrained saturation. In: Automated Technology for Verification and Anal-

ysis, Lecture Notes in Computer Science, vol. 5799, pp. 368–381. Springer, 2009. doi:

10.1007/978-3-642-04761-9_27.

[ZGS11] Hehua Zhang, Ming Gu, and Xiaoyu Song. Edola: A domain modeling and verification

language for PLC systems. In: The Sixth International Conference on Software Engineering

Advances (ICSEA 2011), IARIA XPS Press, 2011. url: http://hal.inria.fr/inria-00612416.

175

http://dx.doi.org/10.1007/s10009-009-0099-0
http://dx.doi.org/10.1007/s10009-009-0099-0
http://dx.doi.org/10.1016/j.ress.2004.05.005
http://dx.doi.org/10.1016/j.jss.2003.10.018
http://dx.doi.org/10.1007/978-3-642-04761-9_27
http://hal.inria.fr/inria-00612416

	1 Introduction
	1.1 Preliminaries and Objectives
	1.1.1 Introduction to Formal Verification
	1.1.2 Introduction to Formal Specification
	1.1.3 Summary of New Challenges

	1.2 Contributions and Structure of the Dissertation

	2 Bounded Model Checking Based on Saturation
	2.1 Preliminaries
	2.2 Related Work
	2.2.1 Bounded Model Checking
	2.2.2 Saturation-Based Techniques
	2.2.3 Bounded Model Checking With Decision Diagrams

	2.3 Overview of the B-I-Sat Algorithm
	2.3.1 Building Blocks
	2.3.2 Sketching Up the B-I-Sat Algorithm
	2.3.3 Challenges and Solutions
	2.3.4 Iteration Strategies

	2.4 Compacting Saturation Strategy
	2.5 Termination Conditions
	2.5.1 Notations
	2.5.2 Evaluation of CTL Operators

	2.6 Evaluation
	2.6.1 Measurement Considerations
	2.6.2 Execution Time Evaluation on Benchmark Models
	2.6.3 Memory Consumption Evaluation on Benchmark Models
	2.6.4 Industrial Case Study

	2.7 Summary and Future Work

	3 Model Checking Critical PLC Programs
	3.1 Preliminaries
	3.1.1 Programmable Logic Controllers
	3.1.2 Motivation

	3.2 Design of the Verification Workflow
	3.2.1 Challenges
	3.2.2 Designing the Workflow

	3.3 Intermediate Representations
	3.3.1 Intermediate Model: Intermediate Representation of the Verification Model
	3.3.2 Additional Intermediate Representations

	3.4 Verification Workflow Based on the Intermediate Model
	3.5 Reduction Rules for the Intermediate Model
	3.5.1 Mode Selection
	3.5.2 Cone of Influence
	3.5.3 Rule-Based Reductions
	3.5.4 Reduction Examples

	3.6 Extensions for the Verification of Safety-Critical PLC Programs
	3.6.1 Motivation and Challenges
	3.6.2 Supporting the STL Language as Input Language
	3.6.3 Code Size Blow-Up and Reductions

	3.7 Implementation
	3.8 Case Studies
	3.8.1 Usage for UNICOS Baseline Objects
	3.8.2 Usage for Safety Controller

	3.9 Related Work
	3.10 Summary and Future Work

	4 Formal Specification for PLC Modules
	4.1 Requirements Towards a Specification Language
	4.1.1 General Requirements
	4.1.2 Domain-Specific Requirements

	4.2 Related Work
	4.2.1 Formal Specification Languages
	4.2.2 Equivalence and Conformance Checking

	4.3 Syntax and Semantics of PLCspecif
	4.3.1 Structure of the Specification
	4.3.2 Expression Descriptions
	4.3.3 Core Logic Descriptions
	4.3.4 Semantics of PLCspecif

	4.4 Checking Invariant and Well-Formedness Properties on PLCspecif
	4.4.1 Verification of Invariant Properties
	4.4.2 Static Analysis of Well-Formedness Rules

	4.5 Code Generation
	4.5.1 Overview of the Code Generation Method
	4.5.2 Semantics Based on Control Flow Automata
	4.5.3 Generating the Concrete Implementation
	4.5.4 Providing Readable Code
	4.5.5 Generation Process

	4.6 Conformance Relations and Conformance Checking
	4.6.1 Domain Requirements
	4.6.2 Conformance Relations
	4.6.3 Checking the PLC Conformance Relations

	4.7 Evaluation and Usage Examples
	4.7.1 Comparison of PLCspecif and the Collected Requirements
	4.7.2 UNICOS Re-engineering
	4.7.3 SM18-PLCSE Safety Controller

	4.8 Summary and Future Work

	5 Summary of the Research Results
	5.1 Responses to the Challenges
	5.2 Summary of the Proposed Verification Methods
	5.3 Summary of the Theses

	A Precise Definitions for the B-I-Sat Algorithm
	B Pseudocode of the Bounded Saturation Algorithms
	B.1 Restarting Bounded Saturation
	B.2 Continuing Bounded Saturation
	B.3 Compacting Bounded Saturation

	C Metamodel of the Intermediate Representations of PLCverif
	C.1 Intermediate Model
	C.2 Other Intermediate Representations

	D Details About the STL to SCLr Translation
	D.1 Semantics of the STL Instructions
	D.2 Identified Correspondences Between STL and SCL
	D.3 Concepts of the Correctness Proof
	D.3.1 Formal Semantics for SCLr
	D.3.2 Formal Semantics for STL
	D.3.3 Strategy for the Correctness Proof

	E Semantics of PLCspecif
	E.1 Timed Automata
	E.2 Translation Algorithms
	E.3 Mapping from PLCspecif Semantics to IM

	F List of Abbreviations
	Publications
	Publications Linked to the Theses
	Additional Publications (Not Linked to Theses)
	Additional Work

	Bibliography

