
DELPHI Collaboration

CARGO - DBMS

CARGO

DELPHI 86-28 PROG-46

8 July 1986

A HIERARCHICAL DATA-BASE MANAGEMENT
SYSTEM

A TECHNICAL MANUAL

CARGO is a DataBase Management System developed for the storage and access of
data of the Hierarchical Structured type. The design has been worked out by F.

Carena, G. Gopal and V. Perevozchikov, in response to requests from many people
in DELPHI for such a generalised System. The implementation of this DBMS has

been done by F. Carena (CERN) and G. Gopal (RAL). Any questions/comments on
this System are very welcome. This document has been written by

G. P. Gopal (RAL)

Contents i CARGO - DBMS

CONTENTS

1. IN1'RODUCTION . 1

2. DBMS FILE STRUCTURE . 3
2.1 System File . 3

2.1.1 DBMAKE - System File Operations 5
2.1.2 DBINIT . 5
2.1.3 DBOPEF .. 6
2.1.4 DBRFLT .. 6
2.1.5 DBRFLP .. 7
2.1.6 DBRFDB .. 7
2.1.7 DBRFPR .. 8
2.1.8 DBFILU .. 8
2.1.9 DBFILT ... 9
2.1.10 DBFILS . 9
2.1.11 DBGFDB . 10
2.1.12 DBGFPR . 10

2.2 Data Files . 10
2.2.1 DBADDF - Data File Operations . 11
2.2.2 DBDELF . 12
2.2.3 DBEXPF . 12

3. STRUCTURE OF DATA RECORDS IN DATA FILES . 13
3.1 Data Structure definition - "Treesn . 13

3.1.1 DBADTT - Data Structure - Tree Level . 14
3.1.2 DBDLTT . 14
3.1.3 DBRTTT . 15
3.1.4 DBRTTC . 15
3.1.5 DBTRTC . 16
3.1.6 DBTRTL . 16

3.2 Data Structure definition - nRecord-Types" in Trees . 17
3.2.1 DBADRT - Data Structure - Record Level . 18
3.2.2 DBDLRT ... 18
3.2.3 DBRRTT ... 19
3.2.4 DBRRTC . 19
3.2.5 DBRRTP . 20
3.2.6 DBRTYP . 20
3.2.7 DBRTTL . 21
3.2.8 DBRTLI . 21

3.3 Data Structure definition - nFieldsn in Records. 22
3.3.l DBADFD - Data Structure - Field Level 24
3.3.2 DBDLFD . 25
3.3.3 DBRFDN .. 25
3.3.4 DBRFDT . 26
3.3.5 DBADCF . 26
3.3.6 DBDCCF . 27
3.3.7 DBRCNA .. 27
3.3.8 DBRCCF . 28
3.3.9 DBRCDT . 29
3.3.10 DBAWDE . 29
3.3.11 DBDWDE .. 30
3.3.12 DBRWDE .. 30
3.3.13 DBFDNA . 31
3.3.14 DBFDTY ... 32

CARGO - DBMS Contents ii

3.3.lS DBFDNU .. 32
3.3.16 DBFDTL . 33
3.3.17 DBCODS ... 33
3.3.18 DBCFDL ... 34
3.3.19 DBCDTL . 34
3.3.20 DBGWTL . 3S
3.3.21 DBGWRD .. 36

3.4 Interrogating the Structure . 36
3.4. l DBPRDS - Data-Structure Interrogation . 36

4. SYSTEM RECORDS IN DBMS FILES . 38
4.1 Record Structure of the System Records . 38

5. DATA-RECORDS IN DATA FILES . 41
S.l Record Naming Convention .. 41
S.2 Input of Data-Records . 42

S.2.1 DBARIF - Input Data-Records from ASCII File 43
S.3 Data-Record Access Routines . 44

S.3.1 DBADDR - Data Storage & Access 44
S.3.2 DBREPR . 4S
S.3.3 DBDELR . 46
S.3.4 DBGETR . 46
S.3.S DBGETF . 47

S.4 Data-Record Utility Routines. 48
5.4.1 DBPRID - Data-Records Utilities . 48
S.4.2 DBPRIR ... 49
S.4.3 DBGNAM . SO
S.4.4 DBGNUT . SO
S.4.5 DBGRNM . Sl
S.4.6 DBGBNM . Sl
S.4.7 DBGTMW .. S2

6. IMPORT/EXPORT OF DATA FILES . 53
6.1 Export of a Data File . S3

6.1.1 DBWRDS - Data File Transport Routines . S3
6.1.2 DBWRDR . S4

6.2 Import of a Data File . S4
6.2.1 DBRDDS - Import Routine SS

7. CONTROL, ENQUIRY & MODIFICATION PACKAGE (DBCEMP) 56
7.1 DBCEMP Operation.... S6

References . 67

Appendix 1: GLOSSARY . 68

TABLES

1. DBCEMP - Top Menu. S7

2. Menu # 2 - List of Data File Titles. S8

Contents iii CARGO - DBMS

3. Menu # 3 - Actions on the Selected Data File . 59

4. Menu # 4 - Actions at the Tree Level . 60

5. List of Tree-Type Codes. 60

6. Menu # 5 - Actions on selected Tree-Type . 61

7. List of Record-Type Codes. 62

8. Menu # 6 - Actions on Selected Record-Type . 62

9. List of Field Names. 63

10. Menu # 7 - Actions on Selected Field . 64

11. Menu # 8 - Data Access Options . 65

12. A Typical Structure of a Fixed-Length Field . 66

CARGO - DBMS page 1

1. INTRODUCTION

Until now Particle Physics Experiments have used a large number of ways of storing any data
necessary for the acquisition (on-line) and processing (off-line) of events. These have varied from the
simple use of DATA statements buried in the program code or the use of more or less complicated
assignment statements during program initialization, to sophisticated uses of external files containing
the necessary information accessed by program at execution time. In fact, even within a single experi
ment a common method has not been adopted for use in the numerous processing tasks. This has
functioned reasonably well in the past as experiments have been generally small, run by small groups
of people, with essentially all the software being centrally written and maintained. However, in the
LEP era none of these features apply to the proposed experiments. The experiments, e.g. DELPHI,
have the following features which necessitate the use of a central common method of data storage and
access:-

- size (both the hardware & the collaboration)
- complexity
- long-life
- build-up over many months
- probability of frequent change
- modularity

and both the on-line and off-line software, needing to access the relevant data for control and analysis
will have the following relevant features:

- designed & written by many people at many
institutes, i.e. distributed programming

- to run on several types of main-frames
- built-up from many independent modules
- ability to run in interactive mode with Graphics

display facilities as an integral part
- must be user-friendly to allow ease of execution

by each & every member (almost) of a large
Collaboration.

These features force the use of a central Data Base Management System, which would allow
storage of different types of data on many different files without any specific restrictions. Commercial
Data Base Management Systems are usually designed to have this capability, but have the following
drawbacks:

- require large resources (CPU and Managerial)
- cost real money to purchase and maintain.
- learning process required before data structures can

be set-up and data entered.
- write and read access times are suited to commercial

applications and not Physics Experiments.

We feel that Commercial DataBase Management Systems have serious drawbacks and have learnt
from experience that ad-hoc Systems designed to meet specific needs are not general enough to meet
all the DataBase requirements of a Physics Experiment. We have therefore worked out a scheme for a
general DataBase Management System (of the Hierarchical Structured type) for use in DELPHI based
on the nKey Word Access Packagen - KAPACK [3] with its excellent features - e.g. allowing vari
able length direct access records and providing access via a well-defined and flexible naming convention
- as the basic tool. We choose the hierarchical structured type as this, we feel, is best suited to satisfy
the constraints imposed by modularity (both in hardware and software) and to meet the requirement
of fast read and write access.

page 2 CARGO - DBMS

The terminology used in describing the proposed System is given in the Glossary in Appendix 1.
In Chapter 2 the file structure and how it can be built-up is described. The data structure in any par
ticular data file is set-out in user-defined "Trees". Each ''Tree" structure is made of Records of one or
more Types. A "Record-Type" in a "Tree" is completely defined only when the structure of the data
contained in records of this type is defined. This is done by defining the various "Fields" of data within
the record. How the complete structure of user Data Records in a given Data File is defined is ex
plained in Chapter 3. The methods used for the storage and access of user Data - either complete
Records or Fields within a Record - for any Data File are described in Chapter 4. The storage of the
Data structure definitions is done in "System" Records. Chapter 5 describes the layout and format of
these.

A principal requirement of a DBMS for use in a Physics Experiment in which many geographi
cally separated institutes collaborate is the ability to import/export part of the DataBase, or the com
plete DataBase from machine to machine. An extensive set of routines have been written to cater for
this requirement. These are described in Chapter 6.

At each level of the description of this Hierarchical Data Base Management System the basic
routines used to provide the necessary functionality are described. These routines form the Basic
Package of the DBMS (DBBASP). Not all of the routines in this package are needed by all the users.
The System Manager and each Local File Manager are the only people who will make use of all of
these routines and even then through the interactive Control, Enquiry and Modification Package
(DBCEMP) - necessary to make the DBMS work in a user-friendly manner . This package is de
scribed in Chapter 7. Finally, an example of an application of this DBMS - the storage and access of
the Detector Alignment Constants is given in Reference [2]

CARGO - DBMS page 3

2. DBMS FILE STRUCTURE

A user who has identified a set of data that are going to be frequently accessed by one or more pro
grams can open a Data File in which this data can be stored. The complete structure of the data has to
be entered and will be stored in "System Records" in this file. So the structure of the data is not hard
wired in any DBMS program code. A "System File" keeps track of all the Files in the DataBase.

2.1 System File

The function of this File is to contain information about all the "Data Files" in the DataBase and store
the DataBase Password and Title. An interactive user or program is allowed full access to this File and
all the Data Files if the overall Password is declared. In a program it is done by a call to routine
DBOPEF (see section 2.1.3 below) at intialisation time. The information contained in this File is the
following:

1. the Data Base Title,

2. the DataBase Password,

3. the number of Data Files and for each

a. the Logical Unit Number,

b. the Local Password,

c. the File Title and

d. the declared maximum size.

The Passwords and the File Titles are Character Strings of, in principle, any length. However, the
requirement (FORTRAN77) that the length of a Character Variable be predefined has meant that
there is an upper limit of 60 Characters.

The set of functions relating to this File and the routines to perform them are :

1. DBMAKE: to create the System File by entering a logical unit number associated with it, a
global Title for the DataBase and a DataBase Password.

2. DBINIT: to declare the Logical Unit No. of the System File if the DataBase already exists.
The Basic DBMS Package can then prepare in its local area the information necessary for any
subsequent operation on any File in the DataBase.

3. DBOPEF: to allow write-access to all Files in the DataBase.The correct System Password re
sults in full access to all the Files in the DataBase. This routine is also used for gaining full
access to a single Data File by giving the correct Local Password.

4. Routines to alter

a. the Global Title of the DataBase or the local Title of any given Data File - routine
DBRFLT.

page 4 CARGO - DBMS

b. the System (Global) Password or the Local Password of any given Data File -
routine DBRFLP.

c. the current debug printing option on (Default= 'OFF') for any File - routine
DBRFDB.

d. the DBMS operations printed output unit (Default= 6) for any File - routine
DBRFPR.

5. Routines to fetch from the System File any of the following information about any of the
Data Files in the DataBase.

a. DBFILU: Logical Unit numbers in use for the Data Files in the DataBase.

b. DBFILT: the File Title for any File (Data or System).

c. DBFILS: the declared maximum size of a Data File and the fraction of it currently
used.

d. DBGFDB: the current debug option for a given File.

e. DBGFPR: the logical unit number of the file to which error/debug messages are
currently being routed.

Note : A different logical unit may be used for debug printing for each Data File in
the DataBase.

The routines for the functions 1., 3. and 4. above require full access to the System and/or the ap
propriate Data File.

CARGO - DBMS page 5

2.1.1 DBMAKE - System File Operations

CALL DBMAKE (LUNSYS,DBTIT,SYSPAS,IERROR)

This routine is called at the start of the setting-up of the DataBase. It opens a Direct Access System
File which will be used to control the Data Files.

Input:

Output:

LUNSYS Logical Unit No. of the System File
(0 < LUNSYS < 100)

DBTIT The DataBase Title
Character String of any length

SYSPAS The Global DataBase Password
Character String of any length

IERROR Error Flag
= 1, if a File is already associated with

unit LUNSYS.
= 2, Buffer overflow - Title/Password too long.

2.1.2 DB/NIT

CALL DBINIT (LUNSYS,IERROR)

The routine loads into local memory, reserved for the purpose by the DBMS Basic Package, all the
information stored on the System File for each of the Files in the DataBase. The routine checks that
declared System File has consistent information about each of the Data Files known to it.

Input:

Output:

LUNSYS Logical Unit No. of the System File.

IERROR Error Flag
= 1, if LUNSYS is incorrect, or System File

does not exist,
= 2, if Logical error on a Data File,
= 3, if there is a mis-match between the

System File and a Data File.

page 6 CARGO - DBMS

2.1.3 DBOPEF

CALL DBOPEF (LUN,PASSW,IERROR)

This routine is used to get write-access to any File (Data or System) in the DataBase.

Input:

Output:

LUN
PASSW

Logical Unit No. of the File.
Password associated with the File.

IERROR Error Flag

= 1, if Logical Unit number is not known
to the System File,

= 2, if incorrect Password given, only Read
Access given.

2.1.4 DBRFLT

CALL DBRFLT (LUN,FILTIT,IERROR)

This routine to be used to change the File (System or Data) Title.

Input:

Output:

LUN
FIL TIT

Logical Unit No. of the File.
the new File Title (any length).

IERROR Error Flag
= 1, illegal Unit Number.
= 2, Buffer Overflow - Title too long.
= 3, write-access not available.

CARGO - DBMS

2.1.5 DBRFLP

CALL DBRFLP (LUN,PASSW,IERROR)

This routine to be used to change the File (System or Data) Password.

Input:

Output:

LUN
PASSW

Logical Unit No. of the File.
the new File Password (any length),

IERROR Error Flag
= 1, illegal unit number.
= 2, Buffer Overflow - Password too long.
= 3, write-access not available.

2.1.6 DBRFDB

CALL DBRFDB (LUN,ION,IERROR)

This routine to be used to change the File (System or Data) Debug Printing option.

Input:

Output:

LUN Logical Unit No. of the File.
ION the new Print-option (= 0, OFF & = 1, ON)

(Default = OFF)

IERROR Error Flag
= 1, illegal unit number.

page 7

page 8 CARGO - DBMS

2.1.7 DBRFPR

CALL DBRFPR (LUN,LUNPR,IERROR)

This routine to be used to change the unit for printed output from KAPACK (default= 6) for any
operations on the File (System or Data).

Input:

Output:

LUN
LUNPR

Logical Unit No. of the File.
the unit no. for printed output.

IERROR Error Flag
= 1, illegal unit no. for DB File.
= 2, illegal unit no.for Printed output

2.1.8 DBFILU

CALL DBFILU (NMAX,NU,LUNITS,IERROR)

The routine returns the logical unit number associated with each Data File in the DataBase.

Input:

Output:

NMAX

NU
LUNITS

IERROR

Maximum number of Files expected to be in the
DataBase.

The Number of Data Files in the DataBase
Array containing the logical unit numbers
associated with each File.
Note: If NU is greater than NMAX then only

the logical unit numbers of the first
NMAX Files are returned.

Error Flag
= 1, NU > NMAX.

CARGO - DBMS page 9

2.1.9 DBFILT

CALL DBFILT (LUN,MAXLEN,NCHAR,FILTIT,IERROR)

The routine returns the Local File Title associated with a given Data File in the DataBase. The Data
Base Title is returned if LUN is the logical unit number of the System File.

Input:

Output:

LUN Logical Unit No. of the File.
MAXLEN Expected Maximum length (no. of Characters) of the

Title

NC HAR
LOCTIT

IERROR

The length (no. of Characters) of the Data File Title.
Character string containing the Title
associated with the File.
Note: If NCHAR is greater than MAXLEN then only

the first MAXLEN characters in the File
Title are returned.

Error Flag
= 1, lliegal unit no.
= 2, NCHAR > MAXLEN.

2.1.10 DBFILS

CALL DBFILS (LUN,ISIZE,IERROR)

The routine returns the declared maximum size of a given File (System or Data) and the percentage
currently used.

Input:

Output:

LUN Logical Unit No. of the File.

ISIZE Array with 2 elements :
ISIZE (1) = Maximum no. of Records,
ISIZE (2) = Average length of each.
ISIZE (3) = %age fraction currently used.

IERROR Error Flag
= l, lliegal unit no.

page 10 CARGO - DBMS

2.1.11 DBGFDB

CALL DBGFDB (LUN,ION,IERROR)

Titls routine is used to find out the current Debug Printing option for a File (System or Data) .

Input:
LUN Logical Unit No. of the File.

Output:
ION
IERROR

2.1.12 DBGFPR

the current Print-option (= 0, OFF & = 1, ON)
Error Flag
= 1, illegal unit number.

CALL DBGFPR (LUN,LUNPR,IERROR)

Titls routine to be used to fetch the unit no. used for printed output from KAPACK (default= 6) for
any operations on a File (System or Data).

Input:
LUN Logical Unit No. of the File.

Output:
LUNPR
IERROR

2.2 Data Files

the unit no. for printed output.
Error Flag
= l, illegal unit no. for DB File.

Needless to say, there must be one or more Data Files in a DataBase apart from the System File.
These are Direct Access Files used to store user data. Since the aim is to achieve as much flexibility as
possible a complete description of the user data (contained in a given Data File) is also stored in this
File. For security purposes the originator/manager of each Data File has to define a unique Local
Password which is stored in the File itself and in the System File as well to allow the overall System
Manager complete access to the whole DataBase. Opening the File with routine DBOPEF (defined
above) gives the user full access to it.

The set of functions relating to an individual Data File and the routines to perform them are :

CARGO - DBMS page 11

1. DBADDF: to add a new Data File to the DataBase. The Logical unit number, its maximum
size, the File Title and the Local Password have to be given. This information has first got to
be entered into the System File before the File can be opened. Therefore a knowlegde of the
DataBase Password is necessary before the DBMS Basic Package will perform the function. A
call to routine DBOPEF to open the System File with write-access is necessary before calling
routine DBADDF.

2. DBDELF: to remove a Data File from the DataBase. The logical unit number associated with
the File is removed from the list of Logical Unit Numbers stored in the System File. The File
is not physically deleted, it only becomes inaccessible to the DBMS. As for addition of a new
Data File, write access to the System File must have been obtained by a call to DBOPEF
giving the correct DataBase Password before calling routine DBDELF.

3. DBEXPF: to increase the declared maximum size of an existing Data File. This function is
performed such that at the end of it the DataBase should look identical as before except for
the size of the requested File having been increased. It is necessary, therefore, for the DBMS
to copy the original to a scratch unit, delete the file from the DataBase, add a new expanded
File with all other characteristics unchanged and then copy the original File from the scratch
unit to the appropriate File.

2.2.J DBADDF - Data File Operations

CALL DBADDF (LUN,ISIZE,FILTIT,LOCPAS,IERROR)

The routine enters information about a new Data File to the System File and opens the new Data
File. The same information is also entered in the File itself.

Input:

Output:

LUN
ISIZE

FIL TIT

LOCPAS

Logical Unit No. of the Data File.
Array with two elements
ISIZE (1) = Expected number of Records and
ISIZE (2) = Average Record Length
The File Title
Character String of any length
N.B.:- This is only meaningful in the DB Context.

It must not be confused with
machine-dependent File name.

The Local Password, a Character
String of any length.

IERROR Error Flag
= l, LUN is already defined in DataBase.
= 2, No. of Data Files limit hit.
= 3, Invalid Size given.
= 4, Another KAPACK File with same unit no.

5, Buffer Overflow - FIL TIT /LOCPAS too long.
= 6, write-access to System File not available.

page 12 CARGO - DBMS

2.2.2 DBDELF

CALL DBDELF (LUN,IERROR)

Tbis routine removes all reference, in the System File, to the Data File associated with the given Log
ical Unit Number. Write-access to the System File must be obtained prior to calling this routine.

Input:

Output:

LUN Logical Unit No. of the Data File.

!ERROR Error Flag
= 1, Unit no. LUN unknown to DataBase.
= 2, System File cannot be deleted.

3, write-access to System File not available.

2.2.3 DBEXPF

CALL DBEXPF (LUN,LUNSCR,ISIZE,IERROR)

Routine to increase the number of blocks allocated to a Data File. A Scratch File has to be assigned
by the user to perform this function.

Input:

Output:

LUN
LUNSCR
I SIZE

Logical Unit No. of the Data File.
Logical Unit No. of the Scratch File.
Array with two elements giving the new size
ISIZE (1) = Expected number of Records and
!SIZE (2) = Average Record Length

!ERROR Error Flag
= 1, Unit no. LUN not know to DataBase.
= 2, IDegal unit no. for Scratch File.
= 3, Invalid size.
= 4, write-access to Data File not obtained.

CARGO - DBMS page 13

3. STRUCTURE OF DATA RECORDS IN DATA FILES

Before user data can be entered in records in the defined user Data File, the complete structure of the
records must be known to the DBMS. It is stored in System Records - see Chapter S - in the Data
File itself. The structure must be built-up in a hierarchical manner in the form of defined "Trees0 of
records.

3.1 Data Structure definition - "Tree~'

As defined in the Glossary a "Tree0 is made up of a set (one or more) of Records linked by a
0 Root-Branch0 or a 0 Parent Branch-Branch0 Relationship. Each record must have at least one 0 Root 0

or a "Parent Branch0 and can have any number of nsub-Branches". For each Tree-Type there must be
at least one Record-Type which is defined as a Parent/Root Record-Type.

In a given Data File there can be any number of different Tree-Types, each identified by:

1. A Title - a character string of any length for a readable description of the Tree.

2. A Code - a string of 4 Characters identifying a Tree-Type for the DBMS structure defining
routines.

A workable system of defining, changing, removing different types of Trees and altering their at
tributes is required in any Hierarchical DBMS. For this purposes routines have been defined to per
form the following functions:

1. DBADTT: to enter a new Tree-Type giving a short explanation and its identification code.
These are entered in a "Tree Defining System Record# - part of the system records that will
contain the Data Structure definitions for all user Data Records - in the given Data File.

2. DBDLTT: to remove from the list of Tree-Types in a given Data File an incorrectly defined,
or no longer necessary, Tree-Type. This function is particularly necessary at the setting-up
stage when a Data File is being prepared for subsequent storage of user Data by the Local
Data File Manager (as opposed to the overall DataBase Manager). Any attempt to delete a
defined Tree-Type when user Data already exists in the Data File in Records of this Tree-Type
cannot be allowed as it would lead to a defined Data Structure unable to provide any infor
mation on existing user Data Records in the File. In this case it would be necessary to delete
all Records belonging to this Tree-Type before it could be removed from the list of valid
Tree-Types.

3. DBRTTT: to change the Title associated to an existing Tree-Type. This can be done despite
the presence of user Data Records belonging to this Tree-Type as the Tree-Type Title is only
a short explanation of the Tree-Type and has nothing to do with the data structure as such.

4. DBRTTC: to change the Code associated to an existing Tree-Type. The Code is used in the
naming covention (see later) of user Data Records and therefore forms an integral part of the
Data Structure definition. As such it cannot be altered if user Data Records belonging to the
Tree-Type already exist before altering the names of all the associated Records.

S. DBTR TC: to provide a list of defined Tree-Types, i.e. the Tree-Type Codes in a given Data
File.

6. DBTRTL: to get the Tree-Type Title associated with a particular Tree-Type.

page 14 CARGO - DBMS

It should be noted that full access to the Data File concerned is necessary - by a call to routine
DBOPEF (see section 2.1.1) - for any of the functions 1. to 4. above.

3.1.1 DBADTT - Data Structure - Tree Level

CALL DBADTT (LUN,TRCODE,TRETIT,IERROR)

Routine to enter a new Tree-Type definition in a given Data File.

Input:

Output:

LUN Logical Unit No. of the Data File.
TRCODE the Tree-Type Code - a 4-Character String.
TRETIT the Tree Title - Character String of any length.

IERROR Error Flag
= l, lliegal unit number.
= 2, lliegal Tree-Type Code.
= 3, Tree-Type already defined.
= 4, Buffer Overflow in File header record.
= 5, Buffer overflow in Tree-Type record.
= 6, Read-access only to File.

3.1.2 DBDLTT

CALL DBDLTT (LUN,TRCODE,IERROR)

Routine to remove an existing Tree-Type from the list of Trees.

Input:

Output:

LUN Logical Unit No. of the Data File.
TRCODE the Tree-Type Code - a 4-Character String.

IERROR Error Flag
= 1, lliegal unit number.
= 2, Unknown Tree-Type.
= 3, Data Records already present.
= 4, Read-access only to File.

CARGO - DBMS

3.1.3 DBRTTT

CALL DBRTTT (LUN,TRCODE,TRETIT,IERROR)

Routine to change the Title associated to an existing Tree-Type in a given Data File.

Input:

Output:

LUN
TR CODE
TRETIT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the new Tree Title - Character String of
any length.

IERROR Error Flag
= 1, lliegal unit number.
= 2, Tree-Type Code unknown.
= 3, Buffer Overflow - Title too long.
= 4, Read-access only to File.

3.1.4 DBRTTC

CALL DBRTTC (LUN,TRCODO,TRCODN,IERROR)

Routine to change the Code associated to an existing Tree-Type in a given Data File.

Input:

Output:

LUN Logical Unit No. of the Data File.
TRCODO the Old Tree-Type Code - a 4-Character String.
TRCODN the New Tree-Type Code - a 4-Character String.

IERROR Error Flag
= 1, lliegal unit number.
= 2, Tree-Type Code unknown.
= 3, New Tree-Type Code already used.
= 4, New Tree-Type Code illegal.
= 5, Data Records already present.
= 6, Read-access only to File.

page 15

page 16 CARGO - DBMS

3.1.5 DBTRTC

CALL DBTRTC (LUN,NMAX,NTTYP,TRCODS,IERROR)

Routine to return a list of all Codes associated to existing Tree-Types in a given Data File.

Input:

Output:

LUN
NMAX

NTTYP
TR CODS

IE RR OR

Logical Unit No. of the Data File.
Expected Maximum number of Tree-Types
in the list.

Actual number of Tree-Types in Data File
CHARACTER *4 Array containing the list of
Tree-Type Codes.
Note : - When NTTYP > NMAX the Codes of the first

NMAX Tree-Types are returned.
Error Flag
= 1, illegal unit number.
= 2, NTTYP > NMAX.

3.1.6 DBTRTL

CALL DBTRTL (LUN,TRCODE,NMAX,NCHAR,TRETIT,IERROR)

Routine to return the Title associated to an existing Tree-Type in a given Data File.

Input:

Output:

LUN
TR CODE
NMAX

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
Expected Maximum number of Characters in
the title.

NCHAR Actual number of Characters in the Title.
TRETIT Tree-Type Title - Character String containing

the Tree Title.
Note:- When NCHAR > NMAX the first NMAX Characters

of the Title are returned.
IERROR Error Flag

= 1, illegal unit number.
= 2, Tree-Type Code unknown.
= 3, NCHAR > NMAX.

CARGO - DBMS page 17

3 .2 Data Structure definition - "Record- Types' in Trees

The definition, at the next level, of the user Data to be stored in a given Data File is that of all the
Record-Types belonging to each type of Tree in the Data File. A Record-Type definition consists of

1. a Record-Type Code to differentiate types of Records in the same Tree,

2. a list of possible Parent Type Records,

3. a Record-Type Title giving a short explanation of the type of Data stored in the Record.

When a Record-Type is thus defined, it is added to the corresponding Tree-Type definition. The func
tions required at this level of structure definition are similar to those at the Tree level. The routines
available are :

1. DBADRT: to add a new Record-Type to a given Tree-Type.

2. DBDLRT: to remove an existing (incorrectly defined or redundant) Record-Type from a given
Tree-Type. This function can be performed only if no user Data records of this type exist in
the Data File.

3. DBRRTT: to change a Record-Type Title. Since the Title is not part of the data structure
definition a change can be effected at any time (even if user Data Records of this type are
present).

4. DBRRTC: to rename the Record-Type, i.e. change the Record-Type Code. This can only be
done when there are no user Data Records of this type present in the Data File. The code is
used in the Record naming convention (see later).

5. DBRRTP: to change the structure associated to a Record-Type by altering the number and/or
the list of Parent Record-Types. Again this function cannot be performed if user Data Records
of this Type already exist.

6. DBRTYP: to get a list of all the declared Record-Types in a given Tree-Type.

7. DBRTTL: to get the Title associated with a particular Record-Type in a given Tree-Type.

8. DBRTLI: to get a list of possible Parent/Branch Record-Types associated to a given Re
cord-Type in the Tree.

The functions 1. to 5. above define the Tree Structure and result in modifications to , or additions of,
System Records in the given Data File. As such full access to the Data File is required to be able to
perform them. The last three functions are of the query type and can be performed with read-access
only.

page 18 CARGO - DBMS

3.2.1 DBADRT - Data Structure - Record Level

CALL DBADRT (LUN,TRCODE,RTCODE,RECTIT,NP,PARENT,IERROR)

Routine to enter a new Record-Type definition to a defined Tree-Type in a given Data File.

Input:

Output:

LUN
TR CODE
RTCODE
RECTIT

NP
PARENT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
the Record-Type Title - Character String of
any length.
the number of Parent Record-types to this Record-Type.
Character*4 Array containing the list of possible
Parent Record-Type Codes.
Note: NP = 0 indicates the Record-Type to be a

"Root" Record in the Tree.

!ERROR Error Flag
= I, lliegal unit number.
= 2, Tree-Type not defined.
= 3, lliegal Record-Type Code.
= 4, lliegal Parent Record-Type.
= 5, Record-Type already defined.
= 6, Buffer overflow in TT Record.
= 7, Buffer overflow preparing RT Record.
= 8, Buffer overflow updating RT Record.
= 9, Read-access only to File.

3.2.2 DBDLR T

CALL DBDLRT (LUN,TRCODE,RTCODE,IERROR)

Routine to remove an existing Record-Type definition in a given Tree-Type in a Data File - only
when there are no user Data Records of this type present in the File.

Input:

Output:

LUN Logical Unit No. of the Data File.
TRCODE the Tree-Type Code - a 4-Character String.
RTCODE the Record-Type Code - a 4-Character String.

IERROR Error Flag
= I, lliegal unit number.

CARGO - DBMS

3.2.3 DBRRTT

= 2, Unknown Record-Type.
= 3, Data Records already present.
= 4, Read-access only to File.

CALL DBRRTT (LUN,TRCODE,RTCODE,RECTIT,IERROR)

page 19

Routine to change the Title associated to an existing Record-Type in a given Tree-Type in a Data
File.

Input:

Output:

LUN
TR CODE
RTCODE
RECTIT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
the new Record-Type Title - Character String
of any length.

IERROR Error Flag
= 1, illegal unit number.
= 2, Unknown Record-Type.
= 3, Buffer overflow.
= 4, Read-access only to File.

3.2.4 DBRRTC

CALL DBRRTC (LUN,TRCODE,RTCODO,RTCODN,IERROR)

Routine to change the Code associated with an existing Record-Type in a given Tree-Type in a Data
File - a change that can be done only if no user Data-Records of this type exist in the File.

Input:

Output:

LUN
TR CODE
RTCODO
RTCODN

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the old Record-Type Code - a 4-Character String.
the new Record-Type Code - a 4-Character String.

IERROR Error Flag
= 1, illegal unit number.
= 2, Unknown Record-Type.
= 3, New Code already defined.
= 4, illegal New Code.

page 20

3.2.5 DBRRTP

= 5, Data Records already present.
= 6, Read-access only to File.

CALL DBRRTP (LUN,TRCODE,RTCODE,NP,PARENT,IERROR)

CARGO - DBMS

Routine to change the number and Parent Record-Type names associated to an existing Record-Type
in a given Tree-Type in a Data File - a change that can be done only if no user Records of this type
exist in the File.

Input:

Output:

LUN
TR CODE
RTCODE
NP

PARENT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
the new number of Parent Records to this Record
Type.
Character*4 Array containing the new list of
possible Parent Record-Type Codes.
Note: NP = 0 will change the Record-Type to a

nRootn Record in the Tree.

IERROR Error Flag
= 1, illegal unit number.
= 2, Unknown Record-Type.
= 3, illegal Parent Record-Type.
= 4, Buffer Overflow.
= 5, Data Records already present.
= 6, Read-access only to File.

3.2.6 DBRTYP

CALL DBRTYP (LUN,TRCODE,NMAX,NRTY,RTCODS,IERROR)

Routine to return the number and Codes of Record-Types in a given Tree-Type in a Data File.

Input:
LUN Logical Unit No. of the Data File.
TRCODE the Tree-Type Code - a 4-Character String.
NMAX expected number of Record-Types in the Tree.

Output:
NRTY the actual number of Record-Types

CARGO - DBMS page 21

R TCODS Character*4 Array containing the list of
Record-Type Codes.
Note: If NRTY > NMAX the first NMAX Record-Type

codes in the Tree are returned.
!ERROR Error Flag

= 1, illegal unit number.
= 2, Unknown Tree-Type.
= 3, NRTY > NMAX.

3.2.7 DBRTTL

CALL DBRTTL (LUN,TRCODE,R TCODE,NMAX,NCHAR,RECTIT,IERROR)

Routine to get the Title associated to an existing Record-Type in a given Tree-Type in a Data File.

Input:

Output:

LUN
TR CODE
RTCODE
NMAX

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
expected no. of characters in the Record Title.

NCHAR actual no. of characters in the Record Title.
RECTIT the Record-Type Title - Character String of

length = NMAX.
Note : If NCHAR > NMAX the first NMAX characters in

the Record Title are returned.
!ERROR Error Flag

= 1, illegal unit number.
= 2, Unknown Record-Type.
= 3, NCHAR > NMAX.

3.2.8 DBRTLI

CALL DBRTLI (LUN,TRCODE,RTCODE,IUPDOW,NMAX,NC,CODES,IERROR)

Routine to return the number and Parent/Son Record-Type Codes associated to an existing Re
cord-Type in a given Tree-Type in a Data File.

Input:
LUN Logical Unit No. of the Data File.
TRCODE the Tree-Type Code - a 4-Character String.
RTCODE the Record-Type Code - a 4-Character String.

page 22 CARGO - DBMS

Output:

IUPDOW flag = 1 for Parent Record-Types,
= 2 for Son Record-Types.

NMAX expected no. of Parent/Son Record-Types.

NC
CODES

IE RR OR

actual no. of requested Record-Type Codes.
Character*4 Array containing the list of
requested Record-Type Codes.
Note: If NC > NMAX the first NMAX Record-Type

codes in the list are returned.
Error Flag

l, lliegal unit number.
2, Unknown Record-Type.
3, NC> NMAX.

3.3 Data Structure definition - "Fields' in Records.

Each Record containing user Data is made up of nFieldsn, the first of these is the Header Field which
is fixed by the DBMS. The user provides the start date and time of a period of validity of the user data
contained in the record. The user data within the body of the Record can be structured in one or more
defined Fields. Access to user data is allowed at two levels in CARGO - the complete Record or a
given named/numbered Field within the Record.

Each user defined Field in a record is given a 4-Character Name ('HEAD' is reserved for the
header Field) and is assigned a unique number. The first word in the Field is reserved for its length
(the no. of words following) and, therefore, has to be of type Integer (I). The following three types of
Fields are considered sufficient:

l. Fixed Length Field: Length of the Field (in number of 4-byte words) is fixed for all Records
of a given type. It is declared at the time of setting up the Data Structure of user Records in
the File. Also the Description - a line of text - and Data-Type (Alphanumeric (A), Integer
(I), Real (R) or Bit-Mask (B)) of each word in such a Field have to be declared at the time of
setting-up.

2. Variable Length Field: As the name suggests the length can vary from record to record for
such Fields, being set when the user Data is entered. All the words in such Fields, following
the first, will have the same (assigned during setting-up) Description and Data-Type

3. Coded Field: This is essentially a Fixed Length Field, but its length depends on a parameter
(the Code-Name) stored in the Field itself. A finite number of possible values of this parame
ter have to be given at the time of declaration of a Field of this kind. Also the length associat
ed with each value has to be entered. The second word in such a Field is of type Alphanu
meric (A) and equals one of the declared possible Code-Names. This is followed by the Data
words with fixed Descriptions and Data-Types declared to the DBMS for each Code-Name.

A declaration of a Field, therefore, requires the above quantities to be given to the DBMS for
storage in the System Records in the Data File. It should be noted that the DBMS treats Fixed and
Variable Length Fields in the same manner as a Coded Field with the restriction that the list of
Code-Names is only one long. The single Code-Name for either of this type of Field is set equal to the
Field-Name.

The routines available at this level are:

l. DBADFD: to define a Field.

CARGO - DBMS page 23

2. DBDLFD: to remove a Field from the structural definiton of a Record. This can only be done
while there are no Data Records of the type in the Data File.

3. DBRFDN: to change a Field Name. The Field Name is not used in any structural or naming
capacity. This change can therefore be done even when Data Records are present.

4. DBRFDT: to change the Field Title. The Field Title, as the Name, is use for presentation
purposes and thus can be altered at any time.

5. DBADCF: to enter a new possible Code-Name, the no. of words associated with it and the
Data Type of each word for a defined Field. This can be done even when there are user Data
Records of the given Type present since it does not alter the structural definition.

6. DBDCCF: to delete a particular declared Code-Name in a Field. If the particular Code-Name
is actually used in any user Data-Records this function cannot be performed. To check the use
of a particular Name in all user Data-Records is extremely costly. Therefore, routine
DBDCCF will return an error condition if user Data-Records of the given Record-Type are
present.

7. DBRCNA: to redefine a declared Code-Name in a Coded Field. Again the same restrictions
apply as for the preceding function.

8. DBRCCF: to alter the Field length and/or the Data Formats of any, or all, of the words as
sociated to a particular Code-Name in a Field. The restrictions mentioned for routine
DBDCCF also apply to the use of this routine.

9. DBRCDT: to alter the Title associated to a particular Code-Name in a Field. This routine can
be called even when user Data Records of this type are present since the Code-Title is not
used in the structural definition or in a naming capacity.

The above defined functions are all necessary to establish correctly the complete structure of the
Fields making up the Records of any type in any Tree in a Data Field. As such full-access to the Data
File is required for these to take effect. Unless otherwise stated each of the above functions can only be
performed if there are no user Data-Records of the given Type present in the Data File.

Besides these there is another set of functions that are necessary to be defined so that interactive
input/ access of user Data can be done in a manner meaningful to a casual user. This is the storage and
retrieval of textual explanation of what each word in a particular Field in the Record means. Also, for
certain applications it may be necessary to store for each word either minimum and maximum values
or a set of discrete allowed values. A complete word description, therefore, is made up of all these
quantities. The related functions and routines are :

1. DBA WDE: to enter a word description for a given word in a Field.

2. DBDWDE: to delete the word description of a given word in a Field.

3. DBRWDE: to alter the word description of a given word in a Field.

Again as these word descriptions are stored in System Records in the Data File full access to the
File is essential.

The above sets of functions are all that are needed to complete the full definition and description
of the structure of user Data Records in a Data File. However, to aid the local File Manager and help
a casual user see the defined Data Structure a set of access/query functions (and routines) have been
defined:

page 24 CARGO - DBMS

1. DBFDNA: to get a list of names of all Fields defined for a given Record-Type.

2. DBFDTY: to determine the Type of a named Field.

3. DBFDNU: to get the number corresponding to a Field Name.

4. DBFDTL: to get the Title assigned to a named Field.

5. DBCODS: to get a list of the declared possible Code-Names in a Field.

6. DBCFDL: to determine the length and data formats associated to a particular Code-Name in
a given Field.

7. DBCDTL: to get the Title associated with a given Code Name in a Coded Field.

8. DBGWTL: to get the textual description associated to a given word in a Field.

9. DBGWRD: to get the range or the list of allowed discrete values for a given word in a Field.

3.3.1 DBADFD ...,.. Data Structure - Field Level

CALL DBADFD (LUN,TRCODE,RTCODE,FLDNAM,FLDTYP ,FLDTIT,IERROR)

Routine to enter a new Field definition to a defined Record-Type in a given Tree-Type in a Data File.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
FLDTYP

FLDTIT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
CHARACTER* 1 (= F or V or C - for Fixed
Length, Variable Length & Coded Fields resp.)
Field Title - Character String of any length

IERROR Error Flag
= 1, Illegal unit number.
= 2, Record-Type not defined.
= 3, Illegal Field Name.
= 4, Field Name already defined.
= 5, Illegal Field Type.
= 6, Data Records of this type present.
= 7, Buffer overflow replacing RT Record.

8, Buffer overflow preparing Field Record.
= 9, Read-access only to File.

CARGO - DBMS

3.3.2 DBDLFD

CALL DBDLFD (LUN,TRCODE,RTCODE,FLDNAM,IERROR)

Routine to delete a defined Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.

!ERROR Error Flag
= 1, Illegal unit number.
= 2, Unknown Field.
= 3, Data Records of this type present.
= 4, Read-access only to File.

3.3.3 DBRFDN

CALL DBRFDN (LUN,TRCODE,RTCODE,OFDNAM,NFDNAM,IERROR)

Routine to alter the name of a defined Field.

Input:

Output:

LUN
TR CODE
RTCODE
OFDNAM
NFDNAM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character old Field Name.
4-Character new Field Name.

!ERROR Error Flag
= 1, Illegal unit number.
= 2, Unknown Field.
= 3, New Field Name already defined.
= 4, New Field Name is illegal.
= 5, Read-access only to File.

page 25

page 26

3.3.4 DBRFDT

CALL DBRFDT (LUN,TRCODE,RTCODE,FLDNAM,FLDTIT,IERROR)

Routine to alter the Title associated to a defined Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
FLDTIT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
new Field Title - Character String (any length)

IERROR Error Flag

3.3.5 DBADCF

= 1, illegal unit number.
= 2, Unknown Field.
= 3, Buffer overflow.
= 4, Read-access only to File.

CARGO - DBMS

CALL DBADCF (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,CODTIT,NW,
DATYP,IERROR)

Routine to add a new possible Code-Name to a defined Field.

Input:
LUN
TR CODE
RTCODE
FLDNAM
COD NAM

CODTIT
NW

DATYP

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.
Note : = FLDNAM for an F- or V-type Field.
Code Title - Character String (any length).
no. of words for this Code-Name.
Note: NW= 1 for a V-type Field.
Character*NW string - the Data Types of all
the words.

CARGO - DBMS

Output:
IERROR Error Flag

3.3.6 DBDCCF

= 1, lliegal unit number.
= 2, Unknown Field.
= 3, lliegal Code Name.
= 4, Length inconsistent with Field-Type.
= 5, lliegal Data Format.
= 6, Code Name already in use.
= 7, Buffer overflow replacing Field Record.
= 8, Buffer overflow preparing Code Record.
= 9, Read-access only to File.

CALL DBDCCF (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,IERROR)

Routine to delete an existing Code-Name in a defined Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.

IERROR Error Flag

3.3.7 DBRCNA

= 1, lliegal unit number.
= 2, Unknown Code Name.
= 3, Data Records already present.
= 4, Read-access only to File.

page 27

CALL DBRCNA (LUN,TRCODE,RTCODE,FLDNAM,OCDNAM,NCDNAM,IERROR)

Routine to replace an existing Code-Name for a defined Coded Field.

Input:
LUN
TR CODE
RTCODE
FLDNAM
OCDNAM
NCDNAM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character old Code Name.
4-Character new Code Name.

page 28

Output:
IERROR Error Flag

3.3.8 DBRCCF

= 1, illegal unit number.
= 2, Unknown Code Name.
= 3, New Code Name already in use.
= 4, New Code Name - illegal.
= 5, Data Records already present.
= 6, Read-access only to File.

CARGO - DBMS

CALL DBRCCF (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NW,DATYP,
IERROR)

Routine to change the length and data formats associated with a declared Code-Name in a defined
Field. Again, for an F- or V-type of Field the only Code-Name is the same as the Field-Name.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM
NW

DATYP

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.
no. of words (new or old if the length is not
being changed).
(= 1, for a V-type Field.)
Character*NW - the Data-Types for all words.

IERROR Error Flag
= 1, illegal unit number.
= 2, Unknown Code Name.
= 3, Length inconsistent with Field-Type.
= 4, illegal Data Format.
= 5, Data Records already present.
= 6, Buffer Overflow.
= 7, Read-access only to File.

CARGO - DBMS page 29

3.3.9 DBRCDT

CALL DBRCDT (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,CODTIT,IERROR)

Routine to change the title associated with a declared Code-Name in a defined Field. For an F- or
V-type of Field the Code-Title is not meaningful.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM
CODTIT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.
Code Title - Character String (any length).

IERROR Error Flag

3.3.10 DBA WDE

= 1, illegal unit number.
= 2, Unknown Code Name.
= 3, Buffer Overflow.
= 4, Read-access only to File.

CALL DBAWDE (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NW,RANGE,NDV,
ALIST,WDESC,IERROR)

Routine to add the description for a given word in a declared Field.

Input:
LUN
TR CODE
RTCODE
FLDNAM
COD NAM
NW

RANGE

NDV
ALIST
WDESC

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.
the word no.
Note: for a V-type Field there is only a single

word description applicable to all words
(hence = 1)

Array of 2 elements containing the minimum and
maximum values. If the difference is less than or
equal to 0.0, no limits are assumed.
the no. of allowed discrete values.
Array containing the list.
Textual description - Character String (any length)

page 30

Output:
IERROR Error Flag

3.3.11 DBDWDE

= 1, Illegal unit number.
= 2, Unknown Code Name.
= 3, Word Number Illegal.
= 4, Range incompatible with existing Data

Records.
= 5, List of Discrete Values incompatible

with existing Data Records.
= 6, Buffer Overflow.
= 7, Read-access only to File.
= 8, Word description already exists.

CARGO - DBMS

CALL DBDWDE (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NW,IERROR)

Routine to delete the description for a given word in a declared Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
CODNAM
NW

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.
the word no. (= 1 for V-type Field).

IERROR Error Flag
= 1, Illegal unit number.
= 2, Read-access only to File.
= 3, Word description does not exist.

3.3.12 DBRWDE

CALL DBRWDE (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NW,RANGE,NDV,
ALIST,WDESC,IERROR)

Routine to change the description for a given word in a declared Field.

CARGO - DBMS

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM
NW
RANGE

NDV
ALIST
WDESC

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code Name.
the word no. (= 1 for a V-type Field).
Array of 2 elements containing the minimum and
maximum values. If the difference is less than or
equal to 0.0, no limits are assumed.
the no. of allowed discrete values.
Array containing the list.
Character String containing the new Description.

IERROR Error Flag

3.3.13 DBFDNA

= 1, illegal unit number.
= 2, Unknown Code Name.
= 3, Word Number illegal.
= 4, Range incompatible with existing Data

Records.
= 5, List of Discrete Values incompatible

with existing Data Records.
= 6, Buffer Overflow.
= 7, Read-access only to File.
= 8, Word description does not exist.

CALL DBFDNA (LUN,TRCODE,RTCODE,NMAX,NF,FDNAMS,IERROR)

Routine to return a list of declared Field Names in a given Record.

Input:

Output:

LUN
TR CODE
RTCODE
NMAX

NF
FDNAMS

IERROR

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
Expected no. of Fields.

actual number of Fields in Record-Type.
Character*4 array of Field Names
Note : If NF > NMAX then the names of the 1st NMAX

Fields are returned.
Error Flag
= 1, illegal unit number.
= 2, Unknown Record-Type.
= 3, NF > NMAX.

page 31

page 32 CARGO - DBMS

3.3.14 DBFDTY

CALL DBFDTY (LUN,TRCODE,RTCODE,FLDNAM,FLDTYP,IERROR)

Routine to determine the Type of a given Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.

FLDTYP Character*l - Field-Type (F, V or C).
IERROR Error Flag

= 1, lliegal unit number.
= 2, Unknown Field.

3.3.15 DBFDNU

CALL DBFDNU (LUN,TRCODE,RTCODE,FLDNAM,NUF,IERROR)

Routine to get the sequential number of a field of a given name.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM

NUF
IERROR

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.

Sequential Field Number.
Error Flag
= 1, lliegal unit number.
= 2, Unknown Field.

CARGO - DBMS

3.3.16 DBFDTL

CALL DBFDTL (LUN,TRCODE,RTCODE,FLDNAM,NMAX,NCHAR,FLDTIT,
!ERROR)

Routine to get the Title associated to a given Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
NMAX

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
Expected length (no. of Characters) of the
Title.

NCHAR actual no. of characters in the Title.
FLDTIT Character*NMAX String containing the

Title.
Note : If NCHAR > NMAX the first NMAX Characters

in the Title are returned.
!ERROR Error Flag

= 1, Illegal unit number.
= 2, Unknown Field.
= 3, NCHAR > NMAX.

3.3.17 DBCODS

CALL DBCODS (LUN,TRCODE,RTCODE,FLDNAM,NMAX,NC,CODNAM,
!ERROR)

Routine to get a list of possible Code-Names for a particular Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
NMAX

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
expected no. of Possible Code-Names.

NC actual no. of Code-Names.
CODNAM Character*4 Array containing the Code-Names.

Note: IF NC > NMAX then the 1st NMAX Code-Names
are returned.

page 33

page 34 CARGO - DBMS

IERROR Error Flag
= 1, illegal unit number.
= 2, Unknown Field Name.
= 3, NC > NMAX.

3.3.18 DBCFDL

CALL DBCFDL (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NMAX,NW,DATYP,
IERROR)

Routine to return the Length and the Data Formats of all the words associated with a particular
Code-Name in a given Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM
NMAX

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code-Name.
expected Length of the Field for this Code.

NW actual Length of the Field for this Code-Name.
DATYP Character*NMAX Array containing the Data Types.

Note: IF NW > NMAX then the Data Types for the 1st
NMAX words are returned.

IERROR Error Flag
= 1, illegal unit number.
= 2, Unknown Code Name.
= 3, NW > NMAX.

33.19 DBCDTL

CALL DBCDTL (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NMAX,NCHAR,
CODTIT,IERROR)

Routine to return the Title associated with a particular Code-Name in a given Field.

Input:
LUN
TR CODE
RTCODE
FLDNAM
COD NAM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code-Name.

CARGO - DBMS

Output:

NMAX

NC HAR
CODTIT

!ERROR

expected Length of the Code Title.

actual Length of the Code-Title.
the Code Title (CHARACTER *NMAX).
Note : IF NCHAR > NMAX then the 1st NCHAR characters
are returned.
Error Flag
= 1, lliegal unit number.
= 2, Unknown Code Name.
= 3, NCHAR > NMAX.

3.3.20 DBGWTL

CALL DBGWTL (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NW,NMAX,NC,
WDESC,IERROR)

Routine to return. the textual description for a particular word in a Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM
NW

NMAX

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code-Name.
the word no. in the Field.
Note : (= 1) for a V-type Field.
expected Length of the Description.

NC actual no. of Characters in the Line Description.
WDESC Character*NMAX Array containing the Line

Description.
Note: IF NC > NMAX then the 1st NMAX Characters in
the Description are returned.

!ERROR Error Flag
= 1, lliegal unit number.
= 2, Word description does not exist.
= 3, NC > NMAX.

page 35

page 36 CARGO - DBMS

3.3.21 DBGWRD

CALL DBGWRD (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NW,NMAX,RANGE,
NDV,ALIST,IERROR)

Routine to return the range or the set of allowed discrete values associated to a particular word in a
Field.

Input:

Output:

LUN
TR CODE
RTCODE
FLDNAM
COD NAM
NW

NMAX

RANGE
NDV
ALI ST

IERROR

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the Record-Type Code - a 4-Character String.
4-Character Field Name.
4-Character Code-Name.
the word no. in the Field.
Note : (= 1) for a V-type Field.
expected no. of allowed discrete values.

Array containing minimum and maximum values.
actual no. of allowed discrete values.
Array containing the defined allowed values.
Note: IF NDV > NMAX then the 1st NMAX values are

returned.
Error Flag
= 1, lliegal unit number.
= 2, Word description does not exist.
= 3, NDV > NMAX.

3.4 Interrogating the Structure

Once a Data File has been entered with a complete definition of the structure of each type of
Data-Record envisaged, access (read/write) to Data-Records can occur. The user will, from
time-to-time, find it necessary to remind himself of the defined structure to make meaningful use of the
DataBase. For this purpose a special routine - DBPRDS - is provided. It searches for the complete
Data-Structure defined for a given Data File from any give level (File/Tree/Record/Field etc.) down
wards and lists it on the printing unit reserved for the given Data File (see DBRFPR - 2.1.7 above).
The routine is described below :

3.4.1 DBPRDS - Data-Structure Interrogation

CALL DBPRDS (LUN,TRCODE,RTCODE,FLDNAM,CODNAM,NWN,LEVELl,
LEVEL2,IERROR)

Routine to list the defined Data-Structure for a given File/Tree-Type/Record-Type/Field.

CARGO - DBMS

Input:

Output:

LUN Logical Unit No. of the Data File.
= 0, all Data Files.

TRCODE Tree-Type Code (CHARACTER*4)
= '****',all Tree-Types.

RTCODE Record-Type Code (CHARACTER*4)
= '****', all Record-Types.

FLDNAM Field Name (CHARACTER *4)
= '****', all Fields.

CODD NAM Code Name (CHARACTER *4)
= '****', all Codes.

NWN Word Number in Field.
= 0, all words.

LEVELl Start Level for detailed printout.
LEVEL2 End Level.

Each Structure Record is printed in detail
depending on the Range: LEVELl to LEVEL2.
LEVEL = 1 for File, upto LEVEL = 6 for Words.

IERROR Error Flag
= 1, lliegal unit number.
= 2, lliegal Tree-Type Code.
= 3, lliegal Record-Type Code.
= 4, lliegal Field Name.
= 5, lliegal Code Name.
= 6, Internal buffer overflow.

page 37

page 38 CARGO - DBMS

4. SYSTEM RECORDS IN DBMS FILES

In a given DBMS File (System or Data) the System Records mentioned in Chapter 3 contain all the
information needed to define the structure of the user Data Records in the File. These are themselves
structured in a "Tree" hard-wired in the code of the Basic Package (DBBASP). The File Manager,
therefore, is not required to define this particular "Tree". There are 6 different kinds of Record-Types
envisaged. Each takes the same "Major" Name - 'FSYSTEM'. The Record-Types and the nMinor"
Names are:

1. FILE:
'FILE' - containing all the information, given at first declaration to the
DataBase, about the File,

2. TREE:
'TREE$Tree-Type-Code' - contains information about a given
Tree-Type in the File,

3. RECO:
'TREE$Tree-Type-Code.RECO$Record-Type-Code'
- contains information about a given Record-Type in a given Tree,

4. FILD:
'TREE$Tree-Type-Code.RECO$Record-Type-Code.FILD$
Field-Name' - contains information about a given Field in a
Record-Type,

5. CODE:
'TREE$Tree-Type-Code.RECO$Record-Type-Code.FILD$
Field-Name.CODE$Code-Name' - contains information about a
particular value of a Code for a given Coded Field, and

6. WORD:
'TREE$Tree-Type-Code.RECO$Record-Type-Code.FILD$
Field-Name.CODE$Code-Name.WORD$Word-Number' - contains
information relating to a given word in Coded or Fixed Length Field.
(Note: a Fixed or Variable Length Field is treated by the DBMS as a Coded

Field with only a single value for the Code = Field-Name.)

4.1 Record Structure of the System Records

Similar to the Data Records each type of System Record starts with a Variable Length Field - the
Header. The format and structure of other Fields in these System Record depends on the type of Re
cord.

1. FILE Record : This record, one per File, has the following Fields :

CARGO - DBMS

Field# Type

1 F
2 v

3 v
4 v

page 39

Contents

File Size (2 REAL*4 Words)
Field Title (Complete 4-byte Words with trailing blanks in
the last word, if necessary.)
Password (complete 4-byte words).
List of Tree-Type-Codes.

2. TREE Record : One for each different Tree-Type, has the following Fields:

Field#

1

2
3

4

5
6

Type

F

v
v

v

v
v

Contents

Maximum Set no. of existing Data-Records in any Tree
of this Type (1 REAL *4 Word)
Tree-Type Title (Complete 4-byte Words)
List of Record-Type-Codes for Records belonging to this
Tree-Type.
List of Root-Names used in Root Data-Records of this
Tree-Type.
List of Root Record-Types of actual Root Data-Records.
List of Maximum Set #s for each Root.

3. RECO Record : One for each unique Record-Type in a given Tree.

Field# Type

1 v
2 v
3 v
4 v

Contents

Record Title (Complete 4-byte Words)
List of possible Parent Record-Types
List of possible Daughter Record-Types
List of Field Names

4. FILD Record : One per defined Field in a given Record-Type in a specified Tree-Type

page 40

Field# Type

1 F
2 v
3 v

CARGO - DBMS

Contents

Field Type (Alphanumeric) & Field Number (REAL *4)
Field Title (Complete 4-byte Words)
List of Codes (for a Coded Field)
Note: For a F/V-type Field only 1 long (=Field-Name)

5. CODE Record: One for each possible Code Value for a Coded Field in a given Record-Type.
Also one such Record for a Fixed or Variable Length Field

Field# Type

1 F
2 v
3 v

Contents

Field Length (1 REAL*4 Word)
Code Title (Complete 4-byte Words)
List of Data Formats for each and every word in the Field.
(For a V-type Field the format is the same for each &
every word)

6. WORD Record : One per word in defined F- or C-Type Field in a given Record in a Tree,
but only one such record (for the first word) for a V-type Field since all words have the same
description.

Field# Type

1 F
2 v
3 v

Contents

Range - minimum & maximum values (2 Words)
List of allowed Discrete Values.
Textual Description of the Word,

It should be noted that for the basic DataBase activity of storage and access, the last type of Sys
tem Records (WORD) are not essential. They are included in this DBMS to allow for meaningful
presentation (textual) and for ensuring valid contents if required in a particular type of application (e.g.
storage of Menus & Dialogues).

CARGO - DBMS page 41

5. DATA-RECORDS IN DATA FILES

In any given Data File the user Data will be stored in nBasicn Records of the type(s) already defined.
For each Basic Record CARGO will permit entering one or more nUpdate" Records containing the
changed values of only a set of the constants in the Basic Record. The Local File Manager or a casual
user does not need to define these Update Records. The structure of these Records is pre-fixed in the
DBMS.

As stated above each Record - Basic or Update - is made up of Fields of which the first one is
the Header Field. An Update Record is made up of one other Variable Length Field beside the Header
Field. This field contains, for every word different in value from before, three words - the Field
number, the location within the Field and the new value - in this Field. The contents of the Header
Field - a Variable Length Field of REAL*4 words - are:

Word#

1
2
3
4
5

Description

Date of Entry in YYMMDD.
Time of Entry in HHMMSS.
No. of User-defined Fields
Location of 1st User Field
Location of 2nd User Field

The user is not normally presented with the contents of this field when accessing a given data re
cord. If required, this field can be accessed by a call to routine DBGETF (see Section 5.3.5).

5.1 Record Naming Convention

KAPA CK reads and writes Data records by a name made up of two parts - a nMajorn and a nMinor"
Name. The naming convention used is as follows:

1. Major Name : 'Tree-Type Code'.SET$xx:xx - where xxxx is a version/set number assuming
that many versions of the same Data will eventually need to be stored.

2. Minor Name : made up of a series of Record-Type Code and Element name separted by a '$'
- each combination separated by a '.' . To distinguish between Basic and Update Records a
2-character postfix is added to this name - viz: '.B' and '.U' . The Minor Name is terminated
by a "Period of Validity" - made-up of a start Date & Time and an end Date & Time (in all
25 characters including a leading'.'). The complete minor name therefore reflects the complete
Tree Structure to which the Record belongs down to its level in the Tree and indicates the
Period of Validity.

In certain types of applications it may not be desirable to open a new set of Basic +
Update records at certain times e.g.

a. during data-taking on-line where pointers to a single existing set have already been
established. So any major alterations have to be entered in an Update Record.

page 42 CARGO - DBMS

b. only change needed is the increase in the length of a Variable Length Field after data
has already been entered.

For such cases the DBMS allows entering a "Special Update" Record belonging to the same
set of Basic + Update Records. This record is in fact a complete basic record and is signalled
by the postfix '.S' to the minor name.

Below are two examples of minor names of two Basic records belonging to a Tree of
three types of Records - AAAA, BBBB & CCCC with BBBB having an AAAA as Parent
and CCCC having an AAAA or a BBBB as Parent -

'AAAA$Name_of_AAAA.BBBB$Name_of_BBBB.CCCC$Name_of_ CCCC.B.P _of_ V'

'AAAA$Name_of_AAAA.CCCC$Name_of_ CCCC.B.P _of_ V'

5 .2 Input of Data-Records

Input of Data-Records is foreseen via the interactive Control, Enquiry and Modification Program (see
next Chapter). This can be done interactively with the local Data File Manager entering values of
constants on prompts from the program. However, it is expected that many users will contribute data
to be input to a particular Data File. Such a situation is extremely laborious if only the Local Data
File Manager is expected to interactively enter this data and rather difficult to control if each and every
user is allowed to enter the data. It is therefore necessary to have a well-defined format for transfering
data from remote sites (and different machines) for input to the Data File centrally without undue
overload on the local Data File Manager.

The selected format is to put data onto ASCII Files in as format-free a manner as possible. This
choice has been made for the following reasons:

1. There are already enough Software Packages involved in this DBMS without introducing an
other one for machine-independent binary I/O.

2. ASCII is now a standard used for transmission of Data Files over networks between different
machines.

3. ASCII files can be easily edited, using to-day's powerful text-editors, when errors are discov
ered.

The format of these ASCII Files is as follows :

1. Line 1: the beginning of a Data-Record identifier :*DBRECORD

2. Line 2: the 4-Character Tree-Type Code followed by the Record
Identifier (see Record Naming Convention above). The
end of the Record Identifier is searched for by
looking for the first non-blank character from the
right of the line. If this happens to be in column 80,
then a continuation of it is expected on the next
line, and so on.

3. Line Next: contains the start date (YYMMDD) and time (HHMMSS)
- separated by a',' - for the period of Validity for
this Data-Record. These are followed by the date
(YYMMDD) and time (HHMMSS) of entry - separated by a','.
If any of these dates and times are 0 then the current

CARGO - DBMS page 43

Date and Time will be used.

4. Line Next : a Data-Field identifier :*DBFIELD.
If *DBFIELD is followed by a',' then the user is
expected to supply the format (a la HYDRA Title Cards)
to read in all the constants in the Field given on the
following Line(s). Otherwise, it is assumed that constants
are given in a format-free manner, separated one from the
other by a ','.

5. Line Next : the Data words, formatted as indicated.

Note:-

a. It should be remembered that the 1st word is the number of words of data following
in the Field and has to be given.

b. Data for each field - even if empty - is given, in the order the fields were defined
when the Data Structure was entered for the Data Record, in this way until the last
Field in the Record.

c. Input for a Data Record is terminated by a new beginning of Record identifier
(*DBRECORD) for the next record or by an End-of-File marker if the record is the
last one.

The routine used to read-in Data-Records from such ASCII file(s) and add them to the appropri
ate Data File is DBARIF described below:

5.2.1 DBARIF - Input Data-Records from ASCII File

CALL DBARIF (LUN,LUNIN,TRCODE,RTCODE,IERROR)

Routine to read Data-Records from ASCII input File and add them to the appropriate Data File after
making the appropriate checks.

Input:

Output:

LUN
LUNIN
TR CODE

RTCODE

Logical Unit No. of the Data File.
Logical Unit No. of ASCII Input.
Tree-Type Code (CHARACTER *4)
= '****', all Tree-Types.
Record-Type Code (CHARACTER*4)
= '****',all Record-Types.

!ERROR Error Flag

page 44 CARGO - DBMS

5.3 Data-Record Access Routines

The DBMS allows access to user Data at the complete Record level or at the level of a single defined
Field within the Record. For the purpose of storage of user Data the functionality is defined only at
the complete Record level (Although in the Control, Enquiry and Modification Package - see later
- it may be possible to receive user Data Field-by-Field and build-up the complete Record before
writing into the Data File)

The set of functions and the routines to perform them are:

1. DBADDR: to add a Record to a given Data File.

2. DBREPR: to replace an existing Record in a given Data File.

3. DBDELR: to delete an existing Record in a given Data File.

4. DBGETR: to fetch an existing Record in a given Data File. Note: Access is controlled by two
times - validity & entry. The Data Record fetched satisfies the required time of validity and
had been entered before the given time of entry.

5. DBGETF: to fetch a named Field of an existing Record in a given Data File. It should be
pointed out that fetching an individual Data Field is rather more costly in access time than
fetching a complete Data Record.

5.3.1 DBADDR - Data Storage & Access

CALL DBADDR (LUN,TRCODE,RECID,VDTIM,EDTIM,RECORD,IERROR)

Routine to enter a new user Data Record in a given Data File.

Input:

Output:

LUN
TR CODE
REC ID
VDTIM
EDTIM

RECORD

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Array with Start Date+ Time of Period-of-Validity
Array with Date+ Time of Entry.
If = 0, current date & time are used.
the Array containing the user Data-Record.

IERROR Error Flag
= 1 lliegal unit number
= 2 illegal Tree Type Code
= 3 illegal Record Identifier
= 4 unknown Record Type
= 5 illegal Parent Type
= 6 variable length Field with negative WC
= 7 value out of range in Variable Length Field
= 8 illegal value in Variable Length Field
= 9 unknown Code

CARGO - DBMS

5.3.2 DBREPR

= 10 Coded or Fixed Length Field with wrong WC
= 11 value out of range in Coded/Fixed Field
= 12 illegal value in Coded/Fixed Field
= 13 illegal word counter in an Update Record
= 14 buffer overflow when adding Header Field
= 15 no root Record for this Date & time
= 16 unknown root name
= 17 buffer overflow when replacing TTR
= 18 buffer overflow when replacing an Abstract R.
= 19 write access not allowed
= 20 the Parent Record does not exist
= 21 the Record already exists
= 22 the Basic Record does not exist
= 23 Validity Period incompatible with Basic Record
= 24 Field number incompatible with Basic Record
= 25 Word number incompatible with Basic Record
= 26 Update Record incompatible with existing U.R.

CALL DBREPR (LUN,TRCODE,RECID,VDTIM,EDTIM,RECORD,IERROR)

Routine to replace an existing user Data Record in a given Data File.

Input:

Output:

LUN
TR CODE
REC ID
VD TIM
EDTIM

RECORD

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Array with Start Date+ Time of Period-of-Validity
Array with Date+ Time of Entry.
If= 0, current date & time are used.
the Array containing the user Data-Record.

IERROR Error Flag
= 1 illegal unit number
= 2 illegal Tree Type Code
= 3 illegal Record Identifier
= 4 TTR does not exist

5 no root Record for this Date & time
= 6 unknown root name
= 7 Record not found

8 variable length Field with negative WC
= 9 value out of range in Variable Length Field
= 10 illegal value in Variable Length Field
= 11 unknown Code
= 12 Coded or Fixed Length Field with wrong WC
= 13 value out of range in Coded/Fixed Field
= 14 illegal value in Coded/Fixed Field
= 15 illegal word counter in an Update Record

page 45

page 46

5.3.3 DBDELR

= 16 buffer overflow when adding Header Field
= 17 Field number incompatible with Basic Record
= 18 Word number incompatible with Basic Record
= 19 Write access not allowed
= 20 New Record incompatible with existing Update

Records

CALL DBDELR (LUN,TRCODE,RECID,VDTIM,EDTIM,IERROR)

Routine to delete an existing user Data Record in a given Data File.

Input:

Output:

LUN
TR CODE
REC ID
VD TIM
EDTIM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Array with Start Date+ Time of Period-of-Validity
Array with Date+ Time of Entry.

IERROR Error Flag

5.3.4 DBGETR

= 1 illegal unit number
= 2 illegal Tree Type Code
= 3 illegal Record Identifier
= 4 TTR does not exist
= 5 no root Record for this Date & time

6 unknown root name
= 7 Record not found

8 Write access not allowed
= 9 If the Update Record is removed the remaining

Update Records are incompatible with B.R.

CARGO - DBMS

CALL DBGETR (LUN,TRCODE,RECID,VDTIM,EDTIM,NMAX,NW,RECORD,
PERIOD,NUP,IERROR)

Routine to fetch an existing user Data Record in a given Data File.

Input:
LUN Logical Unit No. of the Data File.
TRCODE the Tree-Type Code - a 4-Character String.
RECID the complete Record Identifier.

CARGO - DBMS

Output:

VDTIM

EDT IM

NMAX

NW
RECORD

PERIOD

NUP

!ERROR

5.3.5 DBGETF

Array with Date+ Time of Period-of-Validity
If = (0,0) the current date & time are used.
Array with Date+ Time of Entry.
If = (0,0) the current date & time are used.
expected number of words in the Record.

the actual number of words in the Record.
the Array containing the user Data Record.
Note : If NW > NMAX, then the first NMAX words

are returned.
Array with the period-of-Validity of the
returned Record.
no. of Update Records upto the requested
Date & Time.
Error Flag
= 1 illegal unit number
= 2 illegal Tree Type Code
= 3 illegal Record Identifier
= 4 unknown Tree Type
= 5 no root record for the given date and time
= 6 unknown root name

7 the wanted record does not exist
= 8 number of words > NMAX

CALL DBGETF (LUN,TRCODE,RECID,VDTIM,EDTIM,FNAM,NMAX,NW,
FIELD,PERIOD,NUP ,!ERROR)

Routine to fetch a named Field from an existing user Data Record in a given Data File.

Input:

Output:

LUN
TR CODE
REC ID
VDT IM

EDTIM

FNAM
NMAX

NW
FIELD

PERIOD

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Array with Date+ Time of Period-of-Validity
If = (0,0) the current date & time are used.
Array with Date+ Time of Entry.
If = (0,0) the current date & time are used.
Character*4 - the Field Name.
expected number of words in the Field.

the actual number of words in the Field.
the Array containing the user Data Field.
Note : If NW > NMAX, then the first NMAX words

are returned.
Array with the period-of-Validity of the
returned Record.

page 47

page 48 CARGO - DBMS

NUP no. of Update Records upto the requested
Date & Time.

IERROR Error Flag
1 illegal unit number

= 2 illegal Tree Type Code
= 3 illegal Record Identifier
= 4 illegal Field Name

5 unknown Field
6 no root record for the given date and time

= 7 unknown root name
8 the wanted record does not exist
9 number of words > NMAX

5.4 Data-Record Utility Routines

Besides the routines, described above, for access of Data-Records, CARGO contains the following
routines to perform the interrogatory functions on a given Data File:

1. DBPRID: Print (dump to debug printing file) the complete list of Data-Record Identifiers for
a given Tree- and Record-Type.

2. DBPRIR: Print the complete set of Data-Records.

3. DBGNAM: Return list of all Data-Record Names (as opposed to the full Identifiers) for all
Data-Records of a given Tree- and Record-Type.

4. DBGNUT: Return the number of Update Records associated to a given Basic Data-Record
and their corresponding Periods-of-Validity.

5. DBGRNM: Return the list of names of all "Root" Data-Records belonging to a particular
Tree- and Record-Type.

6. DBGBNM: Return the list of names of all "Branch" Data-Records attached to a particular
Data-Record.

7. DBGTMW: Return the number of Data-Records with a particular Record Identifier and their
corresponding Periods-of-Validity.

5.4.1 DBPRID - Data-Records Utilities

CALL DBPRID (LUN,TRCODE,RTCODE,ROOTID,VWINDO,EWINDO,IERROR)

Routine to print to debug printing file the complete list of Data-Record Identfiers, the Validity Periods
and the Dates & Times of entry of records within the supplied time windows. This can be done for all
or a selected Tree- and Record-Types in a given Data File. The output goes to the designated debug
printing file.

Input:
LUN Logical Unit No. of the Data File.

CARGO - DBMS page 49

Output:

= 0, if all Data Files.
TRCODE the Tree-Type Code - a 4-Character String.

= '****', all Tree-Types.
RTCODE Record-Type Code (CHARACTER*4)

= '****', all Record-Types.
ROOTID Identifier (Character String) of "Root" Record

= '****',for all possible "roots".
VWINDO Period-of-Validity

Array with 4 elements.
EWINDO Range of Date & Times of entry.

Array with 4 elements.

IERROR Error Flag
= 1, lliegal unit number.
= 2, lliegal Tree-Type Code.
= 3, lliegal Record-Type Code.
= 4, lliegal Root Record Identifier.
= 5, Buffer Overflow.
= 6, Stack Overflow.

5.4.2 DBPRIR

CALL DBPRIR (LUN,TRCODE,RTCODE,ROOTID,VWINDO,EWINDO,IERROR)

Routine to print the complete set of Data-Records within the supplied time windows. This can be
done for all or a selected Tree- and Record-Types in a given Data File.

Input:

Output:

LUN Logical Unit No. of the Data File.
= 0, if all Data Files.

TRCODE the Tree-Type Code - a 4-Character String.
= '****', all Tree-Types.

RTCODE Record-Type Code (CHARACTER*4)
= '****', all Record-Types.

ROOTID Identifier (Character String) of "Root" Record
= '****',for all possible "roots".

VWINDO Period-of-Validity
Array with 4 elements.

EWINDO Range of Date & Times of entry.
Array with 4 elements.

IERROR Error Flag
= 1, lliegal unit number.
= 2, lliegal Tree-Type Code.
= 3, lliegal Record-Type Code.
= 4, lliegal Root Record Identifier.
= 5, Buffer Overflow.
= 6, Stack Overflow.

page 50 CARGO - DBMS

5.4.3 DBGNAM

CALL DBGNAM (LUN,TRCODE,RTCODE,NMAX,NNAM,NAMES,IERROR)

Routine to return the complete set of Data-Records Names ("Root" and "Branch" Data-Records) for a
given Tree- and Record-Type in a given Data File.

Input:

Output:

LUN
TR CODE
RTCODE
NMAX

NNAM
NAMES
IERROR

5.4.4 DBGNUT

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
Record-Type Code (CHARACTER *4)
Maximum no. of Record Names expected.

Actual No. of Record Names returned
Character*4 (NMAX) array with Record Names.
Error Flag
= 1, illegal unit number.
= 2, illegal or unknown Tree-Type Code.
= 3, NNAM > NMAX

CALL DBGNUT (LUN,TRCODE,RECID,DATIM,NMAX,NUP,PEROV,IERROR)

Routine to return the number of Update Records, their corresponding Periods-of-Validity and their
Dates & Times of Entry, associated to a given Basic Record belonging to a particular Tree-Type.

Input:

Output:

LUN
TR CODE
REC ID
DATIM

NMAX

NUP
PEROV

IERROR

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Array with Date+ Time of validity to identify appropriate
basic record.
Maximum no. of Update Records expected.

Actual No. of Update Records.
Array with Periods-of-Validity
and Dates & Times of Entry.
6 elements per Update Record.
If NUP > NMAX, 1st NMAX periods returned.
Error Flag

CARGO - DBMS

5.4.5 DBGRNM

= l, illegal unit number.
= 2, illegal Tree-Type Code.
= 3, illegal Record Identifier
= 4, Unknown Tree-Type.
= 5, No nRoot" Record for give Data & Time.
= 6, Unknown HRoot" Na.Ille.
= 7, Specified Data-Record does not exist.
= 8, NUP > NMAX

CALL DBGRNM (LUN,TRCODE,RTCODE,NMAX,NNAM,NAMES,IERROR)

page 51

Routine to return the complete set of "Root" Data-Records Na.Illes for a given Tree- and Record-Type
in a given Data File.

Input:

Output:

LUN
TR CODE
RTCODE
NMAX

NNAM
NAMES

IE RR OR

5.4.6 DBGBNM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
Record-Type Code (CHARACTER *4)
Maximum no. of "Root" Record Na.Illes expected.

Actual No. of "Root" Record Na.Illes.
Character*4 (NMAX) array with Record Na.Illes.
If NNAM > NMAX, 1st NMAX Ila.Illes are returned.
Error Flag
= 1, illegal unit number.
= 2, illegal or unknown Tree-Type Code.
= 3, NNAM > NMAX

CALL DBGBNM (LUN,TRCODE,RECID,DATIM,BRCODE,NMAX,NBR,
BRNAMS,IERROR)

Routine to return the complete set of "Branch" Data-Records Na.Illes of a specified "Branch" Re
cord-Type for a paricular Data-Record of a given Tree-Type.

Input:
LUN
TR CODE
REC ID
DA TIM

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Array with Date+ Time of validity to identify appropriate

page 52

Output:

basic record.
BRCODE "Branch" Record-Type Code (CHARACTER*4)
NMAX Maximum no. of Record Names expected.

NBR
BR NAME
IERROR

Actual No. of Record Names returned
Character*4 (NMAX) array with Record Names.
Error Flag
= 1, lliegal unit number.
= 2, lliegal Tree-Type Code.
= 3, lliegal Record Identifier
= 4, Unknown Tree-Type.
= 5, No "Root" Record for give Data & Time.
= 6, Unknown "Root" Name.
= 7, Specified Data-Record does not exist.
= 8, NBR > NMAX

5.4.7 DBGTMW

CARGO - DBMS

CALL DBGTMW (LUN,TRCODE,RECID,NMAX,NTW,PEROV,IERROR)

Routine to return the complete set of Periods-of-Validity and Dates & Times of entry for a particular
Data-Record of a given Tree-Type.

Input:

Output:

LUN
TR CODE
RE CID
NMAX

NTW
PEROV

IERROR

Logical Unit No. of the Data File.
the Tree-Type Code - a 4-Character String.
the complete Record Identifier.
Maximum no. of Periods-of-Validity expected.

Actual No. of Periods-of-Validity returned.
Array with Periods-of-Validity
and Dates & times of entry.
6 elements per Record.
If NTW > NMAX, 1st NMAX periods returned.
Error Flag
= 1, lliegal unit number.
= 2, Unknown Tree-Type Code.
= 3, lliegal Record Identifier
= 4, NTW > NMAX

CARGO - DBMS page 53

6. IMPORT/EXPORT OF DATA FILES

An extremely important feature is the ability to import/export between geographically separated sites
(and different types of machines)

1. the defined Data-Structure and

2. the complete set of Data-Records

for any/all Data File(s) in the DataBase.

As indicated in Chapter 4 the means selected for such transports is ASCII files over networks
(Wide/Local Area).

6.1 Export of a Data File

To export a Data File to a remote site an ASCII file containing the Data-Structure System Records
(see Chapter S) and the Data-Records has to be prepared and transferred into the appropriate place in
the remote machine. The steps to be followed are:

1. Write out the complete Data-Structure Records to the ASCII file - Routine DBWRDS.

2. Write out the complete set of Data-Records to the ASCII file - Routine DBWRDR.

3. Transfer the ASCII file using the standard File Transfer Program (FTP) to the remote ma
chine.

6.1.1 DBWRDS - Data File Transport Routines

CALL DBWRDS (LUN,LUNOUT,IERROR)

Routine to dump the complete set of Data-Structure defining System Records for a given Data File
onto an ASCII file in a standard defined format.

Input:

Output:

LUN Logical Unit No. of the Data File.
LUNOUT Logical Unit No. of the ASCII File.

IERROR Error Flag
= 1, illegal Data File unit number.
= 2, illegal ASCII File unit number.
= 3, Error writing output File.

page 54 CARGO - DBMS

6.1.2 DBWRDR

CALL DBWRDR (LUN,LUNOUT,TRCODE,RTCODE,ROOTID,VWINDO,
EWINDO,IERROR)

Routine to dump a given set of Data-Records for a given Data File onto an ASCII file in a standard
defined format. The Data Records can be selected by Period-of-Validity and/or over a range of Dates
& Times of Entry.

Input:

Output:

LUN
LUNOUT
TR CODE

RTCODE

ROOTID

VWINDO

EWIN DO

Logical Unit No. of the Data File.
Logical Unit No. of the ASCII File.
the Tree-Type Code - a 4-Character String.
= '****', all Tree-Types.
Record-Type Code (CHARACTER *4)
= '****', all Record-Types.
Identifier (Character String) of "Root" Record
= '****',for all possible "roots,,.
Period-of-Validity
Array with 4 elements.
Range of Date & Times of entry.
Array with 4 elements.

IERROR Error Flag
= 1, lliegal Data File unit number.
= 2, lliegal ASCII File unit number.
= 3, Error writing output File.
= 4, Stack overflow.

6.2 Import of a Data File

Once an ASCII file copy of a DataBase File has been received, the following steps have to be taken to
establish the new Data File in the local DataBase

1. declare the new Data File to the local DataBase System File. This is done by routine
DBADDF (see section 2.2.1),

2. enter the Data-Structure System Records, reading them off the ASCII input file, to this Data
File - Routine DBRDDS

3. write in the complete set of Data-Records from the input file - Routine DBARIF (see sec
tion 4.2.1).

CARGO - DBMS page 55

6.2.1 DBRDDS - Import Routine

CALL DBRDDS (LUNIN,LUN,IERROR)

Routine to read the complete set of Data-Structure defining System Records from a given ASCII File
and write them onto a new Data File in a local DataBase.

Input:

Output:

LUNIN
LUN

Logical Unit No. of the ASCII File.
Logical Unit No. of the Data File.

!ERROR Error Flag
= 1, lliegal ASCII File unit number.
= 2, lliegal Data File unit number.
= 3, Data File is not empty.
= 4, Write access not allowed to output file.
= 5, Error reading input File.
= 6, Input File is truncated.
= 7, Buffer Overflow.

The steps, described above, have already been programmed in as selectable options in the Data
Base Control, Enquiry and Modification Program (see chapter 7) for both export and import.

page 56 CARGO - DBMS

7. CONTROL, ENQUIRY & MODIFICATION PACKAGE (DBCEMP)

The routines described in the preceeding chapters form part of the Basic Package (DBBASP) of
CARGO. These provide any higher level user program an interface to KAPACK. An interactive Con
trol, Enquiry and Modification Package is also needed at the purely DataBase activity level, as op
posed to the application level. Such a Package (DBCEMP) is provided to perform the following func
tions :

1. create a Structured Data Base from scratch, adding in new Data Files and defining completely
the structure of the Data intended to go into these Files,

2. add, modify, delete and retrieve the defined Data-Structure for any given Data File in the
DataBase, and

3. add, modify, delete and retrieve data from any given Data File in the DataBase

The program is fully interactive, interaction being via a tree-structured set of menus and within
each option, selected from a given branch-menu, all necessary input to/output from the user being
done by a well-defined dialogue. This is achieved by the use of the menu and dialogue packages
MNPACK and DLPACK (see [l]). NORD, IBM and VAX versions of these packages are now
available.

However, also available is a version using the Screen Management Utility routines (SMG) for
VAX/VMS Systems. Menus and Dialogue are presented via discrete windows on VTIOO equivalent
terminals.

DBCEMP is essentially for the use of the 'Managers', individuals responsible for individual Data
Files on the DataBase. However, since interrogation of both the defined Data-Structure and the Data
Record present on any given Data File is a key function of the program, it can also be more widely
used. Protection of both the Structure and the Data is automatically built-in since a user who has not
been able to supply the correct local Password is only given Read-only access. Also export and import
of the DataBase Files (from and to CERN) can be affected using this program. portability for the mo
ment.

7.1 DBCEMP Operation

The main program requests the logical unit number associated to the System File. Having successfully
established that the File assigned to this unit has really the characteristics of a System File, it requests
the overall DataBase (System) Password. If the correct one is offered the full access to all Data Files is
ensured and the user is presented the options indicated in Menu# 1 - Table 1 below.

CARGO - DBMS

Table 1: DBCEMP - Top Menu.

ID= PROC = The DELPHI DataBase. Test 12.

A End of Run?
B Add a New Data File ?
C Delete a File ??'!!
D Activate a File ?
E Export a File ?
F Import a File ?

ALSO VALID l=TOP 2=BACK

page 57

If the user is unable to give the correct DataBase Password, or he has selected either to delete or
activate a Data File, he is presented the list of Titles of all the Data Files recognised by the DataBase
(an example of this is shown below as Menu # 2 - Table 2) and is asked to select one of the Data
Files.

On selecting option F the program first attempts to add a new File (option B), getting the neces
sary File parameters from the user. It then requests the ASCII input File Name and enters in the im·
ported Data-Structure System Records followed by the imported Data-Records.

Option E, on the other hand, results in dumping, in standard format, the System and
Data-Records onto an ASCII output File which can then be transferred to any remote machine.
Needless to say, the Data File on the local DataBase is not affected.

It should be noted that the program operates on one Data File at a time. Work on more than one
file in a given session can only be done sequentially.

page 58

Table 2: Menu# 2 - List of Data File Titles.

ID= PROC = The DELPHI DataBase. Test 12.
***** Select a File to ACTN ATE ! *****

A End of Run?
B Directory File
C Sensing Device File
D Material Constants File.
E The Geometry File.

ALSO VALID l=TOP 2=BACK

CARGO - DBMS

Once a particular Data File is selected the program checks if full access to this file has already
been obtained (by a correct overall DataBase Password). If not the user is requested for the local
Password for this Data File. To be able to

I. define, extend or modify the Data-Structure of Data-Records in this File, and

2. add, delete or modify Data-Records in the Data File

the user has to supply the correct local Password. He can then run down the full series of Menus
(Nos. 3 onwards - Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11) shown below.

When the user cannot give the correct local Password he is only offered Read-access to the Data
File and is allowed to select the Tree-Type, Record-Type and Field(s) within that type of Record for
reading in the appropriate Data. This is done via Menus 5, 7 and 9 (Tables 5, 7 and 9).

At each stage the user has the possibility to go right back to the TOP Menu or the previous
Menu provided by the standard bottom 'Return Line' given by MNPACK. However, since it is a long
way down from the TOP Menu to Menu No. 11, at each point the user is allowed to jump back to
any preceeding level by selecting any of the offered options from 'K' onwards.

CARGO - DBMS

Table 3: Menu# 3 - Actions on the Selected Data File

ID= PROC = The Geometry File.
***** ACTIONS ! *****

A End of Run?
B Alter File Parameters ?
C Alter Data-Structure Definitions ?
D Access (Read/Write) Data?

ALSO VALID l=TOP 2=BACK

page 59

Apart form the selection of option A, which is obvious, the following activity is initiated by the
choice of any of the other 3 options:

1. Option B implies a change of one or more of the following File Parameters:

a. the print unit for messages related to this File,

b. the Data File Title,

c. the local Password,

d. the File Size.

2. Option C results in the Menu# 4 (table 4 below) being presented to select the required action
at the Tree Level.

3. Option D forces the user to select the Tree-Type (Table 5), followed by the Record-Type
(Table 7) and then the Field within that Record-Type (Table 9).

page 60

Table 4: Menu# 4 - Actions at the Tree Level

ID= PROC = The Geometry File.
***** Tree-TYPE ACTIONS *****

A End of Run?
B Add a new Tree-Type ?
C Delete a Tree-Type ?
D Modify a Tree-Type ?

K Back to list of Data Files

ALSO VALID l=TOP 2=BACK

CARGO - DBMS

The choices offered for different types of actions at the Tree level are self-explanatory. Option B
engages the user in a dialogue to obtain all the necessary Tree-Type parameters for the new Tree-Type
to be added to the Data Structure for the selected File. On the other hand, for C & D the user is pre
sented, Table 5 below is an example, the list of Tree-Types to select the required one.

Table 5: List of Tree-Type Codes.

The Geometry File

1. GEOM 2. MA TE

Tree-Type to MODIFY/DELETE/ACCESS (END to Finish)? [HELP]:

CARGO - DBMS page 61

On requesting "HELP" the list is again presented to the user, this time with the textual
description present on the DataBase File for each Tree-Type.

If deleting a Tree-Type this is attempted after confirmation that the user really does want to de
lete. As stated earlier no changes to the Data Structure are allowed if Data Records pertaining to that
bit of the structure are already present. When modifying a Tree-Type, then the various modify options
are presented to the user in th form of Menu # 5 (Table 6).

Table 6: Menu# 5 - Actions on selected Tree-Type

ID= PROC = Tree of Records containig Geom Constants.
**** ACTIONS on Tree-Type ***

A End of Run?
B Alter Tree-Type Parameters ?
C Add a new Record-Type?
D Delete a Record-Type ?
E Modify a Record-Type ?

K Back to list of Data Files
L Back to File Actions Menu
M Back to Tree Level - Top

ALSO VALID l=TOP 2=BACK

Alteration to any of the Tree-Type parameters is done with the new values being given interac
tively.

As at the Tree Level adding a new Record-Type to a selected Tree-Type is done by getting from
the user all the necessary information. For the other two choices the user is asked to select the appro
priate Record-Type from the list (Table 7) of Record-Types belonging to the specific Tree-Type.

page 62 CARGO - DBMS

Table 7: List of Record-Type Codes.

Tree of Records containing Geometry Constants

1. DETG 2. SDVG

Record-Type to MODIFY/DELETE/ACCESS (END to Finish)? [HELP]:

On requesting "'HELP" the list is again presented to the user, this time with the textual descrip
tion present on the DataBase File for each Record-Type.

Again a Record-Type is removed from the Data-Structure, if possible, after confinnation that the
user really wants to do that. If modifying a Record-Type then the necessary action has to be selected
from Menu # 6 - Table 8.

Table 8: Menu# 6 - Actions on Selected Record-Type

ID= PROC = Module Record.
**** ACTIONS on Record-Type

A End of Run?
B Alter Record-Type Parameters ?
C Add a new Field-Type ?
D Delete an existing Field ?
E Modify an existing Field ?

K Back to list of Data Files
L Back to File Actions Menu
M Back to Tree Level - Top
N Back to list of Tree-Types
0 Back to Record Level - Top

ALSO VALID 1 =TOP 2 =BACK

CARGO - DBMS page 63

The Record-Type parameters are changed as required via a dialogue with the user. For adding a
new Field to a given Record-Type after all the necessary information : Name, Title, Type, Format,
Word Descriptions etc. is obtained from the user by appropriate prompts. Choice of options D & E
results in the presentation of the list of Fields for the selected Record-Type - Table 9 below.

Table 9: List of Field Names.

DETG Record containing Geometry Constants

1. MRTR 2. SHAP 3. SDIV 4. SEND 5. NABO

Field Name (ALL for complete Record)? [HELP] :

On requesting "HELP" the list is again presented to the user, this time with the textual descrip
tion present on the DataBase File for each Field.

Again, a selected Field is deleted only after confirmation and if no Data-Records are present. In
the modifying mode the user is presented the list options to choose from in Menu # 7 - Table 10.

page 64

Table JO: Menu# 7 - Actions on Selected Field

ID= PROC = Geometry Shape.
***** Field Parameters to CHANGE *****

A End of Run?
B Field Title ?
C Field Name?
D Modify a word description ?
E Add a word?
F Delete a word ?
G Change Code Parameters ?

K Back to list of Data Files
L Back to File Actions Menu
M Back to Tree Level - Top
N Back to list of Tree-Types
0 Back to Record Level - Top
P Back to list of Record-Types
Q Back to Field Level - Top

ALSO VALID l=TOP 2=BACK

The selections and the resulting actions are self-evident.

CARGO - DBMS

When accessing data (read/write) - by selection of option Din Menu# 3 above - the user, af
ter he has selected the Tree- & Record-Types, is asked for his choice of Data activity from the options
below - Menu # 8 in Table 11. In each of these cases a Data Record can only be fetched from the
Data File concerned if the complete Record Identifier (see Glossary) is known. To this aim the user is
interrogated, with the help of the known Data-Structure, to build-up the Record Identifier interactive
ly.

CARGO - DBMS

Table 11: Menu # 8 - Data Access Options

ID= PROC = Module Record.
***** Data Options ****

A End of Run?
B Add a Data Record ?
C Delete a Data Record ?
D Modify a Data Record ?
E Get Data?

K Back to list of Data Files
L Back to File Actions Menu

N Back to list of Tree-Types

ALSO VALID l=TOP 2=BACK

page 65

The package DBCEMP also contains routines to present to the user both the structure Table for
a particular Field within a Record or for the complete Record-Type. An example structure of a
fixed-length field is shown in Table 12. FMT is the format of each word, LIMS = ON or OFF signi
fies whether the word was defined to have values within a range or not and 'Discs' = Y or N indicates
whether there is a set of declared discrete values that the word is allowed to take. Finally the textual
description, as stored in the appropriate System Record in the Data File, of each word is shown.

The tabular presentation of the structural description of a particular Record-Type is made-up
from the presentation of the individual Fields within it - as described above.

page 66 CARGO - DBMS

Table 12: A Typical Structure of a Fixed-Length Field

Field Title : Geometry Shape.

Word FMT LIMS Discs Description

1 A OFF N Anew Code.
2 R ON N Minimum Azimuth.
3 R OFF N Maximum Azimuth.
4 R OFF N Minimum Radius.
5 R OFF N Maximum Radius
6 R OFF N MinimumZ.
7 R OFF N MaximumZ.

CARGO - DBMS page 67

REFERENCES

[1] R. Matthews - CERN Computer Program Library Write-up - Z303
[2] G.P.Gopal - DELPHI Detector Description Manual - DELPHI 86-27 PROG-45
[3] W. Bozzoli Malerba. CERN VAXLIB Library Manual, p.18.

page 68 CARGO - DBMS

APPENDIX 1

GLOSSARY

1. System File

Direct Access File containing relevant information for each of the Data Files in the
DataBase.

2. DataBase Password

Character string of any length whose knowledge allows write access to the System File and to
all Data Files.

3. DataBase Title

Character string of any length describing the DataBase.

4. Data File

Direct Access File used to store user data.

5. Local Password

Character string of any length whose knowledge allows write access to the Data File.

6. Data File Title

Character string of any length describing the Data File.

7. User Data

Data Words defined by the user and structured in Trees of Records containing Fields of fixed
or variable length.

8. Tree

Structure made of Records linked by Parent Branch-Daughter Branch relations. A Record has
one Parent (a "Root" or a "Branch") and many "Offshoots". The Root Record has no Parents.

9. Tree-Type

Tree attribute indicating a type of Data-Structure identified by a Tree-Type Code. Trees of a
given Type are made of Records of given Types linked by defined Parent Branch-Daughter
Branch relations.

10. Tree-Type Title

Character string of any length describing a Tree-Type.

11. Tree-Type Code

String of 4 characters identifying a Tree-Type.

12. Record

CARGO - DBMS page 69

Set of data words forming a coherent unit of data which can be stored, replaced or
deleted. A record has a Validity Period and consists of several Fields.

13. Record-Type

Record attribute indicating a type of data-unit identified by a Record-Type Code. Records
of a given Type consist of the same number of named Fields.

14. Record-Type Title

Character string of any length describing a Record-Type.

15. Record-Type Code

String of 4 characters identifying a Record-Type.

16. Field

Set of contiguous words, within a Record, forming the lowest coherent unit for access
purposes.

17. Field Title

Character string of any length describing a Field.

18. Field Name

String of 4 characters which identifies a Field within a Record.

19. Field Number

Sequential Number of a Field within a Record.

20. Fixed Length Field

Field whose length is the same in all the Records of a given Type.

21. Variable Length Field

Field whose length can be different in different Records of the same Type.

22. Coded Field

Field whose length depends on a parameter (Code) stored in the Field itself. The Code
has a finite number of definite values. Consequently the length of such a Field can be
different in different Records of the same Type.

23. Header Field

The first Field in a Record with Field Name 'HEAD' and Field Number 0. The Header
Field is a Fixed Length Field whose format is imposed by the DBMS.

24. Word Title

Character string of any length describing a Data Word in a Field.

page 70 CARGO - DBMS

25. Record Name

String of 4 characters differentiating a Record from other Records of the same Type linked to
the same Parent Record.

26. Record Identifier

Character string identifying a Record in a Tree. The Identifier of a Record is given by the
Identifier of its Parent without its postfix followed by '.Record-Type-Code$Record-Name.X'.
The character X at the end of the name indicates whether it is a Basic (X = 'B'), Update
(X = 'U') or Special Update (X = 'S') Record.

