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A measurement of the inclusive pp → tt̄þ X production cross section in the τ þ jets final state using
only the hadronic decays of the τ lepton is presented. The measurement is performed using 20.2 fb−1 of
proton-proton collision data recorded at a center-of-mass energy of

ffiffiffi

s
p ¼ 8 TeV with the ATLAS detector

at the Large Hadron Collider. The cross section is measured via a counting experiment by imposing a set
of selection criteria on the identification and kinematic variables of the reconstructed particles and jets,
and on event kinematic variables and characteristics. The production cross section is measured to be
σtt̄ ¼ 239� 29 pb, which is in agreement with the measurements in other final states and the theoretical
predictions at this center-of-mass energy.
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I. INTRODUCTION

An important component of the Large Hadron Collider
(LHC) [1] physics program is the measurement of the
properties of the top quark, which is the most massive
fundamental particle observed to date. With approximately
one top-quark pair produced every second, the data sample
used in this analysis is significantly larger than previously
available samples, allowing for precise measurements of
top-quark properties using final states that were previously
limited by their statistical uncertainty. This article reports
on a measurement of the tt̄ production cross section in the
τ þ jets final state, where the hadronic final states of the τ
lepton (τhad) are used exclusively. This measurement,
which is of comparable precision to the μþ jets and
eþ jets cross-section measurements by the ATLAS
Collaboration [2], provides a cross-check of the tt̄ pro-
duction cross-section measurements in the other final
states. In addition, differences between measurements or
between measurement and theory could lead to the dis-
covery of non-Standard-Model physics or to limits on its
possible extensions. Previous measurements in this final
state have been performed by the D0 [3] and CDF [4]
collaborations at the Tevatron operating at

ffiffiffi

s
p ¼ 1.96 TeV

and by the ATLAS [5] and CMS [6] collaborations at the
LHC operating at

ffiffiffi

s
p ¼ 7 TeV. Besides the measurement

in the lþ jets (l ¼ e, μ, τ) final state at
ffiffiffi

s
p ¼ 8 TeV, the

tt̄ production cross section has also been measured in the
dilepton (eþe−, μþμ−, and e�μ∓) final state by the ATLAS

and CMS collaborations [7,8]. Since the different channels
in which this measurement has been performed have
different backgrounds and systematic uncertainties, each
measurement serves as a cross-check of the others.
The final state of the process used in this measurement,

tt̄ → τ þ jets, includes one top quark decaying as t →

Wb → τντb while the other decays as t → Wb → qq0b,
leading to the final-state topology of one τ lepton, an
imbalance of momentum in the plane transverse to the
beam axis (Emiss

T ), and four quark jets with two of these
being b-quark jets.
The decay t → τντb provides a unique system in which

to investigate the couplings of the third-generation
fermions—the top and bottom quarks, the τ lepton, and
the τ neutrino ντ—in a single process. In the framework
of the Standard Model (SM), the branching ratio (BR) of
the top quark decaying to a W boson and a b quark is
approximately 100%. Hence, the final state is determined
by the SM BRs of the W boson, which are well measured
[9]. In the SM, electroweak symmetry-breaking introduces
mass- and flavor-dependent couplings. Since the top quark
is the most massive quark and the τ lepton the most massive
lepton, these fermions along with the b quark have the
largest Yukawa couplings to the Higgs boson and, hence,
could lead to non-SM mass- or flavor-dependent couplings
that can change the top-quark decay rate into final states
with τ leptons. Therefore, any observed deviation in the BR
of t → τντb from that predicted by the SM would be an
indication of non-SM physics. For example, in type-2 two-
Higgs-doublet models (2HDM) [10], such as required by
the minimal supersymmetric Standard Model [11], the top
quark can have a significant BR to a charged Higgs boson
(H�) and a b quark ifmH� < mtop −mb. For large values of
tan β, the ratio of the vacuum expectation values of the two
Higgs doublets, the charged Higgs boson preferentially
decays to τντ. This thereby increases the BR of t → τντb
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relative to the SM prediction and leads to a larger measured
value of σtt̄ × BRðtt̄ → τ þ jetsÞ [12–14]. Small values of
tan β, however, would decrease the number of tt̄ → τ þ jets
events relative to the SM prediction.
The 2HDM can also produce an excess of t → τ þ X

decays if flavor-changing neutral couplings are allowed as
in type-3 models [15,16]. For example, this allows t → cH
and if the Higgs boson decays as H → τþτ−, an excess of
events with t → τ þ X decays would be observed relative
to the SM. The SM predicts BRðt → cHÞ ≈ 10−15 [17],
whereas type-3 models predict BRðt → cHÞ to be as large
as 10−3 [17–19].
This article presents an analysis using the τhad þ jets

final state to measure the tt̄ production cross section in
ffiffiffi

s
p ¼ 8 TeV proton-proton (pp) collisions. The data
sample for this measurement was recorded using the
ATLAS detector and corresponds to an integrated lumi-
nosity of 20.2 fb−1. The ATLAS detector is briefly
described in Sec. II. Section III presents the data and
simulated event samples used in this measurement. The
reconstruction of jets, τ leptons, and missing transverse
momentum is discussed in Sec. IV. The event selection is
described in Sec. V and the methods used to estimate the
backgrounds are discussed in Sec. VI. The calculation of
the production cross section is given in Sec. VII and the
estimation of the various systematic uncertainties is pre-
sented in Sec. VIII. The results of the analysis and the
interpretations are discussed in Sec. IX. Finally, the
analysis is summarized in Sec. X.

II. ATLAS DETECTOR

The ATLAS detector [20] at the LHC covers nearly the
entire solid angle around the collision point. It consists of
an inner tracking detector surrounded by a thin super-
conducting solenoid, electromagnetic and hadronic calo-
rimeters, and a muon spectrometer incorporating three large
superconducting toroid magnets. The inner detector (ID) is
immersed in a 2 T axial magnetic field and provides
charged-particle tracking in the range jηj < 2.5, where η

is the pseudorapidity of the particle.1

The high-granularity silicon pixel detector covers the
interaction region and typically provides three position
measurements per track. It is followed by the silicon
microstrip tracker, which usually provides four two-
dimensional measurement points per track. These silicon

detectors are complemented by the transition radiation
tracker, which enables radially extended track reconstruc-
tion up to jηj ¼ 2.0. The transition radiation tracker also
provides electron identification information based on the
fraction of hits above a higher energy-deposition threshold
corresponding to transition radiation.
The calorimeter system covers the pseudorapidity range

jηj < 4.9. Within the region jηj < 3.2, electromagnetic
calorimetry is provided by barrel and endcap high-
granularity lead/liquid-argon (LAr) electromagnetic calo-
rimeters, with an additional thin LAr presampler covering
jηj < 1.8 to correct for energy loss in material upstream of
the calorimeters. Hadronic calorimetry is provided by the
steel/scintillator-tile calorimeter, segmented into three bar-
rel structures within jηj < 1.7, and two copper/LAr had-
ronic endcap calorimeters. The solid angle coverage is
completed with forward copper/LAr and tungsten/LAr
calorimeter modules optimized for electromagnetic and
hadronic measurements, respectively.
The muon spectrometer comprises separate trigger and

high-precision tracking chambers measuring the deflection
of muons in a magnetic field generated by superconducting
air-core toroids. The precision chamber system covers
the region jηj < 2.7 with three layers of monitored drift
tubes, complemented by cathode strip chambers in the
innermost layer of the forward region, where the back-
ground is highest. The muon trigger system covers the
range jηj < 2.4 with resistive plate chambers in the barrel,
and thin gap chambers in the end-cap regions.
A three-level trigger system is used to select interesting

events [21]. The Level-1 trigger is implemented in hard-
ware and uses a subset of detector information to reduce
the event rate to a design value of at most 75 kHz. This is
followed by two software-based trigger levels that together
reduce the event rate to about 400 Hz.

III. DATA AND SIMULATION SAMPLES

The pp collision data sample used in this measurement
was collected with the ATLAS detector at the LHC and
corresponds to the full 20.2 fb−1 of integrated luminosity
collected at this energy with the requirement of stable beam
conditions and an operational detector.
In order to estimate the effects of detector resolution and

acceptance on signal and background, and to estimate the
backgrounds, a full GEANT4-based detector simulation is
utilized [22,23]. In addition, to estimate the modeling
uncertainties of the various physics processes in an efficient
manner, a detector simulation using parameterized calo-
rimeter showers is also used [24]. To account for an average
of 20.7 interactions per bunch crossing, pp interactions
are generated using PYTHIA v8.165 [25,26] and overlaid on
the signal and background Monte Carlo (MC) simulation
samples in accordance with the average observed number
of interactions per bunch crossing. All simulated samples
are reconstructed and analyzed with the same algorithms

1ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point (IP) in the center of the
detector and the z axis along the beam pipe. The x axis points
from the IP to the center of the LHC ring, and the y axis points
upwards. Cylindrical coordinates ðr;ϕÞ are used in the transverse
plane, ϕ being the azimuthal angle around the z axis. The
pseudorapidity is defined in terms of the polar angle θ as
η ¼ − ln tanðθ=2Þ. Angular distance is measured in units of
ΔR≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔϕÞ2
p

.
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and techniques as for the recorded pp collision data. Only
events with at least one charged lepton (e, μ, τ) in the final
state are generated.
To estimate the acceptance of the event selection for tt̄

events, several MC samples are generated with the top-
quark mass set to mtop ¼ 172.5 GeV. The nominal sample
is generated using the next-to-leading-order (NLO) matrix
element (ME) event generator POWHEG-BOX [27–30] with
the CT10 [31] NLO parton distribution functions (PDF).
The output of POWHEG-BOX is then processed by PYTHIA
v6.426 [25] to perform the parton showering (PS), hadro-
nization, and generation of the underlying event (UE). For
the UE generation to agree with data, PYTHIA v6.426 uses
the leading-order (LO) CTEQ6L1 PDF set [32] and a set of
tuned parameters referred to as the Perugia 2011C tune
[33]. To regulate high-pT radiation in POWHEG-BOX and
provide ME/PS matching, the resummation damping factor
hdamp is set to mtop [34]. The tt̄ sample is normalized using
the theoretical production cross section, which for pp

collisions at
ffiffiffi

s
p ¼ 8 TeV is σtt̄ ¼ 253

þ13

−15
pb assuming a

top-quark mass of 172.5 GeV. It has been calculated
at next-to-next-to-leading order (NNLO) in αS including
resummation of next-to-next-to-leading logarithmic
(NNLL) soft gluon terms with top++2.0 [35–41]. The
systematic uncertainty in the cross section due to the
uncertainties in the PDF and αS is calculated using
the PDF4LHC prescription [42] with the MSTW2008
68% CL NNLO [43,44], CT10 NNLO [31,45], and
NNPDF2.3 five flavor number [46] PDF sets and added
in quadrature to the uncertainties due to the renormalization
and factorization scales.
Systematic uncertainties associated with the tt̄ modeling

are evaluated using alternative sets of simulated events that

are compared to the nominal sample, with the nominal and
alternative sets processed using the parameterized detector
simulation [24]. Since the choice of the ME event generator
can affect the estimate of the acceptance, the ME event
generator MC@NLO v4.01 [47] and the PS/UE simulator
HERWIG v6.520 [48], with JIMMY v4.31 [49] is compared
to the POWHEG-BOX [29] event generator where the PS is
simulated by HERWIG+JIMMY. The effect of the PS and
hadronization models on the acceptance is investigated
by comparing the POWHEG+PYTHIA event generator with
hdamp ¼ ∞ to the POWHEG+HERWIG event generator.
Finally, the effect of initial- and final-state radiation (ISR
and FSR) is estimated using two tt̄ samples generated in the
same manner as the nominal sample, but with the renorm-
alization and factorization scales multiplied by 2.0 (0.5),
the regularization parameter hdamp set to mtop (2mtop), and
using the Perugia 2012 radLo (radHi) UE tune, giving less
(more) radiation. Table I summarizes the samples used to
calculate the systematic uncertainties for the tt̄ process.
Avariety of MC event generators are used to simulate the

backgrounds containing charged leptons in the final state,
which are summarized in Table II. Vector-boson production
with additional jets (pp → V þ jets, with V ¼ W, Z and
two to seven jets) is simulated using the LO parton-level
ME event generator ALPGEN [50] with the PS/UE generated
by PYTHIAv6.426, as for the nominal tt̄ samples. In order to
avoid double counting, final states generated by the LO
parton-level event generator ALPGEN and the parton-level
shower evolution of PYTHIA, the MLMmatching algorithm
is used [51]. The matching algorithm is applied inclusively
to the V þ 5 light-parton events and exclusively to the other
events. Associated production of vector bosons with heavy-
flavor partons (V þ cþ jets, V þ cc̄þ jets, V þ bb̄þ jets)
is simulated separately. Inclusive V þ jets samples are
formed by combining the light- and heavy-quark samples
according to their respective cross section. An overlap
removal scheme is used to avoid double counting the
contribution of additional heavy flavor partons. The cross
sections used to normalize the samples are calculated at
NNLO [52,53].
Electroweak production of the top quark (single-top) is

simulated using POWHEG-BOX [54] and PYTHIA v6.426
with the CT10 PDF set. The MC sample for the t-channel
process is normalized using the NNLO calculation in
Ref. [55] while the s-channel sample is normalized with

TABLE I. List of the tt̄ MC samples used in studying the
modeling uncertainties. The PDF set used for all event generators
is CT10.

Systematic
uncertainty Generator

Parton
shower Tune set

Nominal POWHEG PYTHIA Perugia 2011C
Parton shower POWHEG HERWIG AUET2
Generator MC@NLO HERWIG AUET2
ISR=FSR POWHEG PYTHIA Perugia 2012 radLo
ISR=FSR POWHEG PYTHIA Perugia 2012 radHi

TABLE II. The matrix element event generators and the parton shower simulators used to generate the MC
simulated background events. The parton distribution functions used by the event generators and the set of tuned
parameters used in the parton shower simulators are also shown.

Process Generator Parton shower PDF set Tune set

W þ jets ALPGEN PYTHIA CTEQ6L1 Perugia 2011C
Z þ jets ALPGEN PYTHIA CTEQ6L1 Perugia 2011C
Single top (Wt-channel) POWHEG PYTHIA CT10 Perugia 2011C
Dibosons (WW, WZ, ZZ) HERWIG HERWIG CTEQ6L1 AUET2B

MEASUREMENT OF THE tt̄ PRODUCTION CROSS … PHYSICAL REVIEW D 95, 072003 (2017)

072003-3



the NNLOþ NNLL cross section in Ref. [56] and the Wt
channel is normalized with the NNLOþ NNLL calculation
in Ref. [57]. In order to remove the overlap with tt̄
production, the Wt sample is produced using the “diagram
removal” generation scheme [58].
In addition, diboson (WW, WZ) production samples are

generated using HERWIG with the CTEQ6L1 PDF set.
These samples are normalized using the NLO calculation
in Ref. [59].

IV. OBJECT RECONSTRUCTION

The final state in this measurement contains four quark
jets of which two are b-quark jets, aW boson decaying to a
neutrino and a τ lepton that decays to hadrons (τhad) and a
neutrino. Jets are reconstructed using the anti-kt algorithm
[60,61] with the radius parameter set to R ¼ 0.4. To
account for inhomogeneities and the noncompensating
response of the calorimeter, the reconstructed jet energies
are corrected through pT- and η-dependent factors that
are derived in MC simulation and validated in data. Any
remaining discrepancies in the jet energy scale are cali-
brated using an in situ technique where a well-defined
reference object is momentum-balanced with a jet [62].
To ensure that jets originate from the vertex that produced
the event, the fraction of the scalar pT sum of all tracks
matched to the jet and originating at this vertex (jet vertex
fraction) to the scalar pT sum of all tracks associated with
this jet but originating from any vertex must be > 0.5 for
jets with ET < 50 GeV and jηj < 2.4.
To identify jets initiated by b quarks (b-tagging), a

multivariate algorithm is employed [63]. This algorithm
uses the impact parameter and reconstructed secondary
vertex information of the tracks contained in the jet as input
for a neural network. Jets initiated by b quarks are selected
by setting the algorithm output threshold such that a 70%
selection efficiency is achieved in simulated tt̄ events with
a 1% misidentification rate for light-flavor jets. Since the
b-quark selection efficiency differs between data and MC
simulation, pT dependent correction factors are derived to
correct for this difference [63]. These correction factors
differ from unity by less than 3% over the entire pT range.
Decays of the τ lepton into hadrons and a neutrino are

classified as either single prong (τ1-prong), where the τ lepton
decays to a single charged particle, or three prong (τ3-prong),
where the decay products are three charged particles with a
net unit charge, and for each classification zero or more π0

mesons can be present. Identification of a τhad begins with a
reconstructed jet, as described above, having pT > 10 GeV
and jηj < 2.5. The τhad classification is achieved by
counting the number of tracks with pT > 1 GeV in a cone
of size ΔR ¼ 0.2 around the jet axis. To discriminate
against quark- or gluon-initiated jets, a set of discriminating
variables is used to train a multivariate boosted decision
tree (BDT) separately for single-prong and three-prong τ

decays using τhad from simulated samples of vector-bosons

decaying into τ leptons that cover the kinematic range
expected in data and a background sample enriched in dijet
events from data [64]. Three categories of discriminating
variables are used. The first category comprises those
variables that apply to all candidates. These are associated
with the jet shape in both the tracking system and
calorimeter. The second category are those variables that
apply only to the single-prong τ lepton decays. These
include the impact parameter significance and the number
of tracks in an isolation region (0.2 < ΔR < 0.4) around
the jet axis. The third and final category are those that apply
to the three-prong τ lepton decays. These variables include
the decay length significance in the transverse plane, the
invariant mass of the reconstructed tracks, and the maxi-
mum track separation (ΔR) from the jet axis. An additional
set of variables is used for those τhad containing π0 mesons.
These include the number of π0 mesons, the invariant
mass of the tracks plus π0 mesons, and the ratio of track
plus π0 pT to the calorimeter energy only measurement.
Furthermore, any jet that satisfies ΔR < 0.2 of a τhad is
removed. In addition, a BDT that includes discriminating
variables against electrons is trained to reduce the electron
contamination for the τ1-prong candidates. Low pT muons
that stop in the calorimeter and overlap with energy
deposits from other sources can mimic a τhad. These are
characterized by a large fraction of energy deposited in the
electromagntic calorimeter and a small ratio of track-pT
to calorimeter-ET. Muons that produce large energy depos-
its in the calorimeter can also be misidentified as a τhad.
These are characterized by a small fraction of energy in the
electromagnetic calorimeter and a large track-pT to calo-
rimeter-ET ratio. Strict selection requirements based on
the two variables described are applied to avoid muons
being misidentified as τhad. In addition, the reconstructed
four-vector of the τhad candidate is not corrected for the
unobserved neutrino kinematics.
Since undetected neutrinos occur in the final state, a

momentum imbalance in the transverse plane is expected.
The missing transverse momentum (Emiss

T ) is calculated as
the negative of the vector sum of the transverse momentum
of all reconstructed objects and of the calorimeter energy
deposits not associated to any reconstructed object after the
appropriate energy corrections have been applied [65].

V. EVENT SELECTION

Events are selected that satisfy the Emiss
T > 80 GeV

trigger with an offline reconstruction requirement of
Emiss
T > 150 GeV. This is the point at which the trigger

has almost reached full efficiency. Furthermore, events are
required to contain a hard collision primary vertex with
at least four associated charged particle tracks of
pT > 0.4 GeV. If there are multiple primary vertices in
an event, the one with the largest sum of track p2

T is
selected. To reduce contamination from events with
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tt̄ → eðμÞ þ jets, an event is rejected if it contains an
electron (pe

T > 25 GeV) [66] or a muon (pμ
T > 20 GeV)

candidate [67], each with jηj < 2.5 that satisfy the corre-
sponding selection in the ATLAS tt̄ → eðμÞ þ jets cross-
section measurement [2]. The event must also contain at
least two jets with ET > 25 GeV and jηj < 2.5. In addition,
at least two of the jets in the event must be identified as
b-quark jets using a b-tagging requirement with 70%
efficiency. Each event is also required to contain at least
one τhad that decays to either one or three charged particles
with ET > 20 GeV and jηj < 2.5 and a τ lepton identi-
fication requirement that discriminates against quark and
gluon initiated jets such that the efficiency is 40% for
single-prong and 35% for three-prong τhad with a rejection
factor between 100 and 1000 depending on the pT and η for
each. This identification requirement defines the standard
τhad selection. Since the background for τ1-prong and τ3-prong
identification is different, the two samples are analyzed
separately with the τ1-prong (τ3-prong) analysis requiring one
or more τ1-prong (τ3-prong) only. In each case, the highest-pT

τhad is used with less than 1% of events containing more
than a single τhad. The combined result is produced by
requiring an event to contain either one or more τ1-prong or
τ3-prong and selecting the highest-pT τhad in the event. In
order to preferentially select events where the τhad and Emiss

T
originate from W-boson decays, the transverse mass is
required to satisfy mT < 90 GeV, where mT comprises the
τhad with the largest pT and the value of the Emiss

T of the
event. The square of the transverse mass is defined asm2

T ¼
p
τhad
T Emiss

T ½1 − cosΔϕðτhad; Emiss
T Þ� and Δϕðτhad; Emiss

T Þ is
the azimuthal angle between the direction of the τhad and
the Emiss

T of the event.

VI. BACKGROUND ESTIMATION

To determine the number of pp→ tt̄þ X → τhad þ jets
events in the data sample, estimates of the various back-
grounds are subtracted. These originate from two sources:
the backgrounds with real τhad and those with misidentified
τhad in the final state. The backgrounds containing real τhad
in the final state include single-top-quark events, V þ jets
events, and diboson events. These backgrounds are esti-
mated in simulation and normalized using their theoretical
cross sections as discussed in Sec. III. The misidentified
(fake) τhad background consists of events from processes
where a charged lepton (e� and μ�) is misidentified as a
τhad and multijet events that have a mismeasured Emiss

T and a
quark- or gluon-initiated jet that is misidentified as a τhad.
Misidentification of electrons and muons as τhad is

significantly reduced by applying the selection criteria
discussed in Sec. IV. The tt̄ background where an electron
or a muon is misidentified as a τhad is simulated in
POWHEG+PYTHIA and normalized using the theoretical tt̄
production cross section. The contribution from other

processes where an electron or a muon is misidentified
as a τhad is found to be negligible.
To estimate the fraction of events in which a jet is

misidentified as a τhad, a data-based method is used where
this fraction is evaluated in a control sample that is divided
into two components: one with the standard τhad selection
and the other with an inverted τhad selection. The transfer
factor is the ratio of the number of events with misidentified
τhad in the nominal sample to that in the inverted sample.
This transfer factor, which is referred as the fake-factor FF,
is then applied to the signal sample with the inverted τhad
selection, which yields the fraction of misidentified τhad
in the signal sample with the nominal τhad selection. The
inverted τhad selection is determined such that the fraction
of quark- and gluon-jets that can be misidentified as a τhad
is similar to the fractions when the standard τhad selection is
applied, as derived from MC simulation. All other require-
ments are the same as for the signal sample. This technique,
known as the fake-factor method, has been used in previous
ATLAS measurements [68].
To ensure a large fraction of events with jets misidenti-

fied as τhad, the control sample is required to satisfy a muon
trigger with only a single reconstructed muon satisfying the
requirement pT > 25 GeV and jηj < 2.5. In addition, each
event is also required to satisfy the following criteria:
(1) contain a primary vertex with at least four associated
tracks, (2) contain at least two jets and no jet in the event
satisfying the b-jet criteria, and (3) contain a single τhad
satisfying selection criteria that are less restrictive than the
nominal. The control sample is then separated into a
component satisfying the standard τhad identification and
a second component that satisfies the inverted identification
criteria. This set of selections ensures that the control
sample is enriched with misidentified τhad for both the
standard and the inverted τhad identification criteria. The
number of data events selected with the standard τhad
identification is 28 397, where the contribution from real
τhad is 38% as estimated from simulation. For the inverted
τhad identification, the number of data events is 84 975
with a contribution of 9% from real τhad. The transfer factor
is calculated in bins of pT and η after the real τhad
contributions are subtracted. The FF averaged over the
full kinematic range of this measurement has a value
of 0.23� 0.01ðstatÞ.
To extract the number of misidentified τhad in the signal

sample, the nominal selection with the inverted τhad
identification is applied to data. To correct for real τhad
in this sample, an estimate of the number of real τhad is
derived from simulation and subtracted from this sample.
Next, the derived FF is applied to the resulting data sample
according to the pT and η of the selected τhad taking into
account the number of τhad in the event. This yields the
number of misidentified τhad in the signal sample.
In order to validate this procedure, the derived FF is

applied to a data set that does not overlap with the nominal
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analysis sample. Each event in the sample is required to
satisfy a single-muon trigger and contain only one recon-
structed muon of pT > 25 GeV. In addition, a single τhad
satisfying the same criteria as the signal sample is required.
The validation is performed for different jet multiplicities
and numbers of b-quark jets by dividing the sample into
the following six categories: (1) two inclusive jets;
(2) three inclusive jets; (3) four inclusive jets; with each
listed jet multiplicity containing either zero b-quark jets
or at least one b-quark jet. Good agreement between the
data and the background estimate is seen in all categories.
An additional validation sample that is dominated by real
τhad is formed by selecting Z → τþτ− events, where one τ
lepton decays to a final state containing a μ and the other
containing hadrons. This sample is selected by requiring:
(1) cos Δϕðμ; Emiss

T Þ þ cos Δϕðτhad; Emiss
T Þ > −0.15;

(2) Δϕðμ; τhadÞ > 2.4; (3) m
μ
T < 50 GeV, where m

μ
T is

the transverse mass of the μ and the Emiss
T of the event;

(4) ð42 < mðμ; τhadÞ < 82Þ GeV, the invariant mass of the
μ-τhad system; (5) ð25 < p

μ
T < 40Þ GeV. Figure 1 shows

an example of a comparison between the data and the
prediction for regions dominated by misidentified and
real τhad.

VII. EXTRACTION OF THE tt̄ PRODUCTION

CROSS SECTION

In order to determine the tt̄ cross section, the estimated
background, given in Table III, is subtracted from the

number of recorded events after the event selection is
applied, then normalized to the integrated luminosity
R

LðtÞdt and corrected by the efficiency ϵtt̄ ¼ 5 × 10−4,
which is calculated from the fraction of events satisfying
the geometric, kinematic, trigger, and object identification
selection, and the effects of the detector reconstruction.
Therefore, the cross section is given as

σðpp → tt̄þ XÞ ¼ Ndata − Nbkg

BR × ϵtt̄ ×
R

LðtÞdt : ð1Þ

Furthermore, since the calculated efficiency corresponds
to all tt̄ final states containing leptons only, the BRðtt̄ →
lþ XÞ ¼ 0.54 is used. The number of background events
(Nbkg) comprises backgrounds with real τhad that are
estimated from the simulated samples and events contain-
ing a misidentified τhad that is estimated using the fake-
factor method discussed in Sec. VI. As also discussed in
Sec. VI, to estimate the number of misidentified τhad, the
real τhad contribution must be subtracted including those
from tt̄ events. Since this would require the use of the tt̄
cross section, which is the quantity being measured, Eq. (1)
is reformulated as

σðpp → tt̄þ XÞ ¼ Ndata − Nbkg-nontt̄

BR × ðϵtt̄ − ϵFF−tt̄Þ ×
R

LðtÞdt ; ð2Þ

where Nbkg-nontt̄ represents the backgrounds estimated from
the simulated samples and the misidentified τhad component
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FIG. 1. The transverse momentum distribution of the τhad: (a) in the tt̄ → μτ þ X sample dominated by misidentified τhad, and (b) in
the Z → ττ → μτ þ X sample dominated by real τhad. The lower portion of each plot shows the ratio of the data over prediction,
illustrating the level of agreement achieved between the data and the predicted backgrounds including the estimated number of
misidentified τhad.
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estimated using the fake-factor method but excludes the
subtraction of the tt̄ component. The efficiency ϵFF-tt̄ ¼
7 × 10−5 represents tt̄ events satisfying the inverted τhad
identification.

VIII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties are grouped into those pertaining
to object identification along with its energy and momentum
measurement, theoretical modeling, background evaluation,
and the luminosity. The systematic uncertainties are evalu-
ated by performing a variation of each parameter related to
the associated quantity and propagating the overall uncer-
tainty to the cross section assuming that the individual
uncertainties are uncorrelated. The procedures and results for
the individual quantities considered are summarized below.
The systematic uncertainties are calculated for the τ1-prong,
τ3-prong, and the combined τhad analyses separately, with the
resulting values given in Table IV.
The uncertainty in the cross section due to jet

reconstruction is split into three components: the jet energy
scale, its energy resolution, and its reconstruction efficiency.
The uncertainty from the jet energy scale is calculated by
varying the jet energies according to the uncertainties
derived from simulation and the in situ calibration using a
model containing 22 independent components [62]. The
difference between the jet energy resolution in data and MC
simulated events is evaluated by smearing the jet pT in the
MC sample according to the measured jet resolution in bins
of η and pT [69]. The uncertainty in the jet reconstruction
efficiency is evaluated by randomly removing jets according
to the difference in data and MC jet reconstruction efficien-
cies [62]. The variation in the jet energies is also propagated
to the Emiss

T calculation.
In the nominal analysis, the b-tagging efficiency in

simulation is corrected to agree with data by using pT-
and η-dependent correction factors. The uncertainty in the
correction factors is obtained independently for b-jets,
c-jets, and light-flavor jets assuming that they are uncorre-
lated. The uncertainties of the inefficiency correction
factors that are applied when a jet is not tagged are treated
as fully anticorrelated with the corresponding efficiency
correction factor [63]. This uncertainty is propagated to the
cross section by varying the correction factors by one
standard deviation with respect to the central value.
As in b-tagging, correction factors are used to correct for

the difference in the τhad-tagging efficiency and the τhad
electron veto efficiency between data and simulation. The
uncertainties in the correction factors depend on pT, η,
and the τhad identification criteria. In addition, the τhad
energy scale can affect the final result due to the τhad pT
requirement. The energy of the τhad is calculated using MC
simulation to correct the observed energy to the true energy
scale [64]. Additional small data-based corrections are then
applied. The uncertainties due to each of these effects are

propagated to the cross section by varying the correction
factors by one standard deviation.
The systematic uncertainty of Emiss

T is evaluated along
with the systematic uncertainty of the associated energy
and momentum of the reconstructed objects as discussed
above. Not included in that calculation are the contributions
from low-pT jets and energy deposits in the calorimeter
cells not associated with a reconstructed object. This source
of uncertainty is evaluated using the difference between

TABLE III. The number of events observed in data and
obtained from simulation along with the associated statistical
uncertainty for background and expected signal processes for the
different τhad types and the combined sample. The τ1-prong
(τ3-prong) samples require all τhad in an event to be of that type,
while the combined sample can have either τhad type.

Event counts τ1-prong τ3-prong τhad

tt̄ → e=μþ jets 21.8� 4.7 6.8� 2.5 28.3� 5.3
Single top 107� 10 33.9� 5.8 141� 12

W þ jets 71.7� 8.5 27.1� 5.2 99� 10

Z þ jets 7.2� 2.7 1.6� 1.3 8.7� 3.0
Diboson 1.0� 1.0 0.4� 0.6 1.5� 1.2
Misidentified-τhad 46.6� 6.8 24.9� 5.0 74.9� 8.7
Expected tt̄→ τ þ jets 1084� 33 312� 18 1398� 37

Total Expected 1339� 37 407� 20 1751� 42

Data 1278 395 1678

TABLE IV. Relative percent uncertainties in the measured cross
section in the τ1-prong, τ3-prong and combined τ1-prong and τ3-prong
(τhad) final states. In the τ1-prong (τ3-prong) analysis, all τhad in the
event are required to be τ1-prong (τ3-prong). For the combined
analysis, the τhad in an event could be of either type.

Uncertainty τ1-prong τ3-prong τhad

Total Systematic −11 =þ 11 −16 =þ 14 −12 =þ 12

Jet energy scale −4.0 =þ 4.2 −8.4 =þ 5.7 −5.0 =þ 4.5
b-tag efficiency −4.7 =þ 5.0 −4.8 =þ 5.0 −4.7 =þ 5.0
c-mistag efficiency −1.6 =þ 1.6 −1.5 =þ 1.5 −1.6 =þ 1.6
Light-jet mistag
efficiency

−0.3 =þ 0.3 −0.5 =þ 0.5 −0.4 =þ 0.4

Emiss
T −0.3 =þ 0.5 −1.7 =þ 0.5 −0.6 =þ 0.4

τhad identification −3.5 =þ 3.4 −6.0 =þ 5.6 −4.1 =þ 3.9
τhad energy scale −2.1 =þ 2.0 −1.2 =þ 1.4 −1.9 =þ 1.9
Jet vertex fraction −0.1 =þ 0.3 −0.3 =þ 0.3 −0.2 =þ 0.3
Jet energy resolution −1.4 =þ 1.4 −0.2 =þ 0.2 −1.1 =þ 1.1
Generator −1.5 =þ 1.5 −2.5 =þ 2.5 −2.1 =þ 2.1
Parton Shower −2.0 =þ 2.0 −2.6 =þ 2.6 −2.1 =þ 2.1
ISR=FSR −6.2 =þ 6.2 −8.5 =þ 8.5 −6.7 =þ 6.7
Misidentified-τhad
background

−1.3 =þ 1.4 −2.0 =þ 2.2 −1.6 =þ 1.6

W þ jets background −2.9 =þ 2.9 −3.6 =þ 3.6 −3.0 =þ 3.0

Statistics −2.2 =þ 2.2 −5.6 =þ 5.6 −1.7 =þ 1.7

Luminosity −2.3 =þ 2.3 −2.3 =þ 2.3 −2.3 =þ 2.3
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data and simulated Z → μþμ− events containing no jets,
which is similar to the procedure used in Ref. [65].
The systematic uncertainty due to tt̄ modeling is split

into two components. The first is that associated with the
choice of ME event generator and PS/UE event simulation.
The uncertainty associated with the choice of ME event
generator is estimated by comparing the acceptance from
the MC@NLO event generator with that from the POWHEG-
BOX event generator. Events from both event generators are
processed through the PS/UE simulator HERWIG+JIMMY.
The uncertainty due to the PS on the acceptance is
estimated by comparing the POWHEG+PYTHIA event gen-
erator to the POWHEG+HERWIG event generator. The second
component of the modeling uncertainty corresponds to the
effect of ISR and FSR on the event selection due to possible
extra jets and changes in the kinematics of the final-state
particles and jets. The nominal tt̄ sample is compared to
samples with variations of the renormalization and factori-
zation scales and the regularization parameter as described
in Sec. III.
The systematic uncertainties due to the various back-

grounds that contain real τhad, are derived using the MC
samples described in Sec. III and the uncertainties of the
theoretical cross sections. The two largest sources of real
τhad backgrounds are single-top and W þ jets events. All
other background contributions to the systematic uncer-
tainty are negligible. For single-top, the uncertainty in the
cross section of the MC sample is varied by one standard
deviation and propagated to the cross section. For the
W þ jets background, the same procedure is followed but is
validated using a method based on the W-boson charge

asymmetry in data as described in Refs. [70–72], which
gives agreement with the estimation based on the theoreti-
cal uncertainty.
To estimate the systematic uncertainty in the number

of misidentified τhad, the effect of variations of the main
components of this analysis are examined. The main
components are: (1) the MC-based background subtraction
of the real τhad, (2) uncertainty in the flavor dependence of
the FF, (3) uncertainty associated with the η-pT binning
of the FF. In calculating the FF, the largest contribution
from real τhad is from Z þ jets events, as the final state
Z → τþτ− → τhadμþ X satisfies the selection. To estimate
this component of the uncertainty, the Z þ jets cross section
is varied by �1 standard deviation. This variation leads to
an average uncertainty of 5% over the pT-η range for this
component of the FF. The FF is calculated in a sample
dominated by light-flavor jets. To estimate the systematic
uncertainty of the flavor composition, the FF is also derived
in a gluon-jet-dominated sample with four jets and low
Emiss
T . Using this sample the FF is calculated and applied

to the signal sample, resulting in an uncertainty of 20%
in the number of misidentified τhad events. Since the FF
is calculated in pT-η bins, the bin size is also varied to
estimate the uncertainty in the final result. The uncertainty
in the final result is found to be approximately 5% of the
calculated number of misidentified τhad events.
The absolute luminosity scale is derived from beam-

separation scans performed in November 2012. From the
calibration of the absolute luminosity scale, the uncertainty
in the total integrated luminosity is evaluated following the
procedure described in Ref. [73] and is found to be 1.9%.
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FIG. 2. The distribution of the (a) pT of the τhad having highest transverse momentum in the event and (b) the missing transverse
momentum, Emiss

T . The observed data are compared to the predictions.
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This uncertainty is then propagated to the cross-section
measurements yielding a 2.3% uncertainty, which is
reported independent of the other systematic uncertainties.

IX. RESULTS AND INTERPRETATION

The number of events observed for each τhad type and
for the combined analysis are reported in Table III along
with the predicted number of background events. The
uncertainties associated with the cross-section measure-
ment from each of the different sources are reported in
Table IV. Figure 2 shows the kinematic distributions of
the predicted background and signal processes with the
observed data superimposed, where the signal-to-
background ratio is approximately 4∶1.
The cross sections for each τhad type measured separately

are

σtt̄ðτ1-prongþ jetsÞ¼237�5ðstatÞ�26ðsystÞ�5ðlumiÞ pb;
σtt̄ðτ3-prongþ jetsÞ¼243�14ðstatÞþ34

−38
ðsystÞ�6ðlumiÞ pb;

and the cross section for the combined analysis is

σtt̄ ¼ 239� 4ðstatÞ � 28ðsystÞ � 5ðlumiÞ pb:

The combined cross section has an uncertainty of 12%
and is in agreement with the previous measurements
of the ATLAS Collaboration for the eþ jets and μþ jets
final states [2]. Since the analysis is performed at a
fixed top-quark mass, samples are generated at various

masses to study the dependence of the measured cross
section on mtop. The variation is found to be
ðΔσ=σÞ=Δmtop ¼ −2.6% GeV−1.
In order to quantify the compatibility of this result with

the SM and explore the allowed range for non-SM processes,
a frequentist significance test using a background-only
hypothesis is used to compare the observed number of
events with the SM prediction. In this procedure, the tt̄ →
τ þ X process is considered a background and estimated
according to the SM prediction taking into account the
corresponding uncertainty. This statistical analysis is also
used to derive a limit in a model-independent manner on
possible beyond-the-SM (BSM) physics. A confidence level
for the background-only hypothesis (CLb) of 0.48 corre-
sponding to a p-value of 0.52 is observed, which indicates
good agreement between the observed data and the SM
processes. An upper limit at 95% confidence level (CL)
on the number of BSM events is derived using the CLs

likelihood ratio method described in Ref. [74]. The upper
limit is calculated with the observed number of events, the
expected background, and the background uncertainty.
Dividing the upper limits on the number of BSM events
by the integrated luminosity of the data sample, the resulting
value can be interpreted as the upper limit on the visible
BSM cross section, σvis ¼ σ × ϵ, where σ (ϵ) is the
production cross section (efficiency) for the BSM process.
Table V summarizes the observed number of events, the
estimated SM background yield, and the expected and
observed upper limits on the event yields and on the σvis
from any BSM process. The efficiency for each SM process
used to calculate this limit is reported in Table VI.
Using the same data sample as the cross-section meas-

urement, an upper limit on the flavor changing process
t → qH → qτþτ− is set by performing a modified analysis
and then calculating a limit in a manner that is similar
to that of the model-independent limit. In the modified
analysis, exactly one identified b-jet and two τhad are
required. Performing the same statistical analysis as for
the cross-section measurement, a 95% CL observed
(expected) upper limit of 0.6% (0.9%) is set on the
BRðt → qHÞ × BRðH → ττÞ. At present, this is the only
analysis that can explore the channel t → qH → qττ and,
hence, is the first search using the H → ττ final state.
Assuming the SM BRðH → ττÞ ¼ 6%, the 95% CL
observed (expected) upper limit set on the BRðt → qHÞ
is 10% (15%). A dedicated ATLAS measurement achieves
a 95% CL upper limit of 0.45% on the BRðt → qHÞ in the
combination of Higgs boson final states H → bb, H → γγ

and H → multileptonðe; μÞ [75].

X. SUMMARY

A measurement of the pp→ tt̄þ X cross section at
ffiffiffi

s
p ¼ 8 TeV using 20.2 fb−1 of integrated luminosity
collected with the ATLAS detector has been performed

TABLE V. Limits on possible BSM events in this sample. Top
to bottom: Number of observed events, expected SM processes
yield, 95% CL observed (expected) upper limits on the number of
BSM events and the visible cross section (hϵσi95obsðexpÞ).

Observed data 1678

Expected SM background 1751� 42

S95obsðexpÞ 446 ð444þ40

−21
Þ

hϵσi95obsðexpÞ [fb] 22 ð22þ2

−1
Þ

TABLE VI. The efficiency for each SM process estimated in
simulation.

Process Efficiency (ϵ)

tt̄ → τ þ jets 5.0 × 10−4

tt̄ → e=μþ jets 1.0 × 10−5

Single top 1.6 × 10−4

W þ jets 3.7 × 10−7

Z þ jets 2.4 × 10−7

Diboson 2.8 × 10−6
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in the tt̄ → τντqq̄
0bb̄ final state using hadronic decays of

the τ lepton. The cross section is measured separately for
hadronic decays of the τ lepton into one or three charged
particles. A single analysis using a combination of both
decay modes is also performed. The cross section measured
in the single analysis is σtt̄ ¼ 239� 4ðstatÞ � 28ðsystÞ �
5ðlumiÞ pb, assuming a top-quark mass of mtop ¼
172.5 GeV. The measured cross section is in agreement
with the SM prediction of 253þ13

−15
pb. A statistical analysis

is performed to check the consistency of the observed
number of events in data with the predicted number of
events from various SM processes. Following a frequentist
approach, the confidence level observed with the SM-only
hypothesis is 0.48 and the calculated p-value is 0.52, which
indicates good agreement of the SM prediction with the
observed data. A model-independent upper limit on the
visible cross section for any non-SM process is also
calculated. The observed (expected) upper limit at 95% con-
fidence level on the visible cross section of any non-SM
processes is 22ð22þ2

−1
Þ fb.
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