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Abstract

PyHEADTAIL is a 6D tracking tool developed at
CERN to simulate collective effects. We present re-
cent developments of the direct space charge (SC)
suite, which is available for both the CPU and
GPU. A new 3D particle-in-cell solver with open
boundary conditions has been implemented. For the
transverse plane, there is a semi-analytical Bassetti-
Erskine model as well as 2D self-consistent particle-
in-cell solvers with both open and closed boundary
conditions. For the longitudinal plane, PyHEAD-
TAIL offers line density derivative models. Simula-
tions with these models are benchmarked with ex-
periments at the injection plateau of CERN’s SPS.

PyHEADTAIL

A PyHEADTAIL macro-particle beam of intensityN ,
particle charge q and particle mass mp is described
by the 6D set of coordinates (x, x′, y, y′, z, δ).
Single-particle dynamics (“tracking”) and multi-
particle dynamics (“kicking”) are separately solved
in turns,

Mrev = exp
(
∆s :Htracking:

)
exp (∆s :Hkick: ) . . . (1)

(a) Transverse tracking. (b) Longitudinal tracking.

Figure 1 : PyHEADTAIL tracking model.

Transverse tracking based on linear Hill’s equation:
TWISS parameter based tracking provides correct
beam sizes at kick points due to betatron βx,y(s)
and dispersion Dx,y(s) functions.

Figure 2 : High-brightness beam sizes for SPS Q20 optics.

Particle-dependent phase advance ψx,y(x, y, δ; s)
implements detuning from nth-order chromaticity
and octupole fields. Longitudinal tracking has linear
and sinusoidal multi-harmonic models. Multi-particle
dynamics at kick points cover electron clouds, multi-
polar wakefields (impedances) and space charge.

Longitudinal Space Charge

Line density derivative ∂zλ(z) model based on
equivalent longitudinal electric field,

Eequiv
z (z) = −

g

4πε0γ2

dλ(z)

dz
. (2)

Averaged geometry factor g includes indirect SC,
non-linear wall effects suppress Ez(z) for long σz.

(a) ∂zλ(z) model. (b) (free-space) 3D PIC model.

Transverse Gaussian Space Charge

Bassetti-Erskine formula (cf. our paper) as 2.5D
space charge model, applied slice-by-slice to the
bunch distribution. Attention with dispersion and
large longitudinal emittances εz: non-Gaussian δ dis-
tributions entail non-Gaussian horizontal beam pro-
files (despite a Gaussian betatron distribution)!

(a) Non-Gaussian hor. profile. (b) B.E. is approximative!

Self-consistent PIC Space Charge

Particle-in-cell (PIC) algorithms discretise the beam
distribution onto a mesh:
1 particle to (regular) mesh deposition (P2M),
2 solve discrete Poisson equation

∆φ = −ρ/ε0 (3)

in beam rest frame, and
3 mesh to particle interpolation (M2P).
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Figure 5 : Particle-in-cell algorithm for a 2.5D slice example.

Why Poisson Equation and not Full Maxwell?
In synchrotrons, relative momenta among particles
are usually negligible. Hence, Lorentz boost from
lab frame to beam rest frame and solve electrostatic
problem ⇒ Poisson equation. Lorentz boost back
to lab frame yields full electromagnetic fields (incl.
transverse SC suppression from magnetic field).
We implemented Poisson solvers for both 2.5D (slice-
by-slice solving of transverse distributions) and 3D.

PIC: Finite Difference Poisson Solver

Direct matrix solving for nearest-neighbour sparse
Poisson matrix (2D: 5-stencil, 3D: 7-stencil)

Aijφj = −ρi/ε0 . (4)

QR decomposition A = QR (orthogonal Q and
upper R matrix, numerically extremely stable)

LU decomposition A = LU (upper and lower
triangle matrices L and U , faster than QR)

=⇒ finite difference requires boundary conditions!

PIC: Green’s Function Poisson Solver

Use D= 2 or D= 3 Green’s function G(x, y)
from

∆G(x) = δ(x) (5)

to solve discrete Poisson equation for mesh potential

φ(x) =
1

2D−1πε0

∫
dDx̂ G (x̂− x) ρ (x̂) .

(6)
(Hockney’s) cyclic domain expansion allows rapid
convolution via FFT algorithm. Also use “Integrated
Green’s Function” concept for large aspect ratios.
=⇒ free-space or rectangular boundary conditions!

GPU Acceleration

PyHEADTAIL and SC module have been parallelised
for NVIDIA GPUs,⇒ PIC algorithm acceleration!

(a) CPU profile. (b) GPU profile.

Figure 6 : Different bottlenecks for runtime profiles of PIC.

On CPU, solve is bottleneck: FFT takes longer than
mesh and particle interpolations. ⇒ 3D space charge
becomes prohibitive for long-term simulations!
On GPU, cuFFT accelerates by up to S= 36 for
relevant meshes. 3D SC becomes feasible! In con-
trast, particle-to-mesh deposition becomes critical:
O(1 × 106) macro-particles each update 4x (2.5D)
or 8x (3D) the O(1 × 105) mesh memory entries.
We solved the corresponding thread stalls and mem-
ory bandwidth issues via pre-sorting of particle arrays
by mesh node IDs (using thrust::lower bound

and thrust::sort by key).

Figure 7 : Overall 2.5D PIC speed-up achieved vs. number of
mesh nodes per transverse side comparing a NVIDIA K40m
GPU to a single 2.3GHz Intel Xeon E5-2630 (v1) CPU core.

SPS Benchmark

High-brightness beams in SPS show influence of the
octupolar 4Qx = 81 resonance. We drive the reso-
nance with a single strong octupole to measure pro-
nounced beam blow-up and losses⇒ benchmark for
space charge simulations. Our beam has an inco-
herent transverse tune spread of (−0.09,−0.16).
The resonance causes a shifted blow-up peak at
Qx = 20.28, which is reproduced by simulations
incl. TWISS lattice and Bassetti-Erskine SC.

Figure 8 : Transverse emittance growth vs. coherent
horizontal tune for Bassetti-Erskine space charge simulations
over 10 × 103 turns and measurements over 130 × 103 turns.
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