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Abstract
PyHEADTAIL is a 6D tracking tool developed at

CERN to simulate collective effects. We present re-
cent developments of the direct space charge (SC)
suite, which is available for both the CPU and
GPU. A new 3D particle-in-cell solver with open

Transverse Gaussian Space Charge

Bassetti-Erskine formula (cf. our paper) as 2.5D
space charge model, applied slice-by-slice to the
bunch distribution. Attention with dispersion and
large longitudinal emittances €,: non-Gaussian 9 dis-
tributions entail non-Gaussian horizontal beam pro-
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PIC: Green’s Function Poisson Solver

Use D=2 or D=3 Green’'s function G(x,Yy)

from
AG(x) = 0(x) (5)

to solve discrete Poisson equation for mesh potential

boundary conditions has been implemented. For the files (despite a Gaussian betatron distribution)!
transverse plane, there is a semi-analytical Bassetti- e R ——
Erskine model as well as 2D self-consistent particle- o o /A
in-cell solvers with both open and closed boundary
conditions. For the longitudinal plane, PyHEAD- i R 200 AN R R

TAIL offers line density derivative models. Simula- C mseremenatem

tions with these models are benchmarked with ex-

periments at the injection plateau of CERN's SPS.
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(Hockney's) cyclic domain expansion allows rapid
convolution via FFT algorithm. Also use “Integrated
Green's Function” concept for large aspect ratios.

—> free-space or rectangular boundary conditions!
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(a) Non-Gaussian hor. profile. (b) B.E. is approximative!

GPU Acceleration

PyHEADTAIL Dorticles _ _ _ PyHEADTAIL and SC module have been parallelised
rticle-in-cell (PIC) algorithms discretise the beam i . .
. t'_c eInmee (PIC) algori ! for NVIDIA GPUs, = PIC algorithm acceleration!
distribution onto a mesh: — —
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Self-consistent PIC Space Charge

(a) CPU profile. (b) GPU profile.

mesh over particles

A PyHEADTAIL macro-particle beam of intensity IV,

10 . . . :
: : : - — Figure 6 : Different bottlenecks for runtime profiles of PIC.
particle charge g and particle mass 1, is described £ T _
by the 6D set of coordinates (x,x’,y,y’, z,0d). = ooalblay, On CPU, solve is bottleneck: FFT takes longer than
Single-particle dynamics (“tracking”) and multi neshing i o - mesh and particle interpolations. => 3D space charge
particle dynamics (“kicking”) are separately solved — T e becomes prohibitive for long-term simulations!
in turns, A : On GPU, cuFFT accelerates by up to S =36 for

relevant meshes. 3D SC becomes feasible! In con-
trast, particle-to-mesh deposition becomes critical:
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Moy = exp (As :H tracking: ) exp (As :Hyek: ) - - - (1)
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< solve < y
(a) Transverse tracking. (b) Longitudinal tracking. ¢ 20 ¢ 20 and thrust: : sortbykey).
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Figure 2 : High-brightness beam sizes for SPS Q20 optics. Figure 5 : Particle-in-cell algorithm for a 2.5D slice example.

SPS Benchmark

High-brightness beams in SPS show influence of the
octupolar 40),, = 81 resonance. We drive the reso-
nance with a single strong octupole to measure pro-

Why Poisson Equation and not Full Maxwell?
In synchrotrons, relative momenta among particles
are usually negligible. Hence, Lorentz boost from

Particle-dependent phase advance ¥ (T, Yy, d; s)
implements detuning from mnth-order chromaticity
and octupole fields. Longitudinal tracking has linear

and sinusoidal multi-harmonic models. Multi-particle lab frame to beam rest frame and solve electrostatic 1 h ) 1) benchmark f
dynamics at kick points cover electron clouds, multi- problem => Poisson equation. Lorentz boost back notihced beam DIOW-UP and 1055€5 = benc mark Tor

. . . . - space charge simulations. Our beam has an inco-
polar wakefields (impedances) and space charge. to lab frame yields full electromagnetic fields (incl.

herent transverse tune spread of (—0.09, —0.16).
The resonance causes a shifted blow-up peak at
Q. = 20.28, which is reproduced by simulations

transverse SC suppression from magnetic field).
We implemented Poisson solvers for both 2.5D (slice-

Longitudinal Space Charge

_ _ o by-slice solving of transverse distributions) and 3D. | _ | |
Line density derivative 9.A(z) model based on incl. TWISS lattice and Bassetti-Erskine SC.
equivalent longitudinal electric field, . . ] ] 30 . . . . , 16
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(a) 9:A(z) model. (b) (free-space) 3D PIC model. —> finite difference requires boundary conditions! over 10 x 103 turns and measurements over 130 x 103 turns.
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