
A
TL

-S
O

FT
-P

R
O

C
-2

01
7-

01
7

24
Ja

nu
ar

y
20

17

Multi-threaded ATLAS Simulation on Intel Knights1

Landing Processors2

Steven Farrell1, Paolo Calafiura1, Charles Leggett1, Vakhtang3

Tsulaia1, Andrea Dotti2, on behalf of the ATLAS Collaboration4

1Lawrence Berkeley National Laboratory, 2SLAC National Accelerator Laboratory5

E-mail: SFarrell@lbl.gov6

Abstract. The Knights Landing (KNL) release of the Intel Many Integrated Core (MIC)7

Xeon Phi line of processors is a potential game changer for HEP computing. With 72 cores and8

deep vector registers, the KNL cards promise significant performance benefits for highly-parallel,9

compute-heavy applications. Cori, the newest supercomputer at the National Energy Research10

Scientific Computing Center (NERSC), was delivered to its users in two phases with the first11

phase online at the end of 2015 and the second phase now online at the end of 2016. Cori12

Phase 2 is based on the KNL architecture and contains over 9000 compute nodes with 96GB13

DDR4 memory. ATLAS simulation with the multithreaded Athena Framework (AthenaMT)14

is a good potential use-case for the KNL architecture and supercomputers like Cori. ATLAS15

simulation jobs have a high ratio of CPU computation to disk I/O and have been shown to scale16

well in multi-threading and across many nodes. In this paper we will give an overview of the17

ATLAS simulation application with details on its multi-threaded design. Then, we will present18

a performance analysis of the application on KNL devices and compare it to a traditional x8619

platform to demonstrate the capabilities of the architecture and evaluate the benefits of utilizing20

KNL platforms like Cori for ATLAS production.21

1. Introduction22

In the multi-core computing era, processor chip trends such as increasing core multiplicity,23

decreasing memory per core, and increasing importance of vector processing are changing the24

way scientific software developers write efficient, scalable code. Modern computing devices such25

as Intel’s Xeon Phi line of many-core processors are good examples of what will be used more26

frequently in high performance computing facilities. These devices are best utilized with highly-27

parallel applications, so scientific computing models must adapt for greater concurrency and28

intelligent usage of memory resources.29

High energy physics (HEP) experiments such as ATLAS[1] are no exception to this paradigm30

shift. Particle collision data is typically trivially parallelizable, but production software such as31

the Athena framework[2] have historically been written for sequential processing. In order to32

ensure that ATLAS can efficiently utilize modern computing devices and devices of the future,33

a large campaign is underway to adopt a multi-threading concurrency model for parallelism and34

efficient use of memory resources[3][4]. ATLAS simulation is the most advanced use-case for35

multi-threading, with a nearly complete configuration working and performing well on traditional36

Intel Xeon devices.37



In this paper we will share results and experience preparing the ATLAS simulation software38

for the Knights Landing generation of Intel Xeon Phi processors. Section 2 gives a brief overview39

of the hardware used. Section 3 details the multi-threaded ATLAS simulation application.40

Performance results on Xeon and Xeon Phi machines are then given in Section 4. Ideas for41

future work and conclusions are given in Section 5.42

2. Intel Xeon Phi processors43

Current state-of-the-art processors for high-performance computing offer a wide array of44

capabilities and challenges. Devices such as FPGAs and general-purpose GPUs offer a high45

degree of parallelism with low power consumption for effective throughput. However, both of46

these devices use highly specialized programming models and have challenging constraints on47

memory capacity and data bandwidth. In response, Intel has been pursuing an alternate model48

that promises high performance with ease of use: the Xeon Phi product line.49

Intel Xeon Phi processors are built with Intel’s Many-Integrated-Core (MIC) architecture.50

General features of the product include high core multiplicity, deep vector registers, and low51

power consumption (relative to Xeon devices). Xeon Phi chips run a Linux OS, making them52

substantially easier to use than FPGAs and GPUs.53

The current (2nd) generation of Xeon Phi processors is codenamed Knights Landing (KNL).54

KNL chips are the first release of the product line to offer full x86 binary compatibility and the55

first which can be installed as a host device or as a coprocessor. They are available with up to 7256

Airmont cores and 4-way hardware threads, giving a maximum of 288 threads of execution. For57

SIMD parallelism, KNL devices have two 512-bit vector units per core and support AVX-51258

instructions. Finally, the KNL generation introduces a deeper memory hierarchy compared to59

previous releases, providing both traditional DDR4 RAM as well as 8-16 GB of on-package, high-60

bandwidth MCDRAM. The MCDRAM can be utilized as an additional addressable memory61

space (“flat” mode), as a transparent cache (“cache” mode), or as a mixture of both (“hybrid”62

mode).63

Xeon Phi processors are well suited for high performance computing facilities. A number64

of planned supercomputers will be based on Xeon Phi processors. At NERSC, the Cori65

supercomputer will have 9,300 KNL nodes with 68 cores each (2.5 million possible threads66

of execution). The Theta system at Argonne National Lab will have over 2,500 KNL nodes67

as well and will be a stepping-stone machine for the massive future Aurora system. Aurora68

is planned for 2018 to have over 50 thousand nodes equipped with 3rd-generation Xeon Phi69

(codenamed Knights Hill) processors.70

3. Multi-threaded ATLAS simulation71

The ATLAS simulation application (G4Atlas) is used to produce simulated ATLAS data in the72

Athena production framework[6]. It has been used extensively in the ATLAS experiment for73

many years for data analysis. It uses the Geant4[7] particle simulation toolkit to model physics74

processes and detector response. Production is traditionally performed with sequential jobs or75

multi-process jobs in the AthenaMP framework[8]. In the latter case, worker processes are forked76

from the main process after initialization of the job and before the event loop. This procedure77

allows worker processes to implicitly share some memory pages via the Linux copy-on-write78

mechanism.79

An effort is currently underway to migrate the ATLAS simulation application to a80

multi-threading processing model (G4AtlasMT) in the AthenaMT (Multi-threaded Athena)81

framework. AthenaMT, which is based on the Gaudi concurrent framework, uses Intel Threading82

Building Blocks (TBB) for task-based parallelism. It schedules algorithms to operate on event83

data as tasks to run concurrently on different threads. This model allows both inter-event and84

intra-event parallelism. The simulation application uses few algorithms, however, with most of85



the computation work happening in one algorithm (G4AtlasAlg) which simply invokes Geant4.86

The result is that the G4Atlas runs effectively with only inter-event parallelism. Memory87

savings are achieved by sharing physics and geometry tables across threads within Geant4.88

An illustration of the AthenaMT algorithm scheduling model is shown in Figure 1.89

Figure 1. Illustration of worker thread processing in ATLAS multi-threaded simulation.
SGInputLoader preloads some data from the input file to kickoff the event data flow.
BeamEffectsAlg applies beam corrections and smearing to the input generated event.
G4AtlasAlg is the main simulation algorithm which invokes Geant4. StreamHITS is the output
stream algorithm which writes hit collections to the output file. StreamHITS is not cloned for
concurrent processing. One instance serves all worker threads. Algorithm sizes are not shown
to scale.

ATLAS simulation is potentially a good use-case for Xeon Phi processors. Relative to other90

ATLAS production workloads, simulation is CPU-heavy and uses little I/O. Not coincidentally,91

these are the same reasons that simulation is the primary ATLAS workload for supercomputers.92

The support for multi-threading is expected to be a powerful advantage in running effectively in93

the constrained memory environment of Xeon Phi cards. However, some challenges are expected94

as well. It is well known that vectorization is essential for effective utilization of KNL processors,95

but ATLAS simulation code does not vectorize well. Also, the highly object-oriented nature of96

ATLAS and Geant4 code tends to result in large code size and poor memory access patterns,97

which could hurt performance on KNL devices.98

4. Performance measurements99

The runtime performance of G4AtlasMT was measured on both Xeon and Xeon Phi machines.100

For the Xeon measurements, both a 16-core Ivy Bridge machine (E5-2650 v2 @ 2.60GHz) and101

a Cori Phase 1 Haswell node (E5-2698 v3 @ 2.30GHz) were used. The Xeon Phi measurements102

were taken on a KNL testbed (7210 @ 1.30GHz) for Cori Phase 2.103

The important performance metrics are the event throughput and the memory consumption104

(RSS), and the scaling of these metrics with the number of worker threads. Figures 2 and 3105

show the measurements for the simulation of a Z → ττ sample. On the Xeon, the throughput106

scales perfectly up to the physical number of cores on the machine (16), and small gain is seen in107

the hyper-threading regime. The memory consumption shows a nice gradual scaling with each108

additional worker thread adding only about 70 MB. On the Xeon Phi, good scaling is again109

seen up to the number of physical cores on the device (64), with substantial throughput gains110

seen in hyper-threading all the way up to the maximum 256 threads. As with the Xeon, the111

memory consumption on the Xeon Phi is gradual and linear, reaching about 14 GB when the112

device is fully loaded. For the sake of comparison, the scaling results for purely multi-process113

jobs are shown in Figure 4. The per-worker contribution to the memory consumption is about114

five times larger in multi-process jobs compared to multi-threaded jobs, a substantial reduction115

in memory footprint.116

To test the scaling of G4AtlasMT in more extreme configurations, a single-muon particle gun117

sample was used. Whereas the Z → ττ sample is representative of typical ATLAS simulation118



Figure 2. Event processing throughput (left) and memory consumption (right) on Intel Ivy
Bridge Xeon for multi-threaded jobs with a Z → ττ sample. The number of events processed is
scaled as 50 times the number of threads [9].

Figure 3. Event processing throughput (left) and memory consumption (right) on Intel KNL
Xeon Phi for multi-threaded jobs with a Z → ττ sample. The number of events processed is
scaled as 10 times the number of threads [9].

Figure 4. Event processing throughput (left) and memory consumption (right) on Intel KNL
Xeon Phi for multi-process jobs with a Z → ττ sample. The number of events processed is
scaled as 10 times the number of threads [9].



production jobs and may take around 5 min per event, the single-muon sample typically takes119

less than one second to simulate one event. This applies more pressure to the scheduling system120

and other pieces of the framework infrastructure. Figures 5 and 6 show the results for the Xeon121

and the Xeon Phi, respectively. In this case, the throughput scales poorly above 180 threads.122

The source of the poor scaling was discovered to be the bottleneck in the sequential output123

stream which writes the simulated hit collections to the output file.124

Figure 5. Event processing throughput (left) and memory consumption (right) on Intel Ivy
Bridge Xeon with a single-muon sample. The number of events processed is scaled as 1000 times
the number of threads [9].

Figure 6. Event processing throughput (left) and memory consumption (right) on Intel KNL
Xeon Phi with a single-muon sample. The number of events processed is scaled as 1000 times
the number of threads. The sharp decrease in throughput starting around 180 threads is due to
a bottleneck in the output serialization layer [9].

Despite good scaling results on the KNL, the absolute event throughput is not impressive.125

Table 1 summarizes and compares the measured event throughput for a single worker thread126

and for a fully-loaded device. The maximal throughput achieved on the KNL with the Z → ττ127

sample is only slightly higher than the 16-core Ivy Bridge. A fairer comparison would be a 32-128

core Haswell processor, which should have substantially higher throughput. The single-thread129

performance on KNL is observed to be about 6-7 times slower than the Xeon. While some130

slowdown is expected due to the reduced clock-rate and sophistication of the Airmont cores,131

this large difference warrants further investigation.132



To further understand the performance characteristics on KNL, Intel VTune Amplifier was133

used to collect and summarize various metrics based on hardware counters. Table 2 shows some134

of the interesting metrics reported by VTune when comparing G4AtlasMT on a Haswell to the135

KNL. The clocks-per-instruction rate on Haswell is fairly reasonable, but on KNL an average136

of three clock cycles are needed to execute every instruction. In addition, VTune reports that137

the application is highly front-end bound, meaning that the processors are frequently unable138

to load instructions fast enough to fill the execution pipeline. Finally, we see that the rate of139

instruction cache misses is nearly 1 on KNL. Such results can be due to poor code layout and140

large code size.141

Table 1. Throughput summary table for an Ivy Bridge Xeon and a KNL Xeon Phi. Results
are shown for Z → ττ and single-muon samples and are split for the case of a single worker
thread and a fully-loaded device (or best performing configuration). Ratios of the Xeon Phi to
Xeon throughput are shown in the KNL speedup column.

Sample Threads
Throughput [events/s]

KNL speedup
Ivy Bridge KNL

Z → ττ
single 0.00257 0.000345 0.134
full 0.0421 0.0445 1.06

Single µ
single 1.38 0.239 0.173
full 24.6 23.2 0.943

Table 2. Profiling metrics obtained with VTune Amplifier. A single worker thread was used to
process a Z → µµ sample.

Architecture CPI rate Front-end bound ICache misses Bad speculation Back-end bound

KNL 3.0 60.2% 0.96 2.4% 18.6%
Haswell 0.9 31.5% 0.09 11.7% 27.6%

5. Conclusion142

It has been shown that multi-threaded ATLAS simulation can run on Knights Landing Xeon Phi143

machines. Good scaling is observed in typical production samples in terms of event throughput144

and in memory consumption. Multi-threading allows for substantial decreases in the memory145

footprint of jobs relative to multi-process jobs.146

More work is needed to understand and improve the performance on KNL in order to use this147

architecture effectively. The current performance achieved is comparable to a 16-core Ivy Bridge148

Xeon, which falls short of the full potential of KNL processors. Since the profiling studies thus149

far have pointed to issues with large code size and poor code layout, steps should be taken to try150

and mitigate these problems. Some things to try include pruning unused or unnecessary pieces151

of code out of the shared libraries, improving code inlining, using statically linked libraries for152

problematic parts of the builds (e.g. Geant4), and using profiler guided optimization to improve153

the binaries.154



References155

[1] ATLAS Collaboration, 2008 “The ATLAS Experiment at the CERN Large Hadron Collider,” JINST 3, S08003.156

doi:10.1088/1748-0221/3/08/S08003157

[2] Calafiura P, Lavrijsen W, Leggett C, Marino M, Quarrie D 2004 “The athena control framework in production,158

new developments and lessons learned” Interlaken, Computing in high energy physics and nuclear physics159

456-458160

[3] Calafiura P, Lampl W, Leggett C, Malon D, Stewart G A, Wynne B, 2015 “Development of a Next161

Generation Concurrent Framework for the ATLAS Experiment,” J. Phys. Conf. Ser. 664, no. 7, 072031.162

doi:10.1088/1742-6596/664/7/072031163

[4] Stewart G A et al., 2016 “Multi-threaded software framework development for the ATLAS experiment,” J.164

Phys. Conf. Ser. 762, no. 1, 012024. doi:10.1088/1742-6596/762/1/012024165

[5] Clemencic M, Hegner B, Mato P, Piparo D, 2014 “Introducing concurrency in the Gaudi data processing166

framework,” J. Phys. Conf. Ser. 513, no. 2, 022013. doi:10.1088/1742-6596/513/2/022013167

[6] Aad G et al., 2010 “The ATLAS Simulation Infrastructure,” Eur. Phys. J. C 70 823. doi:10.1140/epjc/s10052-168

010-1429-9169

[7] Agostinelli S et al., 2003 “Geant4–a simulation toolkit,” Nucl. Instrum. Meth. A 506 250-303.170

doi:10.1016/S0168-9002(03)01368-8171

[8] Calafiura P, Leggett C, Seuster R, Tsulaia V, Gemmeren P V, 2015 “Running ATLAS workloads within172

massively parallel distributed applications using Athena Multi-Process framework (AthenaMP)” J. Phys.173

Conf. Ser. 664 no. 7, 072050. doi:10.1088/1742-6596/664/7/072050174

[9] Farrell S, Dotti A, Calafiura P, Leggett C, Tsulaia V, 2016 “Multi-threaded ATLAS Simulation on Intel175

Knights Landing Processors” ATL-SOFT-SLIDE-2016-739. https://cds.cern.ch/record/2220833176


