
A
TL

-D
A

Q
-P

R
O

C
-2

01
6-

04
2

21
D

ec
em

be
r

20
16

The new inter process communication middle-ware for the 1

ATLAS Trigger and Data Acquisition system 2

Serguei Kolos1 and Reiner Hauser2 on behalf of the ATLAS TDAQ Collaboration 3
1. University of California Irvine, 4172 Frederick Reines Hall, Irvine, CA, USA. 4
2. Michigan State University, Est. 1855. East Lansing, Michigan, USA. 5
serguei.kolos@cern.ch 6

Abstract. The ATLAS Trigger & Data Acquisition (TDAQ) project was started almost twenty 7
years ago with the aim of providing scalable distributed data collection system for the 8
experiment. While the software dealing with physics data flow was implemented by directly 9
using the low-level communication protocols, like TCP and UDP, the control and monitoring 10
infrastructure services for the TDAQ system were implemented on top of the CORBA 11
communication middle-ware. CORBA provides a high-level object oriented abstraction for the 12
inter process communication, hiding communication complexity from the developers. This 13
approach speeds up and simplifies development of communication services but incurs some 14
extra cost in terms of performance and resources overhead. Our experience of using CORBA 15
for control and monitoring data exchange in the distributed TDAQ system was very successful, 16
mostly due to the outstanding quality of the CORBA brokers, which have been used in the 17
project: omniORB for C++ and JacORB for Java. However, due to a number of shortcomings 18
and technical issues the CORBA standard has being gradually losing its initial popularity in the 19
last decade and the long term support for the open source implementations of CORBA 20
becomes questionable. Taking into account the time scale of the ATLAS experiment, which 21
goes beyond the next two decades, the TDAQ infrastructure team reviewed the requirements 22
for the inter process communication middle-ware and performed the survey of the 23
communication software market in order to access the modern technologies which raised in the 24
past years. Based on the result of that survey several technologies were evaluated for 25
estimating the long-term benefits and drawbacks of using them as a possible replacement for 26
CORBA during the next long LHC shutdown, which is scheduled in 2 years from now. The 27
evaluation concluded recently with the recommendation of using communication library called 28
ZeroMQ in place of CORBA. The article presents the methodology and the results of the 29
evaluation as well as the plans of organizing the migration from CORBA to ZeroMQ. 30

1. Introduction 31
The TDAQ [1] online system of the ATLAS [2] experiment is composed of tens of thousands of 32
software processes distributed over several thousand computers. For the system to function properly 33
all of these processes must be operated in a coherent way, thus making Inter-Process Communication 34
(IPC) a crucial task. The current implementation of the TDAQ control system, which was born in 35
1998, is based on the CORBA [3] communication middleware. Two CORBA implementations have 36
been used: JacORB [4] for Java and omniORB [5] for C++. They both satisfied the performance and 37
scalability requirements and simplified development and maintenance of the TDAQ software. 38
However, after more than 10 years of successful experience with the CORBA software, we have 39
decided that the time is right to explore if there are new products on the IPC software market which 40
can improve our system performance and maintainability. 41

2. CORBA in the light of modern software practices 42
CORBA is an open standard for distributed object computing, which was proposed in 1991 by the 43
Object Management Group (OMG). This was the first attempt to provide a broad high-level standard 44
for information exchange in a distributed software environment. The standard was quite successful and 45
played an important role in the overall evolution of distributed software systems. However many key 46
features of the CORBA standard have a number of built-in drawbacks, which have become more and 47
more prominent in recent years, making CORBA less attractive for modern software development. 48

2.1. The Interface Definition Language 49
CORBA proposed a dedicated language called Interface Definition Language (IDL) for 50
communication protocol description. The code for a specific programming language can be 51
automatically generated from such a description. This approach provided a powerful yet simple 52
solution for establishing communication between different programming languages and operating 53
systems. While IDL was originally one of the strongest points of the CORBA standard, the passage of 54
time has seen it become one of the weakest. The issue was that the standard is very strict with defining 55
the mapping from the IDL declarations to the programming languages, thus practically excluding any 56
opportunity to benefit from language evolution. While the most popular programming languages, like 57
C++ and Java, evolved significantly in the last decade the CORBA API couldn’t benefit from that so 58
now the CORBA API looks archaic and awkward. The C++ IDL mapping efficiency also suffers from 59
the absence of some recently introduced features like zero-copy or move-assignment semantics. 60

2.2. CORBA brokers interoperability 61
Another strong point of the CORBA standard was interoperability between different CORBA 62
implementations, which is required by the standard. This is a good feature, which unfortunately led to 63
some issues with communication efficiency as all CORBA implementations were forced to use the 64
same communication protocol, called IIOP, to support interoperability. The problem is that IIOP has 65
some drawbacks, like for example the data size and processing time overhead due to the data 66
alignment requirements. 67

2.3. The source code compatibility 68
The standard precisely defines the API for any possible operation including object creation, 69
registration, activation and so on for assuring source code compatibility between different CORBA 70
implementations. This requirement forced any CORBA broker to provide a high-level object-oriented 71
API, which completely hides all aspects of the underlying communication. This of course simplifies 72
software development and maintenance but at the same time adds a noticeable performance overhead 73
and reduces the flexibility of the communication implementation. In practice that would also make any 74
end user CORBA applications strongly dependent on the quality of the chosen CORBA 75
implementation, thus making problematic a transparent migration from one CORBA broker to another. 76

3. The modular communication architecture 77
The rapid evolution of programming languages and the increasing popularity of the open source 78
software development model drastically changed the landscape of the IPC software domain in the last 79
decade. The modern open source market offers a large variety of high quality software packages, 80
which can be used for implementing the basic components of a high-level communication system. A 81
combination of such packages is an attractive alternative to a monolithic heavyweight communication 82
system like CORBA. Such a solution implies that the communication system is organized into a 83
hierarchy of software layers with well-defined interfaces between them, which allow changes to the 84
implementation for these layers in a transparent way for end user applications. Another important 85
property of this design is the transparency of the layers, which means that the APIs of all layers are 86
exposed to the end users and can be used independently of each other. This gives the full advantage of 87
using the high-level API for a simple communication implementation while is still leaving open the 88
possibility of implementing performance-critical applications using the low-level communication API 89
to increase efficiency. 90

Figure 1. Modular communication architecture for the new ATLAS TDAQ IPC software.
 91
Figure 1 shows the architecture of the new IPC software for the ATLAS TDAQ system, which has 92
been designed using this approach. This software consists of three main layers: 93

1. A low-level communication library, which provides a simple and efficient API for exchanging 94
unstructured data, i.e. messages, between software applications independently of their 95
location. This component provides abstraction for the network communication layer. 96

2. The data marshalling and unmarshalling components provide a way of passing structured 97
information between applications. These components define the API for the conversion of an 98
arbitrary data structure into a message, which can be passed over a network and vice versa. 99
This API can have multiple implementations, which may be interchanged transparently for the 100
end users. The only limitation is that any implementation of this API has to support all 101
programming languages used in the ATLAS TDAQ system. A user application can use these 102
components directly to convert arbitrary information to the network specific format before 103
passing it to another application using the first layer API. 104

3. The Remote Procedure Call (RPC) layer provides the top level API for inter-process 105
communication, making remote calls look like the normal local ones in a given programming 106
language. This is the top-most API layer, which is simple to use but incurs a relatively high 107
overhead with respect to the lower layers due to the generic code, which is capable of 108
transparently mapping an arbitrary user function to an RPC procedure. 109

4. The new IPC software implementation 110
To simplify implementation and maintenance of the new IPC software we decided to use the existing 111
open software projects as much as possible. As a result the fully functional IPC implementation has 112
only a few hundred lines of custom code, which was provided mostly for the RPC layer 113
implementation, while the implementations of the first two layers are almost entirely based on external 114
software. 115

4.1. Using ZeroMQ as the network transport layer 116
After comparing a number of communication libraries available on the open software market we have 117
chosen ZeroMQ [6] as the implementation of the network communication layer. ZeroMQ is a low-118
level C-style library for I/O based on an object resembling a standard socket, but which hides all the 119
state management and error handling complexity one would normally expect. ZeroMQ supports most 120
of the widely used programming languages including C, C++, C#, Java, Python, Ruby, and many 121
others. ZeroMQ is open source software with large and very active user and developer communities. 122
ZeroMQ provides a simple yet mature API for remote communication, offering the full power of a 123
classic socket, becoming a de facto standard for many modern communication software projects. In 124
order to support some common services used in the TDAQ system, some extra classes have been 125

Custom
Marshaller

RPC Client
API

Data
Marshall

API

Simple RPC
Client

Performance
Optimized

Client
Performance

Optimized
Server

RPC Server
API

Data
Unmarshall

API

Network
Communication

Library

Custom
Unmarshaller

Simple RPC
Server

added on top of the ZeroMQ API, but in agreement with our design approach they don’t imply any 126
limitations to the direct use of the ZeroMQ native classes. 127

4.2. Data serialization 128
Serialization is an important ingredient of a software communication system, which has a major 129
impact on its performance. For the sake of flexibility we have defined a simple interface for 130
marshalling, i.e. converting a programming language structure to the sequence of bytes and 131
unmarshalling, which does the opposite operation. 132

public interface ISerializer {
 public class Request {
 private static final AtomicLong gid = new AtomicLong(0);

 public final Method method;
 public final List<Object> params;
 public final long id;
 }

 String serializeRequest(Request req);

 Request deserializeRequest(String str, Map<String, Method> methods);

 String serializeResponse(Object resp, Exception e, long id);

 <T> T deserializeResponse(String str, Class<T> clazz) throws Exception;
}

Figure 2. Example IPC API serialisation interface (Java).

Figure 2 shows how such an interface is declared for the IPC API in Java. The interface has four 133
methods: two for marshalling and unmarshalling requests on the client side and another two doing the 134
same operations for a server response. The default implementation of this interface uses the Google 135
Gson [7] library to pass the data over a network in Json format. The default implementation works fine 136
for simple requests, which don’t carry too much structured data. On the other hand for performance-137
optimized applications one can provide another implementation of this interface, which can be easily 138
plugged into the IPC library and used transparently without affecting the code of the communication 139
applications. 140

4.3. The RPC API 141
The TDAQ online software system consists of a number of communication services providing specific 142
APIs for exchanging different types of information. To simplify development and maintenance of such 143
services we tried to implement the RPC communication layer for the IPC software in such a way that a 144
remote request would look as much as possible like a local one. It wasn’t possible to achieve this goal 145
completely in the C++ API, but in Java this was successfully implemented using the Java Reflection 146
API [8]. 147
Following the standard Java approach a user shall first declare a new interface with all methods, which 148
can be called remotely. Figure 3 shows a simple example of such an interface. 149

public interface IHello {
 void say(String greetings);
}

Figure 3. A simple custom communication interface (Java).

 150
Figure 4 demonstrates how a simple IPC Java server can be implemented. The HelloImpl class 151
implements the IHello interface in the same way as a normal Java interface. Then the instance of the 152

HelloImpl class is given as a parameter to the IPC Server class constructor, which is bound to the 153
specific network endpoint. 154

public class HelloImpl implements IHello
{
 @Override
 public void say(String greetings) {
 System.out.println(greetings);
 }

 public static void main(String[] a){
 Server server = Server.build(
 “tcp://localhost:5555”,
 new HelloImpl());

 server.wait();
 }
}

public static void main(String[] a)
{
 IHello hello = Client.build(
 IHello.class,
 "tcp://localhost:5555");

 hello.say(“Hello, World”);
 …
}

Figure 4. Simple RPC server (Java). Figure 5. Simple RPC Client (Java).

The client implementation is shown in Figure 5. It uses the static Client.build function giving it two 155
parameters: the server’s endpoint and the interface class. The call returns an instance of the special 156
implementation of the IHello interface, which can be used to translate a local call to an interface’s 157
method to the invocation of the corresponding function on the remote server. 158

5. ZeroMQ performance and scalability tests 159
Before choosing ZeroMQ as the communication layer implementation for the TDAQ IPC software we 160
performed several tests to verify its performance and understand how it scales with the number of 161
communicating applications. For comparison we also repeated the same tests with the omniORB 162
CORBA broker and the ICE [9] framework from ZeroC company. ICE is a modern CORBA-like 163
object-oriented RPC framework, which is free of many CORBA drawbacks, but still provides a 164
complex high-level monolithic IPC solution. 165
In order to test how well the communication software scales with the number of communicating 166
clients, the following configurations was tested for each of them: 167

• A single server application running on a dedicated computer and answering to all the clients’ 168
requests. For all tests the servers were running the same number of threads: 1 I/O thread for 169
incoming request routing and 20 worker threads for executing request code. 170

• Client applications were equally distributed on a cluster of computers connected to the server 171
via the local network. Each client sent a request containing a 1-byte string to the server and 172
received the same string back as fast as possible. 173

5.1. Hardware configuration for the tests 174
All tests were performed at a facility comprising around 200 computers connected to a local network 175
via 10Gb Ethernet. Server applications ran on a commodity server with Intel Xeon E5645 4 core 2.4 176
GHz CPU [10] and 24 GB RAM. Client applications were equally distributed over 100 computers 177
with Intel Xeon E5420 4 core 2.5 GHz CPU [11] and 16 GB RAM. 178

5.2. Test results 179
Figure 6 shows the average request execution time for all three implementations with different 180
numbers of concurrent clients. The results clearly indicate that all the systems have excellent 181
scalability and offer very good performance. ZeroMQ uses a bit more time for a single request, which 182
can be explained by the differences in handling requests on the client side between ZeroMQ and the 183
other two systems. 184
Contrary to omniORB and ICE brokers ZeroMQ does not write data to the network socket from the 185
user thread. Instead the write function just places the data into a queue which is then handled by 186

another thread dedicated to IO operations. This thread reads this data from the queue and sends it to 187
the network. 188
Figure 7 shows the average CPU time which the servers spent in handling a single remote request. For 189
these tests the implementation of the remote method did nothing apart from returning its input 190
parameter. The results therefore show the pure overhead of the communication software itself. While 191
ICE and omniORB are very similar in that respect, ZeroMQ has much smaller overhead due its 192
simplicity. 193

Figure 6. Average wall clock time for a single

request execution (measured on the client).
Figure 7. Average CPU time for a single request

execution (measured on the server).

6. Conclusion 194
The CORBA standard has a long and successful history, but now the interest of the IPC software 195
development community has been shifting away from universal frameworks to relatively low-level 196
messaging systems. Many such systems are so simple that they are distributed in the form of a library 197
with a simple yet very powerful API. The new implementation of the ATLAS TDAQ IPC software 198
uses such a library called ZeroMQ in conjunction with a modular software architecture approach. This 199
approach gives an attractive alternative to the usage of a traditional high-level object-oriented 200
communication framework by offering a high performance, simple and flexible solution for 201
communication system development. The new IPC software offers a RPC-style API for implementing 202
simple communications, but at the same time makes it possible to customize data serialization along 203
with providing access to the low-level communication library API for performance optimization. 204

7. References 205
[1] ATLAS Collaboration 2003 ATLAS high-level trigger data-acquisition and controls Technical 206

Design Report ATLAS-TDR-016 CERN-LHCC-2003-022. 207
[2] ATLAS Collaboration 2008 The ATLAS experiment at the CERN Large Hadron Collider 208

Journal of Instrumentation JINST 3 S08003. 209
[3] Common Object Request Broker Architecture, www.corba.org 210
[4] JacORB, www.jacorb.org 211
[5] omniORB, omniorb.sourceforge.net 212
[6] Distributed Messaging, www.zeromq.org 213
[7] A Java serialization/deserialization library, https://github.com/google/gson 214
[8] Java Reflection API tutorial, https://docs.oracle.com/javase/tutorial/reflect/ 215
[9] Ice - Comprehensive RPC Framework, https://zeroc.com/products/ice 216
[10] Intel Xeon Processor E564, http://ark.intel.com/de/products/48768/Intel-Xeon-Processor-217

E5645-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI 218
[11] Intel Xeon Processor E5420, http://ark.intel.com/products/33927/Intel-Xeon-Processor-E5420-219

12M-Cache-2_50-GHz-1333-MHz-FSB 220

0

2

4

6

8

10

12

300 clients 600 clients 900 clients 1100 clients

Average request time (ms)

omniORB ICE ZeroMQ

0

2

4

6

8

10

12

300 600 900 1100

Server CPU time per request (us)

omniORB ICE ZeroMQ

