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Abstract. The ATLAS Trigger & Data Acquisition (TDAQ) project was started almost twenty 7 
years ago with the aim of providing scalable distributed data collection system for the 8 
experiment. While the software dealing with physics data flow was implemented by directly 9 
using the low-level communication protocols, like TCP and UDP, the control and monitoring 10 
infrastructure services for the TDAQ system were implemented on top of the CORBA 11 
communication middle-ware. CORBA provides a high-level object oriented abstraction for the 12 
inter process communication, hiding communication complexity from the developers. This 13 
approach speeds up and simplifies development of communication services but incurs some 14 
extra cost in terms of performance and resources overhead. Our experience of using CORBA 15 
for control and monitoring data exchange in the distributed TDAQ system was very successful, 16 
mostly due to the outstanding quality of the CORBA brokers, which have been used in the 17 
project: omniORB for C++ and JacORB for Java. However, due to a number of shortcomings 18 
and technical issues the CORBA standard has being gradually losing its initial popularity in the 19 
last decade and the long term support for the open source implementations of CORBA 20 
becomes questionable. Taking into account the time scale of the ATLAS experiment, which 21 
goes beyond the next two decades, the TDAQ infrastructure team reviewed the requirements 22 
for the inter process communication middle-ware and performed the survey of the 23 
communication software market in order to access the modern technologies which raised in the 24 
past years. Based on the result of that survey several technologies were evaluated for 25 
estimating the long-term benefits and drawbacks of using them as a possible replacement for 26 
CORBA during the next long LHC shutdown, which is scheduled in 2 years from now. The 27 
evaluation concluded recently with the recommendation of using communication library called 28 
ZeroMQ in place of CORBA. The article presents the methodology and the results of the 29 
evaluation as well as the plans of organizing the migration from CORBA to ZeroMQ. 30 

1. Introduction 31 
The TDAQ [1] online system of the ATLAS [2] experiment is composed of tens of thousands of 32 
software processes distributed over several thousand computers. For the system to function properly 33 
all of these processes must be operated in a coherent way, thus making Inter-Process Communication 34 
(IPC) a crucial task. The current implementation of the TDAQ control system, which was born in 35 
1998, is based on the CORBA [3] communication middleware. Two CORBA implementations have 36 
been used: JacORB [4] for Java and omniORB [5] for C++. They both satisfied the performance and 37 
scalability requirements and simplified development and maintenance of the TDAQ software. 38 
However, after more than 10 years of successful experience with the CORBA software, we have 39 
decided that the time is right to explore if there are new products on the IPC software market which 40 
can improve our system performance and maintainability. 41 



 
 
 
 
 
 

2. CORBA in the light of modern software practices 42 
CORBA is an open standard for distributed object computing, which was proposed in 1991 by the 43 
Object Management Group (OMG). This was the first attempt to provide a broad high-level standard 44 
for information exchange in a distributed software environment. The standard was quite successful and 45 
played an important role in the overall evolution of distributed software systems. However many key 46 
features of the CORBA standard have a number of built-in drawbacks, which have become more and 47 
more prominent in recent years, making CORBA less attractive for modern software development. 48 

2.1. The Interface Definition Language 49 
CORBA proposed a dedicated language called Interface Definition Language (IDL) for 50 
communication protocol description. The code for a specific programming language can be 51 
automatically generated from such a description. This approach provided a powerful yet simple 52 
solution for establishing communication between different programming languages and operating 53 
systems. While IDL was originally one of the strongest points of the CORBA standard, the passage of 54 
time has seen it become one of the weakest. The issue was that the standard is very strict with defining 55 
the mapping from the IDL declarations to the programming languages, thus practically excluding any 56 
opportunity to benefit from language evolution. While the most popular programming languages, like 57 
C++ and Java, evolved significantly in the last decade the CORBA API couldn’t benefit from that so 58 
now the CORBA API looks archaic and awkward. The C++ IDL mapping efficiency also suffers from 59 
the absence of some recently introduced features like zero-copy or move-assignment semantics. 60 

2.2. CORBA brokers interoperability 61 
Another strong point of the CORBA standard was interoperability between different CORBA 62 
implementations, which is required by the standard. This is a good feature, which unfortunately led to 63 
some issues with communication efficiency as all CORBA implementations were forced to use the 64 
same communication protocol, called IIOP, to support interoperability. The problem is that IIOP has 65 
some drawbacks, like for example the data size and processing time overhead due to the data 66 
alignment requirements. 67 

2.3. The source code compatibility 68 
The standard precisely defines the API for any possible operation including object creation, 69 
registration, activation and so on for assuring source code compatibility between different CORBA 70 
implementations. This requirement forced any CORBA broker to provide a high-level object-oriented 71 
API, which completely hides all aspects of the underlying communication. This of course simplifies 72 
software development and maintenance but at the same time adds a noticeable performance overhead 73 
and reduces the flexibility of the communication implementation. In practice that would also make any 74 
end user CORBA applications strongly dependent on the quality of the chosen CORBA 75 
implementation, thus making problematic a transparent migration from one CORBA broker to another. 76 

3. The modular communication architecture 77 
The rapid evolution of programming languages and the increasing popularity of the open source 78 
software development model drastically changed the landscape of the IPC software domain in the last 79 
decade. The modern open source market offers a large variety of high quality software packages, 80 
which can be used for implementing the basic components of a high-level communication system. A 81 
combination of such packages is an attractive alternative to a monolithic heavyweight communication 82 
system like CORBA. Such a solution implies that the communication system is organized into a 83 
hierarchy of software layers with well-defined interfaces between them, which allow changes to the 84 
implementation for these layers in a transparent way for end user applications. Another important 85 
property of this design is the transparency of the layers, which means that the APIs of all layers are 86 
exposed to the end users and can be used independently of each other. This gives the full advantage of 87 
using the high-level API for a simple communication implementation while is still leaving open the 88 
possibility of implementing performance-critical applications using the low-level communication API 89 
to increase efficiency.  90 



 
 
 
 
 
 

 

Figure 1. Modular communication architecture for the new ATLAS TDAQ IPC software. 
 91 
Figure 1 shows the architecture of the new IPC software for the ATLAS TDAQ system, which has 92 
been designed using this approach. This software consists of three main layers: 93 

1. A low-level communication library, which provides a simple and efficient API for exchanging 94 
unstructured data, i.e. messages, between software applications independently of their 95 
location. This component provides abstraction for the network communication layer. 96 

2. The data marshalling and unmarshalling components provide a way of passing structured 97 
information between applications. These components define the API for the conversion of an 98 
arbitrary data structure into a message, which can be passed over a network and vice versa. 99 
This API can have multiple implementations, which may be interchanged transparently for the 100 
end users. The only limitation is that any implementation of this API has to support all 101 
programming languages used in the ATLAS TDAQ system. A user application can use these 102 
components directly to convert arbitrary information to the network specific format before 103 
passing it to another application using the first layer API. 104 

3. The Remote Procedure Call (RPC) layer provides the top level API for inter-process 105 
communication, making remote calls look like the normal local ones in a given programming 106 
language. This is the top-most API layer, which is simple to use but incurs a relatively high 107 
overhead with respect to the lower layers due to the generic code, which is capable of 108 
transparently mapping an arbitrary user function to an RPC procedure.  109 

4. The new IPC software implementation 110 
To simplify implementation and maintenance of the new IPC software we decided to use the existing 111 
open software projects as much as possible. As a result the fully functional IPC implementation has 112 
only a few hundred lines of custom code, which was provided mostly for the RPC layer 113 
implementation, while the implementations of the first two layers are almost entirely based on external 114 
software.  115 

4.1. Using ZeroMQ as the network transport layer 116 
After comparing a number of communication libraries available on the open software market we have 117 
chosen ZeroMQ [6] as the implementation of the network communication layer. ZeroMQ is a low-118 
level C-style library for I/O based on an object resembling a standard socket, but which hides all the 119 
state management and error handling complexity one would normally expect. ZeroMQ supports most 120 
of the widely used programming languages including C, C++, C#, Java, Python, Ruby, and many 121 
others. ZeroMQ is open source software with large and very active user and developer communities. 122 
ZeroMQ provides a simple yet mature API for remote communication, offering the full power of a 123 
classic socket, becoming a de facto standard for many modern communication software projects. In 124 
order to support some common services used in the TDAQ system, some extra classes have been 125 
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added on top of the ZeroMQ API, but in agreement with our design approach they don’t imply any 126 
limitations to the direct use of the ZeroMQ native classes.     127 

4.2. Data serialization 128 
Serialization is an important ingredient of a software communication system, which has a major 129 
impact on its performance. For the sake of flexibility we have defined a simple interface for 130 
marshalling, i.e. converting a programming language structure to the sequence of bytes and 131 
unmarshalling, which does the opposite operation.  132 
 
public interface ISerializer { 
  public class Request { 
    private static final AtomicLong gid = new AtomicLong(0); 
  
    public final Method method; 
    public final List<Object> params; 
    public final long id; 
  } 
 
  String serializeRequest(Request req); 
 
  Request deserializeRequest(String str, Map<String, Method> methods); 
 
  String serializeResponse(Object resp, Exception e, long id); 
 
  <T> T deserializeResponse(String str, Class<T> clazz) throws Exception; 
} 

Figure 2. Example IPC API serialisation interface (Java). 

Figure 2 shows how such an interface is declared for the IPC API in Java. The interface has four 133 
methods: two for marshalling and unmarshalling requests on the client side and another two doing the 134 
same operations for a server response. The default implementation of this interface uses the Google 135 
Gson [7] library to pass the data over a network in Json format. The default implementation works fine 136 
for simple requests, which don’t carry too much structured data. On the other hand for performance-137 
optimized applications one can provide another implementation of this interface, which can be easily 138 
plugged into the IPC library and used transparently without affecting the code of the communication 139 
applications.  140 

4.3. The RPC API 141 
The TDAQ online software system consists of a number of communication services providing specific 142 
APIs for exchanging different types of information. To simplify development and maintenance of such 143 
services we tried to implement the RPC communication layer for the IPC software in such a way that a 144 
remote request would look as much as possible like a local one. It wasn’t possible to achieve this goal 145 
completely in the C++ API, but in Java this was successfully implemented using the Java Reflection 146 
API [8].   147 
Following the standard Java approach a user shall first declare a new interface with all methods, which 148 
can be called remotely. Figure 3 shows a simple example of such an interface.  149 

 
public interface IHello { 
  void say(String greetings); 
} 

Figure 3. A simple custom communication interface (Java). 

 150 
Figure 4 demonstrates how a simple IPC Java server can be implemented. The HelloImpl class 151 
implements the IHello interface in the same way as a normal Java interface. Then the instance of the 152 



 
 
 
 
 
 

HelloImpl class is given as a parameter to the IPC Server class constructor, which is bound to the 153 
specific network endpoint.  154 
 
public class HelloImpl implements IHello  
{ 
  @Override 
  public void say(String greetings) { 
    System.out.println(greetings); 
  } 
 
  public static void main(String[] a){ 
    Server server = Server.build( 
         “tcp://localhost:5555”, 
         new HelloImpl()); 
 
    server.wait(); 
  } 
} 

 
public static void main(String[] a) 
{ 
  IHello hello = Client.build( 
         IHello.class, 
         "tcp://localhost:5555"); 
 
  hello.say(“Hello, World”); 
  … 
} 

Figure 4. Simple RPC server (Java). Figure 5. Simple RPC Client (Java). 

The client implementation is shown in Figure 5. It uses the static Client.build function giving it two 155 
parameters: the server’s endpoint and the interface class. The call returns an instance of the special 156 
implementation of the IHello interface, which can be used to translate a local call to an interface’s 157 
method to the invocation of the corresponding function on the remote server.  158 

5. ZeroMQ performance and scalability tests 159 
Before choosing ZeroMQ as the communication layer implementation for the TDAQ IPC software we 160 
performed several tests to verify its performance and understand how it scales with the number of 161 
communicating applications. For comparison we also repeated the same tests with the omniORB 162 
CORBA broker and the ICE [9] framework from ZeroC company. ICE is a modern CORBA-like 163 
object-oriented RPC framework, which is free of many CORBA drawbacks, but still provides a 164 
complex high-level monolithic IPC solution.  165 
In order to test how well the communication software scales with the number of communicating 166 
clients, the following configurations was tested for each of them: 167 

• A single server application running on a dedicated computer and answering to all the clients’ 168 
requests. For all tests the servers were running the same number of threads: 1 I/O thread for 169 
incoming request routing and 20 worker threads for executing request code. 170 

• Client applications were equally distributed on a cluster of computers connected to the server 171 
via the local network. Each client sent a request containing a 1-byte string to the server and 172 
received the same string back as fast as possible. 173 

5.1. Hardware configuration for the tests 174 
All tests were performed at a facility comprising around 200 computers connected to a local network 175 
via 10Gb Ethernet. Server applications ran on a commodity server with Intel Xeon E5645 4 core 2.4 176 
GHz CPU [10] and 24 GB RAM. Client applications were equally distributed over 100 computers 177 
with Intel Xeon E5420 4 core 2.5 GHz CPU [11] and 16 GB RAM. 178 

5.2. Test results 179 
Figure 6 shows the average request execution time for all three implementations with different 180 
numbers of concurrent clients. The results clearly indicate that all the systems have excellent 181 
scalability and offer very good performance. ZeroMQ uses a bit more time for a single request, which 182 
can be explained by the differences in handling requests on the client side between ZeroMQ and the 183 
other two systems.   184 
Contrary to omniORB and ICE brokers ZeroMQ does not write data to the network socket from the 185 
user thread. Instead the write function just places the data into a queue which is then handled by 186 



 
 
 
 
 
 

another thread dedicated to IO operations. This thread reads this data from the queue and sends it to 187 
the network.  188 
Figure 7 shows the average CPU time which the servers spent in handling a single remote request. For 189 
these tests the implementation of the remote method did nothing apart from returning its input 190 
parameter. The results therefore show the pure overhead of the communication software itself. While 191 
ICE and omniORB are very similar in that respect, ZeroMQ has much smaller overhead due its 192 
simplicity. 193 

  
Figure 6. Average wall clock time for a single 

request execution (measured on the client). 
Figure 7. Average CPU time for a single request 

execution (measured on the server). 

6. Conclusion 194 
The CORBA standard has a long and successful history, but now the interest of the IPC software 195 
development community has been shifting away from universal frameworks to relatively low-level 196 
messaging systems. Many such systems are so simple that they are distributed in the form of a library 197 
with a simple yet very powerful API. The new implementation of the ATLAS TDAQ IPC software 198 
uses such a library called ZeroMQ in conjunction with a modular software architecture approach. This 199 
approach gives an attractive alternative to the usage of a traditional high-level object-oriented 200 
communication framework by offering a high performance, simple and flexible solution for 201 
communication system development. The new IPC software offers a RPC-style API for implementing 202 
simple communications, but at the same time makes it possible to customize data serialization along 203 
with providing access to the low-level communication library API for performance optimization. 204 
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