
A
TL

-S
O

FT
-P

R
O

C
-2

01
6-

00
6

28
/1

0/
20

16

Managing Asynchronous Data in ATLAS's
Concurrent Framework

C. Leggett1 2, J. Baines3 , T. Bold4 , P. Calafiura2 , J. Cranshaw5 , A. Dotti6 , S.
Farrell2, P. van Gemmeren5 , D. Malon5 , G. Stewart7 , S. Snyder8 , V. Tsulaia2 , B.
Wynne8 on behalf of the ATLAS Collaboration

2Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley CA 94720, USA
3STFC Rutherford Appleton Laboratyr, Harwell Oxford, Oxfordshire, UK
4AGH University of Science and Technology, Krakow, Poland
5SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
6Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439, USA
7SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow, UK
8SUPA – School of Physics and Astronomy, University of Edinburgn, Edinburgh, UK

E-mail: cgleggett@lbl.gov

In order to be able to make effective use of emerging hardware, where the amount of memory
available to any CPU is rapidly decreasing as the core count continues to rise, ATLAS has begun
a migration to a concurrent, multi-threaded software framework, known as AthenaMT.

Significant progress has been made in implementing AthenaMT - we can currently run realistic
Geant4 simulations on massively concurrent machines. The migration of realistic prototypes of
reconstruction workflows is more difficult, given the large amount of legacy code and the
complexity and challenges of reconstruction software. These types of workflows, however, are
the types that will most benefit from the memory reduction features of a multi-threaded
framework.

One of the challenges that we will report on in this paper is the re-design and implementation of
several key asynchronous technologies whose behaviour is radically different in a concurrent
environment than in a serial one, namely the management of Conditions data and the Detector
Description, and the handling of asynchronous notifications (such as FileOpen). Since
asynchronous data, such as Conditions or detector alignments, has a lifetime different than that
of event data, it cannot be kept in the Event Store. However, multiple instances of the data need
to be simultaneously accessible, such that concurrent events that are, for example, processing
conditions data from different validity intervals can be executed concurrently in an efficient
manner with low memory overhead, and without multi-threaded conflicts.

38th International Conference on High Energy Physics
3-10 August 2016
Chicago, USA

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

1. Introduction

ATLAS's [1] framework (Athena[2]) was designed to serially process one event at a time.
Limitations of existing and emerging computing technology, as well as the requirements of the
ATLAS reconstruction environment, have forced us to examine concurrent, multi-threaded
implementations[3]. ATLAS has begun the process of migrating its software to the new framework
(AthenaMT), focusing this year on making its core Services thread safe and able to process multiple
concurrent events.

One of the challenges in this migration process has been the handling of Asynchronous Data, i.e.
data which can have a lifetime of more than one event. The period of time for which any piece of such
data is valid is referred to as an Interval of Validity (IOV). While we do have a solution for managing
multiple concurrent Event Stores belonging to different events, Asynchronous data cannot be stored
there, as the contents of the Event Store are erased at the end of each event, so a different solution
must be found.

We can loosely classify Asynchronous Data into two, somewhat interrelated, categories:
Conditions, such as high voltages, calibrations, etc., and Detector Geometry and Alignments. Closely
related to these are Asynchronous Callbacks (Incidents), which are functions that need to be executed
at non-predetermined intervals, such as in response to the opening of a file, or the signaling of the
beginning of a new run.

2. Conditions

In serial Athena, Conditions were managed by the Interval of Validity Service (IOVSvc). At the
start of a job, the IOVSvc is configured to manage a number of objects in an assiociated Conditions
Database, which stores the value of each object for each IOV. At the start of each event, the IOVSvc
examines the validity of each registered object. Objects that are no longer valid are re-read from the
database, and any required post-processing of the data is performed by an associated callback
function. The processed objects are then placed in a conditions store, from whence they can be
retrieved by a user Algorithm.

This workflow fails when multiple events are processed concurrently. Since only a single
instance of the conditions data can be held at any one time in the conditions store, if two events are
processed concurrently, with associated conditions data from different IOVs, one will overwrite the
other. Furthermore, neither the IOVSvc itself nor any of the conditions callback functions were
designed to be thread safe, and since these are shared instances, threading problems are bound to
occur. A major rewrite of the entire infrastructure is required.

Several different designs for the condition handling were examined, with two key requirements
in mind: minimize changes to client code (as there is so much of it), and minimize memory usage (as
an overall memory shortage is one of the main reasons we need to use a multi-threaded framework).

2.1 Processing Barrier

The first considered design was to use a processing barrier, such that only events where all
Conditions objects were unchanged were processed concurrently. No new events would be scheduled
until all events within the same Conditions region had finished processing. Then the conditions store

2

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

would be updated using the IOVSvc machinery, and new events could be scheduled. By utilizing this
technique, very few changes would need to be made to the client code, and there is no extra memory
usage, as there is only one instance of the conditions store. The majority of the work would be in
making the scheduler aware of the Conditions boundaries, and doing the appropriate filling and
draining of associated events. The fundamental problem with this method, however, is that it assumes
that Conditions boundaries are infrequent, so that the loss of concurrency when the scheduler is
drained and refilled is minimal. On ATLAS, however, Conditions changes can sometimes occur very
rapidly, for example as frequently as once per event in the Muon subsystem. This would have the
effect of serializing event processing, with complete loss of concurrency. Another problem is that it
assumes that all events are processed in sequence. If events are out of order near a Conditions
boundary, then the processing barrier could be triggered multiple times, once again resulting in a
significant loss of concurrency.

2.2 Multiple Conditions Stores

Another proposed design was to use multiple conditions stores, one per concurrent event, in the
same manner as the Event Stores are duplicated for each concurrent event. The mechanism by which
data is retrieved from the conditions store would be modified, such that clients would associate with
the correct Store. Impact on client code would be small – only the conditions data retrieval syntax
would need to be updated. However, beyond merely ensuring thread safety of the IOVSvc and the
callback functions, there are two significant problems with this design: the memory usage would
balloon, as objects would be duplicated between each Store instance; and also the execution of the
callback functions that are used to process data would be duplicated, resulting in extra CPU overhead.

2.3 Multi-Cache Conditions Store

The chosen solution is to implement an intersection of the two preceeding designs, with a single
conditions store that holds containers of condition data objects, where the elements in each container
correspond to individual IOVs. Clients access Condition objects via smart references, called
ConditionHandles, which implements the logic to determine which element in any
ConditionContainer is appropriate for a given event. The callback functions are migrated to fully-
fledged Condition Algorithms, which are managed by the framework like any other Algorithm, but
only executed on demand when the Conditions objects they create need to be updated.

One of the fundamental changes in the client code needed for the migration to AthenaMT is that
all access to event data must be done via smart references, called DataHandles. DataHandles are
declared as member variables of Algorithms, and provide two fundamental functions: to perform the
recording and retrieval of event data, and to automatically declare the data dependencies of the
Algorithms to the framework, so that the Algorithms can be executed by the Scheduler as the data
becomes available. We capitalized on the migration to DataHandles by requiring that all access to
Conditions data be done via related ConditionHandles. By using ConditionHandles in the Condition
Algorithms to write data to the conditions store, the framework solves the problem of Algorithm
ordering for us, ensuring that the Condition Algorithm is executed, and the updated Condition objects
are written to the Store before any downstream Algorithm which needs to use them are executed.

When a ConditionHandle is initialized, it will look in the conditions store for its associated
container, identified by a unique key. This container holds a set of objects of the same type and their

3

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

associated IOVs. Upon dereferencing, the ConditionHandle will use the current event and run
numbers to look inside this container, and determine what action needs to be taken. At the start of the
event, the Condition Service analyzes the subset of the objects held in the condtion store that have
been registered with it at the start of the job by the Condition Algorithms, and determines which are
valid or invalid for the current event. If an object is found to be invalid, the Condition Algorithm that
produces that object will be scheduled. If an object is found to be valid, then the Scheduler will be
informed that this object is present, and placed in the registry of existing objects. In this case the
Condition Algorithm will not execute.

When a Condition Algorithm is executed, it queries the Conditions Database for data
corresponding to the current event, as well as its associated IOV, creates the new object for which it is
responsible, and adds a new entry in the ConditionContainer that is associated with a
ConditionHandle (see Ill. 1). When a downstream Algorithm that needs to read a ConditionHandle
from the store is executed, the data is guaranteed to be present. The ConditionHandle uses the current
event number to identify which element in the container is the appropriate one, and returns its value.

By using basic features of the new framework, namely the use of ConditionHandles and data
flow dependencies to automatically schedule Algorithms as needed, we are able to minimize changes
to client code, and let the framework do the majority of the heavy lifting. The use of collections of
Condition Objects inside of a single ConditionStore allows us to minimize the total memory footprint.

3. Detector Geometry and Alignments

The detector geometry model used in ATLAS (GeoModel), is a hierarchical tree that is built
from several components (see Ill. 2): a Physical Volume (PV) which are the basic building blocks; a
Transform (TF) that is fixed at construction; and an Alignable Transform (ATF), which accounts for
the movement of the detector component as a function of time, reading Deltas (D) from a database.
When a client requests the position of a Detector Element, the Full Physical Volume (FPV) is
assembled, and the position is cached (C). As the detector alignment changes, new deltas are read in
by the ATF, and the cache held by the FPV is invalidated, until the position of the element is again
requested, recomputed, and cached.

 When multiple concurrent events are processed, this design will fail, as there is only a single
shared instance of the GeoModel tree, and the ATF and FPV can only keep track of single delta or
cache at any one time. We can solve this problem in the same way as for the conditions. The time
dependent information (i.e. the deltas and cache) held by the GeoModel is decoupled from the static
entries, and held in a new AlignmentObject located inside the ConditionStore. The ATF and FPV use

4

Illustration 2: Detector Geometry Alignments

Illustration 1: ConditionHandles

Managing Asynchronous Data in ATLAS's Concurrent Framework C. Leggett et al

ConditionHandles to access this data, and they are updated by a new GeoAlignAlg which is scheduled
on demand by the framework. Clients of the DetectorElements are entirely blind to this change, and
the only code that needs to be modified are base classes inside the GeoModel structure.

4. Asynchronous Incidents

ATLAS uses the Incident Service to execute callback functions at certain well-defined times
following the well-established observer patterns. Clients register interest in certain "Incidents" with
the service, such as BeginEvent, FileOpen, or EndMetaData. When components fire these Incidents,
execution flow is passed to the IncidentSvc, which triggers the appropriate callback function in the
registered observers. There are many issues with this design in AthenaMT, where there can be
multiple instances of any Algorithm, executing simultaneously in different events. If a cloned
Algorithm is an Incident observer, should all instances execute the callback? What if an instance is
currently executing in a different thread? Fixing the design in a generic way looked to be an
impossible task.

Instead, we did a study of exactly how Incidents were being fired and used, and discovered that
the vast majority were fired outside the event execution loop (ie before or after all Algorithms are
executed for one event), and being used to signal discrete state changes, such as BeginEvent. We
realized that we could significantly limit the scope of the IncidentSvc without losing any functionality.
Incidents instead became schedulable, where the IncidentSvc would add special IncidentAlgs at the
beginning or end of the event processing loop, which would interact with event context aware
Services to perform the same function as the old Incident callback functions. Clients would then
interact with these Services, passing them the current event to extract the relevant information.

5. Conclusions

For ATLAS, managing Asynchronous data in a concurrent environment has required a paradigm
shift. No solution is fully transparent or plug and play, unless we choose to sacrifice concurrency and
performance, or increase memory usage. Dealing with multiple threads as well as multiple concurrent
events increases the complexity of the problem.

In spite of these difficulties, we have been able to minimize impact on client code via strategic
modifications at the framework and Service level, leveraging core features of AthenaMT such as
DataHandles and the Scheduler itself. In some cases, we have found it necessary to reduce the
complexity of Services to fit their actual uses, resulting in simpler designs with no loss of
performance or functionality.

New versions of all three aspects of the Asynchronous data and event infrastructure discussed in
this paper have been implemented, and migration of client code is ongoing. We anticipate full
operation of these services by the end of 2016.

References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003

[2] P. Calafiura, W. Lavrijsen, C. Leggett, M. Marino, D. Quarrie, The Athena control framework in production, new
developments and lessons learned, CHEP 2004 Conf. Proc. C04-09-27 (2005) pp 456-458

[3] P. Calafiura, W. Lampl, C. Leggett, D. Malon, G. Stewart, B. Wynne, Development of a Next Generation Concurrent
Framework for the ATLAS Experiment, J. Phys. Conf. Ser. 664 (2015) no.7, 072031

5

