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Abstract 
 

We propose to install a new set-up using the former WITCH superconducting magnet which will 

allow us to measure  angular correlations in the decay of 32Ar. The aim of the proposal is to search 

for a scalar current contribution in the weak interaction. The energy shift of the -delayed protons 
emitted from the isobaric analogue state of the 32Ar ground state carries information about this angular 
correlation. To enhance the sensitivity, protons and positrons from the decay will be measured on 
either side of a catcher foil in which the radioactive sample is implanted. By conditioning the protons 
with a positron detected in the same hemisphere or in the opposite hemisphere of the superconducting 
magnet the Doppler energy shift will be more or less pronounced as a function of the possible scalar 
current component of the weak interaction compared to the dominant vector current. 

 

1 Introduction 

The weak interaction which mediates nuclear  decay, but also some decay channels of pion decay and 
muon decay, is described in the standard model of particle physics as consisting of two different 
currents or contributions, the vector current responsible for ‘Fermi-type’ decays and the axial-vector 
current responsible for ‘Gamow-Teller-type’ decays. All experimental findings (see e.g. [1]) can be 
described with these two types of interactions. However, from a more global theoretical picture 
requiring only Lorentz invariance, also scalar, tensor and pseudo-scalar currents are allowed, the latter 
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With the funding requests hopefully accepted we can start purchasing new and tailor made detectors, 
electronics and extensions of the present WITCH data acquisition to envisage a first real run before the 
long shut-down end of 2018. 

5 Beam time request 

We would like to have stable beam for two periods of 1 day each to test the new control system and 
to optimise injection in the superconducting magnet. For this purpose a Faraday cup will be installed 
in the place of the catcher.  

To test the 32Ar production and its transport to WITCH/WISARD and to take first data for a proof-of-
principle, we require 3 days of 32Ar beam. For the present LOI, the beam intensity is not very critical, 
but we expect about 300-500 pps. 

 

Bibliography 

[1] N. Severijns, J. Phys. G: Nucl. Part. Phys. 41 (2014) 114006 
[2] O. Naviliat-Cuncic, M. Gonzalez-Alonso, Ann. Phys. 252 (2013) 600 
[3] X. Fléchard et al., J. Phys. G: Nucl. Part. Phys. 38 (2011) 055101 
[4] P.A. Vetter et al., Phys. Rev. C77 (2008) 035502 
[5] G. Li et al., Phys. Rev. Lett. 110 (2013) 092502 
[6] P. Finlay et al., Eur. Phys. J A 52 (2016) 206 
[7] A. Gorelov et al., Phys. Rev. Lett. 94 (2005) 142501 
[8] D. Schardt, K. Riisager, Z. Phys. A345 (1993) 265  
[9] E. G. Adelberger et al., Phys. Rev. Lett. 83 (1999) 1299 
     A. Garcia et al., Hyp. Int. 129 (2000) 237 
[10] V. Yu. Kozlov et al., Int. J. Mass Spec. 251 (2006) 159 

  



Appendix  

 

DESCRIPTION OF THE PROPOSED EXPERIMENT 
The experimental setup comprises:  WITCH/WISARD and beam line to it 

 

Part of the Choose an item.  Availability  Design and manufacturing 

[if relevant, name fixed ISOLDE 
installation: COLLAPS, CRIS, 
ISOLTRAP, MINIBALL + only CD, 
MINIBALL + T‐REX, NICOLE, SSP‐GLM 
chamber, SSP‐GHM chamber, or 
WITCH] 

 Existing   To be used without any modification 
 

  WITCH traps etc dismounted. Rest of equipment needs to 
be built 

 

HAZARDS GENERATED BY THE EXPERIMENT 
(if using fixed installation) Hazards named in the document relevant for the fixed WITCH 
installation. 

Additional hazards: 

Hazards 

 

[Part 1 of the 
experiment/equipment] 

[Part 2 of the 
experiment/equipment] 

[Part 3 of the 
experiment/equipment] 

Thermodynamic and fluidic 
Pressure  [pressure][Bar], [volume][l]     

Vacuum       

Temperature  [temperature] [K]     

Heat transfer       

Thermal properties of 
materials 

     

Cryogenic fluid       

Electrical and electromagnetic 
Electricity  Detector HV (≈200V)     

Static electricity       

Magnetic field  6 [T]     

Batteries       

Capacitors       

Ionizing radiation 
Target material  [material]     

Beam particle type (e, p, 
ions, etc) 

32Ar     

Beam intensity  Several 10**2     

Beam energy  30 keV     

Cooling liquids  LN2, LHe     

Gases  [gas]     

Calibration sources:       

 Open source       

 Sealed source   [ISO standard]       

 Isotope       

 Activity       



Use of activated material:       

 Description       

 Dose rate on 
contact and in 10 
cm distance 

[dose][mSV]     

 Isotope       

 Activity       

Non‐ionizing radiation 
Laser       

UV light       

Microwaves (300MHz‐30 
GHz) 

     

Radiofrequency (1‐
300MHz) 

     

Chemical 
Toxic  [chemical agent], [quantity]     

Harmful  [chemical agent], [quantity]     

CMR (carcinogens, 
mutagens and substances 
toxic to reproduction) 

[chemical agent], [quantity]     

Corrosive  [chemical agent], [quantity]     

Irritant  [chemical agent], [quantity]     

Flammable  [chemical agent], [quantity]     

Oxidizing  [chemical agent], [quantity]     

Explosiveness  [chemical agent], [quantity]     

Asphyxiant  [chemical agent], [quantity]     

Dangerous for the 
environment 

[chemical agent], [quantity]     

Mechanical 
Physical impact or 
mechanical energy 
(moving parts) 

[location]     

Mechanical properties 
(Sharp, rough, slippery) 

[location]     

Vibration  [location]     

Vehicles and Means of 
Transport 

[location]     

Noise 
Frequency  [frequency],[Hz]     

Intensity       

Physical 
Confined spaces  [location]     

High workplaces  [location]     

Access to high workplaces  [location]     

Obstructions in 
passageways 

[location]     

Manual handling  [location]     

Poor ergonomics  [location]     

 

Hazard identification 

 


