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Abstract

The dijet production cross section for jets containing a b-hadron (b-jets) has been meas-
ured in proton–proton collisions with a centre-of-mass energy of

√
s = 7 TeV, using the

ATLAS detector at the LHC. The data used correspond to an integrated luminosity of
4.2 fb−1. The cross section is measured for events with two identified b-jets with a trans-
verse momentum pT > 20 GeV and a minimum separation in the η–φ plane of ∆R = 0.4.
At least one of the jets in the event is required to have pT > 270 GeV. The cross section is
measured differentially as a function of dijet invariant mass, dijet transverse momentum,
boost of the dijet system, and the rapidity difference, azimuthal angle and angular dis-
tance between the b-jets. The results are compared to different predictions of leading
order and next-to-leading order perturbative quantum chromodynamics matrix elements
supplemented with models for parton-showers and hadronization.
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1 Introduction

The measurement of jets containing a b-hadron (b-jets) produced in proton–proton collisions at the
Large Hadron Collider (LHC) provides an important test of perturbative quantum chromodynamics
(pQCD). Calculations of the b-quark production cross section have been performed at next-to-leading
order of αs (NLO) in pQCD [1–4]. These calculations can be combined with different parton-shower
and hadronisation models to generate simulated events which can be compared to data.

Cross sections for the production of a bb̄ pair have been measured previously at the Tevatron [5–8],
and at the LHC by the ATLAS [9, 10] and CMS [11] collaborations. These measurements agree
with NLO predictions for well-separated b-jets, although b-jets with large transverse momenta in the
central regions are not well described by simulations [9]. The results in Ref. [10] also agree with the
NLO predictions; though small deviations are present at large transverse momenta in events with a
b-jet and light-flavour jet (jet generated by a light quark). The CMS measurement found that in the
phase-space region of small angular separation between the b-jets, there are substantial differences
between data and NLO predictions, and among the NLO predictions themselves.

The lowest-order Feynman diagrams for bb̄ production are shown in Fig. 1. They define different
production mechanisms which are useful in understanding the behaviour of the bb̄ system. In flavour

creation (FCR) both b-jets originate from the hard scatter: these jets tend to be the hardest in the event
and are predicted to have an approximate back-to-back configuration in the transverse plane. The
gluon splitting (GSP) production mechanism creates a pair of b-jets that are expected to have a small
angular separation. The topology of flavour excitation (FEX) is less distinctive, but it tends to contain
an additional parton, which reduces the angular separation between the b-jets. The requirement of a
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minimum transverse momentum (pT) of 270 GeV for the leading jet applied in this analysis enhances
the three-jet production mechanisms relative to the flavour creation mechanism, in comparison to the
analyses of Refs. [9–11].
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Figure 1: Lowest-order Feynman diagrams for bb̄ production.

Different regions of the bb̄ phase space are probed via the six differential cross sections presented
in this article. For large values of the dijet invariant-mass, mbb, the flavour creation mechanism is
expected to dominate, leading to final states with well-separated hard jets. Events produced via gluon
splitting or flavour excitation are concentrated at small mbb. The opposite is expected for the pT

1 of
the dijet system, pT,bb, where the higher-pT,bb regions are dominated by gluon-splitting production,
and only the lower values of pT,bb have significant contributions from events produced via flavour
creation. The azimuthal angle between two b-jets, ∆φ, separates the different production mechanisms
more evenly. The angular distance between the two b-jets, ∆R =

√

(∆φ)2 + (∆η)2, is a variable often
used in analyses reconstructing heavy objects decaying into two b-jets. The other two observables are
the rapidity difference between the two b-jets, y∗ = 1

2 |y1 − y2|, where yi is the rapidity of b-jet i, and
the boost of the dijet system, yB =

1
2 |y1 + y2|. The latter is related to the momentum of the initial-state

partons involved in the hard scatter and it is therefore sensitive to the parton distribution functions
(PDFs).

The measurement of the bb̄ dijet differential cross sections is performed with the ATLAS detector,
using proton–proton (pp) collisions at a centre-of-mass energy of

√
s = 7 TeV. The data were recorded

in 2011 and correspond to an integrated luminosity of 4.2 fb−1. The differential cross sections are
defined as

dσ
(

pp→ bb̄ + X
)

dO =
Ntag fbb U
εL∆O , (1)

with O the dijet observable under investigation, Ntag the number of b-tagged jet pairs, fbb the purity of
the selected sample, ε the selection efficiency, L the integrated luminosity andU the correction of the
measured distribution for detector effects, such as the jet energy resolution. The measurement ranges
for the different variables are listed in Table 1.

1 The ATLAS reference system has the origin at the nominal interaction point. The x- and y-axes define the transverse
plane, the azimuthal angle φ is measured around the beam axis, z, and the polar angle θ with respect to the z-axis. The
pseudorapidity is defined as η = − ln [tan (θ/2)] and pT is momentum transverse to z.
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Variable Range
mbb 50–1000 GeV
pT,bb 0–400 GeV
∆φ 0–π
∆R 0.4–4.0
yB 0–2.5
y∗ 0–1.7

Table 1: Ranges of the variables of the measured differential cross sections.

2 ATLAS detector

The ATLAS detector [12] consists of an inner tracking system, immersed in a 2 T axial magnetic field,
surrounded by electromagnetic calorimeters, hadronic calorimeters and a muon spectrometer.

The inner detector has full coverage in φ and covers the pseudorapidity range |η| < 2.5. The inner
detector consists of silicon pixel and microstrip detectors, surrounded by a transition radiation tracker
(up to |η| = 2.0). The electromagnetic calorimeter is a lead–liquid argon sampling calorimeter cov-
ering |η| < 3.2. Hadron calorimetry in the central pseudorapidity region (|η| < 1.7) is provided by a
scintillator-tile calorimeter using steel as the absorber material. The hadronic end-cap calorimeter uses
liquid argon with copper absorber plates and extends up to |η| = 3.2. Additional forward calorimeters
extend the coverage to |η| < 4.9. The outer region of the detector is formed by a muon spectrometer
that uses a toroidal magnetic field with a bending power of 1.5–5.5 Tm in the barrel and 1.0–7.5 Tm
in the end-caps. The muon spectrometer provides trigger information for muons up to |η| = 2.4 and
momentum measurements in the bending plane up to |η| = 2.7.

The trigger system uses three consecutive levels to record a selection of interesting events. The level-1
trigger (L1) is based on custom-built hardware that processes the data with a fixed latency of 2.5 µs.
The second level and the event filter, collectively referred to as the high-level trigger (HLT), are
software-based triggers.

The jet triggers at L1 use information about the energy deposits in the electromagnetic and hadronic
calorimeters using trigger towers with a granularity of ∆φ×∆η = 0.1× 0.1. Jet identification is based
on the transverse energy deposited in a sliding window of 4 × 4 or 8 × 8 trigger towers. The HLT
further refines the selection, making use of finer-granularity detector information and using recon-
struction software close to that used by physics analyses. Due to the high rate of jet production, only
a predetermined fraction of events that pass the jet triggers are recorded. The factor by which the
number of events that pass a trigger is reduced is known as the prescale.

3 Simulated dataset

To investigate efficiencies and model the data, simulated dijet events produced by the Pythia 6.4 [13]
Monte Carlo (MC) event generator are used. Pythia 6.4 implements matrix elements at leading order
(LO) in αs for 2→2 processes, a pT-ordered parton shower with leading-logarithm accuracy and multi-
parton interactions to simulate the underlying event. The hadronisation is described using the Lund
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string model [14]. Events are generated with the MRST LO** [15] PDFs and a set of parameters
tuned to ATLAS data, AUET2B-LO** [16]. At this stage, all generated particles with a lifetime
greater than 30 ps are collectively referred to as the particle-level event. Detector-level events are
produced by passing the particle-level events through a full simulation [17] of the ATLAS detector
based on GEANT4 [18]. The effect of multiple pp interactions in the same or nearby bunch crossings
(pile-up) is included in all MC simulations. Events in MC simulation are reweighted, in order to
match the distribution of the number of multiple pp interaction distributions to that observed in the
data. During the 2011 data-taking period, the number of pp collisions per bunch crossing varied
between 0.5 and 24 [19]. The resulting simulated events are digitised to model the detector responses,
and then reconstructed using the same software as for data processing.

4 Jet selection

Jets are reconstructed from energy clusters in the calorimeter using the anti-kt [20, 21] algorithm as
implemented in the FastJet package [22], with jet radius parameter R = 0.4. Jet energy is corrected
to the hadronic energy scale [23], which on average adjusts the reconstructed jet energy to the true
energy. The reconstructed jets are subjected to calorimeter-based quality selections [24]. Jet can-
didates coming from background processes, namely: cosmic-ray showers, LHC beam conditions and
hardware problems, are rejected as described in Ref. [25]. Central jets with |η| < 2.5 originating from
pile-up are rejected by a track-based selection [26].

4.1 b-jet selection

The flavour of a jet at particle level is defined according to the hadrons contained in the jet. If the jet
contains at least one b-hadron with pT > 5 GeV and ∆R with respect to the jet axis of less than 0.3,
then it is considered as a b-jet. If no b-hadron is present, but a c-hadron that meets the same criteria is
found, then the jet is considered as a c-jet. All other jets are considered as light-flavour jets.

At detector level, the relatively long lifetime of b-hadrons is used to select an event sample enriched
in b-jet pairs. To identify b-jets, a combination of the JetFitter and IP3D algorithms [27] is used.
The JetFitter algorithm aims at reconstructing the decay vertex of the b-hadron and the subsequently
produced c-hadron, assuming that both vertices lie on the same line from the primary vertex,2 corres-
ponding to the flight direction of the b-hadron. The IP3D algorithm is a track-based algorithm using
the signed longitudinal and transverse impact parameter significances of the tracks matched to the jet
(where the impact parameter is defined as the distance of the track from the vertex at the point of
closest approach). The variables describing the impact parameters and the reconstructed decay chain
are combined by a neural network trained using MC simulation samples. This combination assigns
a set of probabilities (pb, pc, pl) to every jet, corresponding to the probability of the jet being a b-jet,
c-jet or light-flavour jet, respectively. A jet is considered to be b-tagged when log10 (pb/pl) > 0.35,
a choice that results in a b-tagging efficiency of εb ∼ 70% in simulated tt̄ events (corresponding to a
c-jet rejection factor of 5 and light-flavour jet rejection factor of 125).

2 The primary vertex is defined as the vertex with the largest scalar sum of p2
T for its associated tracks and with at least two

associated tracks with pT > 400 MeV.
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A scale factor is applied to the efficiency obtained from simulation to account for the data-MC differ-
ence. Two methods are employed to select these b-jet samples: the first uses an independent b-tagging
algorithm that selects jets containing a muon from a semileptonic b-hadron decay [28]; the other se-
lects b-jets from tt̄ decays [29]. The differences between data and simulation observed in these control
samples are used to derive a series of pT- and η-dependent scale factors, which are then applied to
each jet in simulation.

Table 2 contains all the fiducial phase-space definitions for particle-level and detector-level objects
used in this analysis.

Definition Particle-level jets Detector-level jets
Jet identification anti-kt with R = 0.4 anti-kt with R = 0.4

include muons and neutrinos
b-jets definition b-hadron with pT > 5 GeV log10 (pb/pl) > 0.35

∆R (jet;b-hadron)<0.3

Event selection
Leading jet pT > 270 GeV and |η| < 3.2
2 b-jets selection pT > 20 GeV and |η| < 2.5

2 b-jets separated by ∆R > 0.4

Table 2: Fiducial phase space of the measurement. The definition and the selection requirements for particle-
level and detector-level jets are given. The particle-level jets are constructed using all particles, including muons
and neutrinos, as input (see Sect. 6). The log10 (pb/pl) criterion corresponds to the ratio of the probabilities of
the jet being a b-jet or light-flavour jet.

5 Event selection

Events are selected using two calorimeter-based single-jet triggers with a pT-thresholds of 180 and
240 GeVand |η| < 3.2. These thresholds are used to define two ranges for the transverse momentum of
the leading jet where the trigger efficiency is close to 100%: 270 < pT < 355 GeV and pT > 355 GeV,
respectively. A prescale factor of 3.5 was applied to the 180 GeV threshold trigger; no prescale factor
was applied to the 240 GeV threshold trigger.

Quality requirements are applied to ensure that the selected events are well measured. In addition to
selecting only data from periods in which all sub-detectors were operating nominally, a veto is applied
to reject specific events in which the calorimeters were suffering from noisy or inactive regions.

The leading jet is not required to be identified as a b-jet, but the selected events must have at least
two b-tagged jets with pT > 20 GeV and |η| < 2.5, and the two highest-pT b-tagged jets within the |η|
requirement are taken as the dijet pair. To avoid jets with significant overlap, the two b-tagged jets in
the pair are also required to be separated by ∆R > 0.4.
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Figure 2: Examples of template fits in a pT,bb and ∆R bin. The uncertainty shown on the bb̄ fraction is the
statistical uncertainty of the fit parameter. Systematic uncertainties are not shown.

5.1 Purity

While the requirement of b-tagged jets provides an event sample enriched in bb̄ pairs, there is still
a non-negligible contamination from c-jets and light-flavour jets. The fraction of true b-jet pairs in
the sample of b-tagged jet pairs, referred to as the purity of the sample, is determined by performing
a template fit to the combined IP3D and JetFitter probability distributions. This fit is performed
independently in each bin of the cross-section measurement. To obtain optimal separation between b-
and c-jets, the fit variable is constructed as

∑

log10 (pb/pc), where the sum is taken over both of the
b-tagged jets.

The fit uses a maximum-likelihood method to determine the relative contributions of four templates
that best describe the flavour content of the bb̄ pair in data. These templates are defined as:

• bb-template: ( f1, f2) = (b, b),

• b-template: ( f1, f2) = (b, c), (c, b), (b, l) or (l, b),

• c-template: ( f1, f2) = (c, c), (c, l) or (l, c),

• ll-template: ( f1, f2) = (l, l),

where f1 and f2 indicate the flavour of the leading and sub-leading jet, respectively. The fraction of
bb̄ events in the b-tagged sample is determined by the relative contribution of the bb-template.

The dijet templates are obtained from single-jet templates in MC simulation using a convolution tech-
nique in every bin of the investigated variables. This allows the creation of smooth, finely binned
templates even for bins with a small number of dijet pairs. As the b-hadron decay is a process internal
to the jet, the b-tagger probabilities for a given jet do not depend significantly on the properties of the
dijet system. The shape of the fit variable distribution can be parameterised as a function of the pT and
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flavour of the single jets in simulation. The contribution of each (pT1, pT2, f1, f2) combination within
a cross-section bin is then determined by convolving the log10 (pb/pc) distributions for (pT1, f1) and
(pT2, f2). Figure 2 shows examples of the fits for two bins of the variables pT,bb and ∆R.

To verify the validity of the procedure, a closure test is performed by comparing the templates obtained
via the convolution to those obtained from the bi-dimensional pT distribution. Good agreement is
observed with the generated templates in all kinematic regions.

6 Unfolding

The correction of the measured distribution for detector effects and inefficiencies is done via an un-
folding procedure that uses the iterative dynamically stabilised (IDS) method [30]. At particle level,
jets are constructed using all particles, including muons and neutrinos, as input. Particle-level jets are
required to pass the same kinematic selections as jets reconstructed in the calorimeter. The detector
effects are corrected by using an unfolding matrix, which maps the event migrations in a binned distri-
bution from detector level to particle level. The data are unfolded using the unfolding matrix and then
compared to the predicted particle-level distribution. The iterative part of the unfolding allows the
matrix to be modified to account for mismodelling of the MC simulation. Any statistically significant
differences between the data and simulation are assumed to originate from processes not included in
the simulation and are added into the unfolding matrix. The data are then unfolded using the modified
unfolding matrix and the process is repeated until no element in the unfolding matrix is modified by
more than one percent. To cross-check the unfolding results, the unfolding is done with a bin-by-bin
method and compared. The bin-by-bin method takes the ratio of the detector-level jet and particle-
level jet distributions, combining all the necessary corrections into a single factor. It treats each bin
as an independent measurement, behaving as if events appear or disappear within the bin rather than
moving to another. The ratio of IDS to bin-by-bin results is about 2%, except for the mass and the pT,
where differences up to 10% were observed.

The unfolding matrix is derived from simulated Pythia 6.4 dijet events, and is defined for events
that have both the particle-level and the detector-level jet pairs within the fiducial acceptance of the
analysis. Fiducial and efficiency correction factors are applied to the data before and after the unfold-
ing, respectively. The fiducial correction, applied before the unfolding, accounts for the effects that
cause a detector-level jet pair not to be matched to a particle-level jet pair. The primary reason for
the mismatch is that one of the particle-level jets has a pT below the event selection threshold and so
is rejected by the analysis. The efficiency corrections, applied after the unfolding, correct primarily
for particle-level jets which meet the event selection criteria but are measured outside of the fiducial
range at detector level.

7 Systematic uncertainties

The systematic uncertainties on the measured cross sections are evaluated varying the relevant quant-
ities by one standard deviation, and applying the unfolding procedure; the differences with respect to
the standard procedure are taken as the uncertainties. The total systematic uncertainties are obtained
by adding the components in quadrature.
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The dominant systematic uncertainties in this measurement result from the b-tagging and the jet en-
ergy scale calibrations. Table 3 provides an overview of the systematic uncertainties. Their magnitude
depends on the variable used in the differential cross section measurement, and the minimum and
maximum uncertainties are reported. Each systematic uncertainty is propagated through the entire
analysis, including the unfolding procedure.

Source Cross Section Relative Uncertainty
b-tagging efficiency 10–30%
b-jet template fit 3–8%
Jet energy scale 10–20%
Jet energy resolution 2–8%
Jet angular resolution 1–5%
Unfolding 5–10%
Luminosity 1.8%

Table 3: Summary of the dominant sources of systematic uncertainties and their relative effect on the cross
section.

The b-tagging efficiency and light-flavour-jet rejection rates in MC simulation are calibrated by ap-
plying pT- and η-dependent scale factors to the simulated jets [28, 29]. These scale factors are derived
using various data-driven techniques, as discussed in Sect. 4.1. The uncertainty from this calibration
is evaluated by varying the scale factors for each jet flavour by one standard deviation. The effect of
this uncertainty ranges from 10% to 20% in most bins, and reaches 30% for low and high values of
mbb.

While the b-tagging calibration uncertainty takes into account differences between data and MC sim-
ulation in the b-tagging efficiency, this does not necessarily account for differences in the shape of
the b-tagger probability distributions. The b-tagging algorithm used for this analysis makes use of
tracks to identify b-jets. To account for any effects due to track mismodelling, all the template fits
are re-evaluated after the simulated events are reweighted to match the small difference in b-jet track
multiplicity observed in data and the difference is taken as the uncertainty. The resulting uncertainty
in the cross section amounts to about 1%. In addition, a control sample of b-jets is selected using
a tag-and-probe method. The data-to-MC ratio of the log10 (pb/pc) for the probe jets is fitted with
a first-order polynomial. The template fits are then redone after the MC simulation is reweighted to
match the difference in log10 (pb/pc) seen in data. The resulting uncertainty is in the range 3−8%.

The systematic uncertainty resulting from the calibration of the jet energy scale [23] is typically
around 10%, but reaches 20% for jets with a small angular separation. Smaller contributions to the
jet uncertainties result from mismodelling of the jet energy resolution [31] and the resolution of the
jet direction. The uncertainty of the jet energy resolution is estimated by performing an additional
Gaussian smearing of the jets by one standard deviation, resulting in a 2–8% uncertainty. The uncer-
tainty due to the jet angular resolution is estimated by comparing the angular resolution of the nominal
sample with that of samples for which the material description and b-jet fragmentation are varied [32,
33]; this uncertainty is in the range 1–5%.

The unfolding uncertainty is evaluated by reweighting the MC simulation that is used to derive the
unfolding matrix to reproduce the cross section measured in data. Using the reweighted unfolding
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matrix results in a 5–10% change in cross section, which is assigned as a systematic uncertainty.
Finally, the systematic uncertainty of the luminosity is 1.8% [19].

8 Theoretical predictions

The results are compared to the NLO MC generators Powheg, r2299, [34–37] and MC@NLO 4.01 [38,
39]. Both NLO generators use the CT10 [40] PDFs and a b-quark mass of 4.95 GeV. Events generated
with Powheg are passed through the Pythia 6.4 parton shower and MC@NLO events are showered
with Herwig 6.520 [41]. Herwig 6 uses an angular ordering parton shower with a cluster hadronisa-
tion model and employs the MRST LO** PDFs and the set of tuned parameters AUET2-LO** [42].
While Powheg and MC@NLO are both formally accurate to NLO, their treatment of higher-order
terms differs. The data are also compared to the LO predictions provided by the Sherpa 1.43 [43] and
Pythia 6.4 MC generators. Sherpa is capable of generating multiple partons in its matrix elements,
and was also used to generate bb̄ using a LO 2→3 matrix elements for this prediction. As Pythia 6.4
is a LO generator, it is not expected to provide an accurate normalisation. The Pythia 6.4 distribu-
tions are normalised to the integrated cross section measured in data by applying a factor of 0.61.
Sherpa is found to produce the correct cross-section normalisation. Powheg+Pythia 6.4 is chosen as
the baseline to examine the theoretical uncertainties. The largest theoretical uncertainties derive from
the PDF uncertainties and uncertainties due to missing higher orders. By varying the renormalisation
scale, µR, and the factorisation scale, µF, which are set to the same value in Powheg, an estimate of
the effects of the missing higher-order terms can be made. To evaluate the uncertainty, the scales
are varied independently from one half to twice the central value, and the cross-section variations are
added in quadrature. The effect of the scale uncertainties on the NLO prediction ranges from 20%
to 50%, and dominates the theoretical uncertainty. The uncertainties due to the choice of PDFs are
estimated from the 52 eigenvectors of the CT10 PDF set evaluated at 68% confidence level, and are in
the range 5–10% for the variables investigated. Other cross-checks were performed, such as a study
of the effect due to the b-quark mass uncertainty and of the scale matching between Powheg and the
parton shower. All of these have a negligible effect. The total theoretical uncertainty is obtained by
adding the scale and PDF uncertainties in quadrature.

9 Results and discussion

The differential cross section for bb̄ production is shown as a function of the six observables in
Figs. 3−8. The top panel of each figure shows the data points as black dots, with the total experi-
mental uncertainties as yellow boxes, together with the prediction and theoretical uncertainties ob-
tained by using Powheg. The middle and lower panels report the ratio of theoretical predictions to
data. For the predictions from MC@NLO, Sherpa and Pythia 6.4, only the statistical uncertainties
are shown. Because of the normalisation factor applied to Pythia 6.4 distributions, as explained in
Sec.8, the comparison between Pythia 6.4 and data is meaningful only at the shape level. Figure 3
shows the differential cross section for bb̄ production as a function of the dijet invariant mass. The
cross section decreases with increasing mass except for a step around 550 GeV. This value corres-
ponds approximately to twice the pT requirement on the leading jet, i.e. to a mass region where
the flavour-creation process, with two almost back-to-back b-jets, becomes the dominant production
mechanism. Powheg provides a very good description of the data over the whole mass spectrum, with
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the exception of the high-mass region where a small deficit in the prediction is seen. The MC@NLO
prediction is consistently below the data for mbb < 350 GeV, at which point it becomes higher than
data. This jump corresponds to the region where the flavour-creation process begins to contribute to
bb̄ production. The LO predictions (both Sherpa and Pythia 6.4) overestimate the data at low masses
and underestimate them at very high masses.
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Figure 3: Top panel: the differential cross section for bb̄ production as a function of dijet invariant mass, mbb,
compared to the theoretical predictions obtained using Powheg. Theoretical uncertainties obtained by using
Powheg are also shown. Middle panel: ratio of the NLO predictions to the measured cross section. Bottom
panel: ratio of the LO predictions to the measured cross section. For the predictions from MC@NLO, Sherpa
and Pythia 6.4 only the statistical uncertainties are shown. For both Middle and Bottom panels: the yellow band
represents the combined statistical and systematic experimental errors for the data. Theoretical uncertainties on
the POWHEG prediction are also shown.

The differential cross section as a function of the dijet pT ranges between 0.2 and 0.5 pb/ GeV, as
can be seen in Fig. 4. Such a relatively constant distribution is a consequence of requiring a lead-
ing jet with pT > 270 GeV, which suppresses the flavour-creation process, which typically produces
two b-jets with low pT,bb. Without this requirement, flavour creation would overwhelm the other
production mechanisms by several order of magnitudes. All MC generators provide a good descrip-
tion of the high-pT,bb region. Powheg and MC@NLO deviate significantly from data for pT,bb below
about 200 GeV, while Sherpa overestimates the data in the region 50 . pT,bb . 130 GeV. Pythia 6.4
reproduces well the shape of the data.
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Figure 4: Differential cross section for bb̄ production as a function of the transverse momentum of the dijet
system, pT,bb. The figure layout is as in Fig. 3.

The cross sections as a function of the azimuthal angle and of the η–φ distance between the jets are
shown in Figs. 5 and 6, respectively. In these figures, the region at high angular separation is where the
flavour-creation process is expected to dominate. This is visible in the peaks at ∆φ ∼ π and ∆R ∼ 3.
The NLO predictions are above the data in Fig. 5 for low ∆φ values, where the bb̄ pair is more likely
produced together with at least one other jet. They reproduce well the shape of the data distribution
for ∆φ & 1, but underestimate the cross section by a factor two in the same region. Good agreement
between data and simulation with LO generators is seen. The differential cross section as a function
of ∆R, shown in Fig. 6, is well reproduced by Powheg. The ratio of MC@NLO predictions to the data
is ∼ 0.5 for ∆R . 2, and is above the data in the intermediate ∆R region. The LO predictions do not
show strong deviations from data apart from an excess for ∆R values below ∼ 0.7.

Figures 7 and 8 show the cross sections as a function of the rapidity variables yB and y∗, respectively.
The Powheg predictions reproduce well the shape of the data distribution for both observables. The
LO predictions deviate from the data for yB > 1.2. The MC@NLO predictions are above the data
for yB < 0.1, and are significantly lower than the data for 0.3 . yB . 1.4, as well as for y∗ . 0.8.
Pythia 6.4 and Sherpa also generally describe the data well, particularly the y∗ distribution, although
their predictions are above the data for yB & 1.2.
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Figure 5: Differential cross section for bb̄ production as a function of the azimuthal angle between the two jets,
∆φ. The point corresponding to the first bin of the MC@NLO to data ratio is about 3.5 and does not appear in
the plot. The figure layout is as in Fig. 3.

10 Conclusion

Differential cross sections for pairs of b-jets have been measured in pp collisions at
√

s = 7 TeV using
4.2 fb−1 of data recorded by the ATLAS detector at the LHC. Six dijet variables are investigated to
probe the bb̄ phase space: the invariant mass, the transverse momentum, and the boost of the dijet
system; the azimuthal angle, the angular separation, and the rapidity difference between the two b-
jets. The dijet system is defined as the two highest-pT b-jets in the event with pT > 20 GeV, |η| < 2.5,
requiring a minimum ∆R of 0.4. A further requirement of a jet in the event with a minimum transverse
momentum of 270 GeV is applied.

The results are compared with NLO QCD predictions obtained using Powheg and MC@NLO and
the LO predictions provided by Sherpa and Pythia 6.4. The use of single-jet triggers with high
pT thresholds significantly changes the relative weight of the different production processes with
respect to an almost unbiased selection [9], with an enhancement of the gluon-splitting mechanism
by strongly suppressing the low-pT,bb region where the flavour-creation process dominates. Under
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SHERPA 1.43

Figure 6: Differential cross section for bb̄ production as a function of the angular distance between the two jets,
∆R =

√

(∆φ)2 + (∆η)2. The figure layout is as in Fig. 3.

these conditions, MC@NLO shows significant deviations from data for all variables, both in terms of
shape and normalisation. Powheg generally reproduces well the measured differential cross sections,
although it underestimates the data at low pT,bb. The LO predictions approximately reproduce all
distributions although some bins show deviations of up to about 50%.

In general, this analysis, which is particularly sensitive to the three-jet topology, confirms that the
current MC generators have significant difficulties in describing regions of phase space which are not
dominated by two hard b-jets.
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Figure 7: Differential cross section for bb̄ production as a function of the boost of the dijet system, yB =
1
2 |y1 + y2|. The figure layout is as in Fig. 3.
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Figure 8: Differential cross section for bb̄ production as a function of y∗ = 1
2 |y1 − y2|. The figure layout is as in

Fig. 3.
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M. Mikuž78, M. Milesi91, A. Milic27, D.W. Miller33, C. Mills49, A. Milov175, D.A. Milstead148a,148b,
A.A. Minaenko132, Y. Minami157, I.A. Minashvili68, A.I. Mincer112, B. Mindur41a, M. Mineev68,
Y. Minegishi157, Y. Ming176, L.M. Mir13, K.P. Mistry124, T. Mitani174, J. Mitrevski102,
V.A. Mitsou170, A. Miucci18, P.S. Miyagawa141, A. Mizukami69, J.U. Mjörnmark84,
M. Mlynarikova131, T. Moa148a,148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38,
S. Molander148a,148b, R. Moles-Valls23, R. Monden71, M.C. Mondragon93, K. Mönig45, J. Monk39,
E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a,94b,
R.W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llácer57, P. Morettini53a, S. Morgenstern32,
D. Mori144, T. Mori157, M. Morii59, M. Morinaga157, V. Morisbak121, S. Moritz86, A.K. Morley152,
G. Mornacchi32, J.D. Morris79, S.S. Mortensen39, L. Morvaj150, P. Moschovakos10, M. Mosidze54b,
J. Moss145,ad, K. Motohashi159, R. Mount145, E. Mountricha27, E.J.W. Moyse89, S. Muanza88,
R.D. Mudd19, F. Mueller103, J. Mueller127, R.S.P. Mueller102, T. Mueller30, D. Muenstermann75,
P. Mullen56, G.A. Mullier18, F.J. Munoz Sanchez87, J.A. Murillo Quijada19, W.J. Murray173,133,
H. Musheghyan57, M. Muškinja78, A.G. Myagkov132,ae, M. Myska130, B.P. Nachman145,
O. Nackenhorst52, K. Nagai122, R. Nagai69,z, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51,
E. Nagy88, A.M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114,
R.F. Naranjo Garcia45, R. Narayan11, D.I. Narrias Villar60a, I. Naryshkin125, T. Naumann45,
G. Navarro21, R. Nayyar7, H.A. Neal92, P.Yu. Nechaeva98, T.J. Neep87, A. Negri123a,123b,
M. Negrini22a, S. Nektarijevic108, C. Nellist119, A. Nelson166, S. Nemecek129, P. Nemethy112,
A.A. Nepomuceno26a, M. Nessi32,a f , M.S. Neubauer169, M. Neumann178, R.M. Neves112,
P. Nevski27, P.R. Newman19, D.H. Nguyen6, T. Nguyen Manh97, R.B. Nickerson122,
R. Nicolaidou138, J. Nielsen139, A. Nikiforov17, V. Nikolaenko132,ae, I. Nikolic-Audit83,
K. Nikolopoulos19, J.K. Nilsen121, P. Nilsson27, Y. Ninomiya157, A. Nisati134a, R. Nisius103,
T. Nobe157, M. Nomachi120, I. Nomidis31, T. Nooney79, S. Norberg115, M. Nordberg32,
N. Norjoharuddeen122, O. Novgorodova47, S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166,
E. Nurse81, F. Nuti91, F. O’grady7, D.C. O’Neil144, A.A. O’Rourke45, V. O’Shea56, F.G. Oakham31,d,
H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J.P. Ochoa-Ricoux34a, S. Oda73,
S. Odaka69, H. Ogren64, A. Oh87, S.H. Oh48, C.C. Ohm16, H. Ohman168, H. Oide53a,53b,
H. Okawa164, Y. Okumura157, T. Okuyama69, A. Olariu28b, L.F. Oleiro Seabra128a,
S.A. Olivares Pino49, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a,128e,
K. Onogi105, P.U.E. Onyisi11,v, M.J. Oreglia33, Y. Oren155, D. Orestano136a,136b, N. Orlando62b,
R.S. Orr161, B. Osculati53a,53b,∗, R. Ospanov87, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d,
F. Ould-Saada121, A. Ouraou138, K.P. Oussoren109, Q. Ouyang35a, M. Owen56, R.E. Owen19,
V.E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138,
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