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A search is performed for a new resonance decaying into a lighter resonance and a Z boson. Two channels 
are studied, targeting the decay of the lighter resonance into either a pair of oppositely charged τ leptons 
or a bb pair. The Z boson is identified via its decays to electrons or muons. The search exploits data 
collected by the CMS experiment at a centre-of-mass energy of 8 TeV, corresponding to an integrated 
luminosity of 19.8 fb−1. No significant deviations are observed from the standard model expectation and 
limits are set on production cross sections and parameters of two-Higgs-doublet models.
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1. Introduction

The observation of a new particle with a mass of approximately 
125 GeV was reported by the ATLAS and CMS experiments at the 
CERN LHC in the WW, ZZ and γ γ final states [1–3]. Evidence of 
the decay of the particle to pairs of fermions (ττ and bb) has 
also been reported in Refs. [4–6]. The measurements of branch-
ing fractions, production rates, spin and parity are all consistent 
with the predictions for the standard model (SM) Higgs boson 
[7,8], wherein a single doublet of Higgs fields is present. However, 
additional Higgs bosons are expected in simple extensions of the 
SM scalar sector, such as models with two Higgs-boson doublets 
(2HDMs) [9]. These models predict five physical Higgs particles 
that arise as a consequence of the electroweak symmetry-breaking 
mechanism: two neutral CP-even scalars (h, H), one neutral CP-odd 
pseudoscalar (A), and two charged scalars (H±).

An important motivation for 2HDMs is that such models pro-
vide a way to accommodate the asymmetry between matter and 
antimatter observed in the universe [9,10]. An extension of the SM 
scalar sector with two Higgs boson doublets would also naturally 
arise in supersymmetry [11,12], which requires a scalar structure 
more complex than a single doublet. Axion models [13] provide a 
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strong interaction that does not violate CP symmetry and give rise 
to an effective low-energy theory with two Higgs doublets. Finally, 
it has recently been noted [14] that certain realisations of 2HDMs 
can accommodate the muon g-2 anomaly [15] without violating 
present theoretical and experimental constraints.

In the most general case, 14 parameters describe the scalar 
sector of a 2HDM [9]. Only six free parameters remain once the 
experimental observations are included by imposing the so-called 
Z2 symmetry to suppress flavour changing neutral currents, and 
by fixing both the values of the mass of the recently discovered 
SM-like Higgs boson (125 GeV) [16] and the electroweak vacuum 
expectation value (246 GeV). The compatibility of a SM-like Higgs 
boson with 2HDMs is possible in the so-called alignment limit. 
The alignment limit is reached when cos(β − α) → 0, where tanβ

is the ratio of the vacuum expectation values and α is the mix-
ing angle of the two Higgs doublets. In such a regime, one of the 
CP-even scalars, h or H, is identified with the SM-like Higgs bo-
son. A recent theoretical study [10] has shown that, in this limit, 
a large mass splitting (>100 GeV) between the A and H bosons 
would favour the electroweak phase transition that would be at 
the origin of baryogenesis in the early universe, satisfying thereby 
the currently observed matter–antimatter asymmetry. In this con-
text, the most frequent decay mode of the pseudoscalar A boson 
would be A → ZH. Since the analysis strategy presented in this 
paper is independent of the assumed model and parity of the res-
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onance, the results can also be interpreted in the reversed topology 
H → ZA, where the expected 2HDM mass hierarchy is inverted and 
the mass of A is expected to be light [17]. For both topologies, the 
lighter scalar resonance (A or H) is not identified with the SM-like 
Higgs boson.

This paper describes the first CMS search for a new resonance 
decaying into a lighter resonance and a Z boson. Two searches are 
performed, targeting the decay of the lighter resonance into either 
a pair of oppositely charged τ leptons or a bb pair. In both cases, 
the Z boson is identified via its decay into a pair of oppositely 
charged electrons or muons (light leptons), labelled in the text by 
the symbol ℓ. The choice of bb and ττ final states is motivated by 
the large branching fractions predicted in most of the 2HDM phase 
space [18]. For the ℓℓττ channel, the following ττ final states are 
considered: eµ, eτh , µτh , and τhτh , where τh indicates the decays 
τ → hadrons + ντ . Given its sensitivity to the 2HDM parameter 
space region where cos(β − α) ≈ 0, the search presented in this 
paper is complementary to other related searches performed in the 
same final state by the ATLAS and CMS collaborations [19,20].

2. The CMS detector

The central feature of the CMS apparatus is a superconducting 
solenoid of 6 m internal diameter, providing a magnetic field of 
3.8 T. Located in concentric layers within the solenoid volume are 
a silicon pixel and strip tracker, a lead tungstate crystal electro-
magnetic calorimeter (ECAL), and a brass and scintillator hadron 
calorimeter (HCAL), each composed of one barrel and two end-
cap sections. These layers provide coverage up to a pseudorapidity 
|η| = 2.5. Extensive forward calorimetry complements are provided 
by the endcap detectors for |η| < 5.2. Combining the energy mea-
surement in the ECAL with the measurement in the tracker, the 
momentum resolution for electrons with pT ≈ 45 GeV from Z → ee
decays ranges from 1.7% for nonshowering electrons in the barrel 
region to 4.5% for showering electrons in the endcaps [21]. Muons 
are measured in gas-ionisation detectors embedded in the steel 
flux-return yoke outside the solenoid. They cover the pseudora-
pidity range |η| < 2.4, with detection planes made using three 
technologies: drift tubes, cathode strip chambers, and resistive 
plate chambers. Matching muons to tracks measured in the silicon 
tracker results in a relative transverse momentum resolution for 
muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and bet-
ter than 6% in the endcaps [22]. The first level of the CMS trigger 
system uses information from the calorimeters and muon detectors 
to select the most interesting events. A high-level trigger proces-
sor farm decreases the event rate from approximately 100 kHz to 
600 Hz before data storage. A more detailed description of the CMS 
detector, together with a definition of the coordinate system and 
kinematic variables, can be found in Ref. [23].

3. Data and simulated samples

The data used for this search were collected by the CMS exper-
iment at 

√
s = 8 TeV, and correspond to a total integrated lumi-

nosity of 19.8 fb−1. The average number of interactions per bunch 
crossing (pileup) in the data was 21 [24]. Events were selected us-
ing dielectron and dimuon triggers [21,22]. These triggers have pT

thresholds of 17 and 8 GeV for the leading and subleading lepton 
respectively, and require relatively loose reconstruction and identi-
fication criteria.

The main SM background processes giving rise to prompt lep-
tons are W/Z + jets, tt + jets, tW, and diboson production (WW, 
ZZ, and WZ). The SM background contribution from ZZ is gen-
erated at next-to-leading order (NLO) with powheg 1.0 [25] for 
the ℓℓττ channel and using the leading-order (LO) MadGraph 5.1 

Monte Carlo (MC) program [26], matched to pythia 6.4 [27] for 
the parton showering and hadronization, for the ℓℓbb channel. 
Single top quark events are generated at NLO using powheg 1.0. 
Simulated events for other samples are obtained using the Mad-

Graph 5.1 MC matched to pythia 6.4. The pythia parameters 
affecting the description of the underlying event are set to those 
of the Z2* tune [28]. All generators used for processes including 
τ leptons in the final state are interfaced with tauola 2.4 [29]
for the simulation of the τ decays. The detector response is sim-
ulated using a detailed description of CMS, based on the Geant4

toolkit [30]. The simulated samples account for contributions from 
pileup collisions that reflect the distributions observed in data. The 
trigger and reconstruction efficiency in the simulation is rescaled 
by as much as 2% in order to match that measured in the data [24].

Two benchmark 2HDM processes are considered as signal: H →
ZA and A → ZH, where the lightest boson (pseudoscalar or scalar, 
according to the process) can decay to ττ or bb, and the Z de-
cays to ℓℓ. The MadGraph 5.1 program, interfaced to pythia 6.4 
and tauola 2.4, was used to generate signal samples corresponding 
to different values of A and H masses (mA and mH , respectively). 
The same properties of the SM Higgs boson are assigned to the 
lightest scalar boson, h, and its mass mh is fixed at 125 GeV. The 
identification of the observed Higgs boson, together with all its 
measured properties, with the scalar h constrains the phenomeno-
logically reliable parameter space regions to not depart from the 
SM-like condition cos(β −α) ≈ 0. This corresponds to the so-called 
alignment limit [31]. Considering the parameter space still allowed 
by direct searches [12], the chosen values for cos(β −α) and tanβ

are 0.01 and 1.5, respectively, and type-II Yukawa couplings are as-
sumed for the benchmark processes.

The masses of the charged Higgs bosons (mH± ) are kept equal 
to the highest mass involved in the signal process (mH or mA) 
to preserve the degeneracy m2

H± ≈ m2
H/A [17], denoting with mH/A

the mass of the scalar H or the mass of the pseudoscalar A. The 
value of the m12 parameter, the soft Z2 symmetry breaking mass, 
was set to m2

12 = m2
H± tanβ/(1 + tan2 β), according to the mini-

mal supersymmetric standard model (MSSM) parametrisation [11]. 
The value of the complex couplings λ6 and λ7 in this parametri-
sation are set to zero, in order to avoid tree-level CP violation. 
The production cross sections, used for the normalisation of the 
signal samples, are computed using the SusHi 1.4 program [32], 
which provides next-to-next-to-leading-order (NNLO) predictions. 
The branching fraction for the heavy and light Higgs bosons are 
obtained using the 2hdmc 1.6 program [33], following the guide-
lines in Refs. [34,35].

The signal benchmark where the light boson decays into ττ
is simulated for values of mH/A and mA/H varying in the ranges 
200–1000 and 15–900 GeV, respectively, with the constraint 
mH/A > mA/H +mZ . For the ℓℓbb analysis the lower bound for the 
invariant mass mA/H goes down to 10 GeV. The region where mH

is smaller than mh is not pertinent in this model.

4. Event reconstruction and selection

Event reconstruction is based on the particle-flow algorithm 
[36,37], which exploits information from all the CMS subdetec-
tors to identify and reconstruct individual particles in the event: 
muons, electrons, photons, charged and neutral hadrons. Such par-
ticles are algorithmically combined to form the jets, the τh can-
didates, the missing transverse momentum �pmiss

T , defined as the 
projection on the plane perpendicular to the beams of the negative 
vector sum of the particles momenta and its magnitude, denoted 
as Emiss

T . To minimise the contributions from pileup interactions, 
charged tracks are required to originate from the primary vertex 
(reconstructed using the deterministic annealing algorithm [38]), 



The CMS Collaboration / Physics Letters B 759 (2016) 369–394 371

which is the one characterised by the largest p2
T sum of its associ-

ated tracks.
Electrons are identified by combining information from tracks 

and ECAL clusters, including energy depositions from final-state 
radiation [21]. Muons are identified through a combined fit to po-
sition measurements from both the inner tracker and the muon 
detectors [22]. The τh objects are identified and reconstructed us-
ing the “hadron-plus-strips” algorithm [39], which uses charged 
hadrons and photons to reconstruct the main hadronic decay 
modes of the τ lepton: one charged hadron, one charged hadron 
and photons, and three charged hadrons. Electrons and muons 
can be misidentified as hadronic taus if produced in jets or if 
close-by activity from pile-up or bremsstrahlung is present. These 
misidentifications are suppressed using dedicated criteria based 
on the consistency between the measurements in the tracker, the 
calorimeters, and the muon detector [39]. To reject nonprompt or 
misidentified leptons, requirements are imposed on the isolation 
criteria, based on the sum of deposited energies. The absolute lep-
ton isolation Iabs is defined by the scalar sum of the pT of the 
charged particles from the primary vertex, neutral hadrons, and 
photons in an isolation cone of size �R =

√
(�η)2 + (�φ)2 = 0.4

(�R = 0.3 for electrons), centred around the lepton direction. To 
reduce the effect from pileup, the energy deposit released in the 
isolation cone by charged particles not associated with the pri-
mary vertex is subtracted from the neutral particles pT scalar 
sum. For electrons and muons the relative isolation, defined as 
Irel = Iabs/pT , is used.

Jets are clustered using the anti-kT algorithm [40], with a dis-
tance parameter of 0.5, as implemented in the Fastjet software 
package [41]. Charged particles not associated with the primary 
vertex are excluded by means of the charged-hadron subtraction 
technique [42]. The remaining energy originating from pileup in-
teractions, including the neutral components, is subtracted based 
on the median energy density in the detector computed through 
the effective jet area technique [43]. The identification of b quark 
initiated jets is achieved through the combined secondary vertex 
(CSV) algorithm [44], which exploits observables related to the 
long lifetime of B hadrons.

4.1. Selection for Z → ℓℓ

In selecting ℓℓbb and ℓℓττ events, the leptons from Z boson 
decay are required to be well within the CMS trigger and detec-
tor acceptance of pT > 20 GeV and |η| < 2.5 for electrons, and 
pT > 20 GeV, |η| < 2.4 for muons. Muon momentum-scale [22]
and electron energy corrections [21] are applied to recover the 
global shift of the scale observed between data and simulation. The 
requirement on the relative isolation for the leptons is set to Irel <
0.15 for electrons and Irel < 0.2 for muons in selecting ℓℓbb events. 
For the leptons from the Z boson, in the case of ℓℓττ events, 
the required relative isolation is Irel < 0.3. The presence of two 
reconstructed same-flavour, oppositely charged lepton candidates 
forming a pair with invariant mass in the range of 76–106 GeV 
is required to suppress contamination of non-resonant Drell–Yan 
+ jets and tt processes. In events where multiple Z candidates 
are present, the lepton pair with the invariant mass closest to the 
nominal Z boson mass [45] is chosen.

4.2. Event selection for ℓℓbb

For the ℓℓbb search, the jets are selected to be in the kine-
matic region pT > 30 GeV and |η| < 2.4. At least two CSV b-tagged 
jets are required to be present in the event, to reduce the contri-
bution of Z + light-parton jets (originating from gluons or u, d, 

or s quarks) events. The threshold on the b tagging discrimina-
tor corresponds to a b tagging efficiency greater than 65% and to 
a misidentification probability for light-parton jets of 1% [44]. The 
two b-tagged jets with highest values of the CSV discriminant are 
considered as candidate decay products of the new light resonance.

The Emiss
T significance [46,47], representing a χ2 difference be-

tween the observed result for Emiss
T and the Emiss

T = 0 hypothesis, 
is used to suppress background events originating from tt pro-
cesses. This variable provides an event-by-event assessment of the 
likelihood that the observed missing transverse energy is consis-
tent with zero given the reconstructed content of the event and 
known measurement resolutions. This variable is a stronger dis-
criminant against tt background than Emiss

T alone and also provides 
smaller systematic uncertainties. The distribution of the tt com-
ponent motivates the requirement on the Emiss

T significance to be 
smaller than 10.

4.3. Event selection for ℓℓττ

To increase the signal sensitivity in the high ττ mass region, 
the ℓℓττ event selection includes the requirement of a trans-
versely boosted Z boson (pT > 20 GeV), together with a large 
(>1.5 rad) azimuthal angle between the Z boson flight direction 
and �pmiss

T , particularly effective in suppressing the Z + jets back-
ground. In addition to the two light leptons required to reconstruct 
the Z boson, two additional oppositely charged and different-flavor 
leptons (e, µ, and τh) are used to reconstruct the A or H boson 
candidate. The requirements on the pseudorapidity for light lep-
tons are the same as for the Z decay leptons, with the pT thresh-
old lowered to 10 GeV. The τh candidates are required to have 
pT > 20 GeV and |η| < 2.3. The relative isolation for electrons and 
muons, and the absolute isolation for τ leptons are required to be 
smaller than 0.3 and 2 GeV, respectively. Since the Z + jets back-
ground is characterised by a softer lepton transverse momentum 
spectrum than the signal one, this background is reduced by se-
lecting events with high LT , where LT indicates the scalar sum 
of the visible pT of the decay products from a ττ pair. Both the 
isolation requirements and the value of the LT threshold are de-
termined as a result of an optimisation procedure that maximises 
the expected significance of the searched signal. The optimal re-
quirement on the LT quantity is found by scanning the threshold 
between 20 and 200 GeV, at intervals of 20 GeV.

Jets are required to have pT > 30 GeV and |η| < 4.7. To reduce 
the large tt background, all events with at least one jet with pT >

20 GeV and |η| < 2.4, reconstructed as a jet originating from a b 
quark according to the output of the CSV discriminator used for 
tagging, are vetoed.

To calculate the ττ invariant mass, the secondary-vertex fit 
algorithm (svfit) [48] is used, a likelihood-based method that com-
bines the reconstructed �pmiss

T and its resolution with the momen-
tum of the visible τ decay products to obtain an estimator of the 
mass of the parent particle.

5. Modelling of the background

5.1. The ℓℓbb channel

The relevant sources of background for the ℓℓbb final state 
originate from Z + jets processes, tt and tW production, diboson 
production, and vector boson production in association with a SM 
Higgs boson. The contributions of Z + jets and tt backgrounds are 
measured by means of a data-based method, the diboson and tW 
backgrounds are normalised to the CMS measurements. For these 
backgrounds, the shapes are taken from MC, while the normali-
sations are extracted from data. The vector boson production in 
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association with a SM Higgs boson is normalised to the theoretical 
prediction.

The comparison of data and predictions after the selection of 
events for the ℓℓbb final state shows the importance of an ac-
curate theoretical calculation of the Z + jets production rate. In 
particular, in the 400–700 GeV range of the mℓℓbb distribution, 
the data is found to exceed the LO prediction by up to two stan-
dard deviations, depending on the considered mass. This excess is 
no longer significant when NLO QCD corrections, as implemented 
in amc@nlo [49], are included in the modelling of the Z + jets 
process. For this reason, the LO predictions are corrected using a 
reweighting technique, in order to account for NLO QCD effects. To 
this end, it becomes necessary to apply the reweighting according 
to the parton (or hadron) flavour of the jets in the generated event. 
The ratio NLO/LO of the light- and heavy-flavour components of 
the mℓℓjj distribution is each fitted with a third-order polynomial 
and a separate reweighting of the shape of the light and heavy 
flavour components of mℓℓjj is applied, resulting in better agree-
ment with the data.

To determine the Z + jets and tt normalisation, a data-based 
method is exploited. Data-derived correction factors for simulation 
are obtained after an additional categorisation of the Z + jet back-
ground events, based on the flavour (b jet or not) and multiplicity 
(exactly two jets or three or more jets) of the reconstructed jets. 
These categories are sensitive to NLO effects related to the mod-
elling of extra jets [50]. Scale factors (SFs) are introduced for the 
tt background and the light and heavy flavour components of Z +
jets background. These are left free to float in a two-dimensional 
fit of the distributions predicted by the simulation to the data. The 
distributions used as input are the product of the CSV discrimi-
nants of the two selected jets, and the invariant mass of the lepton 
pair from the Z boson decay in the range 60 < mℓℓ < 120 GeV. 
The first observable is sensitive to the contribution from non-b 
jets, whereas the second one is sensitive to the contribution of the 
tt production process. The fit is performed simultaneously in four 
different categories: electrons, muons, exactly two jets, and more 
than two jets. The SF for the tt is found to be very close to the 
unity, while for the Z + jets process the SFs depart from unity by 
as much as 1.3 for the light flavour component.

The overall yields from diboson and tW processes are nor-
malised to the CMS measurements [51–54]. The associated produc-
tion of a Z boson together with the Higgs-like scalar boson (Zh) is 
also accounted for as background, and normalised to the expected 
theoretical cross section [55].

5.2. The ℓℓττ channel

Methods based on both data and simulation are used to esti-
mate the residual background after event selection. Normalisations 
and mass distributions in the ZZ, Zh, as well as for the minor fully 
leptonic WWZ, WZZ, ZZZ and ttZ backgrounds are estimated from 
simulation. The Z + jets and WZ + jets contributions are mea-
sured by means of a data-based method.

Production of Z + jets and WZ + jets constitutes the main 
source of background when at least one lepton is misidenti-
fied. Misidentified light leptons arise from semileptonic decays 
of heavy-flavour quarks, decays in flight of hadrons, and photon 
conversions, while jets originating from quarks or gluons can be 
misidentified as τh . Backgrounds with at least one misidentified 
lepton are estimated from control samples in data starting from 
the estimation of the lepton misidentification probabilities. The 
lepton misidentification probability is defined as the probability 
that a genuine jet, satisfying loose lepton identification criteria 
(which refer to the so-called “loose” lepton), also passes the identi-
fication criteria required for a lepton candidate in the signal region 

(so-called “tight” lepton). This probability is measured for each lep-
ton flavour using a data sample where a Z candidate is selected, 
and an additional single lepton (electron, muon, or τh) passes the 
loose identification requirements. Counting the fraction of such 
loose leptons that also pass the tight lepton identification crite-
ria in the pT bins of the reconstructed jet closest, in �R , to the 
loose lepton, yields the misidentification probability f as a func-
tion of pT . The contribution from genuine leptons arising from the 
WZ and ZZ production are subtracted. Once the misidentification 
probabilities are computed, three control regions (C R) are defined 
with a Z candidate and two opposite-sign leptons, as follows: the 
C R00 wherein both leptons pass loose identification criteria but 
not the tight ones; C R10 region, wherein one lepton passes tight 
identification requirements, the other only loose criteria, and the 
loose lepton is the τh with lower pT in the τhτh channel, the light 
lepton in the ℓτh channels, and the electron in the eµ channel; 
the C R01 region, which is similar to C R10 but the loose lepton is 
the τh with higher pT in the τhτh channel, the τh in the ℓτh chan-
nels, and the muon in the eµ channel. The estimated NmisID of the 
background with at least one misidentified lepton from a pair of 
closest-jet pT bins is given by:

NmisID = N10
f1

1− f1
+ N01

f2

1− f2
− N00

f1 f2

(1− f1)(1− f2)
, (1)

where N00 , N01 , and N10 denote the number of events from the 
C R00 , C R01 , and C R10 control regions, respectively, with closest 
jets in the considered pT bins, and f1 and f2 indicate the misiden-
tification probabilities associated with the two different flavor (ex-
cept for the τhτh final state) loose leptons in the pT bins. The 
expression in Eq. (1) takes into account both the background with 
two misidentified leptons (mostly from Z+ jets) and that from only 
one misidentified lepton (primarily from WZ + jets).

The contamination from genuine leptons in the control regions 
from the SM Zh, WWZ, WZZ, ZZZ, ttZ, and ZZ processes is esti-
mated from simulation, and subtracted from N00 , N01 , and N10 . 
The total background in the signal region is obtained by summing 
the contributions from all pairs of pT bins.

6. Systematic uncertainties

The systematic uncertainties are reported in the following para-
graphs and summarised in Table 1.

The uncertainty on the integrated luminosity recorded by CMS 
is estimated to be 2.6% [56].

The systematic uncertainties associated with the lepton effi-
ciency SFs, used to correct the simulation and derived from studies 
at the Z peak using the tag-and-probe (T&P) method [22,21], are 
approximately 1% for muons and 2% for electrons, and affect both 
signal and background processes in the same way. Also, the uncer-
tainties on the double muon and double electron trigger efficien-
cies are evaluated to be 1% from similar studies at the Z peak [24].

The uncertainty on the jet energy scale is derived from the 
method of Ref. [57] and the parameters describing the shape of 
the energy distribution are varied by one standard deviation (SD). 
The effect is estimated separately on the background and on the 
signal, resulting in a 3–5% variation, depending on the pT and η
of the jets. The uncertainty on signal and background yields in-
duced by the imperfect knowledge of the jet energy resolution is 
estimated to be 3% [57].

The uncertainties affecting b tagging efficiencies are pT-depen-
dent, and vary from 3% to 12% (for pT > 30 GeV) [44]. The impact 
of these uncertainties on the normalisation of signal is 5% for back-
ground and 4–6% for signal in the ℓℓbb analysis, and about 1% in 
the ℓℓττ analysis. The uncertainty in the mistagging rate is found 
to have a negligible impact.
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Table 1

Summary of systematic uncertainties for both ℓℓττ and ℓℓbb final states.

Source Uncertainty [%]

H → ZA → ℓℓbb H → ZA → ℓℓττ

Luminosity 2.6 2.6
Lepton identification/isolation/scale 1–2 1–2
Lepton trigger efficiency 1 1
Jet energy scale 3–5 3–5
Jet energy resolution 3 3
b-tagging and mistag efficiency 4–6 1
Signal modelling (PDF, scale) 5–6 5–6
Background norm. (Z Z ) 11 11
Background norm. (Z + jets and tt) <8 –
Background norm. (tW, WW, WZ and Zh) 8–23 –
Z + jet background modelling 5–30 –
Signal efficiency extrapolation 3–50 –
Tau identification/isolation – 6
Tau energy scale – 3
Reducible background estimate – 40

The systematic uncertainty on the signal is evaluated by vary-
ing the set of parton distribution functions (PDFs) according to 
the PDF4LHC prescriptions [58–60] and the factorisation and renor-
malisation scales by varying their values by a factor one half and 
two. An effect of 5–6% is estimated for the entire mass range for 
both ℓℓττ and ℓℓbb final states. This uncertainty is estimated by 
propagating these variations through the signal simulation and re-
construction sequence and thus accounts for uncertainties related 
to both signal cross section and acceptance.

Finally, an 11% uncertainty is assigned to the ZZ normalisation 
from the cross section measured by CMS [51].

For the ℓℓbb final state, the uncertainty on the SFs used for 
normalisation of Z + jets and tt backgrounds is derived from the 
statistical uncertainty resulting from the fit used to derive these 
SFs and it is estimated to be <8%. An additional systematic uncer-
tainty associated with the mℓℓbb spectrum correction, described in 
Sec. 5, ranges from 5% for mℓℓbb below 700 GeV to 30% for masses 
at the TeV scale. An uncertainty of 8% is assigned to the normal-
isation of the WW process, corresponding to the uncertainties in 
the cross section measured by CMS [52]. A similar uncertainty is 
assigned also to the WZ process, which shares the same sources 
of uncertainties in the cross section measurement. For the minor 
tW background, the uncertainty is estimated as 23%, also based on 
the measured cross section [54]. A 7% uncertainty is assigned to 
the Zh process, reflecting the uncertainty on the theoretical cross 
section [55]. Given the small cross section for this SM process 
compared to other background processes, its contribution to the 
background normalisation uncertainty has been calculated to be 
less than 1% and is thus considered negligible. In order to inter-
polate smoothly the signal efficiency across the parameter space, 
additional mass points for the ℓℓbb final state are processed using 
a parametric simulation [61], tuned for delivering a realistic ap-
proximation of the CMS response in the reconstruction of physics 
objects used in this search. For this reason, an additional source 
of uncertainty is introduced for the SF applied to these samples to 
reproduce the efficiency measured with the full simulation. This is 
measured for the different signal points in the mH–mA plane and 
it is close to 3% in most of the phase space, but rises to 50% at the 
boundaries of the sensitivity region.

In the ℓℓττ final state, the uncertainty of 6% [39] in the τh
identification efficiency, which has been determined using a T&P 
method, has been taken into account. The τh energy scale uncer-
tainty is within 3% [39] and only affects the shapes of the ττ mass 
distributions. The systematic uncertainties estimated for e, µ, τh
and jet energy scales are propagated to �pmiss

T and to the mass dis-
tributions. The propagation to �pmiss

T involves a sum of the energies 

of each object first and a consequent subtraction of such contri-
butions once the nominal energy scales (or resolutions) are varied 
up and down by one SD (for e, µ, τh, and jets). One of the main 
systematic uncertainties is related to the nonprompt background 
estimation. This uncertainty has been evaluated using simulation 
by comparing the direct estimate of the backgrounds with that ob-
tained using the procedure adopted in the analysis, but applied 
to simulated events. The discrepancy between the two estimates 
never exceeds 40%. This value is thus considered as the uncertainty 
on the estimates of the reducible background yield for all channels 
and all LT thresholds.

7. Results

The analysis searches for new resonance decays by comparing 
data to simulation in the two-dimensional plane defined by the 
four-body (mℓℓbb or mℓℓττ ) and two-body (mbb or mττ ) invariant 
masses. The numerical values for the upper limits or the signifi-
cance of a local excess are obtained using the asymptotic method 
described in Ref. [62]. The CLS method [63,64] is used to determine 
the 95% confidence level (CL) upper limits on the excluded signal 
cross section. For both final states, the limits in the lower-right tri-
angle of the mass plane, which corresponds to the process A → ZH, 
are obtained by mirroring the results obtained in the upper-left 
triangle, since the signal efficiencies for H → ZA and A → ZH are 
equal for the same masses of the heavy and light Higgs bosons in 
the two processes.

7.1. The ℓℓbb channel

For the ℓℓbb final state, results are obtained using a counting 
approach, which can be reinterpreted in other theoretical models 
with the same final state. Results are reported in bins of mbb and 
mℓℓbb masses, in the range from 10 GeV to 1 TeV for mbb , and from 
140 GeV to 1 TeV for mℓℓbb . To define the proper granularity of the 
binning, a study is performed using signal benchmark points and 
evaluating the width of the mbb and mℓℓbb peaks in the considered 
mass range. The average reconstructed width, defined as one SD, 
for mbb and mℓℓbb is found to be approximately 15% of the consid-
ered mass. The bin widths have been chosen to be ±1.5 SD around 
each considered mass point.

The efficiency, defined as the fraction of generated signal events 
reconstructed after the final selection, is calculated with the full 
CMS simulation and reconstruction software at 13 representative 
signal points in the mH–mA mass plane. The signal efficiencies for 
the rest of the plane are obtained by interpolating the ratio be-
tween the full simulation and the parametric simulation (typically 
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Fig. 1. Observed 95% CL upper limits on σH/A→ZA/H→ℓℓbb as a function of mA and 
mH .

0.9), calculated in each of the 13 signal mass points, and scaling 
the efficiencies calculated using the parametric simulation by this 
interpolated ratio. The resulting signal efficiency ranges from 8% at 
(mA, mH) = (100, 300) GeV to 13% at (300, 600) GeV.

Fig. 1 shows the observed upper limits on the product of the 
cross section (σ ) and branching fraction (B) for the ℓℓbb final state 
in the mH–mA plane. The achieved sensitivity provides an exclu-
sion limit at 95% CL of approximately 10 fb for a large fraction of 
the two-dimensional mass plane. In particular, the observed limit 
ranges from just above 1 fb for mH close to 1 TeV to 100 fb for 
mH < 300 GeV. The validity of these results is applicable to mod-
els allowing the existence of both A and H bosons with a natural 
width smaller than 15% of their masses.

Two moderate excesses are observed for the ℓℓbb chan-
nel in the regions around (mbb, mℓℓbb) = (95, 285) GeV and 
(575, 660) GeV. According to the procedure described at Ref. [65], 
they have local significances of 2.6 and 2.85 SD respectively, which 
become globally 1.6 and 1.9 SD, once accounting for the look-
elsewhere effect [66]. The low-mass excess is more compatible 
with the signal hypothesis, both in terms of yield and width. 
The reconstructed invariant mass distributions for the bb and 
ℓℓbb systems, in the regions around this excess, are reported in 
Fig. 2 and compared with the expectations from background pro-
cesses. A 2HDM type-II benchmark signal at mH = 270 GeV and 
mA = 104 GeV, normalised to the NNLO SusHi prediction, is also 
superimposed.

7.2. The ℓℓττ channel

In the context of the ℓℓττ analysis, a search based on the mττ

distribution is performed. For every considered pair of H and A
mass values, the search is performed in eight ττ svfit binned 
mass distributions, each corresponding to one of the eight con-
sidered final states. Variable bin widths are adopted in order to 
account for the mass resolution. A simultaneous likelihood fit to 
the observed distributions is performed with the expected dis-
tributions from the background-only and signal plus background 
hypotheses. The normalisation of the signal distribution is a free 
parameter in the fit. No significant deviations are observed in data 
from the SM expectation. The svfit mass distributions of the ττ
pair in the eight different final states are shown in Fig. 3. The cho-
sen signal corresponds to mH = 350 GeV and mA = 90 GeV, which 
is the one closest to the centre of the bin in which the highest 

Fig. 2. (Top) The mbb spectrum for events selected in the 222 <mℓℓbb < 350 GeV re-
gion for data and simulation and the relative ratio. (Bottom) The mℓℓbb spectrum for 
events selected inside the 72 < mbb < 114 GeV region for data and simulation and 
the relative ratio. The signal corresponding to mH = 270 GeV and mA = 104 GeV, 
normalised to the NNLO SusHi cross section, is superimposed for tanβ = 1.5 and 
cos(β −α) = 0.01 in the 2HDM type-II scenario. The overall systematic uncertainties 
in the simulation are reported as a hatched band.

excess is observed in the ℓℓbb channel. The shown shapes corre-
spond to LT > 40 GeV for eµ, LT > 60 GeV for eτh and µτh , and 
LT > 80 GeV for τhτh .

Fig. 4 shows the limit on σ B for the ℓℓττ final state in the 
mH–mA plane. Signal cross sections of about 5–10 fb are excluded 
in most of the mH–mA plane (500 < mH/A < 1000 GeV and 90 <
mA/H < 400 GeV).
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Fig. 3. svfit mass distributions for different final states of the H → ZA → ℓℓττ process, where the Z boson decays to ee (right column) and µµ (left column). The expected 
signal corresponding to mH = 350 GeV and mA = 90 GeV, whose cross section times branching fraction is normalised to the NNLO SusHi prediction, is superimposed for 
tanβ = 1.5 and cos(β − α) = 0.01 in the 2HDM type-II scenario. Only statistical uncertainties are reported as a hatched band.
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Fig. 4. Observed 95% CL upper limits on σH/A→ZA/H→ℓℓττ as a function of mA and 
mH .

7.3. Combination in the context of 2HDM

Observed and expected upper limits on the signal cross sec-
tion modifier µ = σ95%/σth are also derived and reported in Fig. 5, 
where σth is the theory cross section of the 2HDM signal bench-
mark used in this analysis. The results are obtained from the com-
bination of the ℓℓbb and ℓℓττ final states. This search is not able 
to exclude the high-mass regions where mA > 300 GeV and mH >

300 GeV, due to the drop in the signal cross section, where the 
A/H → tt channel opens up for mA/H > 2mt , where mt is the top 
quark mass [18]. Furthermore, in the region where highly-boosted 
topologies start contributing (mH ≈ 10 mA), the sensitivity is lower 
relative to the rest of the plane, primarily caused by the ineffi-
ciency in reconstructing signal decay products in such a regime. 
Still, a significant portion of the benchmark masses is excluded for 
a 2HDM type-II scenario with tanβ = 1.5 and cos(β − α) = 0.01, 
delimited by the solid contour in Fig. 5. The observed 95% CL ex-
clusion region is localised in the range mH = 200–700 GeV and 
mA = 20–270 GeV for the decay H → ZA, and similarly in the range 
mA = 200–700 GeV and mH = 120–270 GeV for the A → ZH decay. 
The feature observed in the exclusion limit for the region around 
(mA, mH) = (75–100, 200–300) GeV is the result of an interplay 
between the larger Z + jets background yields expected in this 
region and the quickly evolving signal cross section. The effect is 
visible in the expected limits and becomes slightly broader in the 
observed ones given the concurrent presence in the same region 
of a moderate data excess. The region where |mH − mA| < mZ is 
kinematically inaccessible.

The limits on µ can be also visualised as a function of the 
2HDM parameters tanβ and cos(β −α) for a given pair of mA and 
mH , from the combination of ℓℓbb and ℓℓττ final states. Results 
are given in Fig. 6, where the exclusion limits on the parame-
ters are shown for mH = 378 GeV and mA = 188 GeV, a mass pair 
chosen to be within the exclusion region of Fig. 5. The area con-
tained within the solid line shows the parameter space excluded 
for the chosen mass pair, where tanβ lies between 0.5 and 2.3 
and cos(β − α) between −0.7 and 0.3.

8. Summary

The paper describes the first CMS search for a new resonance 
decaying into a lighter resonance and a Z boson. Two searches 
have been performed, targeting the decay of the lighter resonance 

Fig. 5. Observed limits on the signal strength µ = σ95%/σth for the 2HDM bench-
mark, after combining results from ℓℓbb and ℓℓττ final states. The cross sections 
are normalised to the NNLO SusHi prediction, for a 2HDM type-II scenario with 
tanβ = 1.5 and cos(β − α) = 0.01. The dashed contour shows the region expected 
to be excluded. The solid contour shows the region excluded by the data.

Fig. 6. Observed limits on the signal strength µ = σ95%/σth for the 2HDM bench-
mark after combining results from ℓℓbb and ℓℓττ final states. The cross sections are 
normalised to the NNLO SusHi prediction. Limits are shown in the 2HDM parame-
ters cos(β−α) and tanβ for the signal masses of mH = 378 GeV and mA = 188 GeV. 
The dashed contour shows the region expected to be excluded. The solid contour 
shows the region excluded by the data.

into either a pair of oppositely charged τ leptons or a bb pair. 
The Z boson is identified via its decays to electrons or muons. The 
search is based on data corresponding to an integrated luminosity 
of 19.8 fb−1 in proton–proton collisions at 

√
s = 8 TeV. Deviations 

from the SM expectations are observed with a global significance 
of less than 2 SD and upper limits on the product of cross section 
and branching fraction are set. The search excludes σ B as low as 
5 fb and 1 fb for the ℓℓbb and ℓℓττ final states, respectively, de-
pending on the light and heavy resonance mass values.

Limits are also set on the mass parameters of the type-II 2HDM 
model that predicts the processes H → ZA and A → ZH, where H 
and A are CP-even and CP-odd scalar bosons, respectively. Combin-

ing the ℓℓbb and ℓℓττ final states, the specific model correspond-
ing to the parameter choice cos(β − α) = 0.01 and tanβ = 1.5 is 
excluded for mH in the range 200–700 GeV and mA in the range 
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20–270 GeV with mH > mA , or alternatively for mA in the range 
200–700 GeV and mH in the range 120–270 GeV with mA >mH .

Limits on the signal cross section modifier are also derived as 
a function of tanβ and cos(β − α) parameters. As a result, for 
specific mH–mA mass values, a fairly large region in the param-
eter space tanβ vs. cos(β − α) is excluded. This covers a region 
unexplored so far, that cannot be probed by studying produc-
tion and decay modes of the SM-like Higgs boson. In particular, 
for mH = 378 GeV and mA = 188 GeV, a range where tanβ lies 
between 0.5 and 2.3 and cos(β − α) between −0.7 and 0.3 is ex-
cluded, after the combination of the ℓℓbb and ℓℓττ final states.
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