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Abstract

The decays B+
c → J/ψD+

s and B+
c → J/ψD∗+s are studied with the ATLAS detector at the

LHC using a dataset corresponding to integrated luminosities of 4.9 fb−1 and 20.6 fb−1 of
pp collisions collected at centre-of-mass energies

√
s = 7 TeV and 8 TeV, respectively.

Signal candidates are identified through J/ψ → µ+µ− and D(∗)+
s → φπ+(γ/π0) decays.

With a two-dimensional likelihood fit involving the B+
c reconstructed invariant mass and an

angle between the µ+ and D+
s candidate momenta in the muon pair rest frame, the yields of

B+
c → J/ψD+

s and B+
c → J/ψD∗+s , and the transverse polarisation fraction in B+

c → J/ψD∗+s
decay are measured. The transverse polarisation fraction is determined to be Γ±±(B+

c →

J/ψD∗+s )/Γ(B+
c → J/ψD∗+s ) = 0.38 ± 0.23 ± 0.07, and the derived ratio of the branching

fractions of the two modes is BB+
c→J/ψD∗+s /BB+

c→J/ψD+
s

= 2.8 +1.2
−0.8±0.3, where the first error

is statistical and the second is systematic. Finally, a sample of B+
c → J/ψπ+ decays is used

to derive the ratios of branching fractions BB+
c→J/ψD+

s
/BB+

c→J/ψπ+ = 3.8±1.1±0.4±0.2 and
BB+

c→J/ψD∗+s /BB+
c→J/ψπ+ = 10.4 ± 3.1 ± 1.5 ± 0.6, where the third error corresponds to the

uncertainty of the branching fraction of D+
s → φ(K+K−)π+ decay. The available theoretical

predictions are generally consistent with the measurement.
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Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.



1 Introduction

The B+
c meson1 is the only known weakly decaying particle consisting of two heavy quarks. The ground

b̄c state was first observed by CDF [1] via its semileptonic decay B+
c → J/ψ`+ν`. An excited b̄c state

has been observed recently by ATLAS [2] using the B+
c decay mode B+

c → J/ψπ+. The presence of two
heavy quarks, each of which can decay weakly, affects theoretical calculations of the decay properties of
the B+

c meson. In the case of b̄ → c̄cs̄ processes, decays to charmonium and a D+
s or a D∗+s meson are

predicted to occur via colour-suppressed and colour-favoured spectator diagrams as well as via the weak
annihilation diagram (see Fig. 1). The latter, in contrast to decays of other B mesons, is not Cabibbo-
suppressed and can contribute significantly to the decay amplitudes. The decay properties are addressed
in various theoretical calculations [3–9] and can also be compared to the analogous properties in the
lighter B meson systems such as B0

d
→ D∗−D(∗)+

s or B+ → D̄∗0D(∗)+
s . The decays B+

c → J/ψD+
s and

B+
c → J/ψD∗+s , which have been observed recently by the LHCb experiment [10], provide a means to

test these theoretical predictions.
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Figure 1: Feynman diagrams for B+
c → J/ψD(∗)+

s decays: (a) colour-favoured spectator, (b) colour-suppressed
spectator, and (c) annihilation topology.

This paper presents a measurement of the branching fractions of B+
c → J/ψD+

s and B+
c → J/ψD∗+s

decays, normalised to that of B+
c → J/ψπ+ decay, and polarisation in B+

c → J/ψD∗+s decay performed
with the ATLAS detector [11]. The D+

s meson is reconstructed via the D+
s → φπ+ decay with the φ

meson decaying into a pair of charged kaons. The D∗+s meson decays into a D+
s meson and a soft photon

or π0. Detecting such soft neutral particles is very challenging, thus no attempt to reconstruct them is
made in the analysis. The J/ψ meson is reconstructed via its decay into a muon pair. The following
ratios are measured: RD+

s /π
+ = BB+

c→J/ψD+
s
/BB+

c→J/ψπ+ , RD∗+s /π
+ = BB+

c→J/ψD∗+s /BB+
c→J/ψπ+ , and

RD∗+s /D
+
s

= BB+
c→J/ψD∗+s /BB+

c→J/ψD+
s
, where BB+

c→X denotes the branching fraction of the B+
c → X

decay. The decay B+
c → J/ψD∗+s is a transition of a pseudoscalar meson into a pair of vector states and

is thus described by the three helicity amplitudes, A++, A−−, and A00, where the subscripts correspond to
the helicities of J/ψ and D∗+s mesons. The contribution of the A++ and A−− amplitudes, referred to as the
A±± component, corresponds to the J/ψ and D∗+s transverse polarisation. The fraction of transverse po-
larisation, Γ±±/Γ = Γ±±(B+

c → J/ψD∗+s )/Γ(B+
c → J/ψD∗+s ), is also measured. From a naive prediction

by spin counting, one would expect this fraction to be 2/3.

1 Charge conjugate states are implied throughout the paper unless otherwise stated.
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This analysis is based on a combined sample of pp collision data collected by the ATLAS experiment at
the LHC at centre-of-mass energies

√
s = 7 TeV and 8 TeV corresponding to integrated luminosities of

4.9 fb−1 and 20.6 fb−1, respectively.

2 The ATLAS detector, trigger selection and Monte Carlo samples

ATLAS is a general-purpose detector consisting of several subsystems including the inner detector (ID),
calorimeters and the muon spectrometer (MS). Muon reconstruction makes use of both the ID and the MS.
The ID comprises three types of detectors: a silicon pixel detector, a silicon microstrip semiconductor
tracker (SCT) and a transition radiation tracker. The ID provides a pseudorapidity2 coverage up to |η | =
2.5. Muons pass through the calorimeters and reach the MS if their transverse momentum, pT, is above
approximately 3 GeV. Muon candidates are formed either from a stand-alone MS track matched to an
ID track or, in case the MS stand-alone track is not reconstructed, from an ID track extrapolated to the
MS and matched to track segments in the MS. Candidates of the latter type are referred to as segment-
tagged muons while the former are called combined muons. Muon track parameters are taken from the
ID measurement alone in this analysis, since the precision of the measured track parameters for muons in
the pT range of interest is dominated by the ID track reconstruction.

The ATLAS trigger system consists of a hardware-based Level-1 trigger and a two-stage High Level
Trigger (HLT). At Level-1, the muon trigger uses dedicated MS chambers to search for patterns of hits
satisfying different pT thresholds. The region-of-interest around these hit patterns then serves as a seed for
the HLT muon reconstruction, in which dedicated algorithms are used to incorporate information from
both the MS and the ID, achieving a position and momentum resolution close to that provided by the
offline muon reconstruction. Muons are efficiently triggered in the pseudorapidity range |η | < 2.4.

Triggers based on single-muon, dimuon, and three-muon signatures are used to select J/ψ → µ+µ−

decays for the analysis. The third muon can be produced in the B+
c signal events in semileptonic decays of

the two other heavy-flavour hadrons. The majority of events are collected by dimuon triggers requiring a
vertex of two oppositely charged muons with an invariant mass between 2.5 GeV and 4.3 GeV. During the
data taking, the pT threshold for muons in these triggers was either 4 GeV or 6 GeV. Single-muon triggers
additionally increase the acceptance for asymmetric J/ψ decays where one muon has pT < 4 GeV. Finally,
three-muon triggers had a pT threshold of 4 GeV, thus enhancing the acceptance during the periods of high
luminosity when the pT threshold for at least one muon in the dimuon triggers was 6 GeV.

Monte Carlo (MC) simulation is used for the event selection criteria optimisation and the calculation of
the acceptance for the considered B+

c decay modes. The MC samples of the B+
c decays were generated

with Pythia 6.4 [12] along with a dedicated extension for the B+
c production based on calculations from

Refs. [13–16]. The decays of B+
c are then simulated with EvtGen [17]. The generated events were

passed through a full simulation of the detector using the ATLAS simulation framework [18] based on
Geant 4 [19, 20] and processed with the same reconstruction algorithms as were used for the data.

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).
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3 Reconstruction and event selection

The J/ψ candidates are reconstructed from pairs of oppositely charged muons. At least one of the two
muons is required to be a combined muon. Each pair is fitted to a common vertex [21]. The quality of
the vertex fit must satisfy χ2/ndf < 15, where the ndf stands for the number of degrees of freedom. The
candidates in the invariant mass window 2800 MeV < m(µ+µ−) < 3400 MeV are retained.

For the D+
s → φ(K+K−)π+ reconstruction, tracks of particles with opposite charges are assigned kaon

mass hypotheses and combined in pairs to form φ candidates. An additional track is assigned a pion
mass and combined with the φ candidate to form a D+

s candidate. To ensure good momentum resolution,
all three tracks are required to have at least two pixel hits and at least six hits in the SCT. Only three-
track combinations successfully fitted to a common vertex with χ2/ndf < 8 are kept. The φ candidate
invariant mass, m(K+K−), and the D+

s candidate invariant mass, m(K+K−π+), are calculated using the
track momenta refitted to the common vertex. Only candidates with m(K+K−) within ±7 MeV around
the φ mass, mφ = 1019.461 MeV [22], and with 1930 MeV < m(K+K−π+) < 2010 MeV are retained.

The B+
c → J/ψD+

s candidates are built by combining the five tracks of the J/ψ and D+
s candidates. The

J/ψ meson decays instantly at the same point as the B+
c does (secondary vertex) while the D+

s lives long
enough to form a displaced tertiary vertex. Therefore the five-track combinations are refitted assuming
this cascade topology. The invariant mass of the muon pair is constrained to the J/ψ mass, mJ/ψ =

3096.916 MeV [22]. The three D+
s daughter tracks are constrained to a tertiary vertex and their invariant

mass is fixed to the mass of D+
s , mD+

s
= 1968.30 MeV [22]. The combined momentum of the refitted

D+
s decay tracks is constrained to point to the dimuon vertex. The quality of the cascade fit must satisfy

χ2/ndf < 3.

The B+
c meson is reconstructed within the kinematic range pT(B+

c ) > 15 GeV and |η(B+
c ) | < 2.0, where

the detector acceptance is high and depends weakly on pT(B+
c ) and η(B+

c ).

The refitted tracks of the D+
s daughter hadrons are required to have |η | < 2.5 and pT > 1 GeV, while the

muons must have |η | < 2.3 and pT > 3 GeV. To further discriminate the sample of D+
s candidates from a

large combinatorial background, the following requirements are applied:

• cos θ∗(π) < 0.8, where θ∗(π) is the angle between the pion momentum in the K+K−π+ rest frame
and the K+K−π+ combined momentum in the laboratory frame;

• | cos3 θ ′(K ) | > 0.15, where θ ′(K ) is the angle between one of the kaons and the pion in the
K+K− rest frame. The decay of the pseudoscalar D+

s meson to the φ (vector) plus π (pseudoscalar)
final state results in an alignment of the spin of the φ meson perpendicularly to the direction of
motion of the φ relative to D+

s . Consequently, the distribution of cos θ ′(K ) follows a cos2 θ ′(K )
shape, implying a uniform distribution for cos3 θ ′(K ). In contrast, the cos θ ′(K ) distribution of
the combinatorial background is uniform and its cos3 θ ′(K ) distribution peaks at zero. The cut
suppresses the background significantly while reducing the signal by 15%.

The B+
c candidate is required to point back to a primary vertex such that dPV

0 (B+
c ) < 0.1 mm and

zPV
0 (B+

c ) sin θ(B+
c ) < 0.5 mm, where dPV

0 and zPV
0 are respectively the transverse and longitudinal im-

pact parameters with respect to the primary vertex. All primary vertices in the event are considered. If
there is more than one primary vertex satisfying these requirements (∼ 0.5% events both in data and MC
simulation), the one with the largest sum of squared transverse momenta of the tracks originating from it
is chosen.
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The transverse decay length3 of the B+
c candidate is required to satisfy Lxy (B+

c ) > 0.1 mm. The transverse
decay length of the D+

s measured from the B+
c vertex must be Lxy (D+

s ) > 0.15 mm. In order to remove
fake candidates, both Lxy (B+

c ) and Lxy (D+
s ) are required not to exceed 10 mm.

Taking into account the characteristic hard fragmentation of b-quarks, a requirement pT(B+
c )/

∑
pT(trk) >

0.1 is applied, where the sum in the denominator is taken over all tracks originating from the primary
vertex. The requirement reduces a sizeable fraction of combinatorial background while having almost no
effect on the signal.

The following angular selection requirements are introduced to further suppress the combinatorial back-
ground:

• cos θ∗(D+
s ) > −0.8, where θ∗(D+

s ) is the angle between the D+
s candidate momentum in the rest

frame of the B+
c candidate, and the B+

c candidate line of flight in the laboratory frame. The dis-
tribution of cos θ∗(D+

s ) is uniform for the decays of pseudoscalar B+
c meson before any kinematic

selection while it tends to increase for negative values of cos θ∗(D+
s ) for the background.

• cos θ ′(π) > −0.8, where θ ′(π) is the angle between the J/ψ candidate momentum and the pion
momentum in the K+K−π+ rest frame. Its distribution is nearly uniform for the signal processes
but peaks towards −1 for the background.

Distributions of these two variables after applying all other selection requirements described in this sec-
tion are shown in Fig. 2. They are shown for the simulated signal samples, as well as for sidebands of
the mass spectrum in data, defined as the regions 5640 MeV < m(J/ψD+

s ) < 5900 MeV (left sideband)
and 6360 MeV < m(J/ψD+

s ) < 6760 MeV (right sideband). A dip in the cos θ ′(π) distribution for the
B+
c → J/ψD+

s signal is caused by rejection of B0
s → J/ψφ candidates discussed below.
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Figure 2: Distributions of (a) cos θ∗(D+
s ) and (b) cos θ ′(π), where θ∗(D+

s ) and θ ′(π) are two angular variables
defined in Sect. 3. The distributions are shown for data sidebands (black dots) and MC simulation of B+

c → J/ψD+
s

signal (red solid line) and A00 (green dotted line) and A±± (blue dashed line) components of B+
c → J/ψD∗+s signal.

The distributions are obtained after applying all selection criteria except the ones on the plotted variable. The MC
distributions are normalised to data.

3 The transverse decay length of a particle is defined as the transverse distance between the production (primary) vertex and the
particle decay (secondary) vertex projected along its transverse momentum.
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Various possible contributions of partially reconstructed B → J/ψX decays were studied. The only signi-
ficant one was found from the B0

s → J/ψφ decay process. This contribution arises when the combination
of the tracks from a true B0

s → J/ψ(µ+µ−)φ(K+K−) decay with a fifth random track results in a fake
B+
c → J/ψ(µ+µ−)D+

s (K+K−π+) candidate. For each reconstructed B+
c candidate, an additional vertex

fit is performed. The two muon tracks and the two kaon tracks are fitted to a common vertex, where
the kaon tracks are assumed to be from φ → K+K− and the muon pair is constrained to have the nom-
inal J/ψ mass. The mass of the B0

s candidate, m(µ+µ−K+K−), is then calculated from the refitted track
parameters. Candidates with 5340 MeV < m(µ+µ−K+K−) < 5400 MeV are rejected. This requirement
suppresses the bulk of the B0

s events while rejecting only ∼ 4% of the signal.

After applying the selection requirements described above, 1547 J/ψD+
s candidates are selected in the

mass range 5640–6760 MeV.

4 B+c → J/ψD(∗)+
s candidate fit

The mass distribution of the selected B+
c → J/ψD(∗)+

s candidates is shown in Fig. 3. The peak near
the B+

c mass, mB+
c

= 6275.6 MeV [22], is attributed to the signal of B+
c → J/ψD+

s decay while a wider
structure between 5900 MeV and 6200 MeV corresponds to B+

c → J/ψD∗+s with subsequent D∗+s → D+
s γ

or D∗+s → D+
s π

0 decays where the neutral particle is not reconstructed.
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Figure 3: The mass distribution for the selected J/ψD+
s candidates. The red solid line represents the projection of

the fit to the model described in the text. The contribution of the B+
c → J/ψD+

s decay is shown with the magenta
long-dashed line; the brown dash-dot and green dotted lines show the B+

c → J/ψD∗+s A00 and A±± component
contributions, respectively; the blue dashed line shows the background model. The uncertainties of the listed fit
result values are statistical only.

Mass distributions of the J/ψ and D+
s candidates corresponding to the J/ψD+

s mass region of the ob-
served B+

c → J/ψD(∗)+
s signals are shown in Fig. 4. To obtain these plots, the B+

c candidates are built
without the mass constraints in the cascade fit, with the mass of the candidate calculated as m(J/ψD+

s ) =

m(µ+µ−K+K−π+)−m(µ+µ−)+mJ/ψ−m(K+K−π+)+mD+
s
, where mJ/ψ and mD+

s
are the nominal masses

of the respective particles. The mass of the B+
c candidate is required to be 5900 MeV < m(J/ψD+

s ) <
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6400 MeV. The J/ψ and D+
s mass distributions are fitted with a sum of an exponential function describ-

ing the background and a modified Gaussian function [23] describing the corresponding signal peak. The
modified Gaussian function is defined as

Gaussmod ∼ exp *
,
−

x1+ 1
1+x/2

2
+
-
, (1)

where x = |m0 − m |/σ with the mean mass m0 and width σ being free parameters. The fitted masses of
both resonances agree with their nominal masses, the widths are consistent with those in the simulated
samples, and the signal yields are found to be NJ/ψ = 568 ± 28 and ND±s = 175 ± 36.
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Figure 4: Mass distribution of the (a) J/ψ and (b) D+
s candidates after the full B+

c → J/ψD(∗)+
s selection (without

mass constraints in the cascade fit) in the mass window of the B+
c candidate 5900 MeV < m(J/ψD+

s ) < 6400 MeV.
The spectra are fitted with a sum of an exponential and a modified Gaussian function. The uncertainties of the
shown J/ψ and D+

s yields are statistical only.

The information about the helicity in B+
c → J/ψD∗+s decay is encoded both in the mass distribution of

the J/ψD+
s system and in the distribution of the helicity angle, θ ′(µ+), which is defined in the rest frame

of the muon pair as the angle between the µ+ and the D+
s candidate momenta. Thus, a two-dimensional

extended unbinned maximum-likelihood fit of the m(J/ψD+
s ) and | cos θ ′(µ+) | distributions is performed.

The A++ and A−− helicity amplitude contributions are described by the same mass and angular shapes
because of the parity symmetry of the J/ψ and D∗+s decays. This is confirmed by the MC simulation.
Thus these components are treated together as the A±± component, while the shape of the A00 component
is different and is therefore treated separately. A simultaneous fit to the mass and angular distributions
significantly improves the sensitivity to the contributions of the helicity amplitudes in B+

c → J/ψD∗+s
decay with respect to a one-dimensional mass fit.

Four two-dimensional probability density functions (PDFs) are defined to describe the B+
c → J/ψD+

s

signal, the A±± and A00 components of the B+
c → J/ψD∗+s signal, and the background. The signal PDFs

are factorised into mass and angular components. The effect of correlations between their mass and
angular shapes is found to be small and is accounted for as a systematic uncertainty.

The mass distribution of the B+
c → J/ψD+

s signal is described by a modified Gaussian function. For the
B+
c → J/ψD∗+s signal components, the mass shape templates obtained from the simulation with the kernel

estimation technique [24] are used. The branching fractions of D∗+s → D+
s π

0 and D∗+s → D+
s γ decays for
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the simulation are set to the world average values [22]. The position of the templates along the mass axis is
varied in the fit simultaneously with the position of the B+

c → J/ψD+
s signal peak. The background mass

shape is described with a two-parameter exponential function, exp
[
a · m(J/ψD+

s ) + b · m(J/ψD+
s )2

]
.

To describe the | cos θ ′(µ+) | shapes, templates from the kernel estimation are used. The templates for
the signal angular PDFs are extracted from the simulated samples. Although their shapes are calculable
analytically, using the templates allows the fit to account for detector effects. The background angular
description is based on the | cos θ ′(µ+) | shape of the candidates in the sidebands of J/ψD+

s mass spectra.
Two templates are produced from the angular distributions of the candidates in the left and right mass
sidebands as defined in Sect. 3. The angular PDF for the background is defined as a conditional PDF of
| cos θ ′(µ+) | given the per-candidate m(J/ψD+

s ). For the candidates in the lower half of the left sideband
(5640–5770 MeV), the template from the left sideband is used. Similarly, the template from the right
sideband is used for the upper half of the right sideband (6560–6760 MeV). For the candidates in the
middle part of the mass spectrum (5770–6560 MeV), a linear interpolation between the two templates is
used.

The fit has seven free parameters: the mass of the B+
c meson, mB+

c→J/ψD+
s
; the relative contribution of the

A±± component to the total B+
c → J/ψD∗+s decay rate in the selected sample, f±±; the two parameters

of the exponential background; the yields of the two signal modes, NB+
c→J/ψD+

s
and NB+

c→J/ψD∗+s , and
the background yield. The width of the modified Gaussian function, σB+

c→J/ψD+
s
, is fixed to the value

obtained from the fit to the simulated signal, σB+
c→J/ψD+

s
= 9.95 MeV.

It was checked that the fit procedure provides unbiased values and correct statistical uncertainties for the
extracted parameters using pseudo-experiments. The values of the relevant parameters obtained from
the fit are given in Table 1. The fitted B+

c mass agrees with the world average value [22]. The mass
and angular projections of the fit on the selected J/ψD+

s candidate dataset are also shown in Figs. 3
and 5(a), respectively. In order to illustrate the effect of the angular part of the fit in separating the
helicity amplitudes, the | cos θ ′(µ+) | projection for the subset of candidates with the masses 5950 MeV <

m(J/ψD+
s ) < 6250 MeV corresponding to the region of the observed B+

c → J/ψD∗+s signal is shown in
Fig. 5(b).

Table 1: Parameters of the B+
c → J/ψD(∗)+

s signals obtained with the unbinned extended maximum-likelihood fit.
The width parameter of the modified Gaussian function is fixed to the MC value. Only statistical uncertainties are
shown. No acceptance corrections are applied to the signal yields.

Parameter Value
mB+

c→J/ψD+
s

[MeV] 6279.9 ± 3.5
NB+

c→J/ψD+
s

36 ± 10
NB+

c→J/ψD∗+s 95 ± 27
f±± 0.37 ± 0.22

The statistical significance for the observed B+
c signal estimated from toy MC studies is 4.9 standard

deviations.
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Figure 5: The projection of the likelihood fit on the variable | cos θ ′(µ+) |, where the helicity angle θ ′(µ+) is the
angle between the µ+ and D+

s candidate momenta in the rest frame of the muon pair from J/ψ decay, for (a) the full
selected J/ψD+

s candidate dataset and (b) a subset of the candidates in a mass range 5950 MeV < m(J/ψD+
s ) <

6250 MeV corresponding to the observed signal of B+
c → J/ψD∗+s decay. The red solid line represents the full

fit projection. The contribution of the B+
c → J/ψD+

s decay is shown with the magenta long-dashed line (it is not
drawn in (b) because this contribution vanishes in that mass range); the brown dash-dot and green dotted lines show
the B+

c → J/ψD∗+s A00 and A±± component contributions, respectively; the blue dashed line shows the background
model.

5 B+c → J/ψπ+ candidate reconstruction and fit

B+
c → J/ψπ+ candidates are reconstructed by fitting a common vertex of a pion candidate track and the

two muons from a J/ψ candidate, selected as described in Sect. 3. For the pion candidate, tracks identified
as muons are vetoed in order to suppress the substantial background from B+

c → J/ψµ+νµX decays. The
invariant mass of the two muons in the vertex fit is constrained to the J/ψ nominal mass. The quality
of the fit must satisfy χ2/ndf < 3. The refitted values of the transverse momenta and pseudorapidities
of the muon and pion tracks are required to be pT(µ±) > 3 GeV, pT(π+) > 5 GeV, |η(µ±) | < 2.3, and
|η(π+) | < 2.5, and the B+

c candidate is required to be in the kinematic range pT(B+
c ) > 15 GeV and

|η(B+
c ) | < 2.0.

The same requirements on pointing to the primary vertex and the ratio pT(B+
c )/

∑
pT(trk) as for the

B+
c → J/ψD(∗)+

s modes are applied to B+
c → J/ψπ+ candidates. The transverse decay length is required

to be Lxy (B+
c ) > 0.2 mm, and not to exceed 10 mm.

To further suppress combinatorial background, the following selection is applied:

• cos θ∗(π) > −0.8, where θ∗(π) is the angle between the pion momentum in the µ+µ−π+ rest frame
and the B+

c candidate line of flight in laboratory frame. This angular variable behaviour for the
signal and the background is the same as that of cos θ∗(D+

s ) used for J/ψD+
s candidates selection.

• | cos θ ′(µ+) | < 0.8, where θ ′(µ+) is the angle between the µ+ and π+ momenta in the muon pair
rest frame. The signal distribution follows a sin2 θ ′(µ+) shape, while the background is flat.

After applying the above-mentioned requirements, 38542 J/ψπ+ candidates are selected in the mass range
5640–6760 MeV. Figure 6 shows the mass distribution of the selected candidates. An extended unbinned
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maximum-likelihood fit of the mass spectrum is performed to evaluate the B+
c → J/ψπ+ signal yield.

The signal contribution is described with the modified Gaussian function while an exponential function
is used for the background. The B+

c mass, mB+
c→J/ψπ+ , the width of the modified Gaussian function,

σB+
c→J/ψπ+ , the yields of the signal, NB+

c→J/ψπ+ , and the background, and the slope of the exponential
background are free parameters of the fit. The fit results are summarised in Table 2, and the fit projection
is also shown in Fig. 6. The extracted B+

c mass value is consistent with the world average [22], and the
signal peak width agrees with the simulation.

Table 2: Signal parameters of the J/ψπ+ mass distribution obtained with the unbinned extended maximum-
likelihood fit. Only statistical uncertainties are shown. No acceptance corrections are applied to the signal yields.

Parameter Value
mB+

c→J/ψπ+ [MeV] 6279.9 ± 3.9
σB+

c→J/ψπ+ [MeV] 33.9 ± 4.2
NB+

c→J/ψπ+ 1140 ± 120
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Figure 6: The mass distribution for the selected B+
c → J/ψπ+ candidates. The red solid line represents the result of

the fit to the model described in the text. The brown dotted and blue dashed lines show the signal and background
component projections, respectively. The uncertainty of the shown signal yield is statistical only.

6 Branching fractions and polarisation measurement

The ratios of the branching fractions RD+
s /π

+ and RD∗+s /π
+ are calculated as

R
D(∗)+

s /π+ =
B

B+
c→J/ψD(∗)+

s

BB+
c→J/ψπ+

=
1

BD+
s→φ(K+K−)π+

×
AB+

c→J/ψπ+

A
B+
c→J/ψD(∗)+

s

×
N
B+
c→J/ψD(∗)+

s

NB+
c→J/ψπ+

, (2)

where AB+
c→X and NB+

c→X are the total acceptance and the yield of the corresponding mode. For
BD+

s→φ(K+K−)π+ , the CLEO measurement [25] of the partial D+
s → K+K−π+ branching fractions, with

a kaon-pair mass within various intervals around the nominal φ meson mass, is used. An interpolation
between the partial branching fractions, measured for ±5 MeV and ±10 MeV intervals, using a relativistic

10



Breit–Wigner shape of the resonance yields the value (1.85 ± 0.11)% for the ±7 MeV interval which is
used in the analysis.

The acceptance for the B+
c → J/ψD∗+s decay mode is different for the A±± and A00 components, thus the

full acceptance for the mode is

AB+
c→J/ψD∗+s =

(
f±±

AB+
c→J/ψD∗+s ,A±±

+
1 − f±±

AB+
c→J/ψD∗+s ,A00

)−1

, (3)

where the subscripts indicate the helicity state and f±± is the value extracted from the fit (Table 1). The
acceptances are determined from the simulation and shown in Table 3.

Table 3: The acceptance AB+
c→X for all decay modes studied. Only uncertainties due to MC statistics are shown.

Mode AB+
c→X [%]

B+
c → J/ψπ+ 4.106 ± 0.056

B+
c → J/ψD+

s 1.849 ± 0.034
B+
c → J/ψD∗+s , A00 1.829 ± 0.053

B+
c → J/ψD∗+s , A±± 1.712 ± 0.035

The ratio RD∗+s /D
+
s

is calculated as

RD∗+s /D
+
s

=
BB+

c→J/ψD∗+s

BB+
c→J/ψD+

s

=
NB+

c→J/ψD∗+s

NB+
c→J/ψD+

s

×
AB+

c→J/ψD+
s

AB+
c→J/ψD∗+s

, (4)

where the ratio of the yields NB+
c→J/ψD∗+s /NB+

c→J/ψD+
s

and its uncertainty is extracted from the fit as a
parameter in order to account for correlations between the yields.

The fraction of the A±± component contribution in B+
c → J/ψD∗+s decay is calculated from the f±± value

quoted in Table 1 by applying a correction to account for the different acceptances for the two component
contributions:

Γ±±/Γ = f±± ×
AB+

c→J/ψD∗+s

AB+
c→J/ψD∗+s ,A±±

. (5)

7 Systematic uncertainties

The systematic uncertainties of the measured values are determined by varying the analysis procedure
and repeating all calculations. Although some sources can have rather large effects on the individual
decay rate measurements, they largely cancel in the ratios of the branching fractions due to correlation
between the effects on the different decay modes. The following groups of systematic uncertainties are
considered.

The first group of sources of systematic uncertainty relates to possible differences between the data and
simulation affecting the acceptances for the decay modes. Thus, an effect of the B+

c production model is
evaluated by varying the simulated pT and |η | spectra while preserving agreement with the data distribu-
tions obtained using the abundant B+

c → J/ψπ+ channel. These variations have very similar effects on

11



the acceptances for the different decay modes, thus giving rather moderate estimates of the uncertainties,
not exceeding 3% in total, on the ratios of branching fractions. An uncertainty on the tracking efficiency
is dominated by the uncertainty of the detector material description in the MC simulation. Samples
generated with distorted geometries and with increased material are used to estimate the effect on track
reconstruction efficiencies. When propagated to the ratios of branching fractions, these estimates give
0.5% uncertainty for RD+

s /π
+ and RD∗+s /π

+ due to the two extra tracks in B+
c → J/ψD(∗)+

s modes. Lim-
ited knowledge of the B+

c and D+
s lifetimes leads to an additional systematic uncertainty. The simulated

proper decay times are varied within one standard deviation from the world average values [22] resulting
in uncertainties of ∼ 1% assigned to RD+

s /π
+ and RD∗+s /π

+ due to the B+
c lifetime, and 0.3% due to the D+

s

lifetime. Removing the requirement on pT(B+
c )/

∑
pT(trk) is found to produce no noticeable effect on the

measured values.

The next group of uncertainties originates from the signal extraction procedure. These uncertainties are
evaluated separately for J/ψD+

s and J/ψπ+ candidate fits. For the former, the following variations of the
fit model are applied and the difference is treated as a systematic uncertainty:

• different background mass shape parametrisations (three-parameter exponential, second- and third-
order polynomials), different fitted mass range (reduced by up to 40 MeV from each side independ-
ently);

• a double Gaussian or double-sided Crystal Ball function [26–28] for B+
c → J/ψD+

s signal descrip-
tion; variation of the modified Gaussian width within 10% of the MC simulation value;

• variation of the smoothness of the B+
c → J/ψD∗+s signal mass templates, which is controlled by a

parameter of the kernel estimation procedure [24];

• similar variation of the smoothness of the B+
c → J/ψD(∗)+

s signal angular templates;

• variation of the smoothness of the sideband templates used for the background angular PDF con-
struction; different ranges of the sidebands; different sideband interpolation procedure;

• modelling of the correlation between the mass and angular parts of the signal PDFs. This correla-
tion takes place only at the detector level and manifests itself in degradation of the mass resolution
for higher values of | cos θ ′(µ+) |. A dedicated fit model accounting for this effect is used for the
data fit. The impact on the result is found to be negligible compared to the total uncertainty.

The first two items give the dominant contributions to the uncertainties of the ratios of branching fractions
while the transverse polarisation fraction measurement is mostly affected by the background angular
modelling variations. For the normalisation channel fit model, the similar variations of the background
and signal mass shape parametrisation are applied. The deviations produced by the variations of the fits
reach values as high as 10–15% thus making them the dominant sources of systematic uncertainty.

The branching fractions of D∗+s [22] are varied in simulation within their uncertainties to estimate their
effect on the measured quantities. Very small uncertainties are obtained for the RD∗+s /π

+ and RD∗+s /D
+
s
,

while for Γ±±/Γ, the estimate is ∼ 1%.

The statistical uncertainties on the acceptance values due to the MC sample sizes are also treated as a
separate source of systematic uncertainty and estimated to be 2–3%.

In order to check for a possible bias from using three-muon triggers, vetoing the D+
s meson daughter

tracks identified as muons is tested and found not to affect the measurement.
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Finally, since BD+
s→φ(K+K−)π+ enters Eq. (2), its uncertainty, evaluated from Ref. [25] as 5.9%, is propag-

ated to the final values of the relative branching fractions.

The systematic uncertainties on the measured quantities are summarised in Table 4.

Table 4: Relative systematic uncertainties on the measured ratios of branching fractions RD+
s /π

+ , RD∗+s /π
+ , RD∗+s /D

+
s

and on the transverse polarisation fraction Γ±±/Γ.

Source Uncertainty [%]
RD+

s /π
+ RD∗+s /π

+ RD∗+s /D
+
s
Γ±±/Γ

Simulated pT(B+
c ) spectrum 0.4 0.9 0.5 0.4

Simulated |η(B+
c ) | spectrum 1.9 2.4 0.6 0.2

Tracking efficiency 0.5 0.5 < 0.1 < 0.1

B+
c lifetime 1.2 1.3 < 0.1 < 0.1

D+
s lifetime 0.3 0.3 < 0.1 < 0.1

B+
c → J/ψD(∗)+

s signal extraction 4.4 10.5 10.7 17.4

B+
c → J/ψπ+ signal extraction 8.5 8.5 – –

D∗+s branching fractions < 0.1 < 0.1 < 0.1 1.1

MC sample sizes 2.3 2.4 2.7 2.2

Total 10.3 14.2 11.0 17.6

BD+
s→φ(K+K−)π+ 5.9 5.9 – –

8 Results

The following ratios of the branching fractions are measured:

RD+
s /π

+ =
BB+

c→J/ψD+
s

BB+
c→J/ψπ+

= 3.8 ± 1.1 (stat.) ± 0.4 (syst.) ± 0.2 (BF), (6)

RD∗+s /π
+ =
BB+

c→J/ψD∗+s

BB+
c→J/ψπ+

= 10.4 ± 3.1 (stat.) ± 1.5 (syst.) ± 0.6 (BF), (7)

RD∗+s /D
+
s

=
BB+

c→J/ψD∗+s

BB+
c→J/ψD+

s

= 2.8+1.2
−0.8 (stat.) ± 0.3 (syst.), (8)

where the BF uncertainty corresponds to the knowledge of BD+
s→φ(K+K−)π+ . The relative contribution of

the A±± component in B+
c → J/ψD∗+s decay is measured to be

Γ±±/Γ = 0.38 ± 0.23 (stat.) ± 0.07 (syst.) (9)

These results are compared with those of the LHCb measurement [10] and to the expectations from
various theoretical calculations in Table 5 and Fig. 7. The measurement agrees with the LHCb result. All
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ratios are well described by the recent perturbative QCD predictions [8]. The expectations from models
in Refs. [3, 5, 7] as well as the sum-rules prediction [4] for the ratio RD∗+s /D

+
s

are consistent with the
measurement. The QCD relativistic potential model predictions [3] are consistent with the measured
RD+

s /π
+ ratio while the expectations from the sum rules [4] and models in Refs. [5–7] are somewhat

smaller than the measured value. The predictions in Refs. [3–5, 7] are also generally smaller than the
measured ratio RD∗+s /π

+ ; however, the discrepancies do not exceed two standard deviations when taking
into account only the experimental uncertainty.

Table 5: Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based
on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5],
BSW relativistic quark model (with fixed average transverse quark momentum ω = 0.40 GeV) [6], light-front
quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9].
The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers.
Statistical and systematic uncertainties added in quadrature are shown for the results of ATLAS and LHCb.

RD+
s /π

+ RD∗+s /π
+ RD∗+s /D

+
s

Γ±±/Γ Ref.

3.8 ± 1.2 10.4 ± 3.5 2.8+1.2
−0.9 0.38 ± 0.24 ATLAS

2.90 ± 0.62 – 2.37 ± 0.57 0.52 ± 0.20 LHCb [10]
2.6 4.5 1.7 – QCD potential model [3]
1.3 5.2 3.9 – QCD sum rules [4]
2.0 5.7 2.9 – RCQM [5]
2.2 – – – BSW [6]

2.06 ± 0.86 – 3.01 ± 1.23 – LFQM [7]
3.45+0.49

−0.17 – 2.54+0.07
−0.21 0.48 ± 0.04 pQCD [8]

– – – 0.410 RIQM [9]

The measured fraction of the A±± component agrees well with the prediction of the relativistic independ-
ent quark model [9] and perturbative QCD [8].

9 Conclusion

A study of B+
c → J/ψD+

s and B+
c → J/ψD∗+s decays has been performed. The ratios of the branching

fractions BB+
c→J/ψD+

s
/BB+

c→J/ψπ+ , BB+
c→J/ψD∗+s /BB+

c→J/ψπ+ , BB+
c→J/ψD∗+s /BB+

c→J/ψD+
s

and the trans-
verse polarisation fraction of B+

c → J/ψD∗+s decay have been measured by the ATLAS experiment at the
LHC using pp collision data corresponding to an integrated luminosity of 4.9 fb−1 at 7 TeV centre-of-mass
energy and 20.6 fb−1 at 8 TeV. The polarisation is found to be well described by the available theoretical
approaches. The measured ratios of the branching fraction are generally well described by perturbative
QCD, sum rules and relativistic quark models. However, there is an indication of underestimation of the
decay rates for the B+

c → J/ψD(∗)+
s decays by some models. The measurement results agree with those

published by the LHCb experiment.
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Figure 7: Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based
on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5],
BSW relativistic quark model (with fixed average transverse quark momentum ω = 0.40 GeV) [6], light-front
quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9].
The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers.
Statistical and systematic uncertainties added in quadrature are quoted for the results of ATLAS and LHCb.
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