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Abstract – A method for calibrating the radius of rotat-
ing, harmonic sensing coils is proposed that allows re-
laxing constraints on alignment and field errors of the
reference quadrupole magnet. Radius calibration con-
sidering roll angle misalignment between the measure-
ment bench, the magnet, and the motor-drive unit is
studied first. We then study the calibration error when
a harmonic field error of higher order is present in the
calibration magnet. This also yields a calibration when
a sextupole magnet is used, for example, when an in-
situ calibration [1] is required. The proposed calibra-
tion method has been validated by simulations with the
CERN numerical field computation program ROXIE.

I. INTRODUCTION
In the domain of accelerator magnets, magnetic mea-

surements are necessary for different aspects. During the
prototyping phase, experimental results are used to ver-
ify design calculations, material properties, and fabrica-
tion methods [2]. Different techniques are used, which
are based on sensing elements, such as harmonic coils,
oscillating wires, and Hall probes, among others [3], [4].
The harmonic coil is based on Faraday’s law of induction,
where a radial or tangential coil [5] is turned inside the
magnet’s aperture. Several physical parameters, such as
the coil radius, coil surface, phase angle and tilt, the num-
ber of turns, and opening angle have to be known with high
precision in order to reach the required accuracy and pre-
cision in the magnetic measurements. Rotating coils can
be manufactured with traditional winding methods or us-
ing printed circuit board (PCB) [6] technology. The latter
is especially suited for small-aperture magnets [7]. Manu-
facturing errors leading to deviations from the ideal design
exist in both technologies. For the PCBs there may be a
misalignment between layers of different radii. Therefore
a calibration is needed after the coil production.
The calibration [1], based on a reference quadrupole mag-
net, is currently used at CERN to calibrate rotating coil
systems. In particular, the coil radius is computed by mea-
surements performed inside the aperture of the reference
quadrupole, before and after a translation in the horizon-
tal plane. The calibration technique assumes that all the
contributions of higher order harmonics are negligible in

the mid-plane of the magnet. This is justified because the
dominant field component is high compared to the field er-
rors of higher order harmonics [8], [1]. However, if one of
the higher harmonics is not negligible, or a sextupole mag-
net is used as a calibration device, this calibration tech-
nique would give rise to significant errors. Therefore a
reference magnet with stringent metrological constraints
of harmonic field quality and alignment is required. This
is difficult to archive for magnets with small apertures or
when rare-earth permanent magnet are employed.
In this paper the effect of calibrating the radius of coils us-
ing a reference quadrupole with one higher-order harmonic
error is studied and a roll misalignment between the bench
and the reference magnet is considered. The calibration in
a sextupole is verified by simulations using the field com-
putation program ROXIE.

II. PROPOSAL
In a measurement system employing rotating sensing

coils, the radius and the equivalent surface of the coils must
be known precisely in order to enable high-precision field
measurements. The radius and surface are used to calculate
the coil-sensitivity factors. These factors allow the compu-
tation of field harmonics from a set of Fourier coefficients
of the flux, that is intercepted by the sensing coil. The
coil radius is computed from two measurements performed
inside the aperture of a reference quadrupole, before and
after a translation in the horizontal (xz) and vertical (yz)
planes. If we consider that there is no tilt and swing mis-
alignment between the coil and magnet axes, the mathe-
matical treatment can be limited to two dimensions. In
complex notation, this displacement can therefore be writ-
ten as 4z = 4x + i4y. The formula used to calculate
the radius, are based on the feed-down effect [1], under the
condition that all the contributions of higher order terms
can be neglected. This is justified because the dominant
field component in the reference magnet is much larger
compared to the field errors of higher order multipoles[8].

If one of the higher field harmonics in the reference
magnet was not negligible, or if a sextupole reference mag-
net was used, the calibration method in [1] would results
in a significant calibration error. We must also study the
case of a roll-angle misalignment between the magnetic



axis and the measurement bench on which the coil is dis-
placed. It can be shown, without a loss of generality, that
the displacement can be confined to the xz-plane. It is
then possible to study the presence of a higher order field
harmonic, which can be attributed to design constraints as
well as manufacturing errors. The method proposed for the
case study also holds for calibrating the sensing-coil radius
in a sextupole reference magnet.

III. RADIUS CALIBRATION CONSIDERING ROLL
ANGLE MISALIGNMENTS

The rotating coil radius can be calibrated in a quadrupole
based on two measurements using the same equipment. It
is assumed that any misalignment between the reference
magnet, the coil support and the displacement table/stages
remain constant between these two measurements. This is
reasonable, due to the solid structure of the support posts
and tables. Moreover, the coil displacement (d in Fig. 1) is
known with a very high precision (< 0.01 mm).

It will be assumed that the higher multipole field errors
in the reference magnet are small enough so that their in-
fluence on the measurement can be neglected; an assump-
tion that will be challenged in the next chapter. Consider
the measurement setup and the reference frames shown in
Fig. 1. The quadrupole is centered at z0 with respect to
the global reference frame, and may be misaligned by the
angle ϕm. The two measurements are taken at positions za
and zb. Only the metric distance between these two posi-
tions is known to high precision.

In principle, when the sensing coil is rotated in the field
of the reference magnet, the 2π periodic voltage signal
could be developed into a Fourier series. This would, how-
ever, put stringent conditions on the rotation speed of the
drive system. A re-parametrization to the angular position
is therefore done, by reading the trigger signals from an an-
gular encoder, mounted between the drive system and the
sensing coil. However, an angular error between the en-
coder and the global reference frame must be considered.
This angular (encoder) error will be denoted ϕe. Since
no higher multipole field errors in the calibration magnet
are taken into account, only dipole C1 = B1 + iA1 and
quadrupole components C2 = B2 + iA2 are measured at
the positions za and zb and expressed in the local coordi-
nate system of the coils. The connection between the two
sets of measured harmonics is made via the feed-down for-
mula, which reads in its general form:

Cn(zb) =

∞∑
k=n

Ck(za)

(
k − 1

n− 1

)(
4z
R

)k−n
, (1)

where R is the (unknown) sensing-coil radius and ∆z =
zb − za the displacement in the global coordinate system
(|∆z| = d). This displacement can therefore be expressed

Figure 1: Setup of the measurement and the reference sys-
tems for the magnet and the measurement bench.

in the global frame as

∆z = deiϕt . (2)

To derive a formula to transform the measured multipole
field errors from one local coordinate system into the other,
∆z must be rotated by the angle−ϕe into the global frame.
The feed-down equation can then be written as:

C2(zb) = C2(za) , (3)

C1(zb) = C1(za) + C2(za)
dei(ϕt−ϕe)

R
. (4)

Since there is no higher-order multipoles field error, the
quadrupole component is not effected by feed-down. Tak-
ing the difference between the two measurements, the dis-
placement of the reference magnet z0 can be eliminated.
In this case it is also not necessary to know the multipole
harmonics in the global system, because the feed-down is
related to the measurement at za.

R (C1(zb)− C1(za)) = R∆C1 = C2(za)dei(ϕt−ϕe) . (5)

The complex numbers can be transformed in a modulus
and phase notation with auxiliary angles α1 and α2:

R|∆C1|eiα1 = |C2(za)|eiα2dei(ϕt−ϕe) . (6)

This equation is fulfilled, if the modulus and the phase are
identical. This yields α1 − α2 = ϕt − ϕe and

R =
d|C2(za)|
|∆C1|

, (7)

which gives the expression for the equivalent measure-
ment radius of the sensing coil. Notice, that the calibra-
tion, so obtained, is independent from the alignment errors
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between the reference magnet and the displacement stage.
The only assumption remains that the error from the angu-
lar encoder reading ϕe does not change between the two
consecutive measurements.

IV. COIL-RADIUS CALIBRATION USING HIGHER
ORDER HARMONICS

The feed-down correction considering all harmonics is
given in Eq. (1), where Cn(zb) are the field coefficients
measured in zb (after the coil translation) and Ck(za) are
the field coefficients in za. As shown in the previous sec-
tion, we can assume, without a loss of generality, that the
displacement of the harmonic coil is confined to the hori-
zontal plane of the reference magnet, hence ∆z reduces to
∆x.

The harmonic coils can be of the radial or tangential
type, intercepting the azimuthal and the radial flux compo-
nents, respectively. Subsequently a radial coil is assumed,
but all principles can be applied also to tangential coils.

Furthermore, let us first consider a quadrupole contain-
ing an unwanted sextupole harmonic field error due to
manufacturing errors or variations in the remanence of
the rare-earth permanent magnet material. As example,
magnets with small apertures for linear accelerators show
higher-order multipole field errors in access of 10−3, while
remaining acceptable for machine installation. The feed-
down formula results in

C1(zb) = C1(za) + C2(za)

(
4z
R

)
+ C3(za)

(
4z
R

)2

,

C2(zb) = C2(za) + 2C3(za)

(
4z
R

)
,

C3(zb) = C3(za) ,

where Cn = Bn + iAn and4z is a movement in com-
plex plane. In the special case of a translation 4x in the
horizontal plane, there will be no skew field harmonics ex-
cited so that Cn = Bn. From the above equation system
we get

B3(za)

(
4x
R

)
=

1

2
(B2(zb)−B2(za)) (8)

and therefore

B1(zb) = B1(za)+
1

2
B2(za)

(
4x
R

)
+

1

2
B2(zb)

(
4x
R

)
.

(9)
The multipole field errors, which have been used so

far, correspond to the Fourier series coefficients of the ra-
dial component of the magnetic flux density on the ref-
erence/measurement radius. As said earlier, the measure-
ment raw data are the integrated voltage signals that corre-

spond to the flux linkage in the sensing coil. The relation
between the coefficients obtained by Fourier analysis of
the vector potential (corresponding to the flux increment
per trigger signal) are related to the multipole field errors
by means of the coil-sensitivity factors kn, which obvi-
ously depend on the number of coil turns Nt, and the coil
length L. The calculation of the coil-sensitivity factors are
given for the radial and tangential coils in document [8].
The relation between the Fourier coefficients of the vector
potential B̃n and the multipole field errors Bn is given by

Bn = Rn−1
B̃n+1

kn
, (10)

where

kn =
NtL

n
(Rn2 −Rn1 ) . (11)

kn are the coil sensitivity coefficient of nth-order har-
monic, R1 is the internal coil radius, andR2 is the external
coil radius. In particular

k1 = NtLW = Ac (12)

k2 = NtLW
(R1 +R2)

2
= AcR (13)

whereAc is the effective coil area, R is the coil radius, and
W is the effective width of the coil. While the harmonic
field coefficients are computed using (10):

B1(za, zb) =
B̃2(za, zb)

Ac
, (14)

B2(za, zb) =
B̃3(za, zb)

Ac
, (15)

Substituting (14) and (15) into (9) yields:

B̃2(zb) = B̃2(za) +
1

2
4xB̃3(za)

R
+

1

2
4xB̃3(zb)

R
, (16)

and therefore

R =
4x
2

B̃3(zb) + B̃3(za)

B̃2(zb)− B̃2(za)
. (17)

Using a similar reasoning for an octupole component
within a quadrupole magnet yields the equation system:

B1(zb) = B1(za) +B2(za)

(
4x
R

)
+B4(za)

(
4x
R

)3

,

B2(zb) = B2(za) + 3B4(za)

(
4x
R

)2

,

B3(zb) = 3B4(za)

(
4x
R

)
,

B4(zb) = B4(za) .
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The coil radius can then be computed from the harmonics
B̃n+1 of the magnetic vector potential by

R =
4x
3

2B̃3(za) + B̃3(zb)

B̃2(zb)− B̃2(za)
, (18)

which can be generalized for any single error harmonic
within a quadrupole:

R =
4x

(n− 1)

(n− 2)B̃3(za) + B̃3(zb)

B̃2(zb)− B̃2(za)
, (19)

where n is the highest harmonic order; 2 for the
quadrupole, 3 for the sextupole etc.

V. NUMERICAL RESULTS
The equations given above are derived for a searching

coil with a very small coil cross-section compared to the
surface spanned. For probes to be used in very small mag-
nets this assumption is no more valid. We therefore study,
by means of numerical simulation, the calibration error re-
sulting from the concept of a mean surface and mean ra-
dius. For the numerical simulations the CERN field com-
putation program ROXIE [9] , [10] was applied.

A. Simulation of a calibration quadrupole with a sex-
tupole field component present

The magnet is modeled by means of current shells of
an ideal (cosnΘ) current distribution that generates a pure
multipole field of order n. A sextupole current shell is
nested within the quadrupole. The radii of the quadrupole
and the sextupole are 70 and 50 mm, respectively. A 2D
simulation is sufficient because of the assumption of a lon-
gitudinal homogeneity both in the magnet and the search-
ing coil. The tangential coil section used to test the pro-
posed method is shown in Fig. 2. The coil is rotated by
one turn. 180 samples are computed, from which the coef-
ficients are determined by a discrete Fourier transform of
the radial magnetic flux density.

The flux linkage has been computed at two coil positions
within the magnet aperture. In Fig. 2 (left), the coil rotation
axis and the magnetic axis of the calibration magnet are
identical, while in Fig. 2, (right) the coil rotation center is
displaced by 10 mm along the x-axis.

A number of flux measurements, using different rotat-
ing coil radii and displacements 4x have been simulated
in order to check the validity of Eq. (17). The proposed
calibration method gives more accurate and precise radius
values, while the classical method (not accounting for the
higher order multipole field errors) yields errors of up to
4.5 percent. Fig.3 shows the magnetic flux density |B| of
the simulated magnet given by the overlapping of an ideal
quadrupole shell magnet and an ideal sextupole shell mag-
net. The magnetic flux distribution is not symmetric and its
modulus is stronger on the right hand side. Fig.4 shows the

Figure 2: Two current shells and rotating coil section as
modeled in ROXIE. Left: The rotating coil center coincides
with the magnetic axis of the magnet. Right: The rotating
coil center is shifted by4x = 10 mm from the magnet axis
of the magnet.

Figure 3: Magnetic flux density in the quadrupole and sex-
tupole shell.

magnetic flux density in the cross-section of the searching
coil.

The coil radius has been calculated through the classical
method (Method 1, without considering the higher order
multipole) in an ideal quadrupole shell magnet, for differ-
ent4x inside the magnet aperture. These results can then
be compared with the case of higher unwanted harmonics.
The results obtained by Method 1 (see reference [1]) for an
ideal quadrupole are shown in Table 1. These results are
referred to the known coil radius of 20 mm, as modeled in
ROXIE. Results of Method 1 differ by approximately 0.12
mm mainly due to the effect of the insulation between coil
turns.

Table 2 gives the results obtained using the classical
(Method 1) and the proposed method (Method 2) for a coil
radius of 20 mm in a quadrupole magnet containing an ad-
ditional sextupole harmonic. These results show that the
calibration error for the classical method [1] depends on
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Figure 4: Magnetic flux density in a tangential rotating
coil inside the magnet aperture.

Table 1: Radius calibrations resulting for movements ∆x
from position x1 to x2 using Method 1 (the exact radius is
20 mm).

x1 x2 Method1
mm mm mm
5 10 19.88
10 15 19.89
5 15 19.88

the displacements4x, while the proposed method is more
stable.

Table 2: Case study of quadrupole with one additional sex-
tupole harmonic field error. Radius calibrations for move-
ments ∆x from position x1 to x2, using the traditional
(Method 1) and the proposed methods (Method 2) (true coil
radius of 20 mm).

x1 x2 Method1 Method2
mm mm mm mm
10 20 19.10 19.89
15 20 19.51 19.90
10 15 19.49 19.89

B. Simulation of a quadrupole with an octupole har-
monic field error

Table 3 gives the results obtained for a quadrupole mag-
net with an octupole field harmonic present. The proposed
method gives more accurate results then the classical one
because it takes into consideration the nonlinear radius de-
pendence of the magnetic flux density. Obviously, the most
accurate results are obtained when the measurements are
performed close to the magnet center.

Table 3: Case study of quadrupole with one octupole addi-
tional harmonic. Radius calibrations resulting from move-
ments ∆x from position x1 to x2, with the traditional
(Method 1) and proposed method (Method 2) (true coil ra-
dius of 20 mm).

x1 x2 Method1 Method2
mm mm mm mm
10 15 19.67 19.85
10 20 19.32 19.76
15 20 19.52 19.78

VI. CONCLUSION
The proposed method allows to calibrate the radius and

the area of a rotating coil sensor in a magnet with a har-
monic field error or in a reference sextupole magnet of
larger apertures. This allows a wider choice of magnets
to calibrate the rotating coils.

The calibration error in the classical method must be
minimized by small displacements 4x when higher order
multipole errors are present. Simulation results show that
the worst case can yield a calibration error of 6% for a
displacement of 10 mm. The results from the proposed
method are accurate up to 0.1% for an additional sextupole
harmonic, and up to 0.7% for the additional octupole har-
monic.
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