
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: JHEP CERN-PH-EP-2015-100
6th July 2015

Determination of the top-quark pole mass using t t̄ + 1-jet events
collected with the ATLAS experiment in 7 TeV pp collisions

The ATLAS Collaboration

Abstract

The normalized differential cross section for top-quark pair production in association with at
least one jet is studied as a function of the inverse of the invariant mass of the tt̄+1-jet system.
This distribution can be used for a precise determination of the top-quark mass since gluon
radiation depends on the mass of the quarks. The experimental analysis is based on proton–
proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass
energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb−1. The selected events
were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to
either an electron or a muon. The observed distribution is compared to a theoretical pre-
diction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass
scheme. With this method, the measured value of the top-quark pole mass, mpole

t , is:

mpole
t = 173.7 ± 1.5 (stat.) ± 1.4 (syst.) +1.0

−0.5 (theory) GeV.

This result represents the most precise measurement of the top-quark pole mass to date.
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1 Introduction

In the Standard Model (SM) of particle physics the couplings of the top quark to other particles are fixed
through the gauge structure. The only free parameters in the top-quark sector of the SM are the ele-
ments of the Cabibbo–Kobayashi–Maskawa mixing matrix and the top-quark mass. Due to its high value
compared to the other quark masses, accurate knowledge of the top-quark mass is particularly relevant
because it is related to the Higgs-boson and W-boson masses through radiative and loop corrections. The
precise determination of these quantities allows a stringent test of whether the model is consistent [?, ?].
In addition, the precise knowledge of the top-quark mass is a crucial ingredient in recent evaluations of
the stability of the electroweak vacuum [?, ?, ?].

The top-quark mass was determined directly at the Tevatron and at the Large Hadron Collider (LHC). A
combination of a subset of these measurements yields a value of mt = 173.34 ± 0.76 GeV [?]. In these
measurements, the top-quark mass is inferred from a kinematic reconstruction of the invariant mass of its
decay products which is then calibrated to the mass definition used in the Monte Carlo (MC) simulations.
These mt determinations lack a clear interpretation in terms of a well-defined top-quark mass theoretical
scheme as employed in quantum chromodynamics (QCD) perturbative calculations, electroweak fits or
any theoretical prediction in general [?, ?, ?, ?, ?]. The values extracted using these methods are usually
identified with the top-quark pole mass mpole

t , but present studies estimate differences between the two
top-quark mass definitions of O(1) GeV [?, ?, ?, ?, ?].

The top-quark mass can also be measured from the inclusive cross section for top-quark pair (tt̄) pro-
duction [?]. With this method the top-quark mass scheme is unambiguously defined in the theoretical
calculations. However, top-quark mass determinations based on cross-section measurements are less pre-
cise, in their current form, than the other techniques based on kinematic reconstruction. This is due to a
relatively weak sensitivity of the inclusive top-quark pair production cross section to the top-quark mass,
as well as to the large uncertainties on the factorization and renormalization scales and the proton parton
distribution function (PDF). To date, the most precise measurement of this type is based on the 7 TeV and
8 TeV data samples collected by the ATLAS experiment during the years 2011 and 2012, which yields
mpole

t = 172.9+2.5
−2.6 GeV [?]. The results from the CMS experiment using this technique only include data

collected during 2011 [?, ?].

In this paper the method described in ref. [?] is followed. The top-quark mass is extracted from a measure-
ment of the normalized differential cross section R(mpole

t , ρs) for tt̄ production with at least one additional
jet, tt̄ + 1-jet, as a function of the inverse of the invariant mass of the tt̄ + 1-jet system, ρs ∝ 1/√stt̄+1-jet.
This distribution is sensitive to the top-quark mass because the amount of gluon radiation depends on its
value, with large effects in the phase-space region relatively close to the tt̄ + 1-jet production threshold.
This method combines the rigorous interpretation of the mass inferred from the inclusive cross section
with the advantage of a greater sensitivity.

The measurement is performed using 7 TeV proton–proton (pp) collision data collected by the ATLAS ex-
periment [?], corresponding to an integrated luminosity of 4.6 fb−1 with a total uncertainty of ±1.8% [?].
Events are selected by using the “lepton+jets” final state to identify the tt̄ system and at least one addi-
tional jet. In this channel one W from the top decay produces a lepton (electron or muon) and a neutrino
whereas the other W produces a pair of light quarks. Events are thus required to have exactly one lepton,
two jets identified as b-quark jets, at least three additional jets not identified as b-quark jets and a signi-
ficant amount of missing transverse momentum (Emiss

T ) due to the neutrino that escapes detection. The
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differential cross section is corrected to the parton level (a procedure referred to as unfolding in the fol-
lowing) and normalized. The top-quark pole mass is then extracted through a fit to the data using the
predicted normalized differential tt̄ + 1-jet cross section from a next-to-leading-order calculation com-
bined with parton showering (NLO+PS) [?, ?, ?, ?].

2 Definition of the observable

The method to extract the top-quark pole mass followed here, proposed in ref. [?], exploits the fact that
the top-quark mass dependence of the tt̄ + 1-jet cross section, σtt̄+1-jet, is enhanced in the phase-space
region relatively close to the tt̄ +1-jet production threshold. This method uses the predictions for tt̄ +1-jet
production at hadron colliders at NLO accuracy reported in refs. [?, ?]. A well-defined top-quark pole
mass can be extracted by comparing these calculations with the measurement of the normalized tt̄ + 1-jet
cross section in pp collisions as a function of the inverse of the invariant mass √stt̄+1-jet of the tt̄ + 1-jet
system:

R(mpole
t , ρs) =

1
σtt̄+1-jet

dσtt̄+1-jet

dρs
(mpole

t , ρs), (1)

where ρs is defined as

ρs =
2m0
√stt̄+1-jet

, (2)

and m0 is an arbitrary constant of the order of the top-quark mass. Here and in the following, m0 =

170 GeV is used. The anti-kt jet reconstruction algorithm [?, ?] is employed to reconstruct the jets. The
extra jet, beyond those which originated from the tt̄ decay, is the leading jet with a transverse momentum
pT > 50 GeV and a pseudorapidity |η| < 2.5. 1 The observable R defined in this way is infra-red safe as
demonstrated in the study of ref. [?].

In this analysis, the measured normalized and differential cross section, unfolded to parton level, is
compared to the theoretical calculations at NLO accuracy, after adding the parton shower evolution
(NLO+PS). Including the parton shower is expected to give a better description of the final-state phase
space than the NLO calculation alone and is implemented in the publicly available MC generator de-
veloped in ref. [?]. This generator uses Powheg (Powheg-ttJ) [?, ?, ?] matched with the Pythia v8 [?]
parton shower. Using a fixed order NLO calculation to fit the data gives a similar R-distribution but leads
to an estimated top quark pole mass about 0.3 GeV lower than using a NLO+PS calculation.

This difference is well below the present theoretical uncertainty of the calculation. Differences due to the
use of Pythia v8 or Pythia v6 [?] are below this value of 0.3 GeV.

In the NLO calculation, it is assumed that the top quarks are stable. Possible effects due to radiation from
top-quark decay products and virtual corrections to the decay are small compared to the overall theoretical
uncertainty. Quantum chromodynamics corrections to the decay do not affect the mass renormalization of

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the beam pipe. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln [tan (θ/2)]. Transverse momentum and energy are defined
as pT = p sin θ and ET = E sin θ, respectively.
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the top quark at the same order of accuracy as considered in the calculation because the renormalization is
purely determined from the QCD self-energy corrections of the top-quark propagator, which is included in
the calculation. Furthermore, recent calculations in refs. [?, ?] include NLO QCD corrections to the total
and differential tt̄ cross section assuming the top quarks to be off-shell. In this framework, the results in
the on-shell approximation are reliable and off-shell effects are at the sub-percent level. In the following,
it is assumed that similar results hold for the quantity R. In fact, as R is expressed as a normalized cross
section, even smaller effects can be expected due to possible cancellations.

3 The ATLAS experiment

The ATLAS experiment [?] is a multipurpose detector with a forward-backward symmetric cylindrical
geometry. The inner tracking detector (ID) consists of a silicon pixel detector, a silicon microstrip detector
(SCT), and a straw-tube transition radiation tracker (TRT). The ID is surrounded by a thin superconduct-
ing solenoid which provides a 2 T magnetic field and by a high-granularity liquid-argon (LAr) sampling
electromagnetic calorimeter. The electromagnetic calorimeter is divided into a central barrel (|η| < 1.475)
and end-cap regions at each end of the barrel (1.375 < |η| < 2.5 for the outer wheel and 2.5 < |η| < 3.2 for
the inner wheel). A steel/scintillator-tile calorimeter completes the measurement of hadronic showers in
the central pseudorapidity range (|η| < 1.7), while a LAr hadronic end-cap calorimeter provides coverage
over 1.5 < |η| < 3.2. The forward regions (3.2 < |η| < 4.9) are instrumented with LAr calorimeters for
electromagnetic and hadronic measurements. The muon spectrometer (MS) surrounds the calorimeters
and consists of three large air-core superconducting toroid systems providing bending powers of 3 Tm
in the barrel and 6 Tm in the end-caps, a system of precision tracking chambers (|η| < 2.7), and fast
detectors for triggering (|η| < 2.4). The combination of all these sub-detectors provides charged-particle
measurements together with efficient and precise identification of leptons and photons in the pseudorapid-
ity range of |η| < 2.5. Jets and Emiss

T are reconstructed using energy deposits over the full coverage of the
calorimeters, |η| < 4.9. The reconstructed muon momenta is also included in the evaluation of Emiss

T .
Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors. The ATLAS
experiment has a three-level trigger system [?]. The first-level trigger is hardware-based and uses a subset
of the detector information to reduce the event rate to at most 75 kHz. The second and third levels are
software-based and together reduce the event rate to about 300 Hz.

4 Data sample and Monte Carlo simulation

The data considered in this analysis correspond to an integrated luminosity of 4.6 fb−1 of proton–proton
collisions at a centre-of-mass energy of 7 TeV. They were recorded in 2011 during periods with stable
beam conditions and with all relevant subdetector systems operational. The events were selected by
single-lepton triggers that require a minimum transverse momentum of 18 GeV for muons and a minimum
of 20 to 22 GeV for electrons, depending on the data-taking conditions.

In this analysis, several MC samples are used for the modelling of tt̄ pair production and the main back-
ground processes. For the simulation of the tt̄ signal and the unfolding, the Powheg code (Powheg-hvq,
patch4 [?]) is used to calculate the QCD matrix element at NLO with the CT10 [?] PDF set. The parton
shower and the underlying event are added using the Pythia v6.4 [?] generator with the Perugia 2011C
parameter set (tune) [?]. Several MC sets of events were generated using different top-quark masses. The

4



nominal MC sample, which is used in the present study to compare the MC predictions with data, is the
largest and is produced assuming a top-quark mass of mt = 172.5 GeV. The corresponding cross section
of the nominal tt̄ sample is 177+10

−11 (theo.) pb as predicted by the calculations in refs. [?, ?, ?, ?, ?], which
include the next-to-next-to-leading order (NNLO) and the resummation of next-to-next-to-leading logar-
ithmic (NNLL) soft gluon terms with top++2.0 [?]. In addition to this nominal sample, five other samples
are employed with different assumptions about the input top-quark mass in the range from 167.5 GeV to
180 GeV in steps of 2.5 GeV.

Background processes to the tt̄ + 1-jet final state under study are simulated with various MC generators.
Single top quark production in the s-, Wt- and t-channels is simulated using Powhegmatched with Pythia
v6.4. The Perugia 2011C tune is used. The production of W/Z bosons in association with jets (W+jets or
Z+jets) is simulated using the ALPGEN generator (v2.13) [?] with the leading-order (LO) CTEQ6L1 [?]
PDF set. These calculations are interfaced with Herwig 6 [?] for the parton shower and Jimmy v4.31 [?] for
the underlying-event modelling. W+jets events containing heavy-flavour quarks are generated separately
using leading-order matrix elements with massive b- and c-quarks. Possible double-counting due to
heavy quarks produced by the parton shower is considered and removed. The total number of W+jets
events is normalized by exploiting the lepton charge asymmetry observed in data, following the method
in ref. [?]. Diboson events (WW, ZZ, WZ) are generated using Herwig 6 with the MRSTMCal [?]
PDF. The background from misidentified and non-prompt leptons is estimated using a data-driven matrix
method described in ref. [?].

Multiple soft pp interactions generated with Pythia v.6.425 using the AMBT2B tune [?] are added to all
simulated events in order to account for the effect of multiple pp interactions in the same and neighbouring
bunch crossings (pile-up).

The response of the ATLAS detector is simulated using a detailed description of the detector geometry [?]
in GEANT4 [?]. Simulated events are reconstructed using the same software as used for the data.

5 Object definition and basic selection

The analysis applies several requirements to the events and makes use of reconstructed electrons, muons,
jets and Emiss

T . Electron candidates are reconstructed from energy deposits in the electromagnetic calor-
imeter using criteria based on the shower shape, and they must be matched to a charged-particle track
in the ID [?]. Electrons must have a transverse momentum of pT > 25 GeV and |η| < 2.47. Events with
electrons falling in the calorimeter barrel/end-cap transition region, corresponding to 1.37 < |η| < 1.52,
are rejected. Muon candidates are identified by combining track candidates in the MS and the ID [?].
All muons are required to have a transverse momentum pT > 25 GeV and |η| < 2.5. All muons must
additionally satisfy a series of selection criteria on the number of hits per track in the various tracking
sub-detectors [?]. Finally, electrons and muons have to match corresponding objects that have fired the
trigger

Isolation criteria are applied to electron and muon candidates to reduce the background from hadrons
mimicking lepton signatures and backgrounds from heavy-flavour decays inside jets [?].

Energy deposits in the calorimeters are combined into three-dimensional clusters [?]. From these clusters,
jets are reconstructed using the anti-kt jet algorithm with a radius parameter of 0.4. Reconstructed jet
energies in simulations are calibrated from stable-particle jets. Residual calibrations, derived by using
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in situ methods where the jet transverse momentum is compared to that of a reference object (e.g. using
γ/Z+jet events), are then applied to data relative to the simulations [?].

Reconstructed jets must have pT > 25 GeV and |η| < 2.5. To suppress the contribution from low-pT
jets originating from pile-up interactions, a jet vertex fraction requirement is applied: at least 75% of the
summed scalar pT of tracks associated with the jet must be due to tracks originating at the event primary
vertex. This primary vertex is defined as the vertex with the highest

∑
trk(ptrk

T )2 among all candidates
with at least five associated tracks (trk) with ptrk

T > 0.4 GeV [?]. Jets containing b-hadrons are identified
using a neural network exploiting the long lifetime of b-hadrons at a working point resulting in a tagging
efficiency of 70% in simulated tt̄ events [?, ?, ?].

The transverse momentum of neutrinos escaping the detector is assumed to be identical to Emiss
T , which is

reconstructed as the magnitude of the momentum imbalance in the transverse plane as obtained from the
negative vector sum of the momenta of all energy deposits. It is reconstructed from topological clusters,
calibrated for electromagnetic objects and corrected according to the energy scale of the identified objects.
Muons contributions are also included by using their momentum measured in the inner detector and the
muon spectometer [?].

Events must not contain jets with pT greater than 20 GeV arising from out-of-time energy deposits or
from energy deposits with a hardware or calibration problem. Exactly one isolated electron or muon, and
at least five jets are required with exactly two of the jets tagged as b-quark jets. The magnitude of the
missing transverse momentum and the transverse mass of the system formed by the charged lepton and
the neutrino,2 mW

T , must both exceed 30 GeV.

6 Reconstruction of the t t̄ + 1-jet system

After the basic selection, a kinematic reconstruction of the events is performed to identify the W-boson
and top-quark candidates. The leptonically-decaying W boson is identified with the charged lepton and
the neutrino, where the longitudinal momentum is inferred using a constraint on the W-boson mass.
Candidates for the hadronically-decaying W boson are constructed by considering all possible pairs of
jets among those not identified as b-jets. Accepted events must fulfil the following conditions:

0.9 < α ≡
mref

W

mi j
< 1.25, (3)

∆kt(i, j) ≡ min(pi
T, p j

T) · ∆R(i, j) < 90 GeV, (4)

where the indices i and j run over all jets not identified as b-jets, mi j is the invariant mass of jets i and j,
and mref

W = 80.4 GeV [?]. All combinations of the two b-jets with the W-boson candidates are considered
as top-quark candidates. Once both requirements are applied, the permutation that minimizes the invari-
ant mass difference of the hadronically and leptonically decaying top-quark candidates is selected. The
application of these two requirements reduces the combinatorial background.

2 The W-boson transverse mass is defined as mW
T =

√
2pT,` pT,ν[1 − cos (φ` − φν)] where ` and ν refer to the selected lepton and

the neutrino whose information is associated with the Emiss
T vector, respectively.
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Events Uncertainty
Signal (tt̄, mt = 172.5 GeV) 2050 ± 320
W+jets 31 ± 16
Z+jets 6 ± 4
Single top (mt = 172.5 GeV) 62 ± 34
WW, ZZ, WZ 1 ± 1
Misidentified and non-prompt leptons 22 ± 13
Total Background 121 ± 40
Total Predicted 2170 ± 320
Data 2256

Table 1: Event yields and their uncertainties after the reconstruction of the tt̄ +1-jet system. The quoted uncertainty
values include the total statistical and systematic uncertainties as described in section ??.
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Figure 1: The data for various kinematic distributions (transverse momentum, pT, of the lepton, pT of all the b-
tagged jets, pT of all non-b-tagged jets and the total jet multiplicity) are compared to the nominal tt̄ MC sample
(Powheg+Pythia) plus backgrounds after the final kinematic reconstruction of the tt̄ + 1-jet events. The total
background estimated in table ?? is shown in dark grey. The uncertainty band includes the total statistical and
systematic uncertainties as described in section ??.
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Figure 2: The data for various kinematic distributions (the reconstructed mass of the hadronically and leptonically
decaying top-quark candidates, the pT of the additional jet and the invariant mass of the tt̄ + 1-jet system) are
compared to the nominal tt̄ MC sample (Powheg+Pythia) plus backgrounds after the final kinematic reconstruction
of the tt̄ + 1-jet events. The total background estimated in table ?? is shown in dark grey. The uncertainty band
includes the total statistical and systematic uncertainties as described in section ??.

The magnitude of the momentum vectors of the light-quark jets associated with the hadronic W boson are
scaled using the value of α derived from eq. ??. A further requirement on the ratio of the reconstructed
top-quark kinematic mass for the leptonic and hadronic decays, mleptonic

t /mhadronic
t > 0.9, is imposed to

increase the signal to background ratio. The leading-pT jet is selected among the remaining jets and is
identified as the extra jet completing the tt̄ + 1-jet system.The extra jet must satisfy pT > 50 GeV and |η| <
2.5.

The event yields after the final selection are presented in table ??. The number of selected data events is
in good agreement with the MC expectation.

After applying all the selection criteria, data were compared to the expectations. A representative subset
of kinematic and angular distributions is shown in figures ?? and ??. In all cases, good agreement between
data and prediction is observed. In addition to these plots, the number of reconstructed tt̄ + 1-jet events as
a function of ρs is shown in figure ??.
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Figure 3: Number of reconstructed events as a function of ρs (m0 = 170 GeV) related to the inverse of the invariant
mass of the tt̄ + 1-jet system . The data are compared to the nominal tt̄ MC prediction (Powheg+Pythia) plus
backgrounds, which assumes a top-quark mass mt =172.5 GeV after the final kinematic reconstruction of the
tt̄ + 1-jet events. The backgrounds and the systematic uncertainties are estimated as in figure ?? and ??.

7 Top-quark mass determination

The top-quark pole mass is extracted by fitting the parameterized NLO+PS prediction to the measured
distribution of the normalized differential cross section R defined in eq. ?? after background subtraction
and correction for detector effects and hadronization. This method follows a similar procedure to that
employed in ref. [?]. The observed number of tt̄ + 1-jet events in figure ?? is used to construct this
R-distribution at parton level.

The recorded parton-level information in the nominal ATLAS signal MC sample (see section ??) did
not allow the construction of the extra jet at the parton level, as required by the theoretical calculation.
Consequently, a simple direct connection between the tt̄ + 1-jet system at detector level and at parton
level could not be made. For that reason, an intermediate state corresponding to the first gluon emission
at parton level (tt̄ +g) was introduced to bridge the connection and an additional MC sample of events
was generated. This latter sample transformed the R-distribution of the tt̄+g system into the final R-
distribution of the tt̄ + 1-jet system, which this time was defined as in the theoretical calculation. This
sample was validated using ATLAS procedures and did not include the full detector simulation. The final
correction procedure contained the following steps:

tt̄ + 1-jet (detector level)→ tt̄+g (parton level)→ tt̄ + 1-jet (parton level),

As a first step the migration matrix relating the distribution of tt̄ + 1-jet events at detector level and the
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tt̄ +g events at parton level was calculated using the nominal MC simulation. Data were grouped in bins
as a function of ρs with a variable bin size as displayed in table ?? and in figure ??. This choice was
the result of a compromise between having values of the diagonal terms in the migration matrix above
50% and optimizing the sensitivity of the R-distribution to the top-quark mass according to the study of
ref. [?]. The migration matrix was then inverted using the Singular Value Decomposition (SVD) method
described in ref. [?]. This algorithm minimizes the statistical fluctuations inherent in the matrix-inversion
process.

The above correction restricts the kinematical phase-space region to that of the events satisfying the
selection criteria. Hence an additional correction is needed to extend this region to the full acceptance
considered by the theoretical calculation (acceptance term). Finally an additional step was implemented
to convert the R-distribution corresponding to the tt̄+g system into the R-distribution of the tt̄ + 1-jet
system defined as in the theoretical calculation. The final unfolding procedure is described as follows:

Rcor-data(ρs) ≡

(M−1 ⊗ Rdet-data(ρs)
)
·

Rtt̄+g
acc. (ρs)
Rtt̄+g(ρs)

−1 · (Rtt̄+1-jet(ρs)
Rtt̄+g(ρs)

)
, (5)

where
(
M−1 ⊗ Rdet-data(ρs)

)
is the term describing the transformation of the tt̄ + 1-jet distributions from

detector level to the parton level at its first gluon emission (tt̄+g). The acceptance term isRtt̄+g
acc. (ρs)
Rtt̄+g(ρs)

−1

, (6)

and deviates from unity by less than 2% over the full ρs range. The factor(
Rtt̄+1-jet(ρs)
Rtt̄+g(ρs)

)
, (7)

transforms the R-distribution which corresponds to the tt̄+g system into the R-distribution of the tt̄ + 1-jet
system. This correction factor is typically within 10% of unity.

In more detail, the first part of eq. ?? corresponds to:

(
M−1 ⊗ Rdet-data(ρs)

)
i
≡

1

Ntt̄+1-jet
tot

∑
j

M−1
i j · N

tt̄+1-jet
j

∆ρi
s

, (8)

where i, j refers to the bin numeration defined for the ρs variable, Ntt̄+1-jet
j is the number of tt̄ + 1-jet

events reconstructed (background subtracted) in the j-th bin, Ntt̄+1-jet
tot is the total number of reconstructed

tt̄ + 1-jet events (background subtracted), M−1
i j is the inverse of the migration matrix and ∆ρi

s is the width
of the i-th bin.

Once data were properly corrected, the value of mpole
t was determined by fitting the unfoldedR-distribution

with the NLO+PS prediction from ref. [?] using the least-squares method. Table ?? shows the predicted
values of R (Rtheory) in bins of ρs for different mpole

t values. The fit minimized a χ2 defined as:

χ2 =
∑

i j

(Rcor-data
i − R

theory
i (mpole

t ))V−1
i j (Rcor-data

j − R
theory
j (mpole

t )), (9)
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Rtheory
``````````````̀ρs (m0 = 170 GeV)

mpole
t 170 GeV 172.5 GeV 175 GeV 177.5 GeV 180 GeV

0 to 0.25 0.1327(9) 0.1390(44) 0.1425(8) 0.1487(10) 0.1548(6)
0.25 to 0.325 1.104(14) 1.134(6) 1.172(13) 1.208(15) 1.251(9)
0.325 to 0.425 1.972(9) 2.027(4) 2.070(9) 2.130(11) 2.185(7)
0.425 to 0.525 2.506(12) 2.561(6) 2.587(11) 2.644(13) 2.674(8)
0.525 to 0.675 2.143(8) 2.125(4) 2.116(7) 2.085(9) 2.060(6)
0.675 to 1.0 0.353(2) 0.316(1) 0.287(2) 0.252(2) 0.223(1)

Table 2: The R-distribution calculated using generated tt̄ + 1-jet samples at NLO+PS accuracy for different mpole
t

values at parton level (corresponding to Rtheory in eq. ??). The quoted uncertainties in parentheses reflect the
statistical precision of the calculation.

where Rcor-data
i is the data value in the i-th bin of the corrected R-distribution and V−1 is the inverse of

the statistical covariance matrix of the unfolded R-distribution. The quantity Rtheory
i (mpole

t ) represents the
theoretical prediction for the i-th bin and contains the dependence on the top-quark pole mass. The covari-
ance matrix is obtained by producing a sample of 500 pseudo-experiments scattered around the measured
values of the R-distributions assuming Gaussian statistical errors. Each of these pseudo-R-distributions
was then corrected following the unfolding procedure described above and finally the covariance matrix
(V) was evaluated accordingly.

The inferred mpole
t value is the one which minimizes the χ2 in eq. (??) calculated by considering all

bins except for the least sensitive one (0 ≤ ρs < 0.25). This is done because the R-distribution is
constrained by the normalization condition. The extracted mass value does not significantly depend on
this bin choice. The selected configuration is the one which gives the highest expected precision. The
statistical uncertainty is taken as the mass shift that increases the χ2 by one unit with respect to the
minimum (∆χ2 = +1). The possible impact of non-perturbative effects near the threshold for tt̄ + 1-jet
production (ρs ∼ 1) was also studied by choosing a restricted range of ρs from 0 to 0.9 and by studying
the results for each bin independently. No significant effect is observed.

The corrected R-distribution is shown in figure ??. For comparison purposes the predictions for three
top-quark pole mass values are also shown (mpole

t =170, 175 and 180 GeV) together with the top-quark
mass extracted from the best fit, which is mpole

t =173.7±1.5 (stat.) GeV. Only the statistical uncertainty is
shown in this figure.

The corrections for detector and hadronization effects based on the MC simulation might introduce a
dependence on the input top-quark mass assumed in the generator. The possible impact was quantified
by generating input tt̄ + 1-jet distributions using fully simulated samples with Powheg + Pythia and with
different MC masses ranging from 167.5 GeV to 180 GeV, i.e. keeping the same nominal MC parameter
set except for the input top-quark mass. Each of the corresponding distributions is unfolded with the
same procedure as used for data, fixing the migration matrix and correction factors, which are defined for
a fixed top-quark mass of mt = 172.5 GeV. Fits to the resulting R-distributions are performed using the
parameterised mass dependence of the theoretical predictions obtained from the MC samples with input
top-quark masses between 167.5 GeV and 180 GeV. Each top-quark mass extracted is compared with the
corresponding input top-quark mass. Figure ?? shows the difference between the input and fitted masses
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Figure 4: R-distribution at parton level corrected for detector and hadronization effects after the background sub-
traction as a function of ρs (m0 = 170 GeV). The predictions of the tt̄ + 1-jet calculation at NLO+PS using three
different masses (mpole

t =170, 175 and 180 GeV) are shown together with the result of the best fit to the data, mpole
t

=173.7±1.5 (stat.) GeV. The black points correspond to the data. In the lower part of the figure, the ratios of the
different R-distributions to the one corresponding to the best fit are shown. The shaded area indicates the statistical
uncertainty.

as a function of the input mass. In the range studied here, all fit results are compatible with the input
values within their statistical uncertainties.

Existing generated samples with Powheg + Herwig 6 including full ATLAS simulation were used to
make the correction of the data without using the intermediate state of the tt̄+g system. This cross-
check allowed investigations of potential biasses introduced by this step. When using this sample the
correction procedure was tested including and excluding the tt̄+g intermediate state. The two methods
gave compatible results within ∼0.1 GeV for mpole

t , well within the statistical precision of the test, ∼0.25
GeV.
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Figure 5: Difference between the fitted mass and the top-quark mass assumed in the generated tt̄ MC predictions
(Powheg+Pythia) including full detector simulation as a function of the input mass. The same unfolding procedure
employed for data is performed in this study. The migration matrix and correction factors are defined for a fixed
top-quark mass of mt = 172.5 GeV. The fit is performed using the parameterised mass dependence of the theoretical
predictions obtained from the MC samples. A fit to a straight line including the point at 172.5 GeV is performed.
The obtained mean value and χ2/NDF are shown.

8 Statistical and systematic uncertainties

This section describes the uncertainties that affect the extraction of the top-quark pole mass. The stat-
istical uncertainty of the corrected result is evaluated using eq. ?? using toy MC experiments to derive
the covariance matrix of the fit. The additional (small) uncertainty due to the limited number of MC
events used to define the unfolding procedure is evaluated by varying the migration matrix according to
their statistical uncertainties. The systematic uncertainties are split into four categories: theoretical un-
certainties, signal- and detector-modelling uncertainties, and finally background uncertainties. They are
described in the following subsections and summarized in table ??.

8.1 Theoretical uncertainties

Scale variations: The calculation of R is performed by setting the renormalization scale (µR) equal to
the factorization scale (µF). To estimate the uncertainty due to the missing higher-order terms in the
calculation, these scales are varied around the central values µ = µR = µF = mpole

t by a factor of two
up and down. The data were fitted using the predictions with a scale µ twice or half the nominal
value (µ = 2mpole

t , µ = mpole
t /2). The alternative choices for the scale lead to a 0.44 GeV lower

value for the top-quark pole mass for µ = 2mpole
t and to a 0.93 GeV higher value for µ = mpole

t /2.
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In principle one could also vary the factorization scale independently from the renormalization
scale. This exercise was considered in ref. [?] and the results obtained showed very good agree-
ment with those from the restricted scale variation considered in ref. [?]. As a consequence no
significant changes in the estimation of this uncertainty are expected when considering an inde-
pendent variation of the scales.

It is often argued that for normalized cross sections the method described above to evaluate the
effect of uncalculated higher order terms in the perturbative calculations might be unrealistic and
reduce its dependence due to cancellations of αs in the ratio. Therefore a different approach to
evaluate this uncertainty was considered in ref. [?]. It consisted of expanding the R-distribution in
powers of αs, thus avoiding the ratio. It was found that the two methods gave consistent estimates
of the uncertainty.

In addition to these cross-checks the size of the NLO correction with respect to the LO was also
computed for R. The study compared the LO+PS prediction using a fixed scale µ = mt and a

variable dynamic scale µ =
√

m2
t + p2

T,t to the NLO+PS prediction with fixed scale. Differences
in the range from 0.6 to 0.8 GeV were observed. The small NLO correction indicates that the
calculation converges well.

Proton PDF and αs: The uncertainties on the proton PDF and on the value of the strong coupling con-
stant αs used in the tt̄ + 1-jet calculation are propagated by fitting to various R-distributions im-
plemented in NLO+PS calculations using different PDF sets with different αs values. The central
CT10 [?], MSTW2008nlo90cl [?, ?] and NNPDF [?] PDF sets were employed to estimate this un-
certainty. For each of these sets the central value of the resulting top-quark mass was calculated and
the uncertainty due to the PDF corresponds to half of the maximum difference. The impact of vary-
ing only αs was estimated and found to be very small, σ

(
mpole

t

)
= 0.01 GeV (for ∆αs = ±0.002 and

the CT10 PDF set) since the dependence of R on αs nearly vanishes due to the use of a normalized
differential distribution.

The total theoretical uncertainty is the sum in quadrature of the contributions of scale variations and the
PDF and αs uncertainties.

8.2 Detector modelling

The uncertainties on the reconstruction efficiency and the energy measurement of basic reconstructed
objects (leptons, Emiss

T and jets) are propagated to the uncertainty on the value of the top-quark mass.
Variations of all these quantities by ±1 standard deviation are implemented in MC samples that are then
unfolded using the nominal response matrix. A fit to the resulting R-distribution is performed and the
top-quark mass is extracted. In the following — unless otherwise stated — the systematic uncertainties
arising from the different modelling sources are calculated as half of the difference between the upward
and downward variations.

Jet energy scale (JES) and b-jet energy scale: To estimate the impact of the jet energy scale uncer-
tainty on the result, the jet energy is scaled up and down by its uncertainty for 21 uncorrelated
components which are considered separately [?, ?].

These are the experimental sources of uncertainty with the largest impact on the precision of the
mass determination.
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Jet energy resolution and jet reconstruction efficiency: The effect of the jet energy resolution uncer-
tainty is evaluated by smearing, before the event selection, the energy of the jets by a Gaussian
function width chosen in agreement with the jet energy resolution uncertainty. The effect of the
jet reconstruction efficiency uncertainty is evaluated by randomly discarding a fraction of jets from
the events before the selection [?]. This variation has a small impact (less than 0.05 GeV) on the
top-quark mass.

b-tagging efficiency and mistag rate: Differences in the b-tagging efficiency as well as c-jet and light-
jet mistag rates in data and simulation are parameterized using correction factors, which are func-
tions of pT and η. These corrections are derived from data including tt̄ events and they are varied
by their uncertainties (see refs. [?, ?, ?]). Similarly to the JES uncertainty, the uncertainty on the
correction factors for the b-tagging efficiency is separated into several uncorrelated components.
The systematic uncertainty is assessed by changing the correction factor central values by ±1σ for
each component, and performing the mass extraction. The final uncertainty due to the b-tagging
efficiency is calculated as the quadratic sum of all contributions.

Lepton identification and lepton energy resolution: The correction factors applied to the lepton iden-
tification are measured by comparing high-purity events from simulation and data including Z, W
and J/ψ decays for electrons [?], and Z, W, J/ψ and Υ decays for muons [?]. For the measurement
of the lepton energy or momentum scale uncertainties, a similar procedure is used.

Modelling of the Emiss
T

: Uncertainties on the energy scale of jets or leptons are also propagated to the
uncertainty of the Emiss

T . Other contributions to this uncertainty originate from the energy scale and
resolution of the soft calorimeter energy deposits which are not included in the reconstructed jets
and leptons, and contribute only to the estimation of Emiss

T .

8.3 Signal modelling

The signal modelling uncertainties originate from: the choice of matrix element, the parton shower and
hadronization model, and the choice of the PDF set used in the simulation of tt̄ events. In addition, uncer-
tainties on the modelling of the initial- and final-state QCD radiation (ISR/FSR), of colour reconnection,
and of the underlying event are also accounted for. Their impact on the extracted mass is estimated using
alternative MC samples. The alternative R-distribution samples are corrected using the nominal response
matrix and the deviation from the result of the nominal MC sample is used to estimate the uncertainty.

MC generator and hadronization: The uncertainty associated with the choice of MC generator is eval-
uated by comparing two NLO MC generators interfaced to the same parton shower and hadroniz-
ation program: Powheg-box [?, ?] and MC@NLO [?] both interfaced to Herwig 6 are compared.
The difference between the extracted masses is taken as the generator uncertainty.

The uncertainty associated with the hadronization is estimated by comparing the results obtained
with Powheg interfaced to either Pythia or Herwig 6. The full difference is quoted as the hadron-
ization uncertainty.

Initial- and final-state radiation (ISR/FSR): The effect of the ISR and FSR modelling uncertainties is
evaluated by comparing two simulated signal samples with varied radiation settings. The samples to
evaluate the ISR/FSR uncertainty are generated with Alpgen(v2.13) [?]+Pythia, which is a multileg
MC generator that generates, at LO, tt̄ plus up to five partons. The samples to estimate the ISR/FSR

15



uncertainty correspond to variations of the KTFAC parameter in Alpgen between a factor two up
and down of its nominal value (with the Perugia 2011 radLow and radHi tunes respectively [?]).
This parameter determines the scale at which αs is evaluated for additional gluon emissions and the
size of the variation considered is compatible with the measurements of additional jet activity in tt̄
events [?]. The ISR/FSR uncertainty is evaluated by taking half the difference between the fitted
top-quark masses from the two samples.

Colour reconnection and underlying event: The impact of the uncertainties in the MC models describ-
ing colour reconnection and the underlying event is estimated by comparing several Powheg MC
samples with different tunes. The effect of the colour reconnection modelling uncertainty is es-
timated as the difference between the result obtained with the nominal Powheg sample with the
Perugia 2012 (P2012) tune and an alternative sample with the Perugia 2012 loCR tune [?]. To
estimate the uncertainty on the underlying event modelling, the Perugia 2012 mpiHi tune [?] is
compared with the P2012 tune. In both cases the full mass difference from the default value is
taken as the systematic uncertainty.

Proton PDF: Uncertainties on the proton PDF give rise to uncertainties on the efficiency of the basic
event selection. These uncertainties are calculated following the PDF4LHC recommendations [?]
using tt̄ events simulated by MC@NLO interfaced to Herwig 6. This uncertainty accounts for
the effects of the PDF on the theoretical modeling of the tt̄ system, the hadronization and the
experimental data analysis. To a large extent the first contribution is already considered in the
evaluation of the theoretical uncertainties of section ??. In the present work the two uncertainties
are considered independently. This evaluation of the total PDF uncertainty is therefore regarded as
a conservative approach. Using the values from table ?? and considering both uncertainties either
completely correlated or uncorrelated changes the overall uncertainty on the PDF from 0.54 GeV
to 0.58 GeV which has a rather minimal impact.

8.4 Background modelling

The uncertainty on the background yield is taken into account by varying the normalization and the
shape of the distributions of several contributing processes. For both W+jets and Z+jets production, the
uncertainty on the normalization is studied following the recommendations in ref. [?]. For the 5-jet final
state, a total uncertainty of 54% is assessed [?]. For the W+jets background, the shape uncertainties
due to the events with jets originating from beavy-flavour quarks are studied by varying the fraction of
these events in the sample. The evaluation for this analysis follows the method described in ref. [?].
The shape and normalization uncertainties on the misidentified and non-prompt lepton component are
propagated to the top-quark mass. The most important background topologies originate from single-top
plus jets production. The impact on the top-quark mass is estimated by comparing the nominal yield
(obtained using the Powheg generator interfaced to Pythia) with the equivalent result with a different set
of generators (MC@NLO simulation for the s- and Wt-channels and AcerMC [?] for the generation of
t-channel events). The effect of the (MC) top-quark mass used in the single-top background evaluation
is also estimated by using two different input masses: 172.5 and 175 GeV, as well as differences in the
kinematics of the single top events.
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8.5 Uncertainties on the measured R-distribution

The experimental uncertainties of the unfolded R-distribution for each interval of ρs are listed in table ??.
In addition table ?? summarizes all uncertainties on the estimated top-quark pole mass.

Description Value %
[ GeV]

mpole
t 173.71

Statistical uncertainty 1.50 0.9
Scale variations (+0.93, −0.44) (+0.5, −0.3)
Proton PDF (theory) and αs 0.21 0.1
Total theory systematic uncertainty (+0.95, −0.49) (+0.5, −0.3)
Jet energy scale (including b-jet energy scale) 0.94 0.5
Jet energy resolution 0.02 < 0.1
Jet reconstruction efficiency 0.05 < 0.1
b-tagging efficiency and mistag rate 0.17 0.1
Lepton uncertainties 0.07 < 0.1
Missing transverse momentum 0.02 0.1
MC statistics 0.13 < 0.1
Signal MC generator 0.28 0.2
Hadronization 0.33 0.2
ISR/FSR 0.72 0.4
Colour reconnection 0.14 < 0.1
Underlying event 0.25 0.1
Proton PDF (experimental) 0.54 0.3
Background 0.20 0.1
Total experimental systematic uncertainty 1.44 0.8
Total uncertainty (+2.29, −2.14) (+1.3, −1.2)

Table 3: Value of the inferred top-quark pole mass and breakdown of its associated uncertainties.

ρs interval R σ(stat.) % σ(syst.) %
0 to 0.25 0.126 12.8 7.1

0.25 to 0.325 1.122 6.6 4.5
0.325 to 0.425 2.049 5.0 3.5
0.425 to 0.525 2.622 4.6 2.1
0.525 to 0.675 2.125 4.1 3.1

0.675 to 1.0 0.302 8.2 8.1

Table 4: Measured values of the R-distribution and its experimental uncertainties in percent. The statistical uncer-
tainties are derived from the covariance matrix of eq. ??.
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8.6 Studies on the definition of the extra jet

The extra jet of the tt̄+1-jet system is required to have a pT larger than 50 GeV but other possibilities were
also investigated. The full analysis was repeated with the pT of the extra jet satisfying different conditions
such as pT > 30 GeV and pT > 40 GeV. The results differ from the baseline central value by less than 0.1
GeV but the change in the systematic and statistical precision of the measurements was significant. As
the pT requirement was decreased some systematics uncertainties, such as that due to the JES, increased
and the statistical uncertainty became smaller. The original pT condition of 50 GeV represents a good
compromise for the overall balance of these uncertainties and therefore was used as the baseline of the
analysis.

9 Results and discussion

This paper describes an experimental measurement of the top-quark mass using the novel method pro-
posed in ref. [?]. The value of mpole

t is obtained from a fit to the normalized differential cross section
R(mpole

t , ρs) for tt̄ production with at least one extra jet, tt̄ + 1-jet, as a function of the inverse of the in-
variant mass of the tt̄ + 1-jet system, ρs. This method allows a rigorous theoretical interpretation of the
extracted mass parameter in terms of the top-quark pole mass or the running mass in the MS scheme. In
the present analysis only the top-quark pole mass (mpole

t ) is measured, although future studies should also
be able to determine the running mass when the theoretical calculations become available.

Events with the tt̄ + 1-jet final state were selected using 4.6 fb−1 of 7 TeV pp collision data collected
by the ATLAS experiment at the LHC in 2011. The total background in the tt̄ + 1-jet sample is ∼6%.
Many distributions were studied to demonstrate the overall agreement between the MC predictions and
data. A thorough study of the systematic effects with impact on the measurement was carried out and the
associated uncertainties quantified. Experimental systematic uncertainties were computed for detector,
signal and background modelling.

The measured top-quark pole mass is:

mpole
t = 173.7 ± 1.5 (stat.) ± 1.4 (syst.)+1.0

−0.5 (theory) GeV,

where the theoretical uncertainties include the uncertainty due to missing higher orders in the perturb-
ative NLO calculation, as well as uncertainties due to the PDF and αs used in the calculations. The
experimental uncertainty accounts for the uncertainties due to the imperfections in the modelling of the
detector response, the background yield and the uncertainties arising from the signal modelling including
hadronization. The dominant experimental uncertainties are due to the jet energy calibration (0.94 GeV)
and the initial- and final- state radiation modelling (0.72 GeV).

This measurement constitutes the first extraction of the top-quark pole mass from a measurement of the
differential tt̄ + 1-jet production cross section as a function of the inverse of the invariant mass of the
tt̄ + 1-jet system. It represents the most precise measurement of the top-quark pole mass to date with a
total uncertainty of σ(mpole

t ) =+2.3
−2.1 GeV. The value obtained for the top-quark pole mass agrees with

the most accurate previous top-quark mass measurement in the pole-mass scheme [?] and with the direct
top-quark mass measurement [?].
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The analysis presented in this paper is statistically uncorrelated from the mpole
t measurement using the

inclusive cross-section measured in dilepton events [?]. The measurements could therefore potentially be
combined, however this would require a detailed study of the correlations of both the uncertainties on the
experimental measurements and the theoretical calculations.
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