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KINEMATICAL RECCNSTRUCTION OF Ko=3 m'nm T  FOR K. DECAYS INSIDE

=}

THE VACUUM REGION OF THE CERN HEAVY LIGUID BUBBLE CHAMBER

I) INTRODUCTION

A set of modifications to GRIND have been written to permit
kinematic fitting of charged decay modes of KZ mesons and in

particular the modes

Ko~——an+n~n°

2
taking account of the fact that in the X L éxperiment the decay
vertex is not seen, but, in fact, the charged tracks are only seen
after they leave the vacuum pipe a significant distance beyond the
decay point, Although the problems involved are similar to those
connected with the Kg-—a 2 no-—~>4 Y reconstruction, there are
certain essential ne; complications arising from the curvature of
the ﬁ+, T~ tracks which create significant difficulties. In particular
unlike the Kg

tracks are not those to which the momentum—-energy constraints must

—> L Y situation, the measured directions of the T

be applied since the changes of direction of these tracks as they
curve inside the vacuum pipe are very large. The consequence of this
is, that the momentum-energy constraints applied by GRIND must be
turned off and all constraints, kinematic and geometrieal, must be

applied through appropriate external routines.

It should be emphasized right off that the formulae and
procedures which have been used are not absolutely exact, but only
good approximations used because more exact calculations would have
been too involved and time-consuming to set up and prograf. in pther
words this progfam is in a certain sense a compromise between an
optimal calculction and one, which could be set up iﬁua reasonab1e
time. For example, the most glaring inaccuracy comés‘from the fact
that the position errors of points are not considéred in the usual

GRIND : consequently it was expedient (as has also beén done in the
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K;»~a 2 n° GRIND) te ignore the pogition errors and consider only
errors in momenta and directions of tracks. Thus inuﬁakfhg‘a
geonmetrical fit re@ﬁiringdfhéwiﬁférsecfion of fra&ks,.érrbré‘in

their absolute positions are ignered and are in effect taken up by
larger adjustments of track directions and momenta. Since very major
changes of GRIND would have been necessary to take account. of the
position errors, it was not considered worthwhile to go into this.

As will be seen further, there are also some approximations in the
caldﬁiationspto simplify things, By fitting Monte Carlo events, it
has beenbcheéked that no significant errors are introduced in the fit
by the approximations although these checks have not been exhaustive

and perhaps at some moment when time permits further studies may be

worthwhile.

.One essential difficulty descrves special mention. It is a
basic assumption of the usual fitting programs like GRIND that a
set of: accurate.initial values for the variables are available, and
that linearizing the constraint equations about these initial values
is a good approximation. This assumption, usually valid in Hydrogen
chamber analysis, is much less justified in heavy ligquid work. Iﬁdeed
it is remarkable how far off the measurements often are, and the
consequence is that nalthough o rcasonable fit with o reasonable X?
in principle may exist, the program is unable to converge to it.

In the present program, much effort has been devoted to making the
program efficient, i.e. getting to the proper X? if a reasonable
exists in spite of poor starting conditions, but there is still a
fractipn of ~ 10 % of the events which fail because of inefficiency
of fitting program. This class of events is readily reédgnizable A
from the nature of the output and cgn:be separated easily from the

real failures (i.e. events for which no acceptable X? exists).

II) THE INTERSECTION OF TWO CHARGED TRACKS |

A) ' Orbit Equations

_ ‘Thé %irst fit whiqh thg program attempts is the intersection
in é?ace of‘tthtwo chafged tracks. We therefore begin with a
discussion oflfhislpfoblem.;Considerla charged particle in a magnetic
field B (aésumed.conétant).
PS/6166



Let the perticle pass through the point ;2 with direction

given by unit vector ‘é; and let Rl be the radius of curvature

of the orbit. Effectively these cuantities ?i, "ET, R, are just
what are given by the geometrical reconstruction program (say DRAT).
It can be shown easily that the parametric cecquations of the helical
orbit of the particle are given by

— TEy i T
s (el o B) 3 . B x (el z B)
r

= - ; S - (1 -~ s e
r, + =y 1l R, 6, + Ry Sin 6, — —— ( co l)
e x e B I

oz

(¢} x B) (1)

et
._1.

e %3B!
1

vy

where t refers to the sign of charge of the particle, and el is the
—

angle measured in the plane (perpendicular to B )between the radius

vector from the centre to the point T and the initial radius vector

to the point "?i (iece 61 = O when ?,z'?;)e Note that the subscript 1
o
(rl, el, Rl etc) denotes one charged particle, the subscript 2

denoting the other.

measured along

1

The parameter el can be replaced by the length L

the trajectory

) ~3
o (R; @,) [ B] )
Yoz 3

Unfortunately (1), ecxpressed cither in terms of el, or Ll’ is
1,
trigonometric functiocns of el leads to transcendental ecquations

awkward for cnlculation. The mixture of terms linear in 6 and
which are unpleasant. To sgimplify we will assume that over the
distance of extrapolation of the tracks, the bending angle is

not too large, i.e. ©, <<K1,

1 ) —
L1 gei x B
=) 1 [/ — Cvmsmom
Then Sin 61~ Sl = Rl “’“—Tfé—r—*
ela le (Ei x B |2
1 - cos 6123 5= = 5 S (3)
2 Rl B
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e can then rewrite (1) in terms of Ll’ using the approx-

imations (3)

e 3 B x 3 . e, X
s e (ul.B)L-i-D.z(el‘{B + 1 = \l i ;
r=r1+ 5 Ll—-é—ﬂ-;j-"(ele) I (&)
- | En =z
or
= 5 — 2
ro=r, + ey Ll + £, L1
. (e7 x B)| T x B | (£)
— + 1 1
where £, = - -
1 2 2
= Ll-h)
Equation (8) is censily sceen to go into the usual straight line limit
as Rl-écyo, fl-? C. The ng fl term comes from the effect of the
track curvature. For typical situantions with our data, we have to
extrapolate tracks through bending angles of order 200 nr with radii
of order 80 cm, and the error in the extrapolated position from the
above approximntion (3) is of order of a few hundred microns which is
gquite negligible in comparison tc e¢ffects of measurcment error.
- —@ 3
ile now further specianlizc the result (8) by taking B in the
z-direction of the chamber coordinate system $ B = |[B| k, and we
express Rl in terms of the momcentum ?l
P, {T, z 3
e, X
R I ! | where P, is in SV
"1 T 0.3 L2 - 1
B (6)
B is in zGauss
e 3 - "—?
Jith these conditions the components of fl are
fl = (ul, Vi 0} . where
+ i3l .+ e B i
u, = - C.15 LEI myo= 0,158 mﬁl cos Al sin \Pl (7 o)
1
- . 1B - | B .
vy o=+ G.15 w5: 1 = % C.15 «Ef cos Al cos ufl (7 b)
i; = COos Al ccs\f1 m, = sin Lfl cos Al Loy o= sin hl
k]
are the usual direction cosines of the initinl point rye
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In sumuary we can write (&)

{
o= xm, o+,
i i

=y, +m

y ¥ i

for the ith

. . i
direction cosinces 4., m., ng.

1 1

charged track passing through point ia Yy

in cowmponent form ¢

i i
2
L. + v, L
i i i
L.
i

zi with

B) Energy Loss Correction

Before o fit

to the momentum of cach charged track,

is attempted, an cnergy loss correction is

4

loss in the pipe aluminium woll ond freon.

Let the cquati

on of the pipe outer wall be

made,

(8)

to take account of the cnergy

2 o 2y 2 2 )
(y + 0.38)7 + (z + 59.5)° = (2.25)° (9)
Té'éd upgfreas along the track Li mugt tolkke on negative values, hence
let 5, = = L., ond substitute (8) with 3, into (9).
(y. - 4.5, + v.5.% + 0.38)% 4 (2, - n.5. + 59.5)% = (2.25)° (10)
- ol l i i i < i B o — (@ Z2
Solving for Si (done numerically in the progrom) gives directly the
freon path length
o _ o«
freon ~ Vi
The aluminium path length is obtained from the wall thickness t
(t = 0.25 cm) as follows
e |
[ -
Palum [ dp
VT
i
< 2 ,
where 3 = V/ky + 0.38) 7+ (z + 59.5)° (11)

? =V/(yi— m,3, + v,3 + 0.38)7 + (z. - n.5., + 59.v)2



i

d . .
e is negative.,

'
.

and the absolute value bracket ig used because

T

i
In calculating the energy loss, the aluminium loss is converted

into an effective freon logs by multiplying Sﬂ]um by 1.8.

+ 1.8 3

Effective total 3 = 5.
freon alum

<
pel
freon

Finally it may be noted that not unfrequently the initial

trajectory point X9 Ty 2 already falls inside of the pipe surface.

In this case 8 = 0, and S is calculated as in (11) with
freon alum

Si set equal to zero.

Besides the energy loss correction, the extrapolation of the
track back leads to some corrections in the assumed errors, In
particular, to both azimuth and dip errors we guadratically add

multiple scattering errors of the form

15 S

AV =562 = ;\/: (12)
gV X

where Z&u{, A A are the added errors in radians, P, B are the momentum

(MeV/c) and velocity of the particle, S is the distance travelled

in freon or aluminium and xgis the radiation length, Actually for this

we use x = 11 cm, the freon radiation length, and let S = S +

freon

o
1.2 Salum°.1t can be shown that (12) overestimates somewhat the

error, but since other factors underestimate them,we accept it.

C) The One Constraint Fit

We now consider the prebhiem of finding the best intersection
point of the two-charged tracks. It is evident that this is a one-
consgtraint fit and the problem is to express the constraint equation
in convenientvformo We assume that the energy loss correction has
been made and set up the equations (8) using the‘corrected values of
the momenta in the calculations of the u, and v, of (7). The X0 Vi 24
are still the measured initial points of the trajectories and hence
there is an approximation in that the momentum applicable inside the
aluminium pipe is also used in the freon from the pipe wall up to the
first measured pointavThe»error is however very small since (i) there
is very little path length of extrapolation in the freon (ii) the

energy loss correction is geénerally guite small,
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Solving (8) for Li in terms of z

L, = et (13)

and substituting into the other equations

z - Z z z 2
g i i
x = x, + {, (m-—~v— + u,
i i n. i n.
i i
s 2 (L&)
z - z Z - 7,
= + m e v =
y =3y i n i n,
i i

If the orbits are to intersect, at the point of intersection

the x's of two trajectories must be the same @

: ' ‘ 2 : 2
Z - z - =z z -z zZ - Z
) 1 . ! 2
x, + f& < - 1'+ u, T = x, + X; (—~E~—~%)+ u, m—;—~§ (15)
1 N 2 2
We can rewrite (15) in the form
az + bz + ¢c =0
u. o u
1 2
where a = ~;§ ;E-
- 2
fl 2 zlul fz 2 22u2
b= &7~ p) TRt TS (16)
1 n 2 n
1 2
2 ) 2
. - % - Zlfl e i ”[2, 7y Y2
=% I 2 To * n, 2
1 2
and solve for z ¢
- b E\V/b° - L4oac
z = (17)

assuming that we know the proper choice of solution, this gives us the

z value of the intersection of the x - z projections of the orbits.
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Call this value z defined by (17) g. Then the constraint consists

in requiring that at z = g the g values of.the‘two'orbits*ébihCide H
Yy, + m ° R ! + v ('? ! Sl STt o E~:—i§ -V
1 1 n, 1 \ n, 2 2 n, 2

(18) is the actual constraint equation used in‘the programe’ &=~

We now consider in méie»detail»theidifficulties,and possible

criticisms of this procedure

a) Calculational difficultics -
. zZ u, zi“ﬁi :
At the outset, the terms 5 5 in (16) were found to
n. n’
i i

becmmélferyviéféelahd Qife rise_tézlérge_roundfoﬂfcgrrors,rihis was it
immediately repaired by *ranslatiﬁg the Z—coordinate origin, so as to
make Zq 'zz much smaller than the 60 cm values they . had. In partlcular
the Z orlgln was placed at the Z; value of the track with' the leaot
dip, so that in (16) the zy or z, is zero corresponding to whichever

is the smaller of n; or ng. This solution completely;removed the
round-off problem. It may be added at this point that the round-off
error problem was further looked into at a later'time; and it was

found that the difficulty was connected with the fact that the
quantities a, b, ¢ in (16) contain factors which can bécdmé very 1éfgé 
but which when combined in (17) cancel out. A more intélligént procedure

would therefore have been to replaco (17) by the expllclt formul

found from substituting the equations (16) into it

z, + 2
Zz =g = — 5 2, Z(ai““.az) {— T+ (z, - 22:)(;1 + az)«i V .‘] (19)

v, u,
where r, = = a - r r.-r
i n, i~ 2 -1 T2

i ni

\V/ v =v/;2 + 4 [alaz (zl - 22)2 —-(él'~ a‘zﬂ)'(xl"-~ le + (z1 - zz)(alrz-aérl%

S Z, .+ 2 R ' s
It is clear from: (19) that except for thé ‘~£—§—~— terms all the z;
dependence is through the term'(z -z ) and 1ndependence of coordlnate

origin is explicit. In some development work (19) was used instead of
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(16), (17) but made no difference even for very small n, . Hence the

present program still uses (16) and (17).

. - - — - s G " - 5 e A3 S e S b B G G e WD M SW M Gas G PR M e G s o e b e S

Because of the low Q value of the T decay and the relatively -
high momenta of the events, it is a general characteristic that the
charged tracks tend to go very much in the forward direction, Under
these conditions, the curvature plays“only a small role in the
x - z plane. This is also obvious from the fact that the curvature
term is proportional to u; Sin\pi, and k?ivis small, when the tracks
go forward. Consequently, since if there were no curvature there would
be no sign ambiguity one can suppose that we should find the proper
sign by taking the limit of zero curvature (ui—~>0). It is evident
from (16), (17) that this leads to the choice of sign & sign = sign of b.
It turns out in practice that this choice is almost always correct,
but there are exceptions. In the present program, the proper choice is
made by comparison of the two solutions for g with an approximate
intersection point obtained prior to the fitting procedure. This
approximate intersection is found using the charged tracks and the
gamma rays and is used to obtain directions and curvatures for the
tracks to be used as initial values in the fits, The method of calcul-

ation of this point will be discussed further on.

c) What happens if the dips of the charged tracks are

R e e ) ey UEp S U AR - e R ey

Because of measurement errors it is evident that thé inter—
section point of the tracks in the x - z plane may shift very far
in one direction or another for slight changes in the dips or may
not exist at all if the discriminant of (17) becomes negative. This is
a substantial problem if the initial values have large errors. For
that reason it is essential to have a procedure prior to the fit which |
uses all available information (i.e. pion tracks and gamma directions)
to find an approximate decay point and which calculates for all
quantities initial values such that the tracks come from that point.
Once this is done the problem of pion tracks of nearly equal dips
essentially disappears. This "initialization procedure’ already

mentioned in the previous paragraph will be discussed further,
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III) .THE.GAMIA GEOUETRIC COSTRAINTS .~ . . . (oo

Py

It is straightforward to add to the constraint forcing the two
charged tracks. to ‘meet flrther constraints reguiring the gamma lines

of flight to .go through the intersection point of the pion tracks.

Thus for the ith gamma ray one has.theejuations. 3 Cocan fn i
RN S LRI & ¥ S R R S ; : .
(we let i = 1, ? stand for charged tracl )
R 3, 4.' " " v réys )
[T R s S - Y. T Y. S : o T T T pep o b
Y, —tanl( - g) =0 (20 a)
cao A U L x, o m X Gt T e : T TR S
Pt , CEy TRy . i
-1 i
oAy = SinLT e e Crmnp— e oz o (20 b
:1,-2\“1 Sln i /Z‘ ,— ).2 . (X ,.-‘{ )2 .+ ( ‘- )‘2‘[ Q . ; ‘(2‘ )
o Ve Gy ) e vy ) R

vhere g is the value .of .z given by (17),. x is the corresponding

value of x. N , R R T e SR e by
S g (‘
X = (21 2)
g it
g 2 ! I
or x = (21 b)

Since ¢ Was calculated from the reou1rement of an 1ntersect10n in
the x - z pl;ne.of‘txac“s 1 and 2 (thﬂ charged tracks) (21 a) or (?1 b)

must give the same value of xq and one can use elther equation.

Howvever, until the fit .is completed, the corresponding quantities
y for tracks 1l and 2 do not agree (unless the charged tracks precisely
intersect before the fit is completed) and we use for yg in eqe. (20 a). -

and (20 b) the following average . AU .

It should be noted that,the form of the constraint equations (20)"
is particu;grLy‘convenientgfor»GRiND since they are-linear?inwfi,fhi*
and have not difficulty with singularities.
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IV) THE KINEMATIC CONSTRAINTS

A) Extrapolation to vertex

Having discussed the geometric constraints, we are now ready to

discuss the kinematic constraints.

Unlike the X 4 situation, the momentum energy constraints at
the Ko decay vertex are not properly applied by GRIND since the

measured pion directions are not these which apply at the vertex.

It is therefore necessary to "turn off" the GRIND constraints
and put in our own. In the original planning of the program, it was
envisaged that the "turning off' would not be done by‘any-Changé in
GRIND routines but by a trick as follows s in the GRIND set-up the
K-ﬁaég,kmomentum and the two gamma momenta would be left as unknown,
and the proper momentum-energy constraints would be put in externally
through a CONSTR (I) routine., Since there are four energy-momentum.
equations at the KO decay vertex and four unknowns (K mass, K momentum,
two gamma momenta) the unproper GRIND constraints would only have the
effect of producing fictitious values for these unknowns but would not
insert any unpropéf constraints: Provided now that the externally put
in constraints did not use the fictitious GRIND quantities, and that
these fictitious quantities were not the ones printed out at the end,
the progfém should then work properly. This long explanation is given
only by Qéy of mofivating the fact that the true K-momentum and the
two true gamma momenta are not part of the GRIND variables. They are
calculated externally to the standard GRIND package in the CONSTR (I)
routines, and their errors are also.calculated externally. The results

of this are then fed into the proper banks for printout at the end of
the fit.

Before considering in detail the kinematic constraints, we discuss
the necessary extrapolation of the pion tracks to obtain the proper
directions for substitution in the conservation laws. For this purpose
we consider again the exact orbit equation (1) as the directions
obtained by differentiating the approximate equations (5) are not precisec
enough. If one expands the equations (1) to higher order than second

order in L, namely to fourth order in L and differentiates.? with
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respect to L to obtain the direction cosines one finds for these at.

the vertex the values

. 3 C ,
. L. . g' L. m. . [
) - §
B A S T e - L CL Y
. . i i .2 6 . :
Gyt e g 2 le %13 L7 4; BRI
miem, - (. A L -2 moo © (23 b)
L P 6
.n,'= n, (23 ¢)
11 Ml .
N SRR [EET R C ks
, ) ) ,
whére‘ig*qﬁmg“, ni’ are the direction cosines of the vertex,:

gi,&&iyﬁnista?e the direction cosines of-thé first measured point of

thestrack o

P Lo

i B
= - L _t,4,3 1B (2k)
i m, . P,
i i i
e e o . 97z, . : o . . :
ana Ly = — ~ is the distance along the track from the
}béiﬁ{*ii, yi,”ii to the ' vertex point whose z coordinate (see eq. 17)
i% g. Obviously the fact that n;’ = ni comes from faking'fhéffiéid”éiong
T T ' S ) 2 Dy
the 2z direction. One can easily show from (23) that fi'z + m?iz + n;-z
Lo T

ﬁ‘fiz'i'miz + hiz up to (but not including) terms of order 'Li .
To guarantee that all direction cosines are properly normalized we

v - ). ) _ .
amend the Zi‘, mi ‘from (23) by

.(é5}i

. m_t !
- Vi !

Thus we now have the direction.cosines at the vertex in terms of the

- quantities used in the fit.
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However (28) has the useful property not shared by (30) that it
cannot bhe gatisgfiecd except with positive values of qu, Pyﬂ' Since
I =

it may occasionally happoen boecause of errors of measurement that

from (27) feature is of some relevanca,

Pysr Py

C) The K~ Constraint

The ¥ constraint ig most eagily written if one remembers thet
the vector sum of the sccondary momenta lies along the x—axis)| hence
only x - components ¢f momenta need be added to get the total momentun,.

Thus the congtraint can bae writte:

1 2 Y3 Vi 22 Y3 73 e b S
(31)
where El’ B, are the total pion energics.
pa)
Incidentally eou. (31L) is also uscd to calculate the K-mass for

n
S Y e . : .
he fit in which only the 7 kinematic congtraint is invoked

: © 3 oy 4 . 3 o
he K after the final 1 and I constraints are satisficed ig

i

t
leaving the masg of the incident particle floating., The momentun of
t

calculated from the formula

U
i
wJ
+
el
AT
+
=
s
g
I~
-
o~
W
0o
g

V) INITIALIZATION

It has alrcady been pointed ocut that it is valuable in many
cases (and probably harmful in none) to initialize the variables

ather than usas the measured guantities., Thisg procedure is also

B

r

wwrried out in the X L GRIND in that 2 geometrical intersection point

]
)

is found via 2 specizl routine prior to the fit. The necessity of this
arises from the fact that GRIND, assuming, as is the case in hydrogen
chamber physics, that precise starting values are available from the

meagurements, linearizes the constraint ccuations in solving eac

H,

h
step. The convergence of the procedure (in which at the end the truc
d

rather than the linearized constraint ccounticone must be satisfiec

depends upon whether the linearization is o good approximation.,
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Clearly, by initializing the variables so as to start with theom as
close as possible to their final valucs, cne optimizes the chance of
a guccessful convergence.

The general philosophy of initialization in the program is that
one splits up the fits using as the initial value for cach subsequent
fit the fitted valuc from the previocus fit. In particular one first
carries out the intersection of the charged tracks, a 1-C procedurc
where (18) is cgquation of constraint, using initial variables obtained
in a manner to be described further along. One then uscs the fittcd
directions and curvatures of the charged tracks, and Y-ray directions
obtained by constructing lines from the charged track intersection
to the gamma apices as initial values for o complete geometric fit in
which all outgoing tracks and gamma rays arc made to intersect. This
complete geometric £it has the five constraints (18) and (20 a), (20 b)
for cach gamma ray. (Evidently if only a vertex is measured for one
of the gammas there arc only threc constraints). One then continues
by using the fitted information from the geometric fit as initinl
values for o 6-C fit using besides the geometric constraints (18), (20)
the 1° kinemntic constraint (28). Finally the result of this is used
as initial value for the 7-C fit which in addition to the previous

. ) . -0 .
constraints embodies the K- constraint (31).

The above strategy has, with expericnce, undergone some slight

modifications,

i) If the B-C fit, using the 1-C fit results as input values
fails (i.e. does not converge satisfactorily) we try again
using as input values those determined in the initialization
routines, This procedure is useful in the case where the two
charged tracks are emitted at only a small angle with respect
tc ecach other, and consecduently their fitted interscction

has a large uncertainty in its location.

ii) If a fit fails, so that it provides no initial values for
the next fit, the measured values of the variables are used

for the initial values of the next fit.
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[

n the pion tracks, the

[

Because of meagurement errors

e
N’

correction for cencrgy logss in the freon and pipe woll is
often uncertain. Conscguently after a successful geomotric
5-C) fit is made, the energy loss correction is repeataed
prior to the next fits.
We now come to o discussion of the initialization routine used

/

hie

6]

any fits, to set up starting values for the variables.

consists of going upstream aleong one of the twe charged pion tracls,

say the positive, following it as though its measured parameters

were exact and taking cequally spacced points along this trajectory

. o
ags possible.K decay VGTtEA points., For each ouch 001nt, cne then

forces the other (negative) track and the gammu rays to go through

that point and calculates the corresnondlng 7( « Thig procedure ig

: ]
. . . “ € .
followed until o minimum )C is recached. The same procedure is then

carried out moving back along the other (negative) track upstream

0

o minimum for the intersection of the positive track and

the two gammas is reached., An average is then made of the two optimal

points

alceng the two trajectori ies and this is taken as an initial

decay point, from which initiclized dircctions and momenta arc

calculated for the first GRIND fit. These remarks are somewhat sketchy

and we

now go into further detail,

i) Calculation of the X7

Given a possgible decay point %, y, z it is easy to draw lincs
to the gamma apices, calculate the corresponding directions and
by comparison with the measured guantities and their crrors,

p]
[ . . . . .
form a X%, This is a little less trivial for a charged track

since to a given decay point and track point, there is not

a unigue direction and curvature to compare with the measured
valuesy but, in fact, o continu. s of such values. In forming
this contribution to the X7 one must therefore find the
particular combinatioh éf direction and curvature which ninim-
izes the ?Cg. This problem can be readily solved and we give

the results here and leave the derivation for the Appendiz,
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Thus if we construct a curved track from the decay point x, y z
to the initial track point xi, Yir %5 the contribution to the:)i

from thsk?i and 1/p mbagurgd values of azimuth and reciprocal momentum

with squared errors(f\im ) @Af )
P ,
3181 7 = 2 i . 2
, {ﬁ),.(’:oéh, YT )“[(xi”x) sinfy - (yi“y) cos ‘?ij}
A E A [(x,~x)cos v, + (y,-y) 2
i X,~-x)cos + (y; -y s1n\f

-3lst | AN - }
[ coshy | T (Sixy’ (33)

where S. \/ (x - x; ) + (y - Y; )

and the upper sign applies to the positive track, and the lower to the
negative track. Furthermore the values of l/p and LPi which give thig

2
minimum X °, (-) (qi)
Py optimal’ optimal

are given by

0&9 ) zgx —x)cos%1+(y ~y)51nq’1}
2 1
(P ) optimar =1 + X~ vy ';3’;) e
picoski - [ﬁx —x)51nq -(y. -y)cosy }
| l 11xy , B‘ (34) J
(=) 1 , (Yi,;:0<(AE;T) ‘g;gx;
i optimal ) Py .31B| . N
pioosh; T 5 )2 [(xi“")sm‘f’i B (5’1-3')""5‘{’1)J
ixy

(35)

2]
Just for completeness, we exhibit the other contributions to thej(f.
First from the dip error in the chargcd tragk
A, = sin Ci
[
ic

Xg () = (36)
* mi)

2 2
where sic =\/(zi - z)7 + (2 Riai) (37)

P. CcOos .
Py A

= “TngTmni = radius of the orbit
) (38)

-1 Dixy
o, = si
i sin (2 Ri




- 18 -

Here, although there is a siight interplay between thg
o ‘ .. . ix
curvature 1/Ri and. the dip, this is negligible since ZZR? << 1,

so that (2 R,a.)ggsixy, a fixed number. Hence what one

i’i SHee m
substitutes for Ri or p, in (37), (38), the measured value
or the optimal value of (35) makes no difference.
Finally, the }CZ from the Y—rays ha&é?dip-and'azimuth

contributionss

[ ~l/Zi -z 2

Ai ~ sin k‘ o
() = _— (39)
i (Aki)z

' - 2 2
where ’Si = V[}x - xi) + (y - yi) + (=z Zi)

Y. =¥ S
t% - tan‘lQ;i“:f;’ ]
) * i i (L0)
(9.) = =
s (‘55.‘?1)-2

ii) Minimizing the X?
From formulas (33), (36), (39), (40O) for a given point on the
trajectory of one of the pions taken as exactly known, one
calculates the )(2 contributions from the gammas and the other
pion, This is done at equally spacéd;in%éfﬁals along the.
trajectory. One then looks for a )(2 which is less than both
the preceding one and the following one. If one denotes the

. preceding )(2 as )(2 (- 1), the least }(2 as ”X? (0), and the
following one as )(23(+ 1) and denote the distance between
points where the 7Q2 is fouﬁd‘by 8, the true minimum )Cz

is located at a position

[f(—U~X?H1ﬂAs
S = |

- (&1 )
z[ﬁ(+n+ww—n—zﬁ(ﬂ |
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with respect to *the p»oint where the least )L was found, where
o )
(41) is casily owvtained if X~ is assumed to have a quadratic

behaviour in the neighbourhocod of its minimum.

@

Combining results for the two track

Following the above procedures, one finds generally one point

)

. . . &
inimizes the X~ as

5

on cach of the two pion tracks which ©
just discussed. What is then done iz to take a point half-way
in between those, calculates the ?13 for it and uses formula
(41) to find a minimal ?CB position which is then the initial
decay from which all initial variables are calculated.

Because the first GRIND fit made is the 1 C fit where only the
pion tracks are made to intersect, only the pion track contrib-

2 . . ] A
utions to the jﬁ' are used in the final calculations from

(L1). If, as sometimes is the case, one of the pion tracks

. N 2L,
does not give a }L minimum, but the other one does, then the
2
vertex is taken on the track which gives a X° minimum. All
o, 2 . o o p TS N 1 “ e
these X are printed out and if they are large (>4 30) they

give a sure indication that no geometric fit (5 ¢ fit) is

possible,

VI) GENERAL REMARKS ON THE PROGRAM

ii)

PS/6166

If only a wertex ig available for one of the gammas, then

2 geometric constraints are removed buth otherwise everything

goes on as before, Thus the highest crder fit possible is a 5 ¢

fit., If both gammas have measured directions but a pion momentum

is misming, in princinle 1 constraint is lost and the fit

should go  through, In fact such events have becn processed
successfully, but very few so far have been attempted and there

is no information on “he success rate for such fits.,

What about failures 3

Most failures are connected with inability to obtain even a
geometric (5 C) fit and arc evident from large X2 values
from the initialization. Presumably they occur either when

the tracks and gammas are really unasscciated, or cne of the



pions scatters in the pipe wall., Occasionally events may pass
the 5 C fit hit not the 6 C fite: this usually occurs in
situations where due to errors of measurement,perhaps pion
scatterings etc. Egs. (27) for the gamma momenta give negative
values., In many cases even when this occurs at the start of.
the 6 C fit the fit does converge satisfactorily. Sometimes
however therc is no convergence, It is not impossible that in
some such cases the failure 'is purely technical in that a
satisfactory ?Ca exists, but the program fails to converge to it,
because it has start values which are too far off. Fortunately
the occurrence of this sort of failure is rare.

Another failure which occurs in going from the & C to the

6 C fit can arise if the two chosen gamma rays are brems of
each other, or both brems of an electron secondary (i.e. if

by mistake a T e V e ent has been mistaken for a n+ ARt
event). In that case the two gamma momenta tend to become large
and, of opposite sign, a behaviour easily understood when one

remembers that they are calculated from transverse momentum

balance,

Besides, the usual GRIND standard failures (high 762, too many
cutsteps etc.,) there are several specific to this program,

LET)

which we explain heres”CN 1 - 1'"starting point of cne of pion

tracks lies at a radial distance of less than 1.8 cm from the
pipe axis (outer wall of pipe is at radius = 2.25 cm). This
is only a warning, but the program still goes ahcad and
processes the event." TN 1 - 2M"one of tracks does not, upon

extrapolation intersect the pipe. This is a consequence of
misweasurement or large track scattering, and prevents fitting

WCN 1 - 4"~ Eg. 17 has no real roots. This kills that partic-
ular fit. Since the introduction of the initialization procedure,

this errcr has rarc occurrence.,



- 21 -

Appendix

Derivation of Initialization Fermulas

A) Statement of problem and gecometry

Given a point x, y, z and a charged track with measured parameters

(h.,\fi, %m) starting at point Koy Yio Zgo find a circular trajectory

.

2
passing th%ough X, ¥, Z and Xio Yo 24 which minimizes the guantity Y. .

\ 2 2
I L VARt

= 5 + + =
X (ar)? mwz,:‘_(A%V

(2)

1 .
where A,\f N ; are the parameters of the trajectory evaluated at the
point xi, yi, zi.

First of all consgidering dips we have that

-1 Zi - Z
A = sin (-—“—g—-—-—“ (b)

where Sic is the path length along the curved trajectory from x, YV z
to X Yy #ge If R is the radius of the trajectory it is easy to

sece that

2 2
— - T ' 2
Sic -J(zi z)" + (2 Ra) (c)

where a is the half angle subtended by this path length at the centre

-1 Sixy
o = sin SR (a)

and Sixy is the straight lihe distance from X, vy to X Y in the

of the circle

x = y plane.

€2}

ixy 2\/(xi SR NGOk (e)
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KN od P
x‘ \\ g )
. . A VN /
Now A, as given in (b) depends \\\ NN

on the assumed radius R throuch the R N AN \\c“ 13
N . \ ‘\ N /
dependence of the guantity Sic’ but in a X\ ot
TN \
fact this R dependence is owtremelw weak, A L \\\ /

This is clear from the fact that in
typical situations with real events

2 oo X 200 mr, ocR‘sSlOO mr <<1 re

Hence in (d) ozy ;xg and the term 2 Ra
in (¢) just becomes 3., . Thus {(b)
ixy
becomes
-1 T AN
AN sin (S (£)
ixy

where there is no dependence on R, Conséquently the contribution of
- 2

the first term to the X° is readily computed from (b) where it

makes little difference what value of R is used (for example the

measured value is perfectly adequate).

The calculation of the last two terms in the'X? is less trivial
because there is a relation between ‘P and p (or R) and one has to
find the appropriate combination which minimizes the sum of those
two terms. To do this we solve the problem in a general forﬁ and theh‘

apply the result specifically to our situation.

B) Congider a system where there are two measured guantities
- . ¢ , . . .
% ,Wz with measured values 5 o Ylm and. which satisfy a rclation of
i

the form

f(§\,7>=o - (g)

One wishes to minimize the quantity

frggx-’q Gwz. ‘ :(h)

Subject to the condition (g)

Let u = $ - § m Q ='&l-W2@ N so that

u
X &2 TFE3 (i)
PS/6166 ¢



Now assume that the measurements are fairly accurate, so that
u, v are small and linearize ¥ (g ,YZ)
c 3f AL .
f (S,TZ) = f (gm, r(m) + éwi u o+ S";Lv =0 (3)
Thus we can replace (g) by a linear relation
au+bv=2C
of : af ‘ :
. of - 8L - - 1
where a 5t b 57 c £ (5 a ) (k)
. . s . . 2
Differentiating (i) to get minimum for X
2
aX udu vdv o
§ e
From (k) one casily finds
v = Lo au and d v = - = du
b b
Substituting this into (b), one ecasily solves for u
a c 6;2
“ 2 .2 2 2 (1)
a 6% + b Giz
2
Then b c le
M R - N (n)
a 5% + b ﬁﬁzi
2 C2
xl‘ =73 ) (o)
min a.JGE 2 + b2 6;? 2
Finally we can also write
a 2 2
U = == G‘J : - -
(o} g % min § §E’ﬂ (p)
b — 2 2
V = e Q. D'e = Yy -
c 7( X min w& Wlfﬂ (q)
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C) Application to present prcblem

These results are

interest. Let § ,vlzﬁxp, 1.

P

casily applied to the specific problem of

. . 1
We have to write the appropriate relation (g) between \? and 7

By geometry one can show that if one puts a circle of radius R through

the points x, y and xi, y; theufat xi, Y; and the radius R are

related by

1
R

_Q.31Bl o+ 2
P = (s,
ixXy .

(xi - x) sinp - (yi - y) co&a (r)

Then the quantitics a, b, ¢ from the previous section are given by

P <s.u 2 [(xi_ Weoss v by 7Y Sin%]
ixy
= 0.3] B
‘3£§} - 2 5 (x. - x) sinqg - (yi - y) COS\fi
N (oixy) .

Substitution of these quantities into (o), (p), (g)immediately gives

the results (33),
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