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KINEMATICAL RECONST~WCTION OF r-:: 0 --.'!> n; + n; - TI° FOR K0 DECAYS INSIDE 
2 2 

THE VACUUM REGION OF THE CERN HEAVY LIQUID BUBBLE CHAMBER 

I) INTRODUCTION 

A set of modifications to GRIND have been written to permit 

kinematic fitting of charged decay modes of K0 mesons and in 
2 

particular the modes 1 

taking account of the fact that in the X 4 experiment the decay 

vertex is !!.2i seen, but, in fact, the charged tracks are onl°y seen 

after they leave the vacuum pipe a significant distance beyond the 

decay point. Although the problems involved are simil~r to those 

connected with the K~ ____.,. 2 1t0 ~ 4 Y reconstruction, there are 

certain essential new complications arising from the curvature of 
+ the TI , 1t tracks which create significant difficulties. In particular 

+ . 
unlike the K~ ~ 4 Y situation, the measured directions of the 'ft. 

tracks are not those to which the momentum-energy constraints must 

be applied since the changes of direction of these tracks as they 

curve inside the vacuum pipe are very large. The consequence of this 

is, that the momentum-energy constraints applied by GRIND must be 

turned off and all constraints, kinematic and geometrical, must be 

applied through appropriate external routines. 

It should be emphasized right off that the formulae and 

procedures which have been used are not absolutely exact, but only 

good approximations used because more exact calculations would have 

been too involved and time-consuming to set up an.d program. In ~ther 

words this program is in a certain sense a compromise between an 

optimal calculction and one, which could be.set up in a reasonable 

time. For example, the most glaring inaccuracy comes from the fact 

that the position errors of po.lilts are not considered .in the usual 

GRIND : consequently it was expedient (as has also been done in th0 
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0 0 
K2 ~ 2 n GHIND) to ignore the position errors n.nd consider only 

errors in rnomentn nnd. directions of trncks. Thus in. mnkfng a 

geocetri~al fit requiring the intersection of tracks, errors in 

their absolute positions are ignored and are in effect taken up by 

larger adjustments of track directions and momenta. Since very major 

changes of GRIND would have been necessary to take account of .the 

position errors, it was not considered worthwhile to go into this. 

As will be seen further, there are also sor.10 approximations in the 

calculntions to simplify things. By fitting .Monte Carlo events, it 

has been checked that no significant errors are introduced in the fit 

by the approximations although these checks have not been exhaustive 

and perhaps at some moment when time permits further studies may be 

worthwhile. 

One essential difficulty deserves special mention. It is a 

basic. assumption of the usual fitting programs like GRIND that a 

set of accurate initial values for the variables are available, and 

that linearizing the constraint equations about these initial values 

is a good approximation. This assumption, usually valid in Hydrogen 

chamber analysis, is rnuch less justified in heavy liquid work. Indeed 

it is remorkable how fnr off the measurements often are, and the 
9. 

consequence is that '.11though ct reasonable fit with a reasonable X:" 
in principle ~ay exist, the program is unable t-0 converge to it. 

In the present program, much effort has been devoted to making the 

program efficient' i. ,~. getting to the proper r if Q rec1sonnble 

exists in spitp of poor starting conditions, but there is still a 

fraction of rJ JO % of the events which fail b<::cause of ine:fficiency 

of fitting program. This clnss of events is readily recognizable 

from the nature of the output nnd can be separated easily from the 

real fnilures (i.e. events for .which no ~1CCeptable 1.,,2 exists). 

II) THE INTERSECTION OF TWO CHARGED TRACKS 

A) Orbit Equations 

The first fit which thq program attempts is the intersection 

in space of the two charged tracks. WQ therefore begin with a 

discussion of this problem. Consider a charged particle in a mngnetic 

field ·11 (nssumed const,'.'.lnt). 
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--"""' Let the particle pass through the point r 1 with direction 

given by unit vector and let R 1 be the radius of curvature 
1 -

-i> -
of the orbit. Effectively these quantities r 1 , ~' R1 are just 

what are given by the geometricnl reconstruction program (say DRAT). 

It can be shown easily that the parametric equations of the helical 

orbit of the particle nre given by 

• ·13·) r· '--7"° 

('Et~ 
-~ 

Ce~ --;;> 

~ 
B x x B) 

-iP -- B + ( 1 r = rl + lBT R el + Sin C\ - cos 

J Efl x 131 l 18 lle-f; "8 I 
l 

·'~ 

·- I 

el) 

( 0·~ x B) 

I (l) 

Id, ~1 

1 
x B 

j 

+ where - refers to the sign of charge of the particle, and el is the 

angle measured in the plane(perpendicular to B )between the radius 
._;:p 

vector from the centre to the point r and the initial radius vector 

to the point 7i ( i. c. e1 = 0 when r" = 7i). Note th::i.t the subscript 1 

(~, e1 , R1 etc) denotes one chnrged pnrticle, the subscript 2 

denoting the other. 

The parameter e 1 cnn be replaced by the length L1 measured along 

the tr1:1.jectory 

0 
(H1 e1 )jBj 

I~ x ~ I 

Unfortunately (1), expressed either in tarms of e1 , or L 1 , is 

awkward t'or cn.lculntion. The mixture of terms lineo.r in e1 , nnd 

trigonometric functions of el lends to transcendental equations 

which are unpleasant. To simplify we will nssume that over the 

distance of extrapolation of the tracks, the bending angle is 

not too large, i.e. 
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Ue cc:.n thun rewrite (1) in tores of L 1 , using the c:.pprox-

imc:.tio:rts (3) 

[ (~ -?' -:? r = rl + 

or 

where 

.._,.,. --? --'? 

• B) B + B x 

B2 

- 2 + fl Ll 

<~ x~> I~ 
2 

2 R1 B 

(e"' 
x B> ] 

L 2 
_..,,. __,,.. - ...,,,. \el x BI 1 + 1 

Ll 2 R1 
(e1 x B) 

B2 

Equntion (5) is ensily seen to go into the usunl strnight line limit 
2 

as n1 ~ o<>, f 1 --?" o. The L1 f 1 ter1:i comes from the effect of thG 

track curvnture. For typicnl situntions with our dntn, we hnve to 

extrapolate tracks through bend~ng angles of order 200 mr with radii 

of order 50 cm, nnd the error in the extrnpolnted position from the 

above nppro~dm:i.tion (J) is of order of n few hundred ;;.iicrons which is 

quite negligible in compc:.rison to effects o:f me::tsurement error. 

~ 

Ve now further specialize the result (5) by taking B in the 

z-direction of the chamber coordinnte system: B =[Bl!;, :'l.nd we 

express rr1 in terms of the momentum P 1 - ~ 

pl tel x BJ HeV 
Rl = 0.3 B2 

where pl is in 
c 

B is in kGnuss 

--?' 
With these conditions the components of f 1 are 

+ 0.15 ill + 0.:15 lBI 
ul = - ml = 

pl 
cos i\.l sin 'f 1 pl 

vl + 0.15 !Bf 
0.15 w = + cos i\.l cos 'f 1 pl 1 pl 

..e = cos Al cos 'f 1 ml = sin '-f 1 cos A 1 1 nl 

are the usual direction cosines of the initial point 
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In suc~'.1ry we c2n writ 

v 
"'' + t. + 

l. 

L. y y. ~!~ + 
1. JL 

z z. ·{ .. n. L. 
l. ]. 1 

f -,r t'1"' i' th c'l"'~g .. ,,i tr"'c'·· '.J .Ii. \...... .I:. ~4.L <._, '-'l. '-" ........ p:1ssing 

direction cosines n. • 
l. 

B) Energy Loss Correction 

in co~ponent forG 

q 
t::,. 

~ 

through point z. with 
1 

Before '.1 fit is 2ttempted, en energy loss correction is n'.1do. 

(8) 

to the mocenturn of ench ch2rged tr2ck, to take account of the energy 

loss in the pipe nluuinium w~ll nnd freon. 

Let tho ion of the pe outer w'.111 be 

,, 
( 2 O 25) C.J 

( 9) 

To go upstre'.1r::: nlong the trnck L. 
I. 

t:t~~e on negnti VG v::i.lues, hence 

let S. = - L., nnd substitute (8) with S. into (9). 
l. l. l. 

(y. - u. s. 
l. l. l. 

" 2 
C" C; 0 '' 8 \ ' + V • ..:>. + •.) I + 

:t ]. 

- ,,.... J .., 2 (z. - n.~. + 59.5) 
J. l. l 

') 

(2.25)'-' 

Solving for S. (done nu~ericnlly in the program) gives directly the 
l 

freon path length, 

,, ~ 

;;ifreon == 0 i 

The ~luminiuo path length is obtained from the wall thickness t 

(t = 0.25 era) as follows 

'\Jhere 

= (y. - r:a.S. 
l. 1 l 

c· 
0 :cl UEl 

" 2 + V .. u. + 
l l. 

0 "")2 o.)O + n.S .. 
1 l. 

( 10) 

( 11) 
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and the absolute value brack8t is used because 2-.f is negative. 
dS. 

]. 

In calculating the energy loss, the aluminium loss is converted 

into an effective freon loss by multiplying S 1 by 1.8. 
a um 

Effective total : S = S + 1.8 S freon freon alum 

Finally it may be noted that not unfrequently the initial 

trajectori point xl.., y., z. already fails inside of the pipe sur£ace. 
]. ]. 

In this case S = O, and S 1 is calculated as in (11) with 
freon a um 

~ set equal to zero. 

Besides the energy loss correctionr the extrapolation of the 

track back leads .. to so~e corrections in the as~umed errors. In 

particular, to both azimuth and dip errors we quadratically add 

multiple scattering errors of the form 

(12) 

where ..b:..~, ~A are the added errors in radians, P, ~ are the momentum 

(MeV/c) and velocity of the particle, S is the distance travelled 

in freon or aluminium and Jc0 is the radiation length. Actually for this 

we use x = 
0 

1.2 s 1 • a um 
error, but 

11 cm, the freon radiation length, and let S = Sf 
re on + 

It can be shown that (12) overestimates somewhat the 

since other factors underestimate them,we accept it. 

C) The One Constraint Fit 

We now consider the problem of finding the ~est intersection 

point of the two-charged tracks. It is evident that this is a one­

constraint fit and the problem is to express the constraint equation 

in convenient form. we assume that the energy lof:!S correction has 

been made and set up the equations (8) using the corrected values of 

the momenta in the calculations of the u. and v. of (7). The x., y., z. 
1 1 ]. 1 ]. 

are still the measured initial points of the trajectories and hence 

there is an approximation in that the.momentum applicable inside the 

aluminium pipe is also used in the freon from the pipe wall up to the 

first measured poin~. The error is however very small since (i) there 

is very little path length of extrapolation in the freon (ii) the 

energy loss correction is generally quite small. 
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Solving (8) for L. in terms of z 
J. 

z - z. 
L. J. 

J. n. 
J. 

and substituting into the.other equations 

2 

2 

If the orbits are to intersect, at the point of intersection 

the x's of two trajectories must be the same 

j 
2 

We can rewrite (15) in the form 

2 
bz 0 az + + c = 

where 
ul u2 

a - '"""';)". 2 "" .nl n2 

R 2 zl ul ,f 2 2 z2u2 1 
b :::: - - + 

nl 2 n2 2 
nl n,, 

.:;, 

. zl ,fl 2 .t 2 
zl til z2 2 7i ~ u2 

c ::: xl - - + - x2 + 
nl 2 n2 2 

nl n,.., 
<O 

and solve for z 

- b :!: Vb 2 - L1 ac 
z 

2 a 

(13) 

(14} 

(15) 

(16) 

(17) 

assuming that we know the proper choice of solution, this gives us the 

z value o~ the intersection of the x - z projections of the orbits. 
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Call this value z defined by (17) g. Then the constraint consists 

in requiring that at z g the g values of the, two orbits cbin.cide 

0 ( 18) 

(18) is the actual constraint equation use~ i~ the ~rogr~m~' 

We now consider in more detail ;the ·diffi.cui ties. and possible 

criticisms of this procedure 1 

At the outset, the terms 

' 

z. u. 
1 1 

2 
n. 

1 

2 
z. u. 

1 1 

2 
n. 

1 

in (16) were found to 

becmme very large and give rise to large rounct~off errors~ This ~as 

immediately repaired by translating the z-coordinate origin, so as to 

make z. 1 , .. z 2 much smaller than the 60 cm values .. they .had.· In part,icu·la,r 

th'e z origin was pl0ced at the zi value of the track with: the least 

dip, so that in (16) the z 1 or z 2 is zero corresponding to whichever 

is the smaller of n 1 or n 2 • This solution completely removed the 

round-off problem. It may be added at this point that the round-off 

error problem was further looked into at a late~ time, and it was 

found that the difficulty was connected with the fact that the 

quantities a, b, c in (16) contain factors which can become very large 

but which when combined in (17) cancel out. A more intelligent procedure 

would therefore have been to replace (17) by the explicit formula 

found from substituting the equations (16) into ±ti 

] (19) 

2. u. 
where 1 1 

r. = a. :::; 2- r = rl-r2 1 n. 1 
1 n. 

], 

V-= /~ 2 + 4 [a1 a'.'. (z 1 - z 2 ) 2 - (a1· - a 2 ·)·(x1·-' x ). + (z - z )(a r _ _, r· ~) v : ~ 2 1 2 . 1 2 L.2 lj 

Z1.+ 212 
It is clear from.(19) that except fo~ the terms all the z . 

. . 2 "1 

dependence is through the term (z1 - z 2)ancl independence of coordinate 

origin is explicit. In some development work (19) was used instead of 
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(16), (17) but made no difference even for very small 

present program still uses (16) and (17). 

n. • Hence the 
l. 

b) How do we choose the sian in the solution for g ? 
----------------------~~--~--------------------

Because of the low Q value of the 't' decay and the relatively 

high momenta of the events, it is a general characteristic that ttie 

charged tracks tend to go very much in the forward direction. Under 

these conditions, the curvatu~e plays only a small role in the 

x - z plane. This is also obvious from the fact that the curvature 

term is proportional to u. ,..._; Sin If . , and "f . is smal 1, when the tracks 
l. l. l. 

go forward. Consequently, since if there were no curvature there would 

be no sign ambiguity one can suppose that we should find the proper 

sign by taking the limit of zero curvature ( u.~ 0). It is evident 
l. 

fl'.om (16)t (17) that this leads to the choice of sign t sign= sign of b. 

It turns out in practice that thi~ ch~ice is almost always correct, 

but there are exceptions. In the present program, the proper choice is 

made by comparison of the two solutions for g with an app~oxi~ate 

intersection point obtained prior to the fitting procedure. This 

approximate intersection is found using the charged tracks and the 

gamma rays and is used to obtain directions and curvatures for the 

tracks to be used as initial values in the fits. The method of calcul-

ation of this point will be discussed further on. 

c) ~h~i-~~EE~r.!~_!f_!!;!~_<;!!E~-~!-!12~-£1!~~~~<;!-!~'!S~~-~~~ 

::~~~~-!~=-~~~= ? 

Because of measurement errors it is evident that the inter­

section point of the tracks in the x - z plane may shift very far 

in one direction or another for slight changes in the dips or may 

not exist at all if the discriminant of (17) becomes negative. This is 

a substantial problem if the initial values have large errors. For 

that reason it is essential to have a procedure prior to the fit which 

uses all available information (i.e. pion tracks and ~amma directi~n~) · 

to find an approximate decay point and which calculates for all 

quantities initial values such that the tracks come from that point~ 

Once this is done the problem of pion tracks of nearly equal dips 

essentially disappears. This "initialization procedure" already 

mentioned in the previo~s paragraph will be discussed further. 
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III) '!;HE.: G,AMHA .~EOH2TJ.IC CONSi'.::::.AlNT.S 

It is straightforward to add to the constraint forcing the two 

charged tracks to meet further. constraints requiring the' gaxniha lines 

of flight to ,go through the .inter~ection point of the pion track,s. 

Thus fqr .the i,th gamma, ray one has: the 6'.}Uations 

:.:JI ,.if:: 

(we let i 1, 2 stand for charged tracks) 

i = J, 11 ·y rays 

~ ,: . ._ ~· le - y ) 
if i 

- 1 
- xg 0 - ~~n . :;ci = 

' g 

) ' } ~- : : .! i 

(20 

\l: l 

a) 

'A. ,. 1 

z~-g 
1 

+ (x.-x ) 2 + 
l; g 

,(20 b) 

where g. is tbe value, ,of given by (17),. 

value of x., 

or 

x 
g 

x 
g 

( 
.. Z:l n.l .... · .·· g.) , 

xl t ,fl 

,1'' ii i· i 

'!• 

x is the corresp,onding 
g 

.. (-21 a) 

'' 
(21 b) 

Since g was calculated from the requirement of an intersection in 

the JC - z plane of tracks 1 and 2 (the charged tracks) (21 a) or (21
1 

b) 

must give the same value of x and one can use either ec+~ation. 
g 

Howev.er ,: until the. fit is completed, the corresponding quanti ti'es 

y g for tr.acks 1 and 2 do not agree (unless tti;e charged tracl'(S .precisely 

interse~t ,before the f.it is completed) and we us.e for y. in eq. (20 al 
g 

and (20 J:>) the follow·ing average , 

l {-
-. 2 .. 

It should be qoted that .. the fort::i Qf. the. constraint equatibns: •( 20} 

is particu~.~rly convenie~t, Jor· GR;IN,D since they are• linear in'f i, "l\i · 
and have not difficulty with singularities. 
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IV) THE KINEMATIC CONSTRAINTS 

A) Extrapolation to vertex 

Having discussed the geometric constraints, we are now ready to 

discuss the kinematic constraints. 

Unlike the X ~ situation, the momentum energy constraints at 

the K0 decay vertex are not properly applied by GRIND since the 

measured pion directions are not these which apply at the vertex. 

It is therefore necessary to 11 turn off" the GRIND constraints 

and put in our own. In the original planning of the program, it was 

envisaged that the "turning off" would not be done by any change in 

GRIND routines but by a trick as follows : in the GRIND set~up the 

K-mass, momentum and the two gamma momenta would be left as unknown, 

and the proper momentum-energy constraints would be put in externally 

through a CONSTR (I) routine. Since there are four energy-momentum, 
0 

equations at the K decay vertex and four unknowns (K mass, K momentum, 

two gamma momenta) the unproper GRIND constraints would only have the 

effect of producing fictitious values for these unknowns but wovld not 

insert any unproper constraintss Provided now that the externally put 

in constraints did not use the fictitious GRIND quantities, and that 

these fictitious quantities were not the ones printed out at the end, 

the prog~am should then work properly. This long explanation is given 

only by way of motivating the fact that the true K-momentum and the 

two true gamma momenta are not part of the GRIND variables. They are 

calculated externally to the standard GRIND package in the CONSTR (I) 

routines, and their errors are also calculated externally. The results 

of this are then fed into the proper banks for printout at the end of 

the fit. 

Before considering in detail the kinematic constraints, we discuss 

the necessary extrapolation of the pion tracks to obtain the proper 

directions for substitution in the conservation laws. For this purpose 

we consider again the exact orbit equation (1) as the directions 

obtained by differentiating the approximate equations (5) are not precise 

enough. If one expands the equations (1) to higher order than second 

order in L, namely to fourth order in Land differentiatesi with 
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respect to L to obtain the direction cosines one finds for these at 

the ve•rtex the values 

~i L. 
2 

Si 
3 L.3 

t 
m. 

f ~i 
l. £. l. l. . '. (23 a) ::: + m •. L. -

l. l. l. 1 . 
2 

1 6 

5i 
2 

L. 
2 

~i 
3 L. 3 1. 

l 
~ . £. l. m l. 1 . (23 b) m. I:::: m. - L. - + . .. 

l. l. . .. i l. 1 
2 

i 6 

(23 c) 

- : I 

wh'ere ,,e~ . i 
) 

;m·;.··, n. 1 
1 1 

are the direction cosiries of the vertex,. 

~ . ; ·rti.·;r n, 
1 l. 1 

ai·e the direction cosines of·;the first measured point of 

th:e··track 

2 u. 
l. 

m. 
l. 

-2 v. 
1 

i 

+ o.J ill 
P. 

l. 

(21*) 

and - L. = 
g-z. 

l. 

l l. n. 
is th~ distance along the track f~oni th~ 

~6i~t~*~' y., z. to th~ 1 vertex point whose z coordinate (se~ ~q. 17) 
l. l. l. 

ii g. bb~{o~sly the fdct that n~; = n. comes ficim takirig ihe 1 fi~id ~long 
l. l. 

the'z d'irection. One cart easily show from(23) that..f~· 2 + 
. 1 . 

= ~. 2 ~ m. 2 ~ n. 2 up to (but not including) terms of order 
1 1 l. 

) 2 . . ) . 2 
m. · + n. 

1 . 4 1 

L. • 
l. 

To guaranie~ thal all direction cosines are properly riormaliz~d we 
I! pl J 

amend tne ,:.c.: , m. from ( 23') by 
1 l. 

' J2 2· 

t :::} l' + m. 
1 

1 l. 

,/ii. 2 m! 2 
+ 

1 

vhi 2 . (.25) 

+ m. 
m.1:::7m.' 

1 

1' . 1 ' 

\ft~ 2 ) 2 
+ m. 

l. 

Thus we now have the direction cosines at the vertex in terms oi th~ 
quantities used in the fit. 
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_!3J_ The n° constraint 

In ordr~r to y the n° mass constraint we ~ust have values 

GRIND variable in tho fit, it raust be calcul~ted oxtornnlly (in tho 

CONSTR (I) routines). Ve use the transverae nomentua conservation 

to de.' this. 

- p 
1 

= - p n 1 • l (26 b) 

where the quantities on tho right side aro trnnsverse momenta of tho 

pions. Fro~ (26) we solve for 

(Pl 

- mZ: n,., 
~) 

+ p 
2 

We are now ready to write down tho pion constraint 

where cos e £ 
3 

+ ~·r.· •nn '·'3 "l}: .,. 3 l:c 

') p + C,.i 'Y3 

i.e. 8 is the angle between the QQDOD. rays. 

( 2.7 ;::i_) 

0 ( ;>,8) 

(29) 

One point hero is noteworthy. BQU• (28) is not the only posciblo fore 

of tho pion constraint1 indeed in onrly versions other foros wore 

used such :1s 

;;, P, 1 ,, P~·'' (l - cos 9) t ~l ! L_i: 
0 (Jo) 
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Howover (28) has the useful tlCJ't L1f1ared by ( 30) that it 

tiv,,:, vc::lues of 
'} ' Py, . Since 
.)' lJ; 

cannot b sntisfi with 

it may occasionally hcppcn because of errors of raeasurc~ont that 

PY'<' P,.l froc.1 (2'/) _, I ,C 

C ThG 

i vu l this fuature io of some relevance. 

Tho constraint is most ecsily written if one remcobers that 

the vector sum of tho soc ~o~onta li s along the x-axis; hence 

only ;_-., ci rJOTJQnta to get the t~1tal noDentun. 

Thus the constraint can be written 

(E + 
1 ' ) 

o> , 
- (Pl{.l + == 0 

(.31) 

whc:re E, , 
J'.. 

Incidentally equ. (Jl) is also used to calculate the K-rnass for 

the fit in which 
0 . . . 

only tho n kinomatic constraint is invoked 

leaving tho uass of tho incident • The ~ocontuu of 

the K after tho final constraints are satisfied is 

calculated frora tho foroul 

D) 
== p l 

1 1 

V) INITIALIZATION 

+ p~; ') { + p 1 
1) '' yL, 4 

It has already been pointod out that it is valuable in cany 

cases (and ly haroful in nono) to initialize tho variables 

rather than usa the measured quantities. This procedure is also 

carried out in the X ~ GRIND in thnt a geooetrical intersection point 

is found via a cpocial routine prior to th~: fit. The necessity of this 

arises fro~ the f~ct that GRIND, assuoing, as is tho case in hydrogen 

chaober physics, that precise starting vnlues nre available frou the 

measurecents, linaarizcs the constraint eauations in solving cnch 

step. The convergence of the procedure (in which at the end the true 

rathc~r tho.n the liner:rized constr,:o.int (""'t1~·.ticns ;":mst be sntisficd) 

depends upon whether the linonrization is 
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Clearly, by initinlizing the variables so ns to start with them as 

close as possible to their finnl vnluos, one optimizes the chance of 

a successful convergence. 

The general philosophy of initialization in the progra~ is that 

one splits up the fits using as the initial value for each subsequent 

fit the fitted value frora tho previous fit. In particulnr one first 

carries out the intersection of the charged tracks, a 1-C procedure 

where (18) is equation of constraint, using initial variables obtained 

in a mnnner to be described further along. One then uses the fitted 

directions nnd curvatures of tho charged tracks, and Y-ray directions 

obtained by constructing lines froLl the charged track intersection 

to the gamma apices as initial values for a complete geometric fit in 

which all outgoing tracks and gamma rays are made to intersect. This 

complete geometric fit hns the five constraints (18) and (20 a), (20 b) 

for each gamma ray. (Evidently if only a vertex is measured for one 

of the gnomas there are only three constraints). One then continues 

by using the fitted information from the geometric fit as initial 

values for n 6-C fit using besides the geometric constraints (18), (20) 

the n° kinem~tic constraint (28). Finally the result of this is used 

as initial value for the 7-c fit which in addition to the previous 

constraints embodies the K0 constraint (Jl). 

The above strategy has, with experience, undergone some slight 

modifications. 

i) If the 5-C fit, using the 1-C fit results as input values 

fails (i.e. does not converge satisfactorily) we try again 

using as input values those determined in the initialization 

routine. This procedure is useful in the case where the two 

charged tracks are emitted at only a small angle with respect 

to each other, and conse~uently their fitted intersection 

has a large uncertainty in its location. 

ii) If a fit fails, so that it provides no initial values for 
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the next fit, the measured values of the variables are used 

for the initial values of the next fit. 
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iii) Because of oaasureoent errors in the pion tracks, the 

correction for energy 1 ss in the freon and pc: \V0..l1 is 

often uncertain. Consequently after successful geometric 

(5-C) fit is made, the energy loss correction is 

prior to the next fits. 

We now COL!O t discussion of tho initialization routine used 

before nny fits, to set up start vnlues for tho variables. This 

consists of going upstream along one of the two charged 

say the positive, following it as its measured parameters 

were exact and taking equally spaced points along this trnjoctory 

as possiblo.K0 docay vortex points. For each such point, one then 

forces the other (negntive) track nnd tho gnmmn rnys to go through 
., 

that point .'lnd calculates tho corresponding 'Xr ..• This procedure is 
n 

followed until n ::1inimum x;, is rce'cched. Tho S.'.IS:1E! procedure is then 

carried out moving bnck along the other (negative) track upstream 

until c' ninimur.J 
n <1 

for the intersection of tho positive trnck and 

the two gnmrnns is ronchedo An nvernge is then nnde of the two optimal 

points nlong the two trajectories and this is taken ns an initial 

decay point, from which initialized directions nnd mooenta nro 

calculated for tho first GUIND fit. These remarks nre sooewhat sketchy 

and we now go into further dotail. 

i) Calculation of the 

Given a possible decny point x, y, z it is easy to drnw lines 

to the gnmma apices, cnlculato the corresponding directions and 

by comparison with tho measured ;unntities and their errors, 
') 

,,. · • ' " 'Y '~· Th . "' .!. O.t r:, . , /'v • r l."' is a li ttL; less trivial for n charged track 

since to n given decay point and track point, there is not 

a unique direction nnd curvature to compare with tho measured 

values; but, in fnct, n continu s of such values. In forming 

this contribution to tiw )(~2 enc must therc;foro :find the 

particuler co~bination of direction and curvature which oinim-

izes the x~:,. This probler.1 can be reo.dily solved nnd WO give 

the results here and leave tho derivation for the Appendix. 

PS/6166 
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Thus if we cbnstruct a curved track from the decay point x, y z 

to the initial track point x. , y. , z. , the contribution to the /( 2 
1 l. ]. 

from the~. and l/p. measur~d values of azimuth and reciprocal momentum 
l. 1

1 1 ) ' 2 
with squared errors(6.-~ (A'f.): 

\, pi ]. 

{ .JIB/ 2 - 2 [< ) ..,,.........._. ..... -- + . x -x 
p.coGA. (S. )""' i 

1 1 .ixy 
2 2 

r.J!B\l (6!._) +4: 
cosA.. Pi 

2
1

1 .. (x.-x)cos'f. + (y.-y) 
(.6-.'f.) 1. 1 1. 

1 (S. )2 

where S. :::: J ( x 
1xy 

J. 

) 2 ( )2 - x. + y - y. 
1. ]. 

ixy 

sin 'f il 2 

_J 

(33) 

and the upper sign applies to the positive track, and the lower to the 

negative track. Furthermore the values of l/p. and UI. which give this 
1. I l. 

minimum )(, 2 , ( !._) ('f. ) 
pi optimal' 1 optimal 

are given by 

2 
(IJ).) t· i =u. +X (1.0., 

11 op ima 11 · 11 

[ 
.!..J .l.J?J_ . + 
p.cosA,. 

]. ]. 

2 
2 [<x.-x)simp.-(y.-y)coslf:I~ 

(S. )~ i i i ~ 
1xy (3l.J,) , 

( .!_.) 
Pi optimal 

= 
1 
p. 

l. 

2 x (6 . .l...) 2 .JI Bl 
pi cosA.i 

2 [ (x1.-x)sin\01. -
(S. )2 l 

1xy 

. . -1 ] 
(yi-y)cos,fi)_J. 

(35) 

Just for completeness, we exhibit the other contributions to the 'X..2 • 

First from 

where S. 
1. c 

the dip error in the charged tra~k 
~ . -1 zi.,.. z J • LA. - sin --~· 

n l. S. 
)(' (A,i) = 1.C 

(bA.) 2 
l. 

=V(z 1. - z) 2 + (2 R.a. ) 2 
]. 1. 

D 
"· l. 

a. 
1 

p. cos A.. 
l. ]. 
.JIBI ~ radius of the orbit 

s 
. -1 ( ixy s1r1 

2 R. 
]. 

(36) 

(37) 

(38) 
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Here, although there is a slight interplay between th~. 

I · t · · 1 · · b 1 · 1 xy < 1 curvature 1 Ri and the d:i.p, .his is neg ig1 e since 2'R:. < , 
so that (2 H.cx.)~S. , a fixed number. Hence what one 

i i ixy · · 

l. 

substitutes for R. or p. in (37), (J8), the measured value 
1 l . 

or the optimal value of (35) makes no difference. 

Finally, the X, 2 from the "I-rays haye dip arid azimuth 

contributions\ 

[11 -
/Z. - z1r . -1 1 

sin \ )_ z. 
1 

2 x (I\. ) = 
(D. I\. ) 2 1 

]. 

J (x 
.. 2 

(y 
2 

(z - )2 where s. = - x.) + - y.) + z. 
1 1 1 ]. 

&i )l 2 _1(Y; - y 
tan 

x. - x 
2 

1 

(~i) "' y._ = 

(,6,fi) 2 

(39) 

( 40) 

ii) Minimizing the X,2 
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From formulas (33), (36), (39), (40) for a given point on the 

trajectory of one of thE' pions taken as exactly known, one 

calculates the X2 contributions from the gammas and the other 

pion, This is done at equally spaced intervals along the 

trajectory. One then looks for a X.2 which is less than both 

the preceding one and the following one. If one denotes the 
2 x2 v0 ') preceding X as ( - 1) , the l\o'last f'-r, as X.,"" ( 0) , and the 

following one as ~ 2 (+ ll .and denote the distance between 
-v2 v2 points where the ~ is found by 6 S, the true minimum f"-· 

is located at a position 

s = 
[ X-2 ( - 1 ) - x3 ( + 1) l.t> s 

2 [ x,.2 ( + 1 ) + 11! ( - 1 ) - 2 x3 ( 0 )J 
(41 ) 
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with respect t point where the least 
2 

/(. · was :found, whore 
,., 

(41) is easily ootain2d if ~y:..·· id assumed to have a quadratic 

behaviour in the neighbourhood of its minimum. 

iii) Combining results for the two tracks 

Following the above procedures, one finds generally one point 
'V 2 on each of the two pion tracks which riinimizes tho /'-" as 

just discussed. What is then done is to take a point half-way 

· b t tl l 1 · ·tf1e. '~12 f'()r ·it ,-,,. nd uses " ul in e ween· 1ose, ca cu.ates :_~ ~ i ~ xorm a 
') 

(id) to find a minimal''/..,"" position which is then the initial 

decay from which all initial variables are calculated. 

Because the first GRIND fit l'1ade is tl".\e l C fit where only the 

pion tracks are made to intersect, only the pion track contrib-,, 
utions to the /';l "' ar2 used in th;~ fin al calculations from 

(41). If, as sometimes is the case, one of the pion tracks 
v 2 .. does not give a 1~ m1n1mum 1 but the other one does, then the 

vertex is 
~.,; 2 these ,._, 

'V 2 taken on the track 11h:i.ch g.i ves a ;v 

are printed out and if they are large 

minimum. All 

(.~ 30) they 

give a sure indication that no geometr~c fit (5 c fit) is 

possible, 

VI) GENERAL REMARKS ON r~d:E PHOGRAM 

i) If only a vertex is a'lailable for one of the gammas, then 

2 geometric constraints are re::'!oved l:i:1th otherwise everything 

goE)S on as before. 'l'hns tr~e hi{:;hest crcie::.~ fit possible is a 5 c 

fit. If both garnma3 have measured directions but a pion momentum 

is mis~ing, in princi e 1 constraint is lost and the fit 

should go througl1. In fact such events have been processed 

successfully, but very few so far have been attempted and there 

is no information on ·::he success rate for such fits. 

ii) What about failures 1 
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Most failures are connected with inability to obtain even a 

geometric (5 C) fit and are evidE~at from large X:, 2 values 

from the initialization. Presumably they occur either when 

the tracks and gammas are really unassociated . ' or one of the 
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pions scatters in the pipe wall. Occasionally events may pass 

the 5 C fit hit not the 6 C fit: this usually occurs in 

situations where due to errors of measurement,perhaps pion 

scatterings etc. Eqs. (27) for the gamma momenta give negative 

values. In many cases even when this occurs at the start of 

the 6 C fit the fit does converge satisfactorily. Sometimes 

however there is no convergence. It is not impossible that in 

some such cases the failure 1 is purely technical in that a 

satisfactory ')(.2 exists, but the program fails to converge to it, 

because it has start values which are too far off. Fortunately 

the occurrence of this sort of failure is rare. 

Another failure which occurs in going from the 5 C to the 

6 C fit can arise if the two chosen gamma rays are brems of 

each other, or both brems of an electron secondary (i.e. if 
+ 0 by mistake a n e v e :ent has been mistaken for a n n n 

event). In that case the two gamma momenta tend to become large 

and, of opposite sign, a behaviour easily understood when one 

remembers that they are calculated from transverse momentum 

balance. 

Besides, the usual GRIND standard failures (high ?G2 , too many 

cutsteps etc.) there are several specific to this program, 

which we explain here:"CN 1 - 1 11 starting point of one of pion 

tracks lies at a radial distance of less than 1.8 cm from the 

pipe axis (outer wall of pipe is at radius = 2.25 cm). This 

is only a warning, but the program still goes ahead and 

processes the event. 11~N 1 - a1 one of tracks does not, upon 

extrapolation intersect the pipe. This is a consequence of 

misrneasurement or large track scattering, and prevents fitting 

"CN l - 4:11 - Eq. 17 has no real roots. This kills that partic­

ular fit. Since the introduction of the initialization procedure, 

this error has rare occurrence. 
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Appendix 

Derivation of Initialization Formulas 

A) Statement of problem and geometry 

Given a point x, y, z and a charged track with measured parameters 
l 

0 .. ' 'f.' -) l. 1 p. 
starting at point x., y. 1 z., find a circular trajectory 

1 1 1 9 

passing thfough x, y, z and xi' Y z. which minimizes the auanti ty X'.d. 
i ' l. i 

') 

('fi - \f) ,,, 
+ 

(6'f) 2 

1 l 2 
(- -- -) 

pi p 
+ ------

(b.];_)2 
p 

(a) 

where A, 1 
'f ' - are p the parameters of the trajectory evaluated at the 

point xi' Yi' z .• 
]. 

First of all considering dips we have that 

. -l (zi - z ') 
sin S. 

1C 

(b) 

where S. is the path length along the curved trajectory from x, y, z 
1C 

to x., y., z .• If R is the radius of the trajectory it is easy to 
1 1 1 

see that 

c /( ) 2 ( ) 2 0ic =v zi - z + 2 Ra (c) 

where a is the half angle subtended by this path length at the centre 

of the circle 

l 
(

s. ) - l.X a = sin ~. Y 
2 R 

and Sixy is the straight line distance from x, y to xi' yi in the 

x - y plane. 
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s. 
l.Xy 

C) 

x) .CJ 2 + (y. - y) 
l. 

(d) 

(e) 
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Now A, ns given in (b) 

on the assumed radius R throuah tho R 

dependence of tho quantity S. 1 but 
:lC 

fact this R dependence is o~t~o~0 1 

This is clear from the fact thnt in 

typical situations with real events 

a ~c 100 mr < < 1 r • 
" . 

in 

'/;:tonk. 

2 a: ~ 200 mr, 

Hence in {d) ixy d t• te,rm· 2. nN a: ~~ ""2R an ne . -· .r•"" 

in (c) just 

becomes 

becomes S. • Thus (b) 
ixy 

c:; \ ' 
CZ o("'-J 

I 
I 
/f() 

I \ 

(f) 

where there is no dependence on R. Consequently the contribution of 

the first term to the ~x:, 2 is readily comput,.c;d from (b) where it 

makes little difference what value of R is used (for example the 

measured value is perfectly adequate). 

. . "" 2 . ' t . . 1 The calculation of the last two terms in the ~ is LGSS riv1a 

because there is a relation between \.f and p (or R) and one has to 

find the appropriate combination which minimizes the sum of those 

two terms. To do this we solv0 the em in a general form and then 

apply the result specifically to our situation. 

B) Consider a system where there are two measured quantities 

~ , '1(_ with measured values 

the form 

)'.' , nl and. which satisfy a relation of 
) m m 

One wishes to minimize the quantity 

Let u = 5 - ~ m 

2 
x 
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2 
u 
- + 
~2 

2 
v 
([ 2 
~1 

\. 

so that 

(g) 

(h) 

( i) 



Now assume that the measureinents are fairly accurate, so that 

u, v are small and linearize f (S ,l_) 

df 
u+-v=O 

d11_ 

Thus we can replace (g) by a linear relation 

a u + b v = C 

where a 
cH 

b = -·-a1 
C=-f(S:: I}) 

) m' i...m 

Differentiating (i) to get m:i;nimum 
2 

for X. 

2 ax. 
--z-=0= 

From (k) one easily finds 

v = 
\. - au 

b 

udu 

12 

and 

+ 
vdv 
():' 2 

1l. 

d v = 
a 
b 

du 

Substituting this into (b), one easily solves for u 

Then 

u = 
2 .2 2 ~J 

a (JS +. b cr;z_ 
2 

2 
X. min - 2 ~ 2 a uS 2 tr" 2 

+ b UY( 

Finally we can also write 

a 
<>5 

2 2 

5 ~m u = - ?l = -c min 

b 0-:'. 2 )l, 2 =~(-lm v = c '(. min 
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( j) 

(k) 

(1) 

(in) 

(n) 

(o) 

{p) 

(q) 
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C) Application to present problem 

These results nre easily applied to the specific problem of 

interest. Lott) ,11~\D, L. 
\.. l p 

l 
We have to write the appropriate relation (g) between 'f and p . 

By geometry one can show that if one puts a circle of radius R through 

the points x, y and xi' 

related by 

1 O.JIBI 
R p 

y. and the radius R are 
1 

Then the quantities a, b, c ffom the previous section are given by 

2 
a = + 

b = ~ = o. 3 l BI 
p 

c = -

:::: 

(r) 

Substitution of these quantities into (o), (p), (q)immediately gives 

the results (33), {34), (35) 
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