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Measurement of the production of neighbouring jets in lead–lead collisions

at
√
s
NN

= 2.76 TeV with the ATLAS detector

Abstract

This Letter presents measurements of correlated production of nearby jets in Pb+Pb collisions at
√
s
NN

=
2.76 TeV using the ATLAS detector at the Large Hadron Collider. The measurement was performed using
0.14 nb−1 of data recorded in 2011. The production of correlated jet pairs was quantified using the rate,
R∆R, of “neighbouring” jets that accompany “test” jets within a given range of angular distance, ∆R, in
the pseudorapidity–azimuthal angle plane. The jets were measured in the ATLAS calorimeter and were
reconstructed using the anti-kt algorithm with radius parameters d = 0.2, 0.3, and 0.4. R∆R was measured
in different Pb+Pb collision centrality bins, characterized by the total transverse energy measured in the
forward calorimeters. A centrality dependence of R∆R is observed for all three jet radii with R∆R found to
be lower in central collisions than in peripheral collisions. The ratios formed by the R∆R values in different
centrality bins and the values in the 40–80% centrality bin are presented.

1. Introduction

Experimental studies of jet production in Pb+Pb
collisions at the LHC can directly reveal the prop-
erties of the quark–gluon plasma created in the
collisions. One predicted consequence of quark–
gluon plasma formation is “jet quenching” that
refers to the modification of parton showers initi-
ated by hard-scattering processes which take place
in the quark–gluon plasma [1]. Measurements of
jet pairs at the LHC provided the first direct ev-
idence of jet quenching [2, 3]. In those measure-
ments, the enhancement of transverse momentum
imbalance of dijets in central Pb+Pb collisions was
observed. Measurements at the LHC of inclusive jet
suppression [4, 5] and the variation of the suppres-
sion with jet azimuthal angle with respect to the
elliptic flow plane [6] have shown that the trans-
verse energy of jets is significantly degraded and
that the energy loss depends on the path length of
the parton shower in the plasma. These dijet and
single-jet measurements provide complementary in-
formation about the jet quenching process. The
single jet measurements are sensitive to the average
partonic energy-loss while the dijet measurements
probe differences in the quenching between the two
parton showers traversing the medium. Those dif-
ferences can arise from the unequal path lengths of
the showers in the medium or from fluctuations in

the energy loss process itself.

To help disentangle the contributions of these fac-
tors to the observed dijet asymmetries, the mea-
surement of the correlations between jets that are at
small relative angles was performed. Neighbouring
jet pairs include jets originating from the same hard
interaction, but also jets from different hard inter-
actions. The latter are not of interest in this analy-
sis, and are subtracted statistically. The remaining
neighbouring jet pairs result primarily from hard
radiation by the parton that occurs early in the
process of the shower formation. Generally, two
neighbouring jets originating from the same hard
scattering should have more similar path lengths
in the medium compared to the two jets in the
previous dijet measurement. Therefore measuring
neighbouring jets could probe differences in their
quenching that do not result primarily from differ-
ence in path length. More generally, measurements
of the correlated production of jets in the same par-
ton shower may provide more detailed insight into
the modification of the parton shower in the quark–
gluon plasma beyond the subsequent quenching of
the resulting jets.

This Letter presents measurements of the pro-
duction rate of neighbouring jets in Pb+Pb col-
lisions at

√
s
NN

= 2.76 TeV characterized by the
quantity R∆R introduced in Ref. [7]. The R∆R vari-
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able quantifies the rate of neighbouring jets that ac-
company “test” jets within a given range of angular
distance, ∆R, in the pseudorapidity–azimuthal an-
gle (η–φ) plane1, where ∆R =

√

(∆η)2 + (∆φ)2.
Jets were reconstructed with the anti-kt [8] algo-
rithm using radius parameter values d = 0.2, 0.3,
and 0.4. In events with test jets with transverse
energy ET > 70 GeV, further jets are searched for
within a certain angular distance from the test jet.
The rate of the neighbouring jets that accompany

a test jet, R∆R, is defined as

R∆R(E
test
T , Enbr

T ) =

∑N test
jet

i=1 Nnbr
jet,i(E

test
T , Enbr

T ,∆R)

N test
jet (Etest

T )
,

(1)
where Etest

T and Enbr
T are the transverse energies of

the test and neighbouring jet, respectively; N test
jet

is the number of test jets in a given Etest
T bin and

Nnbr
jet is the number of neighbouring jets. Further,

the R∆R quantity was used to define per-test-jet
normalized spectra of neighbouring jets as

dR∆R

dEnbr
T

=
1

N test
jet

N test
jet
∑

i=1

dNnbr
jet,i

dEnbr
T

(Etest
T , Enbr

T ,∆R).

(2)
Previous measurements of the correlated produc-

tion of neighbouring jets were performed by the D∅
experiment in pp̄ collisions at the Tevatron [7]. The
measurements by D∅ were intended to measure the
strong coupling constant, αs, and to test its run-
ning over a large range of momentum transfers. The
measurements presented in this Letter use similar
techniques and follow notations introduced in that
measurement.

2. Experimental setup

The measurements presented in this Letter
were performed using the ATLAS inner detec-
tor, calorimeter, trigger and data acquisition sys-
tems [9]. The inner detector [10] measures charged

1 ATLAS uses a right-handed coordinate system with its
origin at the nominal interaction point (IP) in the centre of
the detector and the z-axis along the beam pipe. The x-axis
points from the IP to the centre of the LHC ring, and the y
axis points upward. Cylindrical coordinates (r, φ) are used
in the transverse plane, φ being the azimuthal angle around
the beam pipe. The pseudorapidity is defined in terms of
the polar angle θ as η = − ln tan(θ/2).

particles within the interval |η| < 2.5. The inner de-
tector is composed of silicon pixel detectors in the
innermost layers, followed by silicon microstrip de-
tectors and a straw-tube tracker, all immersed in a
2 T axial magnetic field provided by a solenoid. The
calorimeter system consists of a high-granularity
liquid argon (LAr) electromagnetic (EM) calorime-
ter covering |η| < 3.2, a steel/scintillator sam-
pling hadronic calorimeter covering |η| < 1.7, a
LAr hadronic calorimeter covering 1.5 < |η| < 3.2.
The hadronic calorimeter has three sampling layers
longitudinal in shower depth and has a ∆η × ∆φ
granularity of 0.1 × 0.1 for |η| < 2.5 and 0.2 × 0.2
for 2.5 < |η| < 4.9.2 The EM calorimeters are
segmented into three shower-depth compartments
with an additional pre-sampler layer. The for-
ward regions are instrumented with copper/LAr
and tungsten/LAr forward calorimeters (FCal) cov-
ering 3.2 < |η| < 4.9, optimised for electromagnetic
and hadronic energy measurements, respectively.
Two minimum-bias trigger scintillators (MBTS)
counters are located on each side at 3.56 m along
the beamline from the centre of the ATLAS de-
tector. The MBTS detect charged particles in the
range 2.1 < |η| < 3.9. Each MBTS counter is
divided into 16 sections, each of which provides
measurements of both the pulse heights and ar-
rival times of energy deposits. The zero-degree
calorimeters (ZDCs) are located symmetrically at
z = ±140 m and cover |η| > 8.3. In Pb+Pb colli-
sions the ZDCs measure primarily “spectator” neu-
trons, which originate from one of the incident nu-
clei and do not interact hadronically with nucleons
of the other nucleus.
Minimum-bias Pb+Pb collisions were required ei-

ther to have the transverse energy in the whole
calorimeter exceeding 50 GeV at the Level-1 trig-
ger or to have a track reconstructed in the inner
detector in coincidence with ZDC signals on both
sides.
Events with high-pT jets were selected using a

combination of a minimum-bias Level-1 trigger and
High Level Trigger (HLT) jet triggers. The Level-
1 minimum-bias trigger required a total transverse
energy measured in the calorimeter to be larger
than 10 GeV. The HLT jet trigger used the offline
Pb+Pb jet reconstruction described in Section 4,
except for the application of the final hadronic en-
ergy scale correction. The HLT jet trigger selected

2An exception is the third sampling layer that has a seg-
mentation of 0.2× 0.1 up to |η| = 1.4.
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events containing a d = 0.2 jet with ET > 20 GeV.

3. Event selection and data sets

This analysis used data from Pb+Pb collisions at
a nucleon–nucleon centre-of-mass energy of

√
s
NN

=
2.76 TeV recorded by ATLAS in 2011. It utilizes
data samples corresponding to a total integrated
luminosity of 0.14 nb−1. The minimum-bias sam-
ple was recorded with different prescales depend-
ing on the instantaneous luminosity in the LHC
fill. The prescale indicates which fraction of events
that passed the trigger selection were selected for
recording by the DAQ. The minimum-bias trigger
recorded an effective luminosity of 7 µb−1. Events
selected by the minimum-bias trigger and the jet
triggers were required to have a reconstructed pri-
mary vertex with at least three associated tracks
each with pT > 500 MeV and a difference between
time of pulses from the two sides of the MBTS de-
tector of less than 7 ns. A total of 51 (14.2) mil-
lion minimum-bias triggered (jet-triggered) events
passed the applied event selections and were used
in the analysis.
In heavy ion collisions, “centrality” reflects the

overlap volume of the two colliding nuclei, con-
trolled by the impact parameter of the collisions.
The centrality of Pb+Pb collisions was character-
ized by ΣEFCal

T , the total transverse energy mea-
sured in the FCal [11]. The centrality intervals were
defined according to successive percentiles of the
ΣEFCal

T distribution ordered from the most central
(highest ΣEFCal

T ) to the most peripheral collisions.
Production of neighbouring jets was measured in
four centrality bins: 0–10%, 10–20%, 20–40%, and
40–80%, with the 40–80% bin serving as the ref-
erence. The percentiles were defined after correct-
ing the ΣEFCal

T distribution for a 2% minimum-bias
trigger inefficiency that affects the most peripheral
events, which are not included in this analysis.
The performance of the ATLAS detector and

offline analysis in measuring jets in the environ-
ment of Pb+Pb collisions was evaluated using a
large sample of Monte Carlo (MC) events ob-
tained by overlaying simulated PYTHIA [12] hard-
scattering events onto randomly selected minimum-
bias Pb+Pb events, recorded by ATLAS during the
same data-taking period as the data used in this
analysis. PYTHIA version 6.423 with the AUET2B
tune [13] was used. Three million PYTHIA events
were produced for each of five intervals of the
transverse momentum of outgoing partons in the

2 → 2 hard-scattering process, with boundaries
17, 35, 70, 140, 280, and 560 GeV. The detector re-
sponse to the PYTHIA events was simulated using
GEANT4 [14, 15], and the simulated hits were com-
bined with the data from the minimum-bias Pb+Pb
events before performing the reconstruction.

4. Jet reconstruction and neighbouring jet

selection

Jets were reconstructed within the pseudorapid-
ity interval |η| < 2.8. The jet reconstruction tech-
niques described in Ref. [4] were used, and are
briefly summarized here. The anti-kt algorithm
was first run in four-vector recombination mode,
on ∆η × ∆φ = 0.1 × 0.1 logical towers. The en-
ergies in the towers were obtained by summing
energies of calorimeter cells, calibrated at a scale
set for electron showers, within the tower bound-
aries. Then, an iterative procedure was used to
estimate a calorimeter layer- and η-dependent un-
derlying event (UE) energy density, while exclud-
ing actual jets from that estimate. The UE energy
was subtracted from each calorimeter cell within
the towers included in the reconstructed jet. The
subtraction accounted for a cos 2φ modulation in
the UE energy density due to collective flow [11] of
the medium using a measurement of the amplitude
and phase of that modulation in the calorimeter.
The jet energies and momenta were calculated via
a sum of all cells contained within the jets, treat-
ing each cell as a massless four-vector, using ET

values after the UE subtraction. A correction was
applied to the reconstructed jet transverse energies
to account for jets not excluded or only partially
excluded from the UE estimate. The magnitude of
the correction was typically a few percent but can
be as large as 10% for jets whose energies are fully
included in the UE estimate. Then, a final η- and
jet ET-dependent hadronic energy scale calibration
factor was applied [4].

Separate from the calorimeter jets, “track jets”
were reconstructed by applying the anti-kt algo-
rithm with d = 0.4 to charged particles having pT >
4 GeV. The track jets were used in conjunction with
electromagnetic clusters to remove the contribution
of “UE jets” generated by fluctuations in the under-
lying event. The technique is described in detail in
Ref. [4].

In the MC simulation, the kinematics of the refer-
ence PYTHIA generator-level jets (hereafter called
“truth jets”) were reconstructed from PYTHIA
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final-state particles with the anti-kt algorithm with
radius d = 0.2, 0.3, and 0.4 using the same tech-
niques as applied in pp analyses [16]. PYTHIA
truth jets were matched to the closest reconstructed
jet of the same d value within ∆R = 0.2. The re-
sulting matched jets were used to evaluate the jet
energy resolution (JER), the jet energy scale (JES),
the jet angular resolution, and the jet reconstruc-
tion efficiency.
The R∆R measurement was performed with the

sample triggered by the jet triggers. The measure-
ment was done differentially in transverse energy
of the test and neighbouring jets, and in collision
centrality. Five Etest

T intervals 70–80, 80–90, 90–
110, 110–140, 140–300 GeV and four Enbr

T intervals,
30–45, 45–60, 60–80, 80–130 GeV were used. Fur-
thermore configurations where all the ET bins of
the test jets or of the neighbouring jets have the
same upper bound of 300 GeV were also used in
this analysis. The number of bins and their bound-
aries were chosen to minimize the impact of the lim-
ited number of events in the data while preserving
the ability to infer the trends in the measured dis-
tributions. For each jet radius, neighbouring jets
are considered if they lie within a specific annu-
lus in ∆R around the test jet: 0.5 < ∆R < 1.6,
0.6 < ∆R < 1.6, and 0.8 < ∆R < 1.6 for d = 0.2,
d = 0.3, and d = 0.4 jets, respectively. The inner
edge of each annulus was chosen to avoid possible
overlap of test and neighbouring jets, and the outer
edge value (. π/2) rejects neighbouring jets in the
hemisphere opposite to the test jet and maximizes
the number of events. Choosing a maximum ∆R of
1.6 restricts the pseudorapidity range of test jets to
|η| < 1.2, yielding approximately 87 × 103 d = 0.4
test jets with pT > 80 GeV analysed in 0–10% cen-
tral events and 37×103 test jets in 40–80% periph-
eral events.
To quantify the centrality dependence of the

neighbouring jet yields, the ratio ρR∆R
≡

R∆R|cent/R∆R|40−80 is calculated as the ratio of
R∆R measured in each centrality bin to R∆R mea-
sured in the reference (40–80%) bin.

5. Corrections to neighbouring jet rates

The raw rates of neighbouring jets include a con-
tribution from neighbouring jets that originate from
different hard partonic interactions in the same
Pb+Pb collision. This combinatorial background is
present both in the MC simulation and in the data
and must be subtracted. It is largest in the low Enbr

T

bins and it increases with increasing centrality of
the collision, since the probability for the presence
of two independent hard scatterings in one Pb+Pb
collision is expected to increase with the number
of binary collisions. The combinatorial background
is estimated using the differential yield of inclu-
sive jets (d3Njet/dηdφdET) evaluated in minimum-
bias Pb+Pb events. To each event considered a
weight is assigned such that the event sample ob-
tained from the minimum-bias trigger has the same
centrality distribution as the sample collected by
the jet trigger. This estimated background needs
to be corrected for a geometrical bias present in
the case where the combinatorial jet overlaps with
a real neighbouring jet or when two combinatorial
jets overlap. These biases were removed by apply-
ing a multiplicative correction factor to background
distributions prior to the subtraction. This multi-
plicative factor was derived from the reconstruction
efficiency of two neighbouring jets evaluated as a
function of their angular separation in the annulus.
In that evaluation, one jet was required to originate
from PYTHIA’s hard scattering and the other jet
was required to originate from the minimum-bias
data in the overlay. The impact of this correction
on the final subtracted distribution is smaller than
0.5%.
The combinatoric jet kinematics may also be af-

fected by the presence of a test jet. To control
this influence, a study comparing the combinatoric
jets from the overlay MC events with the same jets
in the original minimum-bias data was performed.
This study resulted in an additional correction, in-
dependent of centrality and jet ET, that decreases
the combinatorial background by 1.5%. The ±1.2%
uncertainty on the correction originates from the
limited number of events and was included in the
systematic uncertainties.
In order to account for the effect of the azimuthal

dependence of jet yields [6], the combinatorial back-
ground was reweighted to take into account the
measured azimuthal distributions of test jets as well
as combinatorial jets. The change of the raw sub-
tracted distribution in central collisions and low
Enbr

T bins after the reweighting is at the level of
1% and decreases with increasing centrality of the
collision and Enbr

T .
The background is subtracted from raw R∆R dis-

tributions both in the data and in the MC simu-
lation, allowing an evaluation of the effectiveness
of the subtraction using the MC simulation. The
signal-to-background ratio strongly depends on the
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centrality of the collision and Enbr
T . In 0–10% cen-

tral collisions, the signal-to-background ratio can
be as low as 0.15 for the most extreme case of
30 < Enbr

T < 45 GeV, and increases to approxi-
mately 0.8 for 60 < Enbr

T < 80 GeV.
The raw subtracted R∆R distributions are af-

fected by the jet energy resolution. The combina-
tion of the jet energy resolution and the steeply
falling ET spectrum produces a net migration of
jets from lower ET to higher ET values such that
a jet reconstructed with a given Erec

T corresponds,
on average, to a lower truth jet ET, 〈Etruth

T 〉 . The
relationship between 〈Etruth

T 〉 and Erec
T was evalu-

ated in simulated events for the different centrality
bins and three jet radii used in the analysis. The
extracted relationships were used to correct for the
average shift in the test jet energy. No correction
due to the jet reconstruction efficiency for the test
jets is needed, since the analysis operates in the
transverse energy region where the jet reconstruc-
tion is fully efficient. No correction due to jet trig-
ger efficiency is needed either since the plateau of
the jet trigger efficiency is reached for all test jets,
except for d = 0.4 jets with Etest

T < 90 GeV in the
0–10% and 10–20% centrality bins. In the region
70 < ET < 90 GeV, the jet trigger efficiency is
above 85%. A systematic uncertainty is applied to
describe the effect of the lower jet reconstruction
efficiency.
The impact of the jet energy resolution, re-

construction efficiency, and angular resolution on
neighbouring jet yields is corrected for by apply-
ing bin-by-bin unfolding to the raw subtracted R∆R

distributions. For each measured R∆R distribution,
two corresponding MC distributions are evaluated,
one using truth jets and the other using jets after
the detector simulation. The ratio of these two MC
distributions provides a correction factor which is
then applied to the data.
The bin-by-bin correction factors are derived

from the MC simulation where the reconstructed
jets were matched to the truth jets. To account for
the impact of the jet angular resolution, the truth
jet is required to lie within a given annulus while
the reconstructed jet is allowed to fall outside of the
annulus.
Examples of jet reconstruction efficiencies for

neighbouring jets and the bin-by-bin correction fac-
tors are shown in Fig. 1 for different centrality se-
lections and for two choices of jet radii: d = 0.4 and
d = 0.2. Generally, the jet energy resolution in cen-
tral (0–10%) collisions for d = 0.4 jets has compa-
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Figure 1: Reconstruction efficiency (left) of neighbouring jets
as a function of the transverse energy of the neighbouring jet
at Monte Carlo generator level Enbr

T,truth
and bin-by-bin cor-

rection factors for the distributions of the neighbouring jet
rate R∆R (right) as a function of the reconstructed trans-
verse energy of the neighbouring jet Enbr

T
. Plots for two

different jet radii, d = 0.4 (upper plots) and d = 0.2 (lower
plots) are shown and the transverse energy of the test jet
Etest

T
is required to exceed 90 GeV. The four different cen-

trality bins are denoted by different markers in each plot.
The vertical error bars represent statistical uncertainties.

rable contributions from UE fluctuations and the
“intrinsic” resolution of the calorimetric jet mea-
surement. The fluctuations in the UE are approxi-
mately two times smaller for d = 0.2 jets than they
are for d = 0.4 jets. Thus, the distributions mea-
sured using d = 0.2 jets are far less sensitive to
the effects of the jet energy resolution, and conse-
quently the resulting bin-by-bin correction factors
for those distributions exhibit only a modest cen-
trality dependence. The difference in the jet recon-
struction efficiency between the two choices of jet
radii is also significant – the efficiency for d = 0.2
jets plateaus around 30 GeV, where it is still rising
rapidly for d = 0.4 jets.

The jet angular resolution is determined in MC
simulation as the standard deviation of the differ-
ence in angles between truth and reconstructed jets.
In both η and φ it reaches 0.008 in 0–10% colli-
sions and 0.005 in the 40–80% centrality bin for
d = 0.4 jets with ET = 30 GeV. The angular reso-
lution improves with increasing jet ET and reaches
0.004 (resolution in η) and 0.002 (resolution in φ)
at ET = 200 GeV, independently of centrality.
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distribution measured in the data in different

centrality bins. The dR∆R/dEnbr

T
is shown for d = 0.4 jets

for Etest

T
> 80 GeV and in the interval 30 < Enbr

T
< 45 GeV.

Squares show the raw dR∆R/dEnbr

T
prior to the UE sub-

traction, circles show the combinatorial background, trian-
gles show the subtracted dR∆R/dEnbr

T
prior to unfolding

by applying the bin-by-bin correction factors, and diamonds
show the unfolded dR∆R/dEnbr

T
. Vertical error bars on the

combinatorial background, raw, and subtracted distributions
represent statistical uncertainties. Vertical error bars on the
unfolded distribution represent the combined statistical un-
certainty from the unfolding and from subtracted distribu-
tions.

The impact of these corrections on R∆R distri-
butions measured in the data in different central-
ity bins is shown in Fig. 2. The figure shows the
raw R∆R distribution, and the combinatorial back-
ground, subtracted, and final unfolded R∆R distri-
butions for d = 0.4 jets with Etest

T > 80 GeV and
in the lowest Enbr

T interval, 30 < Enbr
T < 45 GeV.

The raw R∆R distribution increases from periph-
eral to central collisions. The increase of the com-
binatorial background is steeper than the increase
of the raw distribution. Therefore, a decrease of
subtracted R∆R with increasing collision centrality
is observed. The shape of the R∆R distribution re-
mains unchanged when the bin-by-bin correction is
applied.

6. Systematic uncertainties

Systematic uncertainties in the measurement of
R∆R distributions and their ratios, ρR∆R

, arise from
the uncertainty on the jet energy scale, jet energy
resolution, angular resolution, bin-by-bin unfold-
ing, centrality, combinatorial background and jet
trigger efficiency. The impact of uncertainties on
the jet energy scale, jet energy resolution and jet

angular resolution was assessed by constructing new
bin-by-bin correction factors with a systematically
varied relationship between the reconstructed and
truth jet kinematics. The resulting uncertainties on
R∆R and ρR∆R

were evaluated from their changed
values obtained with modified jet energy scale, jet
energy resolution and jet angular resolution depen-
dencies.
The systematic uncertainty due to the jet en-

ergy scale is composed of two parts: an ab-
solute, centrality-independent component, and a
centrality-dependent component. The uncertainty
on R∆R from the jet energy scale uncertainty is
evaluated by shifting all reconstructed jet trans-
verse energies by ±1 standard deviation of the jet
energy scale uncertainty. The absolute compo-
nent is determined from the in situ studies of the
calorimeter response; systematic variations of the
jet response in the MC simulation [16]; and from
studies of the relative energy scale difference be-
tween the jet reconstruction procedure in heavy-
ion collisions, and the procedure used for inclusive
jet measurements in 2.76 TeV and 7 TeV pp colli-
sions [17]. The magnitude of the uncertainty on
the R∆R from the absolute jet energy scale un-
certainty varies from 2% to 15% as a function of
ET and radius of the jet. The centrality-dependent
component of jet energy scale uncertainty [5] was
estimated using the PYQUEN MC generator [18]
to provide a sample of jets with modified fragmen-
tation functions consistent with measurements in
quenched jets performed by ATLAS [19] and CMS
[20].
The centrality-dependent jet energy scale un-

certainty reaches 1% for 0–10% central collisions
and less than 0.25% for 40–80% peripheral colli-
sions. The uncertainty on R∆R originating from
the centrality-dependent component of the jet en-
ergy scale uncertainty increases from less than 1%
in peripheral collisions to 3% in central collisions.
The effect of the jet energy resolution uncertainty

was evaluated by applying modified bin-by-bin cor-
rection factors where the reconstructed jet ET was
smeared. The uncertainty on the jet energy resolu-
tion is dominated by the uncertainty in the detector
response. Thus, the procedure used for jet measure-
ments in the 7 TeV pp collisions [16] is used. The
smearing factor is evaluated using an in situ tech-
nique involving studies of dijet energy balance. The
systematic uncertainty on R∆R due to the jet en-
ergy resolution varies from 1% to 4% depending on
the jet ET. The centrality-independent jet energy
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scale uncertainty and the uncertainty from jet en-
ergy resolution tend to cancel in the ρR∆R

ratios
since both the numerator and denominator in the
ratios are affected to a similar degree by the varia-
tions accounting for the uncertainties.

The systematic uncertainty on combinatorial
contributions originates from the previously noted
uncertainty on the correction factor taking into ac-
count the difference between jets in minimum-bias
events and combinatorial jets in the overlay. The re-
sulting uncertainty reaches ∼ 8% in 0–10% central
collisions at low Enbr

T and rapidly decreases with
decreasing centrality or increasing Enbr

T .
The systematic uncertainty associated with the

bin-by-bin unfolding is connected with possible dif-
ferences in the spectral shape between the data and
the MC simulation. To achieve better correspon-
dence with the data, the simulated jet spectrum was
reweighted to match the spectral shape in the data
before deriving the bin-by-bin correction factors as
described above. Conservatively, the entire change
in R∆R and ρR∆R

induced by the use of reweighted
bin-by-bin correction factors is taken as a system-
atic uncertainty. Typically, this results in 1–2% un-
certainty on R∆R. A maximum uncertainty of 5%
is reached in 0–10% central collisions for R∆R eval-
uated for neighbouring jets with Enbr

T > 30 GeV.
The uncertainty on the centrality estimation orig-

inates from the uncertainty on the estimated inef-
ficiency of the minimum-bias trigger. The analy-
sis was repeated with modified centrality bins as-
suming 100% minimum-bias trigger efficiency. The
resulting uncertainty is typically smaller than 5%
with a mild ET dependence and a negligible cen-
trality dependence.
The uncertainty associated with the jet angular

resolution is estimated using modified bin-by-bin
correction factors where the reconstructed jet η and
φ is smeared to reflect a up to ∼15% centrality and
ET dependent uncertainty on the angular resolu-
tion. The uncertainty on the jet angular resolution
was estimated by comparing the angular distance
between track jets and the closest calorimetric jet
in the data and in the MC simulation. The mag-
nitude of uncertainty on R∆R from the jet angular
resolution is smaller than 2%.

The systematic uncertainty on the jet trigger effi-
ciency covers a possible bias caused by selecting test
jets in the region where the jet trigger is not fully
efficient. This is the case for the d = 0.4 jets with
Etest

T < 90 GeV reconstructed in the 0–10% and
10–20% centrality bins. For that ET region, the
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Figure 3: Summary of the relative systematic uncertainties,
in %, on the R∆R distributions (δR∆R). The systematic
uncertainties due to the jet energy scale (JES), the jet energy
resolution (JER), the jet angular resolution, unfolding, jet
trigger efficiency, combinatorial contributions and centrality
are shown for d = 0.4 jets with Etest

T
> 70 GeV in 0–10%

central collisions.

systematic uncertainty was determined as the dif-
ference between the trigger efficiencies for inclusive
jets and jets that were required to have a neigh-
bouring jet. This trigger efficiency difference is less
than 5% and is independent of the Enbr

T .
To avoid statistical fluctuations in the values

of systematic uncertainties, the weak Enbr
T depen-

dence of the uncertainties is smoothed by a second-
order polynomial. Systematic uncertainties on R∆R

for d = 0.4 jets are summarized in Table 1 for the 0–
10% and 40–80% centrality bins. The table shows
the maximum values of uncertainties for R∆R and
for ρR∆R

. The total systematic uncertainties for
jets with the other two jet radii are smaller than
those shown in the table. For the 0–10% centrality
bin these systematic uncertainties are also plotted
in Fig. 3 as a function of Enbr

T .

7. Results

The R∆R measurement is performed differen-
tially in collision centrality, transverse energy of
the test jet, Etest

T , and transverse energy of the
neighbouring jet, Enbr

T , as described Sec. 4. The
measured distributions are divided into four cen-
trality bins, 0–10%, 10–20%, 20–40%, and 40–80%.
Fig. 4 shows the fully corrected R∆R distributions
for d = 0.4 and d = 0.2 jets evaluated as a function
of Etest

T . The distributions are shown for four cen-
trality bins and three different lower bounds on the
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Figure 4: R∆R distributions for d = 0.4 jets (upper) and d = 0.2 jets (lower) evaluated as a function of Etest

T
. The three

different columns show R∆R distributions evaluated for three different lower bounds on the neighbouring-jet transverse energy,
Enbr

T
> 30, 45, and 60 GeV. The four different centrality bins are denoted by different markers in each plot. The shaded

bands indicate systematic uncertainties, vertical error bars represent statistical uncertainties. The data points and horizontal
uncertainties for the 10–20%, 20–40%, and 40–80% centrality bins are shifted along the horizontal axis with respect to the
0–10% centrality bin for clarity.

δR∆R δρR∆R

0–10% 40–80% 0–10%
JES 15% 11% 7 %
JER 4% 2% 2%

Angular
2% 0.5% 2%

resolution
Unfolding 5% 2% 5%
Centrality 6% 6% 6%

Combinatoric 8% <0.5% 8%
Trigger 5% – 5%

Table 1: Maximum systematic uncertainties on R∆R

(δR∆R) and on the ratio of R∆R in central collisions and
in peripheral (40–80%) collisions ρR∆R

(δρR∆R
) for d = 0.4

jets in the 0–10% and 40–80% centrality bins. The sys-
tematic uncertainty on the trigger is applicable only for
Etest

T
< 90 GeV.

neighbouring-jet transverse energy, Enbr
T > 30, 45,

and 60 GeV. The shaded error bands on the plots
indicate the systematic uncertainties discussed in
Section 6. The R∆R distribution exhibits an in-
crease with increasing Etest

T . Sizeable differences
between the four different centrality bins are ob-
served for all three jet radii. The yield of neigh-

0–10%
d = 0.4 2.73± 0.23(stat.)± 0.12(syst.)
d = 0.3 2.83± 0.16(stat.)± 0.14(syst.)
d = 0.2 2.81± 0.15(stat.)± 0.15(syst.)

10–20%
d = 0.4 2.85± 0.17(stat.)± 0.13(syst.)
d = 0.3 2.51± 0.15(stat.)± 0.11(syst.)
d = 0.2 2.56± 0.16(stat.)± 0.12(syst.)

20–40%
d = 0.4 2.90± 0.12(stat.)± 0.10(syst.)
d = 0.3 2.91± 0.11(stat.)± 0.09(syst.)
d = 0.2 2.62± 0.13(stat.)± 0.10(syst.)

40–80%
d = 0.4 3.26± 0.15(stat.)± 0.13(syst.)
d = 0.3 3.24± 0.15(stat.)± 0.11(syst.)
d = 0.2 2.99± 0.17(stat.)± 0.11(syst.)

Table 2: Power-law index n extracted from fits of
dR∆R/dEnbr

T
distributions to a power-law function

∝ 1/ET
n for Etest

T
> 90 GeV, for four bins in centrality

and three jet radii. The resulting fit error takes into account
combined statistical and systematic uncertainties.
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bouring jets is suppressed as the centrality of the
collision increases.
To further investigate the centrality dependence

of neighbouring jet yields, the per-test-jet normal-
ized ET spectra of neighbouring jets defined in Eq. 2
were evaluated. The resulting differential ET spec-
tra are shown in Fig. 5 for d = 0.4 and d = 0.2
jets and three different lower bounds on the test-
jet transverse energy, Etest

T > 80, 90, and 110 GeV.
The same trend of suppression in central collisions
can be seen as that for R∆R evaluated as a func-
tion of test-jet transverse energy shown in Fig. 4.
This is a consequence of the steeply falling shape
of the ET spectra. To better quantify the differ-
ences in the ET spectra of neighbouring jets, the
ET spectra were fitted to a power-law function,
∝ 1/ET

n, and the power index was extracted for all
three choices of jet radius and four centrality bins.
The results are given in Table 2. The ET spectra
measured in central and peripheral collisions differ
in the power-law index by approximately two stan-
dard deviations for both the d = 0.4 and d = 0.3
jets, suggesting that the ET spectra may be less
steep in central collisions than in peripheral colli-
sions.
To quantify the centrality dependence of the sup-

pression of neighbouring jets, the ratios ρR∆R
were

calculated by dividing R∆R measured in each cen-
trality bin, except the peripheral bin, by R∆R mea-
sured in the peripheral (40–80%) bin. Fig. 6 shows
ρR∆R

evaluated as a function of Etest
T and Enbr

T .
Some systematic uncertainties cancel in the central-
to-peripheral ratio as described in Section 6, result-
ing in ρR∆R

distributions that are dominated by
statistical uncertainties. Ratios are evaluated for
d = 0.4 jets, which suffer the least from the statis-
tical uncertainties, that are still large. Nevertheless,
several characteristic features can be observed: the
ρR∆R

distributions do not exhibit any strong de-
pendence on Etest

T ; the suppression factor ρR∆R
of

the most central collisions is at the level of 0.5–0.7
for all three lower bounds on Enbr

T ; the suppression
becomes less pronounced with decreasing centrality.
This is qualitatively consistent with the observation
of the centrality-dependent suppression of inclusive
jet yields [4]. In that measurement, the suppression
of the inclusive jet yields was evaluated in terms of
the ratio RCP of the inclusive jet yield in central col-
lisions to the yield in 60–80% peripheral collisions
spanning the jet pT range of 40–200 GeV. Values
of RCP ∼ 0.5 were measured in the 0–10% most
central collisions and exhibited only a weak jet-pT

dependence.
Contrary to a modest dependence of ρR∆R

on
the test-jet ET, the ρR∆R

evaluated as a function
of Enbr

T suggests a decrease of suppression with in-
creasing Enbr

T . Such a decrease in suppression with
increasing Enbr

T may in fact be expected. The jet
quenching is generally expected to depend on the
initial parton energy, but if the splitting happens
such that the two partons have similar energy, their
quenching would likely be comparable due to simi-
lar in-medium path-length travelled by the two par-
tons forming neighbouring jets. Thus, in the con-
figuration of Enbr

T ≈ Etest
T the per-test-jet normal-

ization effectively removes the impact of the sup-
pression.

8. Conclusions

This Letter presents results of a measurement
of the production of neighbouring jets using pairs
of jets produced at opening angles less than π/2
in η − φ plane. After subtraction of combinato-
rial backgrounds from different hard-scattering pro-
cesses, such jet pairs result from the production of
multiple jets in the same hard-scattering process.
As such, it is complementary to previous studies
of single-jet suppression and dijet asymmetry. By
probing the relative quenching of a pair of corre-
lated jets in different collision centralities, this mea-
surement opens up the possibility to study the role
of fluctuations in the jet quenching process. This
measurement represents a first, exploratory study
of how the quark–gluon plasma influences the pro-
duction and/or later evolution of the neighbouring
jets from the same parton shower in heavy-ion col-
lisions.
The jet angular correlations were measured in√
s
NN

= 2.76 TeV Pb+Pb collisions using 0.14 nb−1

of data recorded in 2011 by the ATLAS detector at
the LHC. The measurements were performed using
jets reconstructed with the anti-kt algorithm for jet
radii d = 0.2, d = 0.3, and d = 0.4. The produc-
tion of pairs of correlated jets was quantified us-
ing the rate of neighbouring jets that accompany
a test jet, R∆R, evaluated both as a function of
test-jet ET and neighbouring-jet ET. A significant
dependence of R∆R on collision centrality is ob-
served in both cases, suggesting a suppression of
neighbouring jets which increases with increasing
centrality of the collision. The centrality depen-
dence of the suppression was further quantified us-
ing the central-to-peripheral ratio of R∆R distribu-
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Figure 5: The dR∆R/dEnbr

T
distributions for d = 0.4 jets (upper) and d = 0.2 jets (lower) evaluated as a function of Enbr

T
.

The three different columns show the dR∆R/dEnbr

T
distributions evaluated for three different lower bounds on the test-jet

transverse energy, Etest

T
> 80, 90, and 110 GeV. The four different centrality bins are denoted by different markers in each plot.

The shaded bands indicate systematic uncertainties, vertical error bars represent statistical uncertainties. The data points and
horizontal uncertainties for 10–20%, 20–40%, and 40–80% centrality bins are shifted along the horizontal axis with respect to
0–10% centrality bin for clarity.

tions, ρR∆R
. The trends seen in ρR∆R

evaluated as a
function of neighbouring-jet ET indicate a decrease
in suppression with increasing neighbouring-jet ET

which is, however, of limited significance due to the
limited size of the available data sample. The ρR∆R

evaluated as a function of test-jet ET exhibits a sup-
pression reaching values of 0.5− 0.7 in 0–10% cen-
tral collisions and does not show any strong depen-
dence on ET. This behaviour of the neighbouring
jet production can be used to constrain the theo-
retical models aiming to describe fluctuations in the
jet energy loss.
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Figure 6: The ratio of R∆R for three bins of collision centrality to those in 40–80% collisions, ρR∆R
= R∆R|cent/R∆R|40−80

for d = 0.4 jets. The ρR∆R
is evaluated as a function of Etest

T
for three different choices of lower bound on Enbr

T
(upper)

and as a function of Enbr

T
for three different choices of lower bound on Etest

T
(lower). The shaded bands indicate systematic

uncertainties, vertical error bars represent statistical uncertainties. The data points and horizontal uncertainties for 10–20%,
20–40%, and 40–80% centrality bins are shifted along the horizontal axis with respect to 0–10% centrality bin for clarity.
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M. Jimenez Belenguer42, S. Jin33a, A. Jinaru26a, O. Jinnouchi158, M.D. Joergensen36,
K.E. Johansson147a,147b, P. Johansson140, K.A. Johns7, K. Jon-And147a,147b, G. Jones171, R.W.L. Jones71,
T.J. Jones73, J. Jongmanns58a, P.M. Jorge125a,125b, K.D. Joshi83, J. Jovicevic148, X. Ju174, C.A. Jung43,
R.M. Jungst30, P. Jussel61, A. Juste Rozas12,p, M. Kaci168, A. Kaczmarska39, M. Kado116, H. Kagan110,
M. Kagan144, E. Kajomovitz45, C.W. Kalderon119, S. Kama40, A. Kamenshchikov129, N. Kanaya156,
M. Kaneda30, S. Kaneti28, V.A. Kantserov97, J. Kanzaki65, B. Kaplan109, A. Kapliy31, D. Kar53,
K. Karakostas10, N. Karastathis10, M. Karnevskiy82, S.N. Karpov64, Z.M. Karpova64, K. Karthik109,
V. Kartvelishvili71, A.N. Karyukhin129, L. Kashif174, G. Kasieczka58b, R.D. Kass110, A. Kastanas14,
Y. Kataoka156, A. Katre49, J. Katzy42, V. Kaushik7, K. Kawagoe69, T. Kawamoto156, G. Kawamura54,
S. Kazama156, V.F. Kazanin108,c, M.Y. Kazarinov64, R. Keeler170, R. Kehoe40, J.S. Keller42,
J.J. Kempster76, H. Keoshkerian5, O. Kepka126, B.P. Kerševan74, S. Kersten176, K. Kessoku156,
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V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay
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