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The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in

minimum bias proton-proton collisions at center-of-mass energy
ffiffiffi

s
p ¼ 7 TeV using the ALICE detector at

the LHC. Jets are reconstructed from charged particle momenta in the midrapidity region using the

sequential recombination kT and anti-kT as well as the SISCone jet finding algorithms with several

resolution parameters in the range R ¼ 0.2–0.6. Differential jet production cross sections measured with

the three jet finders are in agreement in the transverse momentum (pT) interval 20 < p
jet;ch
T < 100 GeV=c.

They are also consistent with prior measurements carried out at the LHC by the ATLAS Collaboration. The

jet charged particle multiplicity rises monotonically with increasing jet pT, in qualitative agreement with

prior observations at lower energies. The transverse profiles of leading jets are investigated using radial

momentum density distributions as well as distributions of the average radius containing 80% (hR80i) of the
reconstructed jet pT. The fragmentation of leading jets with R ¼ 0.4 using scaled pT spectra of the jet

constituents is studied. The measurements are compared to model calculations from event generators

(PYTHIA, PHOJET, HERWIG). The measured radial density distributions and hR80i distributions are well
described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described

by HERWIG.
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I. INTRODUCTION

Jets consist of collimated showers of particles resulting
from the fragmentation of hard (high-momentum transfer
Q) partons (quarks and gluons) produced in high-energy
collisions. The production cross sections of jets were
measured in detail in proton-antiproton (pp̄) collisions at

the Tevatron (
ffiffiffi

s
p ¼ 540 GeV, 630 GeV, 1.8 TeV and

1.96 TeV) [1–11]. Measurements were also carried out

recently at the CERN LHC at higher energies (
ffiffiffi

s
p ¼ 2.76,

7 and 8 TeV) in proton-proton (pp) collisions [12–15]. Jet
shape observables were previously measured by the CDF
[16–18] and D0 [19] Collaborations in pp̄ collisions and
more recently by the ATLAS and CMS Collaborations in
pp collisions [20–22]. The fragmentation functions of jets
produced in pp̄ collisions were reported by the CDF
Collaboration [23]. Jet fragmentation in pp and Pb–Pb
collisions at the LHC were reported by the ATLAS
[12,24,25] and CMS [26] Collaborations. Jet production
in eþe−, ep, pp̄, and pp collisions is well described by
perturbative Quantum Chromodynamics (pQCD) calcula-
tions. The measured jet properties are typically well
reproduced by Monte Carlo (MC) generators such as

PYTHIA [27], HERWIG [28,29], and PHOJET [30].
The unprecedented beam energy achieved at the Large
Hadron Collider (LHC) in pp collisions enables an exten-
sion of jet production cross section and property measure-
ments carried out at lower energies. Such measurements
enable further tests of QCD and help in tuning of MC event
generators.
In this paper, we present measurements of the jet

production cross sections, jet fragmentation distributions,
and transverse jet shape observables in pp collisions at
ffiffiffi

s
p ¼ 7 TeV. The analysis is restricted to charged par-
ticle jets, i.e. jets reconstructed solely from charged
particle momenta, hereafter called charged jets. ALICE
has already reported measurements of charged jet pro-
duction in Pb–Pb collisions at 2.76 TeV [31]. Charged
jets are reconstructed with particles having pT down to
values as low as 0.15 GeV=c, thereby allowing us to test
perturbative and nonperturbative aspects of jet production
and fragmentation as implemented in MC generators. The
measured particle spectra in jets reflect the jet fragmen-
tation function, as summarized in [32] (Sec. 19). The jet
shape distributions are related to the details of the parton
shower process.
Jets also constitute an important probe for the study of

the hot and dense QCD matter created in high-energy
collisions of heavy nuclei. In such collisions, high pT

partons penetrate the colored medium and lose energy via
induced gluon radiation and elastic scattering (see [33] and
references therein). The measurements in pp collisions thus
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provide a baseline for similar measurements in nucleus–
nucleus (A–A) and proton-nucleus (p–A) collisions.
Medium modifications of the parton shower may change

the fragmentation pattern relative to the vacuum [34]. There
are empirical indications [35] that the scale relevant to these
effects is given by the medium temperature of the order of
few hundred MeV rather than the hard scattering scale. At
such small particle momenta, the jets measured experi-
mentally in pp and A–A collisions also contain contribu-
tions from the underlying event (UE). In pp collisions [17],
the UE includes gluon radiation in the initial state, the
fragmentation of beam remnants and multiple parton
interactions. In this study, we subtract the UE from the
distributions measured in pp collisions, to allow for a
meaningful comparison to models, because theoretical
modeling of the underlying event is very complex. To
disentangle UE and hard parton fragmentation into low
momentum particles, we correct our measurements using a
technique as described in Sec. VI D. This approach will
also help to make eventually a comparison with data from
A–A collisions, where the UE in addition includes hadrons
from an expanding fireball.
This paper is organized as follows. Section II describes

the experiment and detectors used for the measurements
reported in this work. Details of the jet reconstruction
algorithms and parameters are presented in Sec. III, while
jet observables are defined and discussed in Sec. IV.
Section V discusses the MC simulations carried out for
comparisons of measured data to models, data corrections
for instrumental effects, and systematic error studies. The
procedures applied to correct for instrumental and UE
effects are presented in Sec. VI. The methods used to
evaluate systematic uncertainties of the measurements are
discussed in Sec. VII. Results are presented and discussed
in comparison with MC Event Generator simulations in
Sec. VIII. Section IX summarizes the results and con-
clusions of this work.

II. EXPERIMENTAL SETUP AND DATA SAMPLE

The data used in this analysis were collected during the
2010 LHC run with the ALICE detector [36,37]. This
analysis relies primarily on the Time Projection Chamber
(TPC) [38], the Inner Tracking System (ITS) [39], and the
V0 [40] subdetectors. The V0 and ITS are used for event
selection. A minimum bias trigger is achieved by requiring
at least one hit in either the V0 forward scintillators or in
the two innermost Silicon Pixel Detector layers (SPD) of
the ITS, in coincidence with an LHC bunch crossing. The
efficiency for detecting inelastic events is about 85% [41].
The TPC and ITS are used for primary vertex and track
reconstruction. Only events with a primary vertex within
�10 cm along the beam direction from the nominal
interaction point are analyzed to minimize dependencies
of the TPC acceptance on the vertex position. The results

reported in this paper are based on 177 × 106 minimum

bias events corresponding to an integrated luminosity [41]

of ð2.9� 0.1Þ nb−1.
The ALICE solenoidal magnet is operated with a

magnetic field of 0.5 T that provides a good compromise
between momentum resolution at high pT and detection of
low pT particles. Charged tracks are reconstructed using the
combined information from the TPC and the ITS utilizing a
hybrid reconstruction technique described in [15] to assure
uniform φ distribution. The acceptance for charged tracks is
jηj < 0.9 over the full azimuth. This hybrid technique
combines two distinct track classes: (i) tracks containing at
least three hits (of up to six) in the ITS, including at least
one hit in the SPD, and (ii) tracks containing fewer than
three hits in the ITS, or no hit in the SPD. The momentum
of tracks of class (i) is determined without a vertex
constraint. The vertex constraint is however added for
tracks of class (ii) to improve the determination of their
transverse momentum. The track momentum resolution
δpT=pT is approximately 1% at pT ¼ 1 GeV=c for all
reconstructed tracks, and 4% at pT ¼ 40 GeV=c for 95%
of all tracks. For tracks without a hit in the ITS (5% of the
track sample) the resolution is 7% at pT ¼ 40 GeV=c. The
analysis is restricted to tracks with a distance of closest
approach (DCA) to the primary vertex smaller than 2.4 cm
and 3.2 cm in the plane transverse to the beam and the beam
direction, respectively, in order to suppress contributions
from secondary particles produced by weak decays and
interactions of primary particles with detector materials and
beam pipe.
Tracks in the TPC are selected by requiring a pT

dependent minimum number of space points ranging from
70 (of up to 159) for pT ¼ 0.15 GeV=c to 100 at

pT > 20 GeV=c. A χ2 cut on the track fit is applied.
Secondary particles which are not produced at the primary
vertex may acquire a wrong momentum when constrained

to the vertex. Therefore, a χ2 cut on the difference between
the parameters of the track fit using all the space points in
the ITS and TPC and using only the TPC space points with
the primary vertex position as an additional constraint is
applied. The track reconstruction efficiency for primary
charged particles is approximately 60% at pT ¼
0.15 GeV=c and rises to a value of about 87% at
1 GeV=c and is approximately uniform up to 10 GeV=c
beyond which it decreases slightly. The efficiency is
uniform in azimuth and within the pseudorapidity range
jηj < 0.9. Further details on the track selection procedure
and tracking performance can be found in [15].

III. JET RECONSTRUCTION

The charged jet reconstruction is carried out using the
infrared-safe and collinear-safe sequential recombination
algorithms anti-kT [42] and kT [43,44] from the FastJet
package [45] and a seedless infrared safe iterative cone
based algorithm, named SISCone [46], to obtain the jet
cross sections. The three jet finders are found to be in good
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agreement within the uncertainties as discussed in
Sec. VIII A. All other observables (as discussed in
Sec. IV) are analyzed with anti-kT only. Charged tracks
with pT > 0.15 GeV=c and within jηj < 0.9 are the inputs
to the jet reconstruction algorithms. A boost invariant pT

recombination scheme is used to determine the transverse
momenta of jets by adding the charged particle transverse
momenta. Jets are reconstructed with resolution parameters
R ¼ 0.2, 0.3, 0.4, and 0.6 to enable a systematic study of
the production cross section and shape properties, as well
as to provide a suite of references for measurements
performed in p–A and A–A collisions. The analyses
reported in this work are restricted to jets detected within
the range jηj < ð0.9 − RÞ in order to minimize edge effects
in the reconstruction of jets and biases on jet transverse
profile and fragmentation functions. The inclusive jet cross
sections are reported as a function of pT in the interval

20 < p
jet;ch
T < 100 GeV=c. The properties of the charged

jet with the highest pT in the event, the so called leading jet,
are presented in the same pT interval.

IV. JET OBSERVABLES

The results are reported for a suite of charged jet
properties including inclusive differential jet cross section,
charged particle multiplicity in leading jets (hNchi), leading
jet size (hR80i), radial distribution of pT within the leading
jet (hdpsum

T =dri), and jet fragmentation distributions (FpT ,

Fz, Fξ). The definition of these observables and the
methods used to measure them are presented in this section.
Correction techniques applied to measured raw distribu-
tions to account for instrumental effects (including the
detector acceptance and resolution), as well as the UE, are
discussed in Sec. VI. All observables reported in this work
are corrected to particle level as defined in Sec. V.
The differential jet cross section is evaluated using the

following relation:

d2σjet;ch

dpTdη
ðpjet;ch

T Þ ¼ 1

Lint

ΔNjets

ΔpTΔη
ðpjet;ch

T Þ; ð1Þ

where Lint is the integrated luminosity and ΔNjets the
number of jets in the selected intervals of ΔpT and Δη.
The charged particle multiplicity in leading jets, Nch, is

defined as the number of charged particles found within the
leading jet cone. Results for the mean charged particle
multiplicity, hNchi, computed in bins of jet pT are presented
for resolution parameter values R ¼ 0.2, 0.4, and 0.6.
The size of the leading jet, R80, is defined as the radius in

the Δη − Δφ space that contains 80% of the total pT found
in the jet cone. Results for the mean value, hR80i, are
presented as a function of jet pT for resolution parameter
values R ¼ 0.2, 0.4, and 0.6.
The distribution of pT density, dpsum

T =dr, within a
leading jet is measured as a function of the distance

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔηÞ2 þ ðΔφÞ2
p

from the jet direction. Themomentum
density is calculated jet by jet as a scalar sum of the transverse
momenta, psum

T , of all charged particles produced in annular
regionsofwidthΔr at radius r centeredon the jet direction.The
meanvalueof themomentumdensity, hdpsum

T =dri, is evaluated
as a function of r using the following relation:

�

dpsum
T

dr

�

ðrÞ ¼ 1

Δr

1

Njets

X

Njets

i¼1

pi
Tðr − Δr=2; rþ Δr=2Þ ð2Þ

wherepi
Tðr − Δr=2; rþ Δr=2Þ denotes the summedpT of all

tracks of jet i, inside the annular ring between r − Δr=2 and
rþ Δr=2. The mean value is reported in bins of jet pT for
resolutionparametervaluesR ¼ 0.2, 0.4, and0.6.Njets denotes

the number of jets per bin.
The fragmentation of the leading jet is reported based on

the distributions

FpTðpT; p
jet;ch
T Þ ¼ 1

Njets

dN

dpT

; ð3Þ

Fzðzch; pjet;ch
T Þ ¼ 1

Njets

dN

dzch
; ð4Þ

Fξðξch; pjet;ch
T Þ ¼ 1

Njets

dN

dξch
; ð5Þ

where N is the number of charged particles. The scaled pT

variables zch ¼ p
particle
T =p

jet;ch
T and ξch ¼ logð1=zchÞ are

calculated jet by jet for each track. In contrast to the
definition in [32], the energy carried by neutral particles is
not contained in the jet momentum. The (scaled) pT spectra
of the jet constituents are normalized per jet and presented

in bins of jet pT. FpT , Fz and Fξ are complementary
representations: the particle pT spectra FpT are less
sensitive to uncertainties in the jet energy scale and may
be more suitable as a reference for future measurements in
nuclear collisions than the standard representation Fz,

whereas the Fξ distributions emphasize fragmentation into
low momentum constituents and are particularly suited to
demonstrate QCD coherence effects [47,48].
In this work, the averages hNchi, hR80i, and hdpsum

T =dri
are referred to as jet shape observables (jet shapes) and FpT ,

Fz and Fξ as fragmentation distributions.

V. MONTE CARLO SIMULATIONS

Instrumental effects, such as the limited particle detec-
tion efficiency and the finite track momentum resolution,
induce momentum dependent particle losses and impact the
jet energy scale and structures of the observables reported
in this work. The effect of the detector response is studied
using the simulation of the ALICE detector performance
for particle detection and jet reconstruction. Simulated
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events are generated with PYTHIA 6.425 [27] (tune
Perugia-0 [49]) and the produced particles are trans-
ported with GEANT3 [50]. The simulated and real data
are analyzed with the same reconstruction algorithms and
using the same kinematic cuts (pT > 0.15 GeV=c,
jηj < 0.9) on produced particles. Jets reconstructed based
directly on momenta of charged particles (pT >
0.15 GeV=c, jηj < 0.9) produced by MC generators are
hereafter referred to as particle level jets whereas those
obtained after processing the generator outputs through
GEANT and the ALICE reconstruction software are
referred to as detector level jets. As the data are corrected
for instrumental effects, their comparison with simulation is
done at particle level only.
The detector response to simulated charged jets with R ¼

0.4 is illustrated in Fig. 1, showing on a jet-by-jet basis the
probability distribution of the relative difference between

the charged jet pT at the particle level (p
jet;particle
T ) and at the

detector level (p
jet;detector
T ). The probability distribution is

shown for three different p
jet;particle
T intervals. The distribu-

tions have a pronounced maximum at zero (p
jet;detector
T ¼

p
jet;particle
T ). The tracking pT resolution induces upward and

downward fluctuations with equal probability, whereas the
finite detection efficiency of charged particles results in an

asymmetric response. As a function of p
jet;particle
T , the

probability that p
jet;detector
T is smaller than p

jet;particle
T varies

between 88% and 92% and the mean value of the
distribution varies between -14% and -24%.
The event generators PHOJET 1.12.1.35 [30], HERWIG

6.510 [28,29], and several PYTHIA tunes are used for
comparisons to data and for systematic investigations
of the sensitivity of the MC correction factors to variations

of the detector response as well as to jet fragmentation and
hadronization patterns. PYTHIA, PHOJET, and HERWIG
utilize different approaches to describe the parton shower
and hadronization process. HERWIG makes of angular
ordering a direct part of the evolution process and thereby
takes correctly into account coherence effects in the
emission of soft gluons. PYTHIA 6.4 is instead based
on transverse-momentum-ordered showers [51] in which
angular ordering is imposed by an additional veto. PHOJET
generates angular ordered initial-state radiation, whereas
for final state radiation the mass-ordered PYTHIA shower
algorithm is used. Hadronization in PYTHIA and PHOJET
proceeds via string breaking as described by the Lund
model [52], whereas HERWIG uses cluster fragmentation.
The PYTHIA Perugia tune variations, beginning with the
central tune Perugia-0 [49], are based on LEP, Tevatron,
and SPS data. The Perugia-2011 family of tunes [49] and
the ATLASMinimum Bias tune AMBT1 [53] belong to the
first generation of tunes that also use LHC pp data at
ffiffiffi

s
p ¼ 0.9 and 7 TeV with slight variations of the param-
eters controlling the modeling of the UE and fragmentation.
Compared to the central Perugia-2011 tune, AMBT1 uses a
lower value of the infrared regularization scale for multiple
partonic interactions resulting in higher UE activity. It also
uses a probability density of sum of two Gaussians for the
matter distribution inside the proton and a higher non-
perturbative color-reconnection strength for string frag-
mentation. The HERWIG generator version and PYTHIA
tunes used in this work utilize the CTEQ5L parton
distributions [54], except for PYTHIA tune AMBT1 which
uses MRST 2007LO* [55]. PHOJET uses GRV94 [56].

VI. CORRECTIONS

Two classes of correction techniques are used to account
for instrumental effects in the measurements reported in
this work. The techniques are known as bin-by-bin cor-
rection and Bayesian unfolding [57]. A third technique
based on singular value decomposition (SVD) [58] is also
used as a cross check. The techniques and their comparative
merits are presented in the following subsections.
Corrections for contamination from secondary particles
and UE are discussed in Secs. VI C and VI D, respectively.
The jet shapes and fragmentation distributions are cor-

rected using the bin-by-bin method, while the cross sections
are corrected with the Bayesian unfolding technique. All
observables are corrected for secondaries contamination.All
observables, except hR80i, are also corrected for UE
contamination.

A. Bin-by-bin correction method

The bin-by-bin correction method is used to correct the
jet shape observables and fragmentation functions. To
validate the method, it is also applied to the jet cross
sections. It utilizes MC simulations as described in Sec. V
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FIG. 1 (color online). Probability distribution of the relative
momentum difference of simulated ALICE detector response to
charged jets in pp collisions at

ffiffiffi

s
p ¼ 7 TeV for three different

p
jet;particle
T intervals. Charged jets are simulated using PYTHIA

Perugia-0 and reconstructed with the anti-kT jet finding algorithm
with R ¼ 0.4.
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and is based on ratios of values for observables obtained at
particle (generator) level and detector level as a function of
variable x. In this work, x can be one-dimensional (e.g. jet
pT in case of the jet spectra) or two-dimensional (e.g. jet pT

and particle pT in case of the fragmentation distributions).

Let O
part
mc ðxÞ be the observable value at the particle level,

and Odet
mcðxÞ the value obtained at the detector level. The

correction factors are defined as the ratio of the particle and

detector level values of O
part
mc ðxÞ and Odet

mcðxÞ in bins of x.

The corrected measurements, Ocorrected
data , are obtained

bin-by-bin by multiplying the raw (uncorrected) values,

Ouncorrected
data , as follows,

Ocorrected
data ðxÞ ¼ Ouncorrected

data ðxÞO
part
mc ðxÞ

Odet
mcðxÞ

: ð6Þ

The correction factors depend on the shape of the
simulated jet spectrum and fragmentation distributions.
Systematic uncertainties related to the accuracy with which
data are reproduced by the simulations are discussed in
Sec. VII B.
Correction factors obtained for the jet pT spectra range

from 25% to 50% and reach a maximum at 100 GeV=c. The
bin-by-bin corrections applied to jet shape observables
include subtraction of contamination associated with the
production of secondary particles within the detector.
Correction factors obtained for hNchi at R ¼ 0.2 (0.4, 0.6)
are of theorder of 2%–6%(3%–5%,4%–6%)while for hR80i
atR ¼ 0.2 (0.4,0.6) theyare found in the range5%–7%(2%–

10%, 4%–9%). Correction factors applied on radial momen-
tum densities have a maximum value of 12%(15%, 19%) at
R ¼ 0.2 (0.4, 0.6). In contrast, for the fragmentation dis-
tributions, thebin-by-bincorrectionandthecorrectionfor the
contamination from secondaries, discussed in Sec. VI C, are
carried out in separate steps. The typical value of the

corrections at the maximum of the Fξ distribution is of the
order of few percent only. The correction factors forFpT and
Fz are largest at low particle pT (up to 50%), where the

tracking efficiency is smallest, and at the highest zch (up to
40%) where the impact of the track momentum resolution is
stronganddetectoreffectsat the track level strongly influence
the reconstructed jet momentum.

B. Unfolding using response matrix

inversion techniques

Instrumental effects associated with acceptance, particle
losses due to limited efficiency, and finite momentum
resolution are modeled using a detection response matrix,
which is used to correct observables for these effects. The
jet pT response matrix is determined by processing MC
events through a full ALICE detector simulation as
described in Sec. V. The particle level (true), TðtÞ, and
detector level (measured), MðmÞ, pT spectra of the leading
jet are both subdivided in 11 bins in the interval

20 < p
jet;ch
T < 100 GeV=c. The matrix elements Rmt

express the conditional probability of measuring a jet pT

in bin, m given a true value in bin, t. The measured
distribution, M, can thus be estimated by multiplying the
true distribution, T, by the response matrix,

M ¼ RT: ð7Þ
Experimentally, the unfolding problem involves the deter-
mination of T given M. This is symbolically written as

T ¼ R−1M: ð8Þ
However the matrix R may be singular and can not always
be inverted analytically. Consequently, other numerical
techniques are needed to obtain the true, physically mean-
ingful, distribution T given a measured distribution M.
Furthermore, the exact solution, even if it exists, is usually
unstable against small variations in the initial estimates of
the measured distribution, and oscillating due to finite
statistics in the measured distribution. This problem can be
overcome using a regularization condition based on a priori
information about the solution.
The Bayesian unfolding technique [57] is an iterative

method based on Bayes’ theorem. Given an initial hypoth-
esis (a prior), Pt, with t ¼ 1;…; n, for the true momentum
and reconstruction efficiency, εt, Bayes’ theorem provides

an estimator of the inverse response matrix elements, ~Rtm,

~Rtm ¼ RmtPt

εt
P

t0Rmt0Pt0
: ð9Þ

The measured distribution,Mm, is thus unfolded as follows

P0
t ¼

X

m

~RtmMm; ð10Þ

to obtain a posterior estimator, P0
t, of the true distribution.

The inversion is improved iteratively by recursively using
posterior estimators to update and recalculate the inversion
matrix. The number of iterations serves as a regularization
parameter in the unfolding procedure. For jet spectra
studies, the measured spectra are used as prior and
convergence is obtained typically after three iterations.
As an additional cross check, the analysis of charged jet

cross sections is also carried out with the RooUnfold
implementation of the SVD unfolding technique [58,59]
using raw measured spectra as prior distributions. The
performance of the Bayesian unfolding, SVD unfolding,
and bin-by-bin correction methods are compared based on
PYTHIA Perugia-0 simulated jets. The three methods
produce results that are found to be within 4% of the truth
distribution. The cross sections reported in this work are
obtained with the Bayesian unfolding method.

C. Contamination from secondary particles

Charged secondary particles are predominantly produced
byweakdecaysof strangeparticles (e.g.K0

S andΛ), decaysof
charged pions, conversions of photons from neutral pion
decaysandhadronic interactions in thedetectormaterial.The
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charged jet transverse momentum, jet shapes and fragmen-
tation distributions include by definition only primary
chargedparticles (promptparticlesproduced in the collisions
and all decay products, except products fromweak decays of

strange particles such as K0

S and Λ). Secondary particles
introduceambiguities in the jet energy scale andcontribute to
the raw reconstructed multiplicity, momentum density, and
fragmentation distributions. Although their contribution is
minimized by the analysis cuts described in Sec. II, the
measured distributions nonetheless must be corrected for a
small residual contamination. The subtraction of the secon-
dary particle contamination is implicitly included in the bin-
by-bin correction applied for measurements of jet shape
observables. It is however carried out separately and explic-
itly in the measurements of the fragmentation function. The
contribution of secondaries is estimated from MC simula-

tions, separately for each bin in jetpT and particlepT, z
ch and

ξch. The correction applied to the measured fragmentation

functions is highest, up to 35%, at small pT and large ξ
ch. It

amounts to few percent only when averaged over all jet
constituents. To enhance the low strangeness yield in the
PYTHIAPerugia-0 simulations to the level observed in data,
the contamination estimate is multiplied by a data-driven
correction factor based on measurements [60] of strange
particle production in non-single-diffractive events by the
CMS Collaboration and simulations from [61]. The con-
tamination of secondaries from strange particle decays is
small, and the effect of the strangeness scaling on the final
result is less than 1%. No scaling is applied on the correction
to the jet spectrum and jet shape observables.

D. Underlying event subtraction

There is no strict definition of the Underlying Event.
Operationally, it corresponds to all particles produced in an
event that are not an integral part of a jet or produced
directly by hard scattering of partons. The ATLAS [62,63],
CMS [64] and ALICE [65] Collaborations have already
published studies of UE in pp collisions at

ffiffiffi

s
p ¼ 7 TeV. In

this work, a similar method is adopted to determine the UE
yield and correct the measured jet observables for this
source of contamination.
The UE particle yield is estimated event-by-event based

on circular regions perpendicular to the measured jet cones.
The circular regions have the same size as the jet resolution
parameter and are placed at the same pseudorapidity as the
leading jet but offset at an azimuthal angle Δφ ¼ π=2
relative to the jet axis.
For the jet cross section measurements, the UE is

subtracted on a jet-by-jet basis prior to unfolding and
the same treatment is applied to jets obtained from
simulations before jet response matrix is created.
In the case of the fragmentation and jet shape observ-

ables, no correction for the UE contribution to the recon-
structed jet energy is applied, but the UE contribution to the
measured distributions in each bin of jet pT is subtracted.

The pT spectra of particles in the perpendicular cone are
accumulated and averaged over many events. To account
for variations of the cone size of the anti-kT jets, the spectra
are weighted jet by jet with the ratio of the cone size,

determined by FastJet, to the nominal aperture of πR2 for a
jet with resolution parameter R. The difference between the
weighted and unweighted UE distributions is at the level of

1%. The ξch variable is computed jet-by-jet for each particle
using the transverse momentum of the leading jet. The
radial pT sum distributions are obtained relative to the axis
of the perpendicular cone.
The algorithms used for jet reconstruction are sensitive to

statistical fluctuations of the particle density which are

possibly enhanced by local variations of the detection

efficiency and secondary particle production. This

reconstruction bias may differ for the jet region and the

UE region. Hence, the UE distributions are corrected first

for tracking efficiency, resolution and contamination from

secondary particles. The fully corrected distributions are

then subtracted in bins of the leading jet transverse

momentum. The correction is smaller than 2.5% of the

charged jet energy, but it is considerable for the fragmen-

tation distributions at the lowest track momentum and

highest ξch, where the ratio of UE background to frag-

mentation signal takes values up to 2.5. No self-consistent

technique exists to subtract the UE in the hR80i measure-

ments, these measurements are therefore reported without

correction for UE contamination. However, comparing the

radial hdpsum
T =dri distributions before and after UE sub-

traction, the increase in jet size hR80i due to the UE is

estimated to be of the order of few percent only. The

systematic uncertainties for not performing the UE sub-

traction are thus found negligible compared to other

sources of errors in the measurements of hR80i.

VII. ESTIMATION OF SYSTEMATIC

UNCERTAINTIES

A summary of all systematic uncertainties for selected

bins is given in Table I for the cross section measurements,

and in Table II for the hNchi, hR80i, hdpsum
T =dri, FpT , FpT

and Fz distributions. The uncertainties given in each

column of the table are described in this section.

A. Tracking efficiency and resolution

Uncertainties associated with the momentum resolution

and charged track reconstruction efficiency lead to sys-

tematic uncertainties in measurements of the jet cross

section, jet shapes, and jet fragmentation functions.
The relative systematic uncertainty on tracking effi-

ciency is estimated to be 5% based on several variations

of cuts used in the track selection introduced earlier. The

relative systematic uncertainty on the track momentum

resolution amounts to 20% [66].
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TABLE I. Summary of systematic uncertainties for selected bins in selected cross section distributions.

Distribution
Bin

ðGeV=cÞ
Track

efficiency (%)
Track pT

resolution (%)
Unfolding

(%)
Normalization

(%)
Secondaries

(%)
Total
(%)

d2σjet;ch

dpTdη
ðR ¼ 0.2Þ 20–24 þ4.6

−4.2
4.0 3.0 3.5 1.9 þ7.8

−7.6

50–58 þ22.1
−10.5

4.0 1.6 3.5 2.5 þ23.0
−12.2

86–100 þ26.0
−15.3

4.0 5.2 3.5 2.8 þ27.1
−17.2

d2σjet;ch

dpTdη
ðR ¼ 0.4Þ 20–24 þ7.5

−4.5
4.0 3.0 3.5 2.1 þ9.9

−7.9

50–58 þ23.2
−10.6

4.0 1.4 3.5 2.5 þ24.0
−12.2

86–100 þ24.9
−15.0

4.0 5.6 3.5 2.7 þ26.2
−17.2

d2σjet;ch

dpTdη
ðR ¼ 0.6Þ 20–24 þ11.1

−5.3
4.0 6.6 3.5 2.3 þ14.2

−10.3

50–58 þ22.6
−14.3

4.0 1.9 3.5 2.6 þ23.4
−15.6

86–100 þ23.7
−13.7

4.0 6.0 3.5 2.7 þ25.1
−16.1

TABLE II. Summary of systematic uncertainties for selected bins in selected jet shape and fragmentation distributions for R ¼ 0.4.

Distribution Bin
Track

efficiency (%)
Track pT

resolution (%)
Bin-by-bin

correction (%) UE (%) Secondaries (%) Total (%)

hNchi 20–25 GeV=c þ5.8
−5.0

þ4.0
−3.5

þ0.7
−0.9

0.8 Negligible þ7.1
−6.2

80–100 GeV=c þ5.8
−5.0

þ4.0
−3.5

þ0.7
−0.9

0.5 Negligible þ7.1
−6.2

hR80i 20–25 GeV=c þ6.1
−5.5

þ3.6
−4.3

þ1.7
−1.7

— — þ7.2
−7.2

80–100 GeV=c þ6.1
−5.5

þ3.6
−4.3

þ1.7
−1.7

— — þ7.2
−7.2

hdp
sum
T

dr
i 20 < p

jet;ch
T < 30 GeV=c 0.00–0.04 þ8.1

−6.5
þ5.9
−2.4

þ2.9
−3.1

Negligible Negligible þ10.4
−7.5

0.20–0.24 þ8.1
−6.5

þ5.9
−2.4

þ2.9
−3.1

0.3 Negligible þ10.5
−7.6

0.36–0.40 þ8.1
−12.0

þ5.9
−2.4

þ2.9
−3.1

15.0 Negligible þ18.3
−19.6

hdp
sum
T

dr
i 60 < p

jet;ch
T < 80 GeV=c 0.00–0.04 þ10.6

−5.1
þ5.6
−6.5

þ3.7
−3.4

Negligible Negligible þ12.6
−8.9

0.20–0.24 þ10.6
−5.1

þ5.6
−6.5

þ3.7
−3.4

0.4 Negligible þ12.6
−9.0

0.36–0.40 þ10.6
−5.1

þ5.6
−6.5

þ3.7
−3.4

1.6 Negligible þ12.7
−9.1

FpT 20 < p
jet;ch
T < 30 GeV=c 0–1 GeV=c 5.0 0.1 0.7 3.3 3.2 6.8

6–7 GeV=c 0.8 Negligible 2.3 Negligible 0.5 2.4
18–20 GeV=c 9.9 0.5 6.0 Negligible 0.4 11.6

FpT 60 < p
jet;ch
T < 80 GeV=c 0–5 GeV=c 5.2 0.3 0.2 0.8 2.1 5.7

20–30 GeV=c 1.4 Negligible 3.7 Negligible 0.6 4.0
50–60 GeV=c 10.5 3.5 9.6 Negligible 0.6 14.6

Fz 20 < p
jet;ch
T < 30 GeV=c 0–0.1 4.7 1.6 0.2 1.6 1.4 5.2

0.3–0.4 0.4 Negligible 2.7 Negligible 0.3 2.8
0.9–1.0 15.5 1.1 4.8 Negligible 0.6 16.3

Fz 60 < p
jet;ch
T < 80 GeV=c 0–0.1 5.0 0.3 0.3 0.7 1.3 5.3

0.3–0.4 1.2 0.2 3.7 Negligible 0.4 3.9
0.8–1.0 13.8 3.1 6.1 Negligible 1.2 15.4

Fξ 20 < p
jet;ch
T < 30 GeV=c 0–0.4 9.9 0.5 4.6 Negligible 0.7 10.9

0.8–1.2 0.6 Negligible 3.0 Negligible 0.5 3.1
4.8–5.3 5.1 0.7 0.9 15.3 7.8 17.9

Fξ 60 < p
jet;ch
T < 80 GeV=c 0–1.0 5.0 0.5 3.9 Negligible 0.7 6.4

1.0–2.0 1.3 0.4 3.4 Negligible 0.6 3.8
5.0–6.2 5.7 0.2 0.7 6.5 6.2 10.6
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In order to evaluate the effect of these uncertainties on
the measured jet cross sections, the corresponding rescaled
response matrix is used to unfold the spectra. For the jet
shape and fragmentation observables, the impact of the
finite detector efficiency and momentum resolution on the
bin-by-bin correction factors is estimated by applying
parametrized detector response to PYTHIA events clus-
tered with FastJet, and varying the efficiency and resolution
independently. Systematic uncertainties for the jet particle
multiplicity and jet shape observables are given in Table II
for a resolution parameter R ¼ 0.4. For larger (smaller) R, a
moderate increase (decrease) of the uncertainties is
observed related to tracking efficiency. For the fragmenta-
tion distributions, variations of the momentum resolution
induce the most significant changes at high track pT. The
systematic uncertainties due to the efficiency variations are

largest at the highest zch and smallest at intermediate values.

B. Bin-by-bin correction

The data correction methods used in this work are largely
based on tune Perugia-0 of the PYTHIA event generator.
The particular structure of jets produced by PYTHIA might
however conceivably affect the magnitude, and dependen-
cies of the correction factors on the jet momentum, particle
momentum, or radial dependence r. The possible impact of
such event generator dependencies is examined by com-
paring the amplitude of the bin-by-bin corrections obtained
with PYTHIA tunes Perugia-0 and Perugia-2011, with
those obtained with the HERWIG generator. This is
accomplished with a parametrized detector response and
the anti-kT jet finder. In addition, the impact of modifica-
tions of the jet fragmentation is studied by artificially
duplicating and removing jet particles with a momentum
dependent probability. The variations are constrained to be
at a similar level as the differences observed between
simulations and data reaching up to a factor of 2.5 for

values of zch close to 1 in the fragmentation distributions.
The charged particle multiplicity is affected by ∼30%. The
resulting systematic uncertainties are largest for high values

of zch and track pT and small values of ξch.
As an independent check, a closure test with a two-

dimensional folding technique is carried out on the
fragmentation distributions from an inclusive jet sample
(comprising leading and subleading jets). A response
matrix in bins of generated and reconstructed jet pT and
particle (scaled) transverse momentum is used to fold the
corrected results back to the uncorrected level. Since the
folding method has negligible dependence on the event
generator, the comparison of the folded to the original
distributions reveals possible biases of the bin-by-bin
correction. The observed nonclosure at the level of few
percent is consistent with the systematic uncertainty
assigned to the bin-by-bin correction from modifications
of the fragmentation pattern.

C. Response unfolding

The unfolding techniques used in this work correct the
measured jet spectra for the detector response. The limited
measurement resolution, discussed in Sec. V, results in a
small, but finite, probability for bin migration of the
reconstructed jet momentum relative to the true value.
Consequently, the unfolding introduces a correlation
between neighboring bins of the corrected spectrum, and
statistical fluctuations in the measured data result in a
spectral shape systematic uncertainty. To assess this uncer-
tainty, the raw jet spectra are smeared by a Gaussian
function with a width given by the statistical uncertainty in
the given momentum bin. The resulting spectra are then
unfolded and the systematic uncertainty is evaluated as a
spread of the corrected spectra. The value of this systematic
uncertainty increases roughly linearly with p

jet;ch
T , reaching

a maximum value of ∼7% at p
jet;ch
T ≈ 100 GeV=c.

D. Underlying event subtraction

In this work, we use perpendicular cones to measure and
subtract the UE as described in Sec. VI D. However, there is
no unique prescription on how to determine the UE. In a
prior, trigger hadron based, UE analysis by the ALICE
Collaboration [65], a geometrically different definition of
the transverse region was used. The charged particle
transverse momentum densities obtained in our analysis
are consistent with the saturation values in the transverse
region measured in [65]. In [67], the UE was estimated
from dijet events and imposing an additional veto on a third
jet. An alternative simulation to estimate and subtract the
UE in a similar way is performed using particle level output
from a MC event generator. The UE is measured from
events with a dijet in the detector acceptance, to understand
if and how the nonleading jet affects the UE estimate,
rejecting events with additional charged jets with a pT

exceeding 12 GeV=c. The resulting difference on the
fragmentation distributions is used to assign a 5% system-
atic uncertainty to the estimated UE. The resulting sys-
tematic uncertainty on the fragmentation distributions is
highest at low transverse momenta. Systematic uncertain-
ties on hdpsum

T =dri are largest at large distances r in the jet
pT interval 20–30 GeV=c. The uncertainty increases for
higher values of the resolution parameter R. Systematic
uncertainties on the measured charged jet cross sections are
smaller than 1% and considered negligible.
The anti-kT jet finder typically produces circular jet

cones, and the UE contribution to the jet shapes and
fragmentation distributions is evaluated consistently in
circular cones. In individual jets, particles may however
be added at a distance r ≥ R thereby giving rise to a convex
deformation of the cone. Concave deformations might also
occur. The dependence of the fragmentation distributions
on the cone shape is checked by repeating the analysis
using only tracks in an ideal cone around the jet axis. In this
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case no jet area scaling of the UE is applied. The low-
momentum particle yield is most affected: at high jet radii,

low zch fragmentation dominates over high zch fragmenta-
tion. In addition, the probability to collect a soft particle
from the UE is comparatively higher than at small r. The
observed effect is negligibly small: a maximum depletion

of 4% of the particle yield at the highest ξch in the smallest
jet momentum bin is observed. Considerably smaller

variations are found for all other jet momenta and ξch

bins. The effect is reproduced in MC simulations, and no
systematic uncertainty is associated to the jet cone shape.

E. Cross section normalization

The determination of luminosity and related systematic
uncertainties are discussed in [68,69]. A normalization uncer-
tainty of 3.5% is assigned to the cross section measurement.

F. Contamination from secondary particles

The reconstructed primary particles originate from the
main interaction vertex and have a nonzero distance of
closest approach DCA because of finite resolution effects.
The DCA of secondaries however spans a much broader
range of values. Reducing the maximum allowed DCA
value reduces contaminations from secondaries but also
reduces the detection efficiency of primary particles. In this
analysis, primary particles are selected requiring a small
DCA as discussed in Sec. II, and a correction for the
residual contribution of secondary particles is applied, as
explained in Sec. VI C. The systematic uncertainty asso-
ciated to the correction is estimated by reducing the
maximum allowed DCA used in the selection of primary
tracks by more than a factor of 9 using a pT dependent cut.
The resulting fragmentation distributions are corrected
consistently for contamination and cut efficiency and
residual differences in the fully corrected spectra are
assigned as systematic uncertainty. The highest uncertainty

is found for large values of ξch.
The dependence of the correction on the strange particle

yield in the PYTHIA Perugia-0 simulations is estimated
from comparison to data as explained in Sec. VI C. The
effect on the jet cross sections is less than 3% and is
assigned as systematic uncertainty. For the jet shape
observables it is negligible.

VIII. RESULTS

A. Comparison of jet finding algorithms

Figure 2 (top panel) shows the differential cross sections
of charged jet production measured in pp collisions at
ffiffiffi

s
p ¼ 7 TeV using the kT, anti-kT, and SISCone jet finding
algorithms. The distributions are obtained with a resolution
parameter, R ¼ 0.4, for jets in the pseudorapidity range

jηjetj < 0.5, and transverse momenta from 20 to
100 GeV=c. The bottom panel of the figure displays the
ratios between the cross sections obtained with the kT, and

SISCone algorithms to those obtained with the anti-kT as a
function of the jet transverse momentum. For a correct
treatment of statistical correlations between the numerator
and denominator, the data were divided into fully correlated
and uncorrelated subsets. The distributions are corrected
using the bin-by-bin correction procedure described in
Sec. VI A. The ratios of the jet cross sections are consistent
with unity over nearly the entire range of jet transverse
momenta spanned by this analysis. A significant deviation
of 5% is observed only in the lowest pT bin
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FIG. 2 (color online). Top panel: Charged jet cross sections in
pp collisions at

ffiffiffi

s
p ¼ 7 TeV. Symbols correspond to different

algorithms used for jet reconstruction. Bottom panel: Ratios
between jet cross sections obtained by kT, and SISCone to that
obtained by anti-kT.
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algorithms. For larger p
jet;ch
T SISCone and kT algorithms

agree within errors with the anti-kT algorithm. These obser-
vations are in good agreement with that obtained using
PYTHIA Perugia-0 simulation (not shown).
The anti-kT algorithm initiates particle clustering around

the highest pT particles of an event. In contrast, the kT
algorithm initiates jet finding by clustering particles with
the lowest momenta. It is thus rather sensitive to events with
a large, fluctuating density of low momentum particles as
produced in A–A collisions. The anti-kT algorithm does not
exhibit such sensitivity and is thus favored for studies of jet

production in A–A collisions. Since there are no large
differences observed between the spectra obtained with the
three jet finders discussed above, and considering the fact
that the results of this work will be used as a reference for
similar measurements in A–A and p–A collisions, the
remainder of the analyses presented in this work are
performed with the anti-kT algorithm exclusively.

B. Charged jet cross section

Figure 3 presents the fully corrected inclusive charged jet
cross section measured in pp collisions at

ffiffiffi

s
p ¼ 7 TeV
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p ¼ 7 TeV. Statistical and systematic uncertainties are shown separately for ALICE data points, the gray bands indicating
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using the anti-kTjet finder. Corrections for the detector
response and instrumental effects are carried out using the
Bayesian unfolding method presented in Sec. VI B. The
distributions are also corrected for UE contamination on an
event-by-event basis according to the method described in
Sec. VI D. Inclusive charged jet cross sections are reported
for resolution parameter values R ¼ 0.2, 0.3, 0.4 and 0.6,
and limited to pseudorapidity ranges jηj < ð0.9 − RÞ in
order to avoid losses due to partially reconstructed jets at
the edge of the pseudorapidity acceptance. Statistical
uncertainties are displayed as vertical error bars.
Individual sources of systematic uncertainties are pT

dependent. In Fig. 3 as well as in all other figures the

data points are placed at the bin center along the abscissa
and the horizontal error bars indicate the bin width while
the vertical error bars indicate the statistical uncertainties.
The total systematic uncertainties are obtained as a quad-
ratic sum of individual systematic uncertainties, as
described in Sec. VII, and are shown as shaded bands
around the data points in Fig. 3 as well as in all other
figures.
The measured charged jet cross sections are compared to

those reported by the ATLAS experiment [12] at R ¼ 0.4
and 0.6 in Fig. 4. The ATLAS charged jets are measured in
the rapidity jyj ≤ 0.5 at both R ¼ 0.4 and 0.6, using
charged tracks with pT ≥ 0.3 GeV=c without underlying
event subtraction. The ALICE therefore also uses the same
track pT selection without underlying event subtraction
unlike Fig. 3. To quantify the level of agreement between
the ALICE and ATLAS jet cross section measurements, the
ALICE data are fitted with a modified Tsallis [70,71]
distribution (fðpTÞ ¼ a · ð1þ pT

b
Þ−c). The Tsallis fits are

shown as dotted black curves in the top panels of Fig. 4.

The χ2=dof of the fits are 2.97=8 and 4.27=8 for R ¼ 0.4
and 0.6, respectively. The bottom panels of Fig. 4 show the
ratios of the ALICE and ATLAS data points to the fit
function. The gray bands represent the systematic uncer-
tainties on ALICE data points. Despite fluctuations in the
high pT range of the ATLAS data, both data sets are in
excellent agreement.
In the top panels of Fig. 5, the measured charged jet cross

sections are compared to predictions from PYTHIA (tunes
Perugia-0, Perugia-2011, and AMBT1), PHOJET, and
HERWIG for R ¼ 0.2, 0.4 and 0.6. The ratios of the
MC simulations to measured data are shown in the bottom
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bottom)]. UE contributions are subtracted from both data and MC. Right panel: Ratios MC/data. Shaded bands show the quadratic sum
of statistical and systematic uncertainties on the data drawn at unity.
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panels of Fig. 5. In the high pT range, PYTHIA Perugia-
2011 describes the data best, while in the low pT range data
is best described by HERWIG and PHOJET. All PYTHIA
tunes systematically overestimate the measured data in the
low transverse momentum range and the discrepancy
increases with increasing cone size. The worst discrepancy
with the data is observed for the PYTHIA tune AMBT1,
which overestimates the data by factors ranging from 25%
to 75% over the studied pT range for R ¼ 0.2. The
disagreement grows with increasing resolution parameter,
and is worst for R ¼ 0.6.
Figure 6 shows the ratios of cross sections for jets with

resolution parameters R ¼ 0.2, R ¼ 0.4 and R ¼ 0.2,
R ¼ 0.6. The ratio of jet spectra [15] is sensitive to the
collimation of particles around the jet axis and serves as an
indirect measure of the jet structure used particularly in A–
A collisions [72], where large background fluctuations
greatly complicate jet shape studies. In order to compare
the ratios within the same jet pseudorapidity range, the
ratios are studied within jηj < 0.3, which coincides with the

fiducial jet acceptance for the largest resolution parameter
studied (R ¼ 0.6). To avoid statistical correlations between
the numerator and denominator, disjoint subsets of the data
are used. The measured ratios are also compared to those
from PYTHIA Perugia-2011 and HERWIG simulations.
The measured ratios confirm the expected trend of
increased collimation with increasing transverse momen-
tum of jets, corroborated also by the simulation results. At
high pT (>30 GeV=c), both PYTHIA and HERWIG are in
good agreement with the data within uncertainties.
However, at low pT (<30 GeV=c), PYTHIA tends to
underpredict the data for both the ratios whereas
HERWIG tends to overpredict the data for the ratio

σjet;chðR ¼ 0.2Þ=σjet;ch (R ¼ 0.6).

C. Charged particle multiplicity in the leading jet

The corrected mean charged particle multiplicity distri-
butions hNchi in the leading jet are shown in Fig. 7 (left
panel) as a function of jet pT for R ¼ 0.2, 0.4, and 0.6. The
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hNchi rises monotonically with increasing jet pT as well as
with increasing R. These results are in qualitative agree-
ment with those reported by the CDF [17] Collaboration
and more recently by the CMS [21] Collaboration based on
slightly different kinematic track cuts.
In the left panel of Fig. 7, the measurements are

compared to predictions by the MC models PYTHIA
(tunes Perugia-0, Perugia-2011, AMBT1), PHOJET, and
HERWIG. Ratios of the predictions to the data are
displayed in the right panel. The model predictions are
well within 10% of the measured data with largest devia-
tions of ∼15% at R ¼ 0.6 and 0.2 towards large jet pT. The
PYTHIA tune Perugia-0 tends to systematically under-
estimate the measured particle multiplicities particularly at
the largest R for smaller jet momentum, whereas HERWIG
tends to overpredict the data at smaller R. An overall
agreement between the data and MC predictions is found to
be best with the Perugia-2011 tune and PHOJET.

D. Transverse momentum density distributions

within the leading jet

The left panels of Figs. 8, 9, and 10 show leading
jets average pT density radial distributions hdpsum

T =dri

measured with resolution parameters R ¼ 0.2, 0.4, and 0.6,

respectively. The distributions are plotted separately for

jets in the pT intervals 20–30, 30–40, 40–60, and

60–80 GeV=c. The latter three distributions are scaled

by factors of 10, 100, and 1000, respectively, for clarity.

The transverse momentum density is largest near the jet

axis and decreases approximately exponentially with

increasing r. Densities are largest at the highest jet pT

where they are also found to have the steepest dependence

on r. This indicates that high pT jets are on average more

collimated than low pT jets as already hinted in Fig. 6.
The measured distributions are compared to predictions

with MC models. The right panels of Figs. 8, 9, and 10
display ratios of the model calculations to measured data.
The MC models qualitatively reproduce the magnitude of
the measured densities as well as their radial dependence.
The agreement between the MC model calculations and
data is better at smaller Rð¼ 0.2Þ. At R ¼ 0.4 and 0.6
HERWIG and Perugia-0 tune of PYTHIA tend to under-
predict the measured transverse momentum density except
at small r for the two lowest jet pT bins. The excess over the
data for the smallest r and the slope of the ratio of
simulations to data observed for R ¼ 0.6 indicates stronger
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jet collimation for low pT jets than observed in the data.
This observation is consistent with the discrepancy of the
Herwig model to the measured cross section ratio discussed
in Sec. VIII B (see also Fig. 6). In the last bin of Figs. 9, and
10 (right panel), large deviations of MC models (PHOJET
and HERWIG) from the data are found, whereas good
agreement is observed when data and simulations are not
corrected for the UE contribution (see Appendix A). This
indicates that the UE is underestimated by these models, as
reported in [65] for PHOJET and in [63] for HERWIG
simulations of the UE density of charged and neutral
particles with pT > 0.5 GeV=c.

E. Leading charged jet size

The left panel of Fig. 11 displays measured distributions
of the average radius, hR80i, containing 80% of the total jet
pT observed in jet cones with R ¼ 0.2, 0.4, and 0.6. The
distributions are corrected using the bin-by-bin method
described in Sec. VI A to account for instrumental effects.
No corrections are applied for UE contributions, which are
estimated to have a negligible effects on measured hR80i
values. Jet widths are largest at the lowest measured pT and

decrease monotonically with increasing pT, indicating that
high pT jets are more collimated than low pT jets (as
observed in Figs. 6, 8, 9, and 10) in a similar way as
predicted by various MC models and in qualitative
agreement with prior measurement by the CDF [17]
Collaboration.
Figure 11 also displays hR80i distributions predicted

by PYTHIA (tunes Perugia-0, Perugia-2011, AMBT1),
PHOJET, and HERWIG. All five models qualitatively
reproduce the observed magnitude and pT dependence
of hR80i at R ¼ 0.2 and 0.4. However, at R ¼ 0.6,
HERWIG, PHOJET, and PYTHIA Perugia-0 tune system-
atically underpredict the data at low pT. The PYTHIA tunes
Perugia-2011 and AMBT1 are in best agreement with the
measured values.

F. Jet fragmentation

The left panels of Figs. 12, 13, and 14 present the
measured pT spectra FpT and scaled pT spectra Fz and

Fξ of charged particles in leading charged jets recon-
structed with a resolution parameter R ¼ 0.4. The data are
corrected for instrumental effects, UE background, and
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contamination from secondary particles. Systematic uncer-
tainties, indicated by the shaded bands, include the detector
response, UE subtraction, correction for secondaries and
event generator dependence.
The particle momentum distributions FpT are shown for

four bins in jet transverse momentum: 20–30, 30–40, 40–
60, and 60–80 GeV=c. The latter three are scaled by factors
of 10, 100, and 1000, respectively, for clarity. The pT

spectra of the jet constituents span 2–3 orders of magni-
tude. The slopes are steepest for the lowest pT jets and
progressively flatter with increasing jet pT. This depend-
ence is essentially driven by the jet energy scale, as
illustrated in Fig. 13, which displays fragmentation dis-
tributions Fz for jets in the same four jet momentum ranges.

For zch > 0.1 all measured distributions are consistent
within uncertainties, indicating a scaling of charged jet
fragmentation with charged jet transverse momentum.
The fragmentation distributions Fξ, shown in Fig. 14,

resolve in more detail the differences observed for small

values of zch. For small values of ξch ≲ 2, the distributions
exhibit the approximate scaling already seen for Fz,

whereas at higher ξch, corresponding to small zch,

a pronounced maximum (“hump-backed plateau”) is
observed, indicating the suppression of low momentum
particle production by QCD coherence [47,48]. With
increasing jet transverse momentum, the area of the
distributions increases, showing the rise of particle multi-
plicity in jets (as observed in Fig. 7), and the maximum

shifts to higher values of ξch. This observation is in
qualitative agreement with full di-jet fragmentation func-

tions measured in pp̄ collisions at
ffiffiffi

s
p ¼ 1.8 TeV [23] and

with expectations from QCD calculations based on the
modified leading logarithmic approximation (MLLA) [73].
The measured fragmentation distributions are compared

to calculations obtained from the HERWIG [28,29],
PHOJET [30] and PYTHIA [27] event generators and
the ratios of the calculated MC distributions to measured
distributions are shown in the right panels of Figs. 12, 13,
and 14. The UE contributions to MC events are estimated
and subtracted using perpendicular cones pointing into the
event transverse region as described in Sec. VI D. At high
particle transverse momenta and high zch, the data and
simulations agree within uncertainties, except for the two
lowest jet pT bins, where the measured yield seems to be
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systematically higher than the simulations with PYTHIA

tunes Perugia-2011 and AMBT1 for zch > 0.6. In the low-

momentum/high-ξch region, the measured yield is system-
atically larger than the ones produced by the PYTHIA and
PHOJET simulations. To investigate the discrepancy at low
particle momentum, data and simulations are also com-
pared without subtraction of the UE (see Appendix A). In
this case, the excess of low momentum constituents in data
over PYTHIA simulations is still significant, however
reduced in magnitude and comparable to other measure-
ments at higher constituent momenta [12]. It is thus
concluded that in the PYTHIA tunes investigated in this
work, the UE contribution to the low momentum particle
yield is overestimated relative to the contribution from hard
parton fragmentation. The data at low pT are best described
by the HERWIG event generator, which hints to a sensi-
tivity of the low momentum fragmentation to the details of
the parton shower model in the simulations.

IX. SUMMARY AND CONCLUSION

In summary, we reported measurements of the inclusive
charged particle jet cross section, jet fragmentation and jet

shapes at midrapidity in pp collisions at
ffiffiffi

s
p ¼ 7 TeV using

the ALICE detector at the LHC.
Jets were reconstructed with infrared and collinear safe

jet finding algorithms, kT, anti-kT and a seedless infrared
safe iterative cone based algorithm, SISCone. As the
measured inclusive jet spectra did not show any significant
dependence on the jet algorithm used, all observables
discussed throughout the paper were based on jets recon-
structed with the anti-kT sequential recombination algo-
rithm, commonly utilized in the LHC community. In order
to gain as much information as possible, the anti-kT
algorithm was run with several resolution parameters R

ranging from 0.2 to 0.6.
The inclusive charged jet cross section was measured in

the p
jet;ch
T interval from 20 to 100 GeV=c and found to be

consistent with the ATLAS measurement at the same
collision energy. The ratios of jet cross sections for
resolution parameter R ¼ 0.2 over R ¼ 0.4 and 0.6,
respectively, are found to increase with increasing pT of
jets, pointing toward an increasing collimation of particles
in jets around the jet axis. This finding, expected by pQCD
calculations, is corroborated by a detailed study of hR80i
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variable defined as the average radius containing 80% of
total charged jet pT. The pT density is found to be the
largest near the jet axis and decreases radially away from
the jet axis. This radial decrease is found to be larger for
high pT jets which are more collimated. The averaged
charged particle multiplicity in jets (hNchi) increases with
jet momentum and resolution parameter R. We studied
charged particle fragmentation in leading charged jets. The
scaled pT spectra of charged particles associated with jets
exhibit a pronounced maximum commonly referred to as
‘hump-backed plateau’ consistent with the suppression of
low momentum particle production by QCD coherence.
The area of the distribution increases with jet pT and
reflects the observed increase of hNchi discussed above.
The observed behavior is in qualitative agreement with
MLLA [73] calculations and earlier measurements [23] in

pp̄ collisions at the Tevatron (
ffiffiffi

s
p ¼ 1.8 TeV). The jet

fragmentation distributions for the measured jet pT ranges
indicate a scaling of charged jet fragmentation with jet pT

for zch > 0.1.
All measured observables were also compared to several

MC generators (PYTHIA, PHOJET, HERWIG). None of
the generators gives a perfect description of the measured
charged jet cross section. PHOJET and most of the
PYTHIA tunes used in this work overestimate the cross
section. PYTHIA Perugia-2011 agrees reasonably well
with the data for intermediate and high charged jet pT,
whereas HERWIG reproduces best the cross section at low
jet pT. The jet properties are reproduced rather well by the
MC generators. The agreement of the calculations with the
data for observables hNchi, hR80i, and radial pT density is
typically at the level of 5%–10%. In case of the fragmen-
tation functions, the data are better described by the
HERWIG event generator. The high-momentum (low-

ξch) region is relatively well described by the generators,

while for the low momenta (high ξch), the measured yield
significantly exceeds PHOJET and PYTHIA predictions.
We emphasize the relevance of this observation for the
choice of a generator based pp reference for future
measurements of jet fragmentation in nuclear collisions,
where similar effects are predicted as a signature of parton
energy loss in the hot and dense strongly-interacting
medium.
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APPENDIX: RESULTS WITHOUT

UE SUBTRACTION

The results are presented for charged jet properties
including inclusive differential jet cross section, hNchi,
hdpsum

T =dri, FpT , Fz and Fξ without subtraction of UE in
comparison to MC generators.

In the top panels of Fig. 15, the measured charged jet
cross sections are compared to predictions from PYTHIA
(tunes Perugia-0, Perugia-2011, and AMBT1), PHOJET,
and HERWIG for R ¼ 0.4 and 0.6. The UE is not
subtracted for both data and MC. The ratios of the MC
simulations to measured data are shown in the bottom
panels of Fig. 15.
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The corrected mean charged particle multiplicity distri-
butions hNchi in the leading jet are shown in Fig. 16 (left
panel) as a function of jet pT for R ¼ 0.2, 0.4, and 0.6. The
UE is not subtracted for both data and MC. Ratios of the
predictions to the data are displayed in the right panel.
The left panels of Figs. 17, 18, and 19 show leading jets

average pT density radial distributions hdpsum
T =dri mea-

sured with resolution parameters R ¼ 0.2, 0.4, and 0.6,
respectively, without subtraction of UE (both for data and

MC). The right panels of Figs. 17, 18, and 19 display ratios
of the model calculations to measured data.
The left panels of Figs. 20, 21, and 22 present the

measured pT spectra FpT and scaled pT spectra Fz and Fξ

of charged particles in leading charged jets reconstructed
with a resolution parameter R ¼ 0.4. The UE is not
subtracted for both data and MC. The ratios of the
calculated MC distributions to measured distributions are
shown in the right panels of Figs. 20, 21, and 22.
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