smatics and Computer
snice Ulvision
Mathematics and Computer

Science Division

Scisnce Division

fd
1

i i
Ay o
LY

ANL §4-+
ANL-87-7

Beyond “Speedup”:
Performance Analysis of
Parallel Programs

by Kenneth W. Dritz and James M. Boyle

CERN LIBRARIES, GENEVA

A

CM-P00069321

Vational Laboratory, Argonne, lllinois 60439
{ ihe University of Chicago
ior the Uniled States Department of Energy under Contract W-31-109-Eng-38

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com-
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency
thereof.

Printed in the United States of America
Available from

National Technical Information Service

U. S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

Distribution Catcgory:
Mathematics and Computers

(UC-32)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

BEYOND “SPEEDUP”: PERFORMANCE ANALYSIS
OF PARALLEL PROGRAMS

Kenneth W. Dritz
James M. Boyle

Mathcmatics and Computer Science Division

February 1987

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy, under Contract W-31-109-Eng-38.

Contents

Abstract

1. Background and Motivation

2. Structure of the Applications

3. Measurement of Critical-Region Contention Times

4. Experiments with Further Refinements of Critical Regions

5. Obtaining the Signature of Process-Busy Times

6. A Novel Technique for Measuring Speedup and the Factors That Limit It
7. Conclusions

References

16

21

23

28

30

Nown e

9

10.
11.

12.
13.
14.
15.

List of Figures

Times and speedups for the Fibonacci program on the Denelcor HEP, original implementa-
tion of monitors
Times and speedups for the Fibonacci program on the Denelcor HEP, after optimizing the
monitors
Total per-server lock acquisition times for the Fibonacci program on the Denelcor HEP, us-
ing optimized monitors
Calculated critical-region contention times based on the data in Figure 3
Effect of adding another server when a monitor lock is already saturated
True critical-region contention times measured on the Encore Multimax
True critical-region contention times measured on the Encore Multimax, with artificially
varied frame sizes
True critical-region contention times measured on the Encore Multimax, with local frame
lists
True critical-region contention times measured on the Encore Multimax, with local frame
lists and a distributed chore queue
Typical signature of process-busy times
Example of outputs produced by the predictive speedup and losses instrumentation during a
run using 12 processes
Predictive speedup and losses using optimized monitors
Predictive speedup and losses with artificially varied frame sizes
Predictive speedup and losses with local frame lists
Predictive speedup and losses with local frame lists and distributed chore queuecou....

iv

11

12
13
15
16

17

18

20
23

25
27

29
29

BEYOND “SPEEDUP”: PERFORMANCE ANALYSIS
OF PARALLEL PROGRAMS

Kenneth W. Dritz
James M. Boyle

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, Illinois 60439-4844

Abstract. This paper addresses the problem of measuring and analyzing the per-
formance of fine-grained parallel programs running on shared-memory multipro-
cessors. Such processors use locking (either directly in the application program,
or indirectly in a subroutine library or the operating system) to serialize accesses
to global variables. Given sufficiently high rates of locking, the chief factor
preventing linear speedup (besides lack of adequate inherent parallelism in the ap-
plication) is lock contention—the blocking of processes that are trying to acquire
a lock currently held by another process. We show how a high-resolution, low-
overhead clock may be used to measure both lock contention and lack of parallel
work. Several ways of presenting the results are covered, culminating in a
method for calculating, in a single multiprocessing run, both the speedup actually
achieved and the speedup lost to contention for each lock and to lack of paraliel
work. The speedup losses are reported in the same units, “processor-equivalents,”
as the speedup achieved. Both are obtained without having to perform the usual
one-process comparison run.

We chronicle also a variety of experiments motivated by actual results obtained
with our measurement method. The insights into program performance that we
gained from these experiments helped us to refine the parts of our programs con-
cerned with communication and synchronization. Ultimately these improvements
reduced lock contention to a negligible amount and yielded nearly linear speedup
in applications not limited by lack of parallel work. We describe two generally
applicable strategies (“code motion out of critical regions” and “critical-region
fissioning”) for reducing lock contention and one (“lock/variable fusion™) applica-
ble only on certain architectures.

1. Background and Motivation

How does one measure the “speed” or “efficiency” of a parallel program to determine how effective-
ly parallelism is being employed? Usually, the technique is simply to measure the total running time of the
program in a multiprocessing environment (say, with n processors) and compare that with the running time
of the same program in a uniprocessing environment: the ratio of the two times yields a dimensionless
quantity that can be interpreted as the “speedup.”

Beyond “Speedup” 2 ANL-87-7

The central motivation for the research we describe here was our belief that, by itself, the speedup
figure for a parallel program provides little information. In particular, if the speedup is less than n, as is
often the case for applications exhibiting fine-grained parallelism, one gains no insight into the reasons for
the loss. Typically those reasons range from inherent lack of sufficient parallelism, about which one can do
little without rethinking one’s algorithms, to faults of implementation causing unnecessary contention for
resources in the form of synchronization delays—contention that can often be reduced by simple
refinements. Our work has yielded techniques for observing, characterizing, and measuring these various
factors, and in the process we have also begun to catalog some standard techniques for reducing resource
contention in fine-grained parallel programs.

We shall assume throughout this paper that a parallel program whose performance is to be measured
is organized so as to divide its work in some way among the physical processors available to it. The
program’s work is performed by cooperating computational processes, which may be fewer than or more
than the number of physical processors, and whose number may even vary in time. If the number of
processes is less than the number of processors, the processes can be simultaneously active on different
processors. Whether all of them are or not, at any given moment, depends in part on the other activity in
the system. If the number of processes is more than the number of processors, there is in general no hope
for them all to be active simultaneously’, and adding more processes cannot increase the speedup. Thus,
we confine our interest to the case of fewer processes than processors, or an equal number of each, and we
also assume that the other activity in the system during the measurement runs is negligible (indeed, we re-
quire it). This permits us to ascribe reasons with greater confidence to observed losses of speedup.

An alternative way to compute a measure of performance akin to speedup is to calculate the average
number of busy (not blocked) processes during the run. (A technique for doing so is described in Section
6.) Indeed, on the assumption that the total amount of work to be performed is fixed by the problem and
not influenced by the number of processes sharing in that work, the two techniques yield comparable
results. If that assumption does not hold for the parallel program in question, then the two techniques will
in general yield quite different performance measures, and the result yielded by the alternative technique
should probably be called “average concurrency” rather than speedup. Our applications have all been
characterized by a fixed amount of work.

Our measurement techniques perturb the program somewhat, though we have been careful to keep
the instrumentation overhead to a minimum, We are satisfied that it is small enough, in relation to the
phenomena being measured as well as the real work performed by the program, that little would be gained
by trying to distinguish the overhead from productive work. Nor do we measure and report the overhead
associated with the extra logic required to parallelize a serial program; although it may be substantial, it
can be considered productive work because it is necessary to the organization of the program in parallel
form. These two kinds of overhead will still be present when the program is run using only one process,
although there will of course be no synchronization delays produced by the parallelization logic or ob-
served by the instrumentation logic. As long as one is interested in studying the performance of a parallel
program as a function of the number of processes, the overhead for parallelization and instrumentation will
be common to all runs and should not significantly affect the comparisons. On the other hand, if one is in-
terested in ascertaining whether it is worth parallelizing a serial program in the first place, then the cost of
the extra logic required to do so is clearly of interest; it may be that the running time of the parallel pro-
gram using n processes exceeds the running time of the serial program, even though it does not exceed that
of the parallel program using one process.

We assume that, on the shared-memory multiprocessors with which we are concerned, serialization
of concurrent accesses to global variables by multiple processes is achieved, at least at some level, with
locks and locking. The application program may use locks directly, or it may use higher level primitives
provided by a subroutine library or the operating system. In the latter case, locks and locking operations on
them will typically underlie the implementation of the higher level primitives. In any case, serialization is
achieved by the temporary suspension of a process that is attempting to acquire a lock already held by
another process. (We consider “busy waiting” to be equivalent to process suspension.) The duration of the
suspension can be measured.

'However, the Denelcor HEP, which takes processes making memory references out of the pipeline shared by those not doing
so and routes them to a memory switch, permits speedups in excess of the number of processors (pipeline slots). If there is sufficient
parallelism in the problem, the slow memory references will be overlapped so well that their effects will not be felt, while at one pro-
cess they will keep the pipeline from achieving even its full one-processor speed.

Beyond “Speedup” 3 ANL-87-7

All of our measurement methods are based on the interpretation of accumulated times spent waiting
to acquire individual locks?. The duration of the wait for acquisition of a lock may be arbitrarily small, so
that it is important to use a high resolution clock to measure that duration. Often one has no choice but to
call some run-time routine to get the time of day just before trying to acquire the lock, call it again just after
acquiring the lock, and subtract the two times. One has to be concerned as well about the overhead of the
calls, especially since the second one takes place inside the critical region. On the Denelcor HEP the clock
routine we used had a resolution of 100 nanoseconds. On the Encore Multimax, we used a free-running
counter with a period of one microsecond. The free-running counter is particularly attractive because read-
ing the clock amounts only to reading a memory location. Moreover, on that system the timing facilities
were integrated with the locking routines for this study, reducing the number of subroutine calls needed to
perform a timed lock from three to one.

Our applications have all been obtained by using the TAMPR program transformation system to
derive parallel Fortran programs from various abstract programs written in pure applicative Lisp, as
described in [1]. Our ultimate motivation and goal was to create, use, and study the performance of a
parallel version of the TAMPR program transformer itself. That goal has been achieved, subject to the
qualification that incremental, parallel garbage collection was initially deferred and is at present being
developed. Other programs, some with even more inherent parallelism than the TAMPR transformer, have
been used for early experiments with our performance measurement techniques. One such program, a sim-
ple Lisp program to compute Fibonacci numbers recursively, is clearly a toy as far as practical matters are
concerned; it has, however, been an extremely useful model of an inherently parallel program for our
research purposes, and it has the advantage of not using CONS and thus not requiring a garbage collector.

2. Structure of the Applications

Since expression evaluations can have no side effects in pure applicative Lisp (PROG and SETQ are
not used), those that are the arguments of a function invocation may be evaluated in any order, and there-
fore in parallel, prior to invoking the function. Thus, opportunities for parallel evaluation are explicit and
easy to identify, needing only a strategy for exploitation.

The arguments of a function invocation may be elementary objects, primitive function invocations
(CAR, CDR, etc.), or user-defined function invocations. Evaluation of arguments of the first two types,
which we will call “trivial” arguments, involves an amount of computation that is known in advance to be
very small; in fact it is too small, in relation to the communication and synchronization overhead involved,
to be worth parallelizing. On the other hand, evaluation of “non-trivial” arguments—that is, user-defined
function invocations—involves an amount of computation that is potentially much larger, though unknow-
able in advance. We assume that each user-defined function invocation represents an amount of work
worth executing in parallel with other work, if such an opportunity exists.

But not every user-defined function invocation represents an opportunity for parallelism. Only when
two or more of them occur as arguments in some argument list do they actually represent work that can be
overlapped with other work. Thus, a direct strategy for exploiting the parallelizable work would be to look
for argument lists containing two or more user-defined function invocations as arguments and arrange to
create new processes to evaluate those function invocations in parallel. Of course, this strategy would still
leave open the question of how to implement user-defined function invocations that do not create opportun-
ities for parallelism.

The latter user-defined function invocations could be implemented by the usual methods for imple-
menting recursion, that is, by using a stack. However, using two mechanisms raises the possibility that two
implementations of each function would be required, one for recursive invocations and one for parallel
ones. Moreover, this approach requires an unbounded stack for each parallel process, which would create
major problems of memory management.

The fact that creation of a new parallel process requires creation of a new copy of local memory for
the process, together with the fact that creation of such memory is one of the major steps in implementing

*Though we describe our methods in terms of timed lock attempts, it should be possible to adapt them to higher level synchroni-
zation primitives if low-level locking operations are not directly accessible. The important principle is the timing of the duration of
the process suspension caused by the primitive operation. The timing of a high-level synchronization primitive may include a
significant amount of time that is not actually process suspension, and it will be necessary to identify that “overhead” time and treat it
properly. One method for distinguishing the overhead from the actual waiting time is discussed at the end of Section 3.

Beyond “Speedup” 4 ANL-87-7

recursion, suggests that the implementation of user-defined function invocations could be simplified by
creating a new process for every such invocation, whether it gives rise to parallelism or not.

Thus, a straightforward approach to extracting the parallelism potentially represented by user-defined
function invocations can now be described. Whenever a user-defined function invocation is encountered, a
process (which can now be called the “parent” process) would create a subprocess to evaluate it.
Meanwhile, the parent process would continue with whatever it can do concurrently (such as evaluating
neighboring trivial arguments or creating additional subprocesses to evaluate non-trivial ones). Eventually
the parent process would arrive at a “synchronization point,” where it must wait for the subprocesses it has
created to complete and deliver their results to it before it can proceed.

The undeniable appeal of this straightforward, “unbounded number of processes” approach is the
ease with which it can be proved correct. Nevertheless, two considerations make it infeasible. First of all,
the number of simultaneously extant processes would be unbounded. Few systems have the capability to
create and manage a large number of processes, let alone an unbounded number of them. Even when that
is possible, having more of them than the number of physical processors is unlikely to be profitable, as we
remarked in the previous section. Secondly, process creation is often a rather expensive operation, since it
usually has to create a new swap image by copying the current one and writing out the copy. The overhead
of frequent process creations is simply intolerable in fine-grained parallel programs, where the “grains” of
computational work between the process creation points are very small.

We proceeded by adopting the straightforward approach as a desirable abstraction, which we then
refined by using correctness-preserving transformations. The result was a much more efficient, and still
correct, implementation. Even during the refinement process, however, we deferred low-level implementa-
tion decisions as long as possible. This approach permitted us to separate the work of producing a correct
design from the work of producing an efficient one, with the result that neither activity was compromised
for the sake of the other. Such simplification of programming is typically the result of employing abstract
programming techniques.

The final design employs a fixed number of processes that remain continuously in existence for the
duration of the run. We call these processes servers. When a server arrives at a point where it has some
work that can be done in parallel with other work, it creates a conceptual entity called a chore® to represent
that parallel work and adds it to a queue of chores awaiting service by a server. The chore is physically
represented by a structure called a frame®. A chore’s frame contains storage for the chore’s arguments and
local variables as well as an assortment of control items, one of which is a number, called the resume point,
that identifies the computation to be performed by the chore. All the servers are identical and contain
within them the instructions for performing the computations required by any chore.

The basic actions of a server, as actually implemented in our system, are described in the next few
paragraphs. To avoid straying too far from our main theme of performance analysis, we have elected to
omit a discussion of how we arrived at these actions by refining and optimizing the abstract model present-
ed above. Further details may be found in [1].

A server with nothing to do tries to obtain a chore from the chore queue. (Servers are in this state in-
itially and from time to time as they complete chores.) If the chore queue is empty, the server waits until a
chore becomes available, i.e., until another server creates a new chore and queues it for service. Once a
server obtains, or is bound to, a chore, it branches to the instructions for performing the chore’s computa-
tions, as identified by the resume point.

While carrying out the instructions for its current chore, C, a server may be directed to create a sub-
chore, SC, of C. To do that, it first creates and initializes a frame for SC. The server will shortly continue
by putting C aside and adopting SC as the next chore to serve. Before it does so, however, it must arrange
for the proper future handling of C. What is needed for C depends on whether SC was the last of a
number of subchores that can be created before C needs their collective results to continue, or more remain
to be created. If there are more subchores to create, the server updates the resume point in C’s frame to
identify the continuation of C and requeues that frame on the chore queue; if not, it updates the resume

3Some researchers use the term fask to refer to what we are calling a chore; others use task as a synonym for process. To avoid
confusion, we prefer to invent a new term.

“Whenever we talk about queuing a chore or obtaining a chore from the chore queue, we are of course referring to the queuing
or dequening of frames representing chores.

Beyond “Speedup” 5 ANL-87-7

point nevertheless but does not requeue C’s frame. (Later, we will say what subsequently happens to C in
this case.) It has now effectively unbound itself from C and rebound itself to SC, which it then begins to

serve.

Assuming for the moment that there are more subchores to create, and C has been requeued, an
unoccupied server, if one exists, will obtain C from the chore queue, and both SC and C will proceed in
parallel. On the other hand, if all the servers are occupied, then C will reside on the chore queue for a time
(during which maximal parallelism is achieved) before being acquired by a server. C will sooner or later
be dequeued and resumed at its resume point, and thus its next subchore will be created. Eventually its last
subchore (of the current group that can be performed in parallel) will have been created, and its next step
must use their results. Finally, with its resume point identifying that next step, it is left not bound to any
server and also not on the chore queue. In this state it languishes (while neither demanding service from
servers nor keeping them from serving other chores) until all of its subchores have completed and delivered
their results to local variables in C’s frame.

Now, what changes the state of a such a chore, C, that is neither bound to a server nor on the chore
queue? C’s frame is pointed to by each of its subchores’ frames. (That linkage was created during the ini-
tialization of those frames.) As some server arrives at the end of the instructions for one of those sub-
chores, say SC, the server stores SC’s result in C’s frame, frees SC’s frame, and decrements a count (kept
in C’s frame) of the number of subchores of C still remaining to be completed. What it does next depends
on whether SC was the last of the subchores on which C was waiting, i.e., on whether the count has just
been reduced to zero or not. If so, the server simply adopts C as the next chore to serve (effectively un-
binding from SC and rebinding to C), thus changing C’s state. If not, the server requests another chore
from the chore queue, leaving the state of C to be changed in the future by the server that completes the
last subchore of C.

The implementation we have just described is not the most intuitive one imaginable. For example,
when a server creates a subchore, SC, of a chore, C, and SC is not the last of a group of subchores that can
be performed in parallel, why does the server requeue C and take over SC, instead of quening SC and
merely continuing with C? Under conditions of full load, this alternative implementation would build and
traverse the computation tree in breadth-first order. The chore queue would contain more work, at any
given moment, than is required to keep the servers busy, and this would merely increase the storage re-
quirements without achieving additional parallelism. On the other hand, our actual implementation, under
the same full-load conditions, builds and traverses the computation tree in depth-first order; together with a
LIFO discipline for the chore queue, it achieves a kind of load balancing by delaying the creation and
queuing of additional chores when all the servers are occupied. Our chore queue contains fewer chores on
average, with those that are present representing the potential for generating additional work rapidly when-
ever a server does become unoccupied. The depth-first behavior closely mimics recursion in one-process
runs, with each link in the recursive call-stack represented either by an implicit link to a chore on the chore
queue (i.e., one whose final subchore has not yet been created) or by an explicit link to a chore not on the
chore queue (i.e., one whose final subchore has been created). In multiprocess runs, the behavior of each
server also mimics recursion when all the servers are occupied—with the exception that, since parts of
their respective call-stacks are interleaved on the chore queue, a server completing a non-final subchore of
achore C may resume an eligible chore other than C (and some other server may resume C).

Program initialization starts by reading n, the number of processes. Then n—1 server processes are
started (forked) and told, by a parameter passed to them, that they are not the “main” server (which has yet
to be started). On seeing that parameter, these servers all immediately request a chore from the chore
queue. Since no chores have been queued yet, they all become blocked, waiting for work. The main pro-
gram then executes the server subroutine itself (by calling it synchronously), passing a parameter that
identifies this invocation of the server as the “main,” or distinguished, one. On secing that parameter, the
server takes a different path from the others: it falls into the first chore, eventually generating subchores
that will cause the other servers to receive work.

Near the end of the program, the computation tree collapses naturally until there is only one server
left with work to do (the others will be once again blocked, waiting for work). When it finishes its last
chore, that server (which may, but need not, be the distinguished server) creates and queues a special “sui-
cide” chore, then terminates. One of the remaining servers gets the suicide chore from the chore queue; it
performs that chore by queuing another suicide chore and then terminating itself. Thus, all the servers
commit suicide in their turn. The non-distinguished servers terminate by exiting (the number of processes

Beyond “Speedup” 6 ANL-87-7

decreases by one as each exits), while the distinguished or “main” server terminates by retuming to its call-
er, the main program.

The behavior of non-distinguished servers differs from that of the distinguished server in only one
other respect. Should a non-distinguished server happen to get a chore requiring it to read some input, that
server cannot perform that chore (each process may have its own copy of the file control block of an open
file; thus one process may not know how another left the file positioned by previous reads). In this case
the server requeues the chore to be picked up by another server; then it spins in a loop until, as must even-
tually happen, the distinguished server gets that chore and resets a shared (i.e., global) variable, breaking
the loop. By then, many non-distinguished servers may have received the input chore, passed it on, and en-
tered a loop; they are all released when the distinguished server gets the input chore. Aside from these
differences, any server may perform any chore. There is no requirement, for example, that the final non-
suicide chore be performed by the same server that performed the initial chore.

It is possible to recognize the instructions for all the chores, and to grasp their hierarchical relation-
ships, just by looking at the program text. It is also possible to infer the path that will be taken through the
program text when it is executed using just one process. On the other hand, it is not possible to predict, just
by reading the program text, the path that any given server will take when the program is executed using
multiple processes. Though the results of executing the program (i.e., the outputs it produces) are deter-
ministic, its detailed behavior—even the global flow of control through the program—is decidedly non-
deterministic and highly variable from one run to the next.

It should be apparent that the servers share certain global resources, and that to maintain those
resources in a consistent state requires the servers to serialize their accesses to them. For example, the
chore queue is a shared (global) resource: any server can put a frame on the chore queue, and any server
can take a frame off the chore queue. Clearly, two different servers could attempt to access the chore
queue simultaneously. To prevent two servers from dequeuing the same chore or otherwise destroying the
integrity of the linked list structure and control information representing the chore queue, and to preserve
the semantics of the original Lisp program, the second server must be prevented from accessing the chore
queue until the first completes its transaction. Similarly, there is a reservoir of frames that may be allocated
by any server in the act of creating a chore, or freed by any server in the act of completing a chore. (Freed
frames are available for reallocation.) Thus the “frame space” is a shared (global) resource, and two
servers needing to access it must serialize their accesses. By the same token, the “list space” consumed by
the CONS function is a shared resource whose accesses by multiple servers must be serialized, as is anoth-
er space in which atoms like print names and big numbers are allocated. Finally, the count field of each
frame is a shared resource requiring serialized access, since two servers could simultaneously be complet-
ing subchores of the same parent chore, leading them both to attempt to decrement, and compare against
zero, the same count field simultaneously.

The protocol that we use for serializing accesses to shared resources is that of monitors [3,5]. A
monitor can be thought of as an abstract data type incorporating the shared resources as objects of the type
and the operations defined on them as implicitly serialized operations of the type. In practice, a given mon-
itor is composed of one monitor procedure for each operation, encapsulating all the necessary references to
the relevant objects, with the property that no more than one process can be executing the code in any of
the procedures of the monitor at any given moment. This property of mutual exclusion is typically
achieved by associating a unique lock with each monitor and requiring each procedure of the monitor to
successfully acquire the lock as soon as it is entered, and release it just before returning.

We have several monitors, of which three are worth considering in some detail. An example of a
simple one is the monitor associated with the reservoir of frames. It has two monitor procedures,
CRFRAM (“create, i.e. allocate, a frame”) and FRFRAM (“free a frame”). A server calls CRFRAM to al-
locate a new frame (CRFRAM is a function that returns a pointer to the newly allocated frame), and
FRFRAM to free a frame and make it available for reallocation. The mutual exclusion property of moni-
tors is relied upon to guarantee that two servers will not be allocating or freeing frames simultaneously, or
one allocating and another freeing. The monitor lock, which for this monitor is called FRMELK (“frame
lock™), is held only for the brief duration of a CRFRAM or FRFRAM call; it is released by the same server
that acquired it.

A more complicated example is the monitor associated with the chore queue. It, too, has two moni-
tor procedures, QCHORE (“queue a chore™) and GUBKCR (“get an unblocked chore™). Its monitor lock is

Beyond “‘Speedup” 7 ANL-87-7

called UBCQLK (“unblocked chore queue lock™). Like the frame monitor, the chore queue monitor pro-
vides two complementary functions. The QCHORE monitor procedure is entirely analogous to FRFRAM
in that it adds an object to a global pool. However, GUBKCR differs in a significant way from CRFRAM.
Whereas the exhaustion of the frame reservoir is a fatal condition if it should occur, inability of GUBKCR
to deliver a chore to the requesting server is not at all fatal. Whenever it happens, it means only that there
are fewer than n unblocked chores in existence at the moment—not enough to keep all the servers busy.
That naturally happens at the beginning and end of the run. As we have already said, only one chore exists
initially, and it will in general be a little while before a sufficient number of them are generated to keep all
the servers busy. Similarly, near the end of the program less and less work exists to be done, until finally
there is only one chore left. The amount of parallel work existing at any given time well away from the be-
ginning or end of the program varies, of course, with the application, the number of servers, and other fac-
tors, and it may occasionally dip below n unblocked chores. In any case, when there is insufficient work to
keep all the servers busy, the excess servers (those without work to do) must somehow be suspended until
work becomes available. GUBKCR uses another feature of the monitor protocol, the so-called delay
queue, to suspend servers that call it when, and as long as, the chore queue is empty.

The delay queue is implemented with another lock (called UBCQSW), which is manipulated in the
following way. UBCQSW is initialized to the locked state (unlike the monitor locks, which are initialized
to the unlocked state). GUBKCR locks the monitor lock, UBCQLK, as usual on entry. It then determines
whether the chore queue is empty or not. If not, it dequeues a chore (that is, a frame representing a chore),
unlocks the monitor lock, and returns a pointer to the dequeued chore. If, on the other hand, the chore
queue is empty, it increases a count of the number of idle servers (UBCQCT, initially zero) by one,
releases the monitor lock, and tries to acquire the delay queue lock. Since the delay queue lock is initially
(and normally) locked, the server will become suspended. Note that no server “owns” the monitor lock at
the moment, so any of the remaining servers can execute either GUBKCR or QCHORE. If another server
executes GUBKCR, it will find the chore queue still empty and likewise increment UBCQCT and become

suspended waiting on UBCQSW, the delay queue lock®.

On the other hand, when a server executes QCHORE, that server will do the following. It first locks
the monitor lock, of course. Then it performs its normal function of adding a chore to the chore queue. It
then examines UBCQCT to determine whether any servers are waiting (in the delay queue) for work. If
none are (i.e., UBCQCT is zero), it merely unlocks the monitor lock and returns to its caller. However, if
the cumulative number of GUBKCR calls exceeds the cumulative number of QCHORE calls, UBCQCT
will be greater than zero, indicating that one or more servers are indeed waiting, in which case QCHORE
unlocks the delay queue lock and retumns to its caller without ever unlocking the monitor lock. The effect
of this is to release one of the servers that had previously become suspended in GUBKCR at the attempt to
lock the delay queue lock. Thus one server will finally succeed in acquiring that lock (so that the lock al-
most immediately returns to its normal, or locked, state). That server proceeds by decrementing UBCQCT,
the number of waiting servers, by one, dequeuing the chore recently added to the chore queue, unlocking
the monitor lock (finally), and returning the dequeued chore to its caller.

It should be emphasized that the chore queue monitor lock, UBCQLK, may be unlocked by a dif-
ferent process from the one that locked it. Nevertheless, like all monitor locks it is held only for brief
periods. That lock is not the one that provides for the indefinitely long suspension of a server while it is
waiting for work; it is the delay queue lock associated with the chore queue monitor that does that.

The chore queue monitor is the only one of our monitors that uses a delay queue. Actually, it would
be theoretically possible for the frame monitor to use one in a similar way, so that exhaustion of the frame
reservoir need not be fatal. That is, if CRFRAM finds the frame reservoir empty, it could delay the server
making the call until some other server releases a frame with FRFRAM. In marginal cases this might allow
some runs to complete that would otherwise have failed. But there is no guarantee that all the servers will
not become suspended waiting for another one (which does not exist) to free a frame. If that happens, it
will be a fatal condition (and may even lead to deadlock unless sufficient care is used in the design of the

While our chore queue is physically implemented as a queue of linked frames that we manage, the delay queue does not have
such an embodiment as a physical queue and is not managed by us. Servers in the delay queue are those waiting to acquire UBCQSW.
In our case, they are active processes spinning on a spin lock, and the absence of a physical queue and its associated structure means
that there is nothing that specifies which process will get the lock when it is released. In other cases, the lock attempts might be medi-
ated by the operating system with use of an actual queue—its, not ours. We use the term “delay queue” only because of historical pre-
cedent.

Beyond “Speedup” 8 ANL-87-7

monitor). Because the advantages of a delay queue for the frame monitor are so marginal, we never gave
serious thought to implementing it.

The remaining monitor that we will discuss in detail has the same simple behavior as the frame mon-
itor (“acquire the monitor lock, perform the requested service, release the monitor lock, and get out™), but a
more complicated structure. It is the monitor that serializes accesses to the count fields of frames. It could
have been organized with a global monitor lock and a single monitor procedure to decrement the count®,
and while this would indeed prevent two servers from updating the same count field simultaneously, it
would also prevent (unnecessarily) two servers from updating different count fields simultaneously. While
a count field is a shared (global) resource, in the sense that any number of servers could be trying to access
it simultaneously, each count field is in reality a separate shared resource.

It is appropriate to have a separate monitor, with a separate monitor lock, for each count field. We
do, and the monitor lock protecting the count field in a particular frame resides in that frame as well. We
could have placed the code for acquiring the lock, updating the count, and releasing the lock in a pro-
cedure, but that would have required the lock (as well as the count field) to be passed to the procedure as an
argument. The closest we could have come to passing the lock as a parameter would have been to pass a
pointer (array index) to it. Actually, certain unique properties of the Denelcor HEP, discussed in the next
section, enabled us in our initial implementation to call a non-standard intrinsic function in HEP Fortran in
place of calling a monitor procedure of our own design. Once we moved to other machines and had to
abandon the use of the intrinsic function, instead of calling a monitor procedure to update the count (near
the end of each chore) we simply executed, in-line, the few instructions (including those to acquire and
release a lock) required. to do so. Even though the count monitor is really a dynamically varying number of
separate monitors, with the monitor procedure code statically replicated in a fixed number of places, it is
useful for categorization purposes to think of it as the count monitor.

3. Measurement of Critical-Region Contention Times

Our programs are so structured that they can be run with any number of processes from one up to
some reasonable maximum (usually the number of physical processors available). The real work to be
done is essentially independent of the number of processes; all that changes as the number of processes, n,
is varied is the distribution of the grains of work among the processes. In general, as n is increased we
would expect to see higher levels of parallelism, with the result that the fixed amount of work would take
less time to complete.

Our earliest investigation, using the abundantly parallel Fibonacci program on the Denelcor HEP,
simply timed the recursive computation of nine Fibonacci numbers (the largest being fib(25), which is
121393) and displayed the time at the conclusion of the run’. The results are displayed in Figure 1. The
speedup figures reported in Figure 1 were obtained in the usual way by dividing the one-process time by
the shorter running time using n processes. For a sufficiently small number of processes, the running times
exhibit nearly the expected inverse relationship to the number of processes, and the speedups exhibit nearly
the expected linear relationship. The gain resulting from further increase in the number of processes slows
and eventually halts.

Following [6], we intuitively believed that increasing contention for the locks used to serialize access
to the critical regions (interior of monitor procedures) is what ultimately limited the speedup achievable in
this program as more server processes were added. When contention is negligible, each server tackles
chores in this simple program at a rate that is essentially independent of the number of servers; thus, as the
number of servers is increased from one, the rate at which attempts are made to acquire a particular moni-
tor lock, by one server or another, increases in proportion. As the average time between lock attempts de-
creases, the probability of finding a particular lock locked increases (once a server acquires a lock, the
server holds it for a fixed time related to the function of the monitor procedure that was called). Thus, to

One might imagine the need for a second monitor procedure to initialize the count field of a chore just before creating its first
subchore. But that access of the count field can be made without taking steps to serialize it, since no other server can possibly access
the same count field until at least one subchore of the chore is created and queued.

"The timing included the parallelizable problem-dependent computation only; i.e., it excluded the initialization of the Lisp en-
vironment, the reading of n, and the creation (forking) of the servers, all of which involve considerable I/O and proceed serially.

Beyond “‘Speedup” 9 ANL-87-7

n Time (sec.) Speedup
1 89.017 1.000
2 45.645 1.950
3 31.272 2.847
4 24.187 3.680
5 20.049 4.440
6 17.437 5.105
7 15.741 5.655
8 14.773 6.026

10 14.425 6.171

12 14.335 6.210

14 14.337 6.209

Program: Fibonacci

Special features: None
Machine: Denelcor HEP
Conditions: Path to local memory enabled

Fig. 1. Times and speedups for the Fibonacci program
on the Denelcor HEP, original implementation of monitors

minimize lock contention one should strive to make critical regions as short as possible®.

Our original monitor procedures were designed to be as simple as possible. The initial goal was to
make them functionally correct; optimizations could come later. We felt ready, after our first few runs, to
consider ways of shrinking our critical regions, and we were interested in seeing what effect that would
have on achievable speedups.

Thus, we reimplemented our monitor procedures with efficiency in mind. One strategy we employed
for shrinking them was to take code at the top or bottom of a monitor procedure that was not required to be
in the critical region (because it did not reference shared data) out of the critical region. This was accom-
plished by moving the monitor lock operation down over any instructions that did not reference shared
data, and by moving the monitor unlock operation up where possible. For example, in CRFRAM it was
convenient to initialize several fields of a newly created frame before returning it to the caller, but those ac-
tions do not need to be serialized with the actions of any other server. Thus, it is sufficient to obtain a
frame from the reservoir while inside the critical region, then end the critical region by releasing the moni-
tor lock, then initialize the frame outside the critical region (but still inside the monitor procedure), then
deliver the frame to the caller. We call this type of optimization code motion out of critical regions.

Another strategy for shrinking critical regions, applicable on the HEP because of its unique architec-
ture, is what we call lock/variable fusion. On the HEP, any word of memory is capable of being used as a
lock while simultaneously holding data. Depending on the pattern of usage of one’s shared variables inside
monitor procedures, it may be possible to combine in one word the function of a shared variable and the
function of the monitor lock or the delay queue lock, thus allowing the use of hardware instructions that
simultaneously acquire the lock and fetch the variable, or store the variable and release the lock. All of our
locks were capable of being fused with appropriate shared variables, thereby eliminating the overhead of
fetching and executing additional instructions for synchronization.

The possibility of lock/variable fusion was apparent to us very early, so early in fact that it influenced
the original structure of the count monitor. At the end of the previous section we discussed the fact that the
count field of each frame is a separate shared variable requiring its own monitor. In the “unoptimized” or
naive implementation of monitors, this would necessitate a separate monitor lock for each count field. The
obvious place to store the lock is in the same frame as the count field that it protects. By fusing the lock
with the count field we were able to reduce the size of the control portion of each frame. Even better, once
we performed the fusion we were able to dispense with the writing of the count monitor procedure and
merely call the non-standard intrinsic function IAINC provided with HEP Fortran. The function reference

®This idea is not new. It permeates many early writings, at least implicitly (see, e.g., [7, 9]; also [8, pp. 262-266]).

Beyond “Speedup” 10 ANL-87-7

TAINC (<count field>, 1) generates in-line code to lock the count field, simultaneously fetching the count;
decrement it by one; store the updated count back into the count field, simultaneously unlocking it; and re-
turn the previous value of the count. These advantages prompted us to adopt what was effectively an op-
timized version of the count monitor from the very start. Once we progressed to other machines, where
lock/variable fusion was not possible, we were forced to adopt a more conventional approach (and also ac-
cept a 20% increase in the size of the control portion of a frame), though we continued to use an in-line ex-
pansion of a small monitor procedure instead of actually calling one.

Before we can describe our third strategy for shrinking critical regions, we must fill in further details
of the implementation of the reservoir of frames. Frames come in different sizes (the control portion is
fixed, but the number of fields for parameters of the corresponding Lisp function invocation and the
number of fields for chore-local variables depend on the chore); thus the size of the variable part of the re-
quired frame is passed as a parameter to CRFRAM. When a frame is freed by FRFRAM, it is put on a list
of freed frames of its size (referred to as the frame list of that size). Thus, CRFRAM first tries to reuse a
frame of size s by consulting the frame list of size s. If that list is non-empty, a frame is removed from the
list and returned to the caller. If it is empty, on the other hand, then a new frame of size s must be allocat-
ed from a heap of space reserved for that use. The frame heap is just a contiguous area from one end of
which space is consumed as needed for new frames. Nothing is ever returned to the frame heap, and its
state is therefore identified by a single shared variable, which is the pointer to the next available position in
the heap. Initially, of course, all the frame lists are empty. Consequently, the early calls to CRFRAM will
result in frames being allocated from the frame heap. The rate of new allocations from the frame heap will
trail off as a supply of freed and reusable frames builds up on the frame lists for each size.

The original, unoptimized version of the frame monitor used a single global monitor lock, FRMELK.
In that version, if one server attempts (say) to get a frame of size 5 while another is already engaged in get-
ting one (or even freeing one) of size 4, the second request will be delayed. If both requests involve only
the frame lists, and not the frame heap, then, since they involve different frame lists, they can proceed in
parallel. Only if both need to access the frame heap is there a need to serialize parts of the two requests.
Thus, it is appropriate to consider each frame-list head (pointer to the first element on the associated frame
list) to be a separate shared variable, the accesses to which are serialized by separate locks. Both the
frame-list heads and their locks are arrays indexed by the size of the requested frame (the head for the
frame list of size s is called FRMLST(s), while the lock for that list is called FRLLKS(s)). Also, the
pointer to available space in the frame heap is a separate shared variable (AVAILP), which too can have its
own lock (FRMELK is now used solely for that).

The optimized version of FRFRAM, which never needs to access the frame héap, simply locks the
frame list corresponding to the size of frame to be freed (i.e., the appropriate element of FRLLKS), adds
the frame to the list, and unlocks the list. The optimized version of CRFRAM first locks the frame list of
the appropriate size, then checks to see if that list is non-empty. If it is non-empty, CRFRAM removes a
frame from the list, unlocks the list, and returns the frame to its caller. If it is empty, on the other hand, it
unlocks the list, then it locks the heap (i.e., locks FRMELK), allocates space from the heap (aborting if the
heap is exhausted), unlocks the heap, initializes the new frame, and returns the new frame to its caller.

We call this third strategy critical-region fissioning. 1t is applicable whenever the shared resources
protected by a critical region can be partitioned into a collection of subunits that can be accessed in paral-
lel, effectively partitioning the critical region into either physically separate or logically separate subre-
gions that can be executed in parallel.

Our second timing investigation assessed the effect of performing all three of these optimizations
simultaneously. We again merely measured the total time of the run and computed the speedup as before.
The results are displayed in Figure 2, which should be compared with Figure 1. It appears from the data
that the optimizations were effective, presumably by reducing contention for critical regions (i.e., for their
locks) in the regime where it had earlier been significant. Moreover, the saturation point (at which adding

more processes produces no further speedup) was pushed farther away®.

SThe reader is reminded (cf. footnote 1) that speedups in excess of the number of physical processors, in this case eight, are pos-
sible with the HEP. At the same time, one should not assume that the leveling off of speedup at about 9, which is apparent in this
figure and the next, signals exhaustion of the capacity of the eight processors. Some of the Encore Multimax experiments we describe
in Section 4 were in fact first performed on the HEP, where they produced maximum speedups in excess of 13 (for 24 servers).

Beyond “Speedup” 11 ANL-87-7

d edu; n

n Time (sec.) Speedup
1 89.136 1.000
2 45412 1.963
3 30.854 2.889
4 23.589 3.779
5 19.261 4.628
6 16.391 5.438
7 14374 6.201
8 12.902 6.909
10 10.965 8.129
12 9913 8.992
14 9.490 9.393
20 9.705 9.185

Program: Fibonacci

Special features: Optimized monitors
Machine: Denelcor HEP

Conditions: Path to local memory enabled

Fig. 2. Times and speedups for the Fibonacci program
on the Denelcor HEP, after optimizing the monitors

It was at this point in our investigation of parallel programs that we first developed the desire to learn
more about what they were doing than the gross speedup figure could tell us. We had just improved our
software to reduce critical-region contention and observed the expected improvement in speedup. The data
did not tell us by how much we reduced the contention for any particular lock. We were beginning to ima-
gine scenarios in which improvements in one monitor procedure reduce contention for its lock so much that
other locks become bottlenecks, by virtue of the increased rate of attempts to lock them. Under these con-
ditions it would be hard to identify what really happens as improvements are made, and hard to understand
the observed magnitude of their effects. Before conducting any further studies, we decided to explore
ways to instrument the programs to gather direct information on the amount of contention for individual
locks.

What we wanted to know was how much total time is spent unproductively waiting for any particular
lock to be acquired. More precisely, we wanted to know much of its total execution time a typical server
spends just waiting for any particular lock. This information can be gathered by timing each lock attempt
and amassing those times in an appropriate way. Fortunately, a clock routine having enough resolution to
be useful was available on the HEP.

Our first attempt to measure and display critical-region contention times was implemented on the
HEP as follows. In each monitor procedure of interest, just before trying to acquire the monitor lock we
call the 100-nanosecond clock routine (named CLOCK) and save the result in a process-local variable. As
soon as possible after successfully acquiring a lock, we again call CLOCK and save the result in another
process-local variable. Later, after the end of the critical region (i.e., after releasing the monitor lock, but
before returning from the monitor procedure), we subtract the first time from the second and add the differ-
ence to the accumulated acquisition time for the lock. That accumulation is held in another process-local
variable. Thus, each server accumulates its acquisition time for each lock of interest independently of the
other servers. Each server initializes its acquisition time accumulators to zero as it starts up, and each
prints the final values of its accumulators as it terminates!®,

It is vitally important to organize the instrumentation code so that it perturbs the program as little as
possible. This means adding as little extra code as possible, especially inside critical regions. The second
call on CLOCK, and the saving of the value returned by that call, are the only unavoidable additions to crit-
ical regions.:

'°The printing was added to the suicide chore described in Section 2 at a point before it queues another suicide chore. This was
enough on the HEP to avoid output synchronization problems, though in environments where such output is sufficiently asynchronous
other techniques will be necessary.

Beyond “Speedup” 12 ANL-87-7

Using the technique just described, we instrumented the optimized version of the Fibonacci program
to report the time each server spent trying to acquire the locks for the frame monitor and the chore queue
monitor. For the former we had a single acquisition time accumulator, rather than one for each frame list,
and we did not measure the relatively insignificant time spent trying to acquire the frame heap lock (recall
that it is accessed far less frequently than the frame list locks once the frame lists are populated with freed
frames). Thus, the contention that we would infer from the data would be the time that a typical server was
delayed in getting or frecing a frame of some size because another server was busy getting or freeing a
frame of the same size at the moment. For the chore queue monitor we merely needed a single accumulator
to amass the time spent trying to acquire the chore queue monitor lock, UBCQLK.

At the end of the run we were presented with n lines, each displaying one server’s total lock acquisi-

" tion time for these two monitors. Though it was possible for the times to vary from one server to another,
we observed very little variation (not more than about five percent), which is almost surely due to the ran-
domizing effect of the division of work in our program. Figure 3 summarizes the data obtained from one

[Total Per-Server Lock Acquisition Time vs. n
Frame list Chore queue
n | Time (sec.) | Speedup | locks acquisition | lock acquisition
time (sec.) time (sec.)
1 108.5 1.000 8.9 28
2 552 1.966 438 14
3 374 2.901 34 1.0
4 28.5 3.807 28 78
5 233 4.657 24 .65
6 19.8 5.480 22 57
7 17.4 6.236 2.1 51
8 15.6 6.955 2.1 A7
9 14.3 7.587 2.1 44
10 134 8.097 22 43
11 12.8 8.477 24 41
12 124 8.750 238 .39
13 12.3 8.821 33 36
14 122 8.893 39 34
15 122 8.893 44 32
16 122 8.893 49 30
17 122 8.893 53 28
18 12.2 8.893 5.6 27
19 122 8.893 6.0 25
20 12.2 8.893 6.3 .24
Program: Fibonacci

Special features: Optimized monitors,

lock acquisition time instrumentation
Machine: Denelcor HEP
Conditions: Path to local memory enabled

Fig. 3. Total per-server lock acquisition times for the Fibonacci
program on the Denelcor HEP, using optimized monitors

of these runs on the HEP. The lock acquisition times shown in the figure are “eyeball averages” taken over
all the servers. By comparing the time and speedup columns in Figure 3 to those in Figure 2, one can see

that, although the instrumentation code increased the running time, it had very little effect on the speedup'!.

The lock acquisition times we obtained were not the sought-after contention times. They include a
certain amount of overhead associated with the attempt to acquire a lock and with the reading of the clock.
That overhead results in the recording of a measurable (i.e., non-zero) interval between the pre-lock clock
reading and the post-lock clock reading, even when the lock is immediately available and there is no con-

The instrumentation code amounts to a CLOCK call and an assignment added both inside and outside critical regions, and an
accumulation and further assignment added outside critical regions. The invariance of the speedup would be expected if these addi-
tions maintained the ratio of time spent outside of critical regions to time spent inside them.

Beyond “‘Speedup” 13 ANL-87-7

tention. Clearly, the lock acquisition times reported for the one-process run are made up entirely of these
overheads, since there is no other process to produce contention. As the number of processes is increased,
but not to the point where contention becomes noticeable, the total lock acquisition time experienced by a
typical server declines (in inverse proportion to the number of servers) because the same number of lock
attempts, and therefore the same amount of measurable overhead, is spread over a larger number of
servers. Our data show that the frame list lock acquisition times behave in this manner up through about
five or six processes. As the number of processes is further increased, rising contention dominates further
declines in the overhead, causing the lock acquisition times to turn back up. For the frame monitor, the
data show this effect beginning at about ten processes; because there are fewer calls to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>