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It is well known that, in doing light-cone gauge calculations, it is mandatory to regularize the
unphysical (g n) ~# poles by use of the Leibbrandt—-Mandelstam prescription. This technique
is also applied to general axial gauges and it is proved that it is a suitable regularization
procedure for these gauges as well. In order to find the relation between the Leibbrandt
prescription and the more familiar principal value prescription with its simpler Lorentz
structure the temporal gauge limit n— 0 is performed (within dimensional regularization).
Although this limit is found to be singular for multiple poles, the analytically regularized one-
loop integrals agree with the results obtained within the principal value technique for the

temporal gauge.

I. INTRODUCTION

Since Mandelstam proved the UV finiteness of N =4
Super Yang-Mills theories by means of the light-cone
gauge,' this (very singular) gauge has become increasingly
popular. Like the axial gauges the light-cone gauge is charac-
terized by an arbitrary but constant vector r,, . For the axial
gauges n,, need only satisfy n?s£0, whereas for the light-cone
gauge n’> = 0. As a consequence of such gauges additional
factors (gn) ~' appear in the momentum-space propagator
of the gauge field, and loop integrals become more intricate
than in covariant gauges. A major problem is the consistent
treatment of the unphysical singularity (gn) ~?. However,
for axial gauges the principal value (PV) prescription has
proved to be a well-suited (but not unique) way to imple-
ment power counting and unitarity.” It amounts to setting’

1 =1imi( 1,1 ) (1.1)
(gn)? 0" 2\(gn+ic)® (gn —ie)”
But for the light-cone gauge the PV prescription is afflicted
with serious peculiarities, namely*?: (a) some of the diver-
gences created by one-loop corrections manifest themselves
as double poles (w — 2) ~2 (space-time dimension 2w ); and
(b) the PV prescription gives rise to poles situated in the
second and third quadrant of the complex ¢° plane which
effectively prohibits Wick rotation and hence the application
of standard power counting.

Because of these defects of the PV technique it had to be
abandoned for the light-cone gauge. Instead of it Mandel-
stam and Leibbrandt independently introduced the so-called
light-cone (LC) prescription™®

= lim (—ﬂﬁl——)ﬁ, £>0,
(gn)? e~0-\(gn)(gn*) +ic

wheren,, = (ng,n) and n; = (ny, — n), and proved that this
LC prescription exhibits all the necessary items of a viable
regularization of the (gn) ~# poles. The vital point with the
LC prescription is that two space-time directions »,, and n;
are singled out to regularize the (gn) ~ £ polea la Eq. (1.2),
yielding well-behaved integrals at the price of a richer tensor

(1.2)
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structure of the integrals (terms proportional to n*p, n*n, ...,
occur) and the appearance of nonlocalities in the divergent
parts.

On the other hand, we find it desirable to investigate
whether the LC prescription is applicable to axial gauges as
well and, in doing so, to put the regularization of axial gauge
poles and light-cone poles on equal footing. For arbitrary
axial gauges (and therefore arbitrary #,, and n; ) this should
be a straightforward procedure. However, in the temporal
gaugen = 0 (n, = n, ) we have to expect difficulties as can
be understood from

lim e = PV(L) — imsgn(gn*)é(qn),
e~0* (gn)(gn*) + ic

qn
(1.3)

which is obviously meaningless for the temporal gauge. In-
deed, the limit n—0 of Eq. (1.2) is singular for 8> 1 and
some additional regularization is necessary. By analytic con-
tinuation of the exponent of the axial pole we obtain well-
defined momentum integrals, which are identical to the PV
results, as we will prove.

In the following only integrals with a factor
(gn*)?((gn)(gn*) + ie)~? are analyzed in Minkowski
space with Feynman parameters and dimensional regular-
ization. More complicated expressions can be reduced by
repeated use of the identity

gn* (g +p)n*
(gn)(gn*) + ie (q+pIn(g+p)n* +ic
v (e
"~ pn + ipn* \ (qn) (gn*) + ie
_ (g +p)n* )
(q+p)n*(g+p)n+ic)

(1.4)

Remarkably enough one does not pick up additional contri-
butions from & functions, as it is the case for the correspond-
ing formula holding in the PV technique:
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S S (_1_ — ;) + m8(nq)8(np) .
gn(g+p)n  pn \qn (g+p)n (15

The paper is organized as follows: in Sec. II we derive
the general formulas for LC-regularized one-loop integrals.
Section III contains some new results on the light-cone
gauge, whereas Sec. IV is devoted to the trickier business of
the temporal gauge.

Il. AXIAL ONE-LOOP INTEGRALS AND THE LC
PRESCRIPTION

Due to Eq. (1.4) integrals to be computed in one-loop
calculations can be reduced to (8.
= diag(1, — 1, — 1, — 1), space-time dimension 2w ],

I(af): = fd“’q (> + 2pg — L + i) “"‘(qn*)ﬁ

X((gn*)(gn) +in)~# ,

azl, B>, £>0, 7>0. (2.1)
For further covenience we define
T, (@) = (274 @+ 3pg-L +ie)
X((gn*)(gn) + i)~ flg).  (2.2)
Hence
I(a,B) = [T'(a~B)/T(a)]( —D)I(a—BB1),
(2.3)

where D=1n*(d/dp). Note that regarding Wick rotation
the LC prescription in a sense is much more natural than the
PV prescription, because the denominator is positive semi-
definite. Therefore in case of absolute convergence the above
integral is well defined by analytic continuation to the Eu-
clidean region if L + p?>0. Toevaluate I(a — 8,8;1) we em-
ploy the conventional Feynman trick and the Euclidean
identity

fdz“’ g (aq® + 2b(ng) + g(ng)*> + f) =

7™\ Ja T(a—w)
-(%) \/—E-‘T_ 2.4
where
C=a+gn?’, F=f—b*%/C. 2.4")
We obtain for T(a —B.5:1),
= , « TI(a—w) !
la—pa1 = ir(— D o O ——B)I‘(ﬁ)fo
X (4d)™Px P (1 —x)f -l po—e,
(2.5)
with the choice n,, = (n,,0,0,n;) and the definitions
A=x+ni(1—x),
A=x+n(1—-x), (2.6)

2 2
Z =T 2 1— ((Psﬁs) _ Lpono) )
+p°+ (1 —x) y 4
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Now we apply the differential operator ( — D)? to the
integral (2.5), utilizing the general chain rule$

/2]

- 18 .
Iap)=I{aB;(gn*)?)=ir" ¥ (— 1)+
=0

J
MNa—o+B8-)) B!
F(@)T'(B) B -2

1
XJ dxx~P(1 —x)f!
0

X (A4 )~V? go—a-B+i(DFV-U D2 LY,
(2.7)

where

ixzn2
2 A4

2.7)

DJ:x(I’.@+l£_3), DY =
4 T4

For arbitrary n,, Eq. (2.7) leads to complicated generalized
hypergeometric functions.® However, the divergent parts
proportional to {w — 2) ™! can be integrated elementarily
and are polynomials in p?, pn, and pn*. But—like in the
light-cone gauge—the complete graphs may contain non-
polynomial parts due to the decomposition Eq. (1.4). Note
that naive power counting is fulfilled and that I(a,B) is a
regular function of n,, for 7,70 and n,#0. Fortunately, for
the most interesting limiting cases, namely the light-cone
gauge (n; = ng) and the temporal gauge (n, =0), I(a,B)
can be evaluated in terms of hypergeometric functions of one
variable: Due to its homogeneity of degree — Bin n we can
simplify the integral (2.7) by setting n, = 1. The results for
general  are recovered by substituting 7, —1,/n, and multi-
plication with 1/n5.

Because the rest of the paper will be dealing with these
two gauges we now provide the appropriate values of Eq.
(2.6):

ng =1, pi=pi+pi;
Ai=x+n(l—x)=1;
light-cone gauge,

- 1,
A;_—.x+n2(1 —-x)—*[
x, temporal gauge;

N (2.8)
&L =L—pl+xpj — 71’%

{L ~ P +x(n*p)(np), light-cone gauge,

L —p*+xp} temporal gauge.

lil. THE LIGHT-CONE GAUGE

For the light-cone gauge the integral 7(a,8) [Eq. (2.5)]
can easily be calculated in terms of hypergeometric func-
tions F(a,b,c;z) (Ref. 6):
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F'a+B—w)
rB+nHr(e)
( 2 )B (n*p)B

wn) (L—py e

XF(I,a +B—of+1; 2 (”*P)(np)) .

n*n  p?—L
3.1

IapB) =i(—1)*n"

Due to D >L: = }(x°n?/AA4) = 0 on the light cone this inte-
gral is rendered more convergent than naive power counting
would demand. Equation (3.1) is valid for arbitrary two-
point functions in spontaneously broken gauge theories or
QCD. Considering massless theories, i.e., L + p? = 0, yields
the result

Na+8—w)
Fare@)(o—a
(n*p)? (n*n/2)—°
[ — (n*p)(np)1=+Fo’
This result is in agreement with special cases of this formula

which have already been derived in the literature, e.g., see
Ref. 5.

Iaf)=i(—1)*7”

3.2)

IV. THE TEMPORAL GAUGE

The central point of this paper is the investigation of the
temporal gauge limit »,, — (1,0) within the LC prescription

switching over to the temporal gauge one encounters serious
difficulties, due to the fact that the g5 # pole is not complete-
ly regularized by the LC prescription. This feature is made
explicit in the singular behavior of the momentum integrals
atn, = 0, seenin the x integration at x = 0. For the complete
regularization of the g5 # poles we will use analytic regular-
ization.

As a first step we assume the exponents to be contin-
uous; the asymptotic behavior of the momentum integrals
for n;—0 is then contained in the parameter integral

1
jdxx‘”' (x+n})"
0

=B(1 —B',a+ﬂ'_ l)(ng)l—-a—ﬁ
1

+————=F(aa+B —la+pB;—n3)
1—a—p’

4.1)
(note that the poles for @ + 8’ = 1 cancel!). In order to find
out for which 3 the integral Eq. (2.5) becomes singular we
have to study 7 (a,8"; f(¢)) [Eq. (2.2)] for f(q) = (gn*)~.
Evaluating this integral for 8 = 0,1, and 2 we obtain

1
7(a,ﬂ’;l)~fdxx“ﬁ' (x+ni)~ 2
(4]

=B(1—[)”,B'—-—%)n§‘2”'

2 1 1 1
Lo - Lo dion),
+1—2/3' (2’3 2’B 2 }

for the g5 # poles. As already mentioned in the Introduction, (4.2)
J
_ 1 1
I(a,ﬂ',qn"‘)~n3fdxx“ﬁ'(x+n§)“3’2+J‘abcx’_‘f"()c+n§)"/2
0 (4]
' o 1) 2\1 -8 2”3 (3 ' 1 ’ 1 2)
=B(2-B'8" —=)(n s p(lp -l n
(288" - 7)) Lo e I e
3 . 2 1 3 1
P P S T PO W g
+ B'.B VAL +3—“2ﬂ’ Z:B Z’B 2 3 4.3)
1 1
j(oz,B’,(qn"‘)z)~n§J-dxx2“3'(x+n§)*5/2+fdx.¢r2_‘3'(x+n§)'3/2
0 0
1 . 2n 5 1 1
=B 3__ ’ /____) 3—-28 _____F(__ v __ T ’ __;_ 2)
(3-8 -1 ) g F(e -3 g
7 7 3) 3_2B’ 2 (3 1 3 ’ 1 2)
B(3—p' g —2)|n — 2 _Fl2p-p -t _n). 4.4
+ ( BB =R s (38— 58— i (4.4)

ThusI(a,B;1),I(a,B;qn*), and ] (a,B’;(gn*)?) are regular
for B' <1, B'<1,and B' < 3, respectively, and

I(aB)~n}~%, (4.5)

so that lim I(a,B) exists only for 8 = 1.

ny—0

For _B>2, I(a,B) can be defined by analytic continu-
ation of I (a, B',(qgn*)?)in B’ at B’ = B. As Hadamard’s

2783 J. Math. Phys., Vol. 28, No. 11, November 1987

principal value is characterized by consistency with differen-
tiation, which is guaranteed by analytic continuation, this
amounts to taking the PV of ¢ (g3 + ie) ~#, which, in turn,
is equivalent to the PV of g5 # (this is easily “tested” with the
basis {g2|neN} of L,[ — 1,1]). Thus we have proved that
the LC prescription is not a complete regularization of mul-
tiple axial poles in the temporal gauge limit; further regular-
ization by means of analytic continuation eventually is
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equivalent to the PV prescription.
In order to confirm this general argument we now turn

Using the integral representation of the hypergeometric
function F(a,b,c;z) (Ref. 7),

to the evaluation of I(a,f) in the temporal gauge. We first
defi F(a,bc;z) = L© f dri®~!
efine . by T () T(c—b)
C:=a—2m+ﬁ—1, i (4'6) X(l_t)c~b-1(1_tz)~a (4.8)
Z:= Po s Z__ Po and formula (9.132) of Ref. 6 we obtain
pPP+L 1—z L—p?
which we insert into Eq. (2.7), Hap) = e (— 1)@ 821 g1
L) <=1 B3 B~ 1Y ) /= &=
af) = ——
F'@)T'(B) /%o (B— 24 T ()
1 -—
X [[dxx=r21 (1 -0 M TG+)HTB—j+P
0
r - R .1
©ro . (4.7) —pg—ﬁF(ﬁ,c,ﬁ —J +—;z). 4.9)
(L —p»)(l —xz/(1 = 2)F (L +p%) 2
J
The sum is calculated in the Appendix, yielding the final result
T(a+B8/2—a)T() FB/2a+B/2—wz) 5 even
I( ,ﬁ) iﬂm(-—l)a F((,B+1)/2) (L +p2)a+ﬁ/2—u ) (4 10)
BT TN @ | Na+ B+ 1D/2—wTQ) , FIB+D/2a+ B+1)/2— a2 5 odd '
T(B/2) (L +p2)a+(ﬁ+1)/2—w ’ ’
n, = (ny,0), which is in complete agreement with the PV result of Konetschny.?
l
V. SUMMARY Accordingly we define a new function
In this paper we h.ave‘proved that the LC prescription is Flabez) = [T(B)2~ /T ()T (@ —c+ 1)]
a well-defined regularization of the axial gauge poles as well
X F(a,b,c;z) . (A2)

and derived the general formula for axial one-loop integrals
within the LC prescription. We discussed the limiting cases
of the light-cone gauge, where we found some new formulas,
and the temporal gauge. For the latter the LC prescription
does not regularize the g4 # poles sufficiently: the limit n—0
is singular. However, the analytically regularized LC results
turn out to be identical to the results obtained within the PV
technique. Hence, in a way, we put the regularization of the
axial gauges and of the light-cone gauge on the same basis.
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APPENDIX: PROOF OF EQ. (4.10)

In order to prove the relation under scrutiny [Eq.
(4.10) ] we proceed from the identity

zF(ab+ lc+ 1;z) = [c(c — 1)/b(c —a)][F(a,b,c;z)
—F(a— 1,b,c—1;2)] . (Al)
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Then the functions # (5, j) and the coefficients ¢ (8, j),

F(B,j) =FBa—jB—j+42),
FrB+1) .
-, 0 2,
cB.)) ={TB—2+ DTG+ & VB’ a5
0, JEZN[0,8 /2],

fulfill the recursions
FBHN=FB-1j+1)—B—-j—NFBj+1),

BN B J+ D —B—-j—HNFBj+ )(A4)

cB))=cB—=2,j—1DB~j—1 +c(B-2).

Now we rewrite Eq. (4.9) in terms of ¢(8, j) and F (B, )
and perform the sum using the recursion given above
(0<k<[B/2]):
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00

[B/2]

j=0 ji=0

J

= SeB-2k—2j—1)(B—j—}—~2KF B—kj+k) +c(B—2k—2))
j=0

X[FB—k—1j+k+1) - B-2k—j—NFB—-kj+k+1]

= SeB-2Uk—2)NF B—k—1j+k+1)
i=o0

~o-{2 - [2)15) - 212D,

Inserting & (B,) and ¢(B,j) witha = a +  — w then
yields Eq. (4.10)
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