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Abstract

A new program which calculates the longitudinal impedance of cylindrcal vacuum chambers is pre-
sented.It is used to analyse bellows and to find a physical explanation for the impedance of these
structures. The impedance of the SPS vacuum chamber is calculated with the program and then com-
pared with the impedance values obtained with beam measurements of various types.The agreement is
very good for the mnductive impedance.Beam measurements of the shunt impedance suggest a broad-
band mode] with a quality factor of 6 which is in reasonable agreement with the up to now accepted
Q=1 resonator.

Prévessin — August 1986



Contents i

CONTENTS

INTRODUCTION ... e s
PRINCIPLE OF THE COMPUTATION . ... ... .. i
THEORETICAL DEVELOPMENT OF THE EQUATIONS .. .. ... ... .
31 Smoothwallcase .. ... ... ...
3.2 Cylinddcal pipe with disCOntnuUIty ... ... ..o
33 Extensiontodoublestep ............. ... ...
3.4  The calculation of the longitudinal impedance. .............................
3.5 Conclusionof thischapter. ... ... ... .. ... .
RESULTS OBTAINED FOR BELLOWS. ... ... .. .. ... ... . i,
4.1 Thegeneral case ...............uiiiit
4.1.1 Twoparallel plateswithastub ....................... .. ... ... .. ..
4.1.2 Thedreular case. . ........... .. .
4.1.3  Circular case,a sequence of undulations. ...................... ......

4.2 A special case the 70 Gevj/c proton synchrotron in Serpukhov (SU Y oL

CALCULATION OF THE SPS IMPEDANCE FROM VACUUM CHAMBER

GEOMETRY ...

5.1  Cormputation of the SPS impedance from the hardware . .. ... . ............ ...

5.2 Measurement of the SPS impedance with beam. . ............. ....... ... ...

521 Inductivepart Z/n .. .. ...

5.2.2  Imaginary part of Z_L ........................................

523 Beam measurement of resistive partof Z/n .. ... ... ...

5.23.1 p-wave stability measurements at 15 Gev/c . ... ...\ ... ..

5.23.2 p-wave measurements at 26 GeV/C .. ...

53 ComcluSion . ...

Acknowledgments . .. .. ... ... ...
References . .. ... .. ...
Appendix A: Application of local Keil-Schnell criterion tobunches ... .. .. .. ...... ... .. ...,
Appendix B: Calculation of inductive wall from bunch length measurement ... . ... ............
Appendix C: Calculation of Z | from the coherent transverse tune shift ... .. S
C.1  Coherent tune shift from space charge . . .......... ... ... . . .. . ...
C2 Coherenttuneshiftfrom Z |, ... ... ... ... . ... ... ..
C.3  The total coherent tune sh.t#f ..........................................

TABLES
SPS impedance computed from hardware .. .............. ... ...

Bunch lengthening . ........ ... ... .



Contents 1

(11
2]

(3]
(4l
(5]
Ll

{71
(8]

p-wave instability measurements at 15 Gev/c . ........ ... 15
p-wave instability measurements at 26 Gev/C ... .. .. 16
REFERENCES

T.Weiland Transverse beam cavity interaction DESY 82-015 March 1982

H.Hereward Coupling impedance of a cross-section change for high frequencies
CERN/ISR-DI/75-47  October 1975

D.Boussard,J.Gareyte Measurements of the SPS coupling impedance Improvement Report
181 June 1980

L.Evans,J.Gareyte Performance Limitations of the CERN SPS Collider CERN SPS/85-19
May 1985

V.1.Balbekov et al Measurement of charateristics of longitudinal microwave beam instability
in the IHEP proton synchrotron Serpukhov 1985

V.1.Balbekov Preprint 85-128 (in Russian) Serpukhov 1985

D.Boussard;CERN Report Lab II/RF/int./75-2 1975

A.Hofmann;Single beam collective phenomena — Longitudinal CERN 77-13 19 July 1977



(V]

1. INTRODUCTION

The impedance of an accelerator as seen by the beam is one of the major pararneters whach de-
termine the performance of a machine.it is in general sufficient to quote the longitudinal value of the
impedance from which the transverse value can easily be derived.This report deals with impedances at
relatively high frequencies,that is frequencies for which the skin effect is dominated by the impedance
caused by cross section variations of the vacuum chamber.In a machine like the SPS many of the vac-
uum chamber volumes are cylindrically symmetric,or can be conveniently approximated by cylindrical
structures.A future machine as the LHC will be completely cylindrical with a few minor excep-
tions.Hence it is justified to concentrate the calculations on these kind of structures.While this simpli-
fies considerably the task of calculating a global impedance we are still faced with an impressive
amount of complexity in a machine like the SPS. Indeed the SPS contains very regular structures like
bellows as well as a sequence of cylinders with various radii.In principle the response of these struc-
tures can be calculated using programs which give the answers in the time domnain [1]. However it is
not possible to probe the frequency domain to sufficiently high frequencies and the output needs fur-
ther treatment to obtam a value of the impedance.Moreover the interpretation of some of the results
obtained with these kind of programs was less than obvious,at least for the author. Therefore we em-
barked on the task of writing a program which calculates the longitudinal impedance for an arbitrary
sequence of cylindrical crosssection variations and which is the subject of this paper. The principle of
the calculation is given int the next paragraph followed by the theoretical development.The paper then
proceeds with results obtained with bellows and some conclusions that can be drawn at that stage.The
first part ends with the calculation of some arbitrary structures.In the second part the impedance cal-
culated from the SPS hardware is compared with the values obtained with beam measure-
ments.Although our main interest lies with the SPS a glance is taken at the impedance of the Serpuk-
hov machine which has very interesting characteristics.

2. PRINCIPLE OF THE COMPUTATION

The recipe of the computation has been given in the paper by H.Hereward in 1975 [2] The pro-
cedure is as follows:

The wave equations are written down for a smooth cylindrcal pipe.The radial boundary condi-
tions generate spatial modes. Their number is theoretically infinite,but in practice good solutions can
be found with a very limited number as will be shown later. Next a radial discontinuity 15 introduced
which generates waves that obey continuity equations in the longitudinal direction.These equations can
be manipulated into a set of linear equations so that all the field coefficients can be determined. The
derivation of the longitudinal impedance Z | 1s straxghtforward.

3. THEORETICAL DEVELOPMENT OF THE EQUATIONS

The coordinate system is shown in fig 1.

3.1 Smooth wall case

A charge is travelling down the center line of the pipe according to a el“'™YS propagation
law.Symmetry imposes solutions which belong to the TM wave family.Hence only the components
H & E and E will be different from zerc.Furthermore,all the derivatives with respect to ¢ will be zero
due to the symmctry in ¢. Maxwell’s equations can now be written down in the required detail. The
vector form of the equations is :



rot E =~ u(8H/st)
rot H = g,(8E/5t)
With the preceding simplifications this leads to

yEr + (8E5/6r) =jupH s

vH = jwegE, (1)

é
(81'H¢/8r)/1' =juggE

These equations can be solved for H, which gives the following differential equation of second order:
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Here the following substitution is used : k=w/c ,where w is the angular frequency and ¢ the speed of-
Light. The previous equation can be transformed in the well known “Bessel” differential equation.

82H 1 §H 1
¢ + ¢ +H (1-

SRR /KD orhiky) O

0 &)

i}y + k%)
Mathematically the whole family of Bessel functions are possible solutions. The Bessel function of the
first kind is choosen since it ensures finite solutions in the center of the pipe. The set of equations (1)
and the Bessel equation (3) yield together the following solution :
H¢ = AHJl[r\/(y" +k3)]
E, = (Agg/ioeo)/(v? + k) ofx(x? + k)] @
Er: (YAH/jWSO)J1[r(YZ + k%]
The integration constant Ayy can be found from the boundary conditions.When the pipe material

has infinite conductivity,or in practice sufficiently high conductivity,then Es= 0 at the inper pipe sur-
face r=a.Hence y will take values such that J,[a(y? +k®)I = 0. Or differently:

/(P k) =z
where z_ is the mil zero of Iq

.Some normaiisations can be introduced. The pipe radius a is used as a normalisation coefli-
cient. This leads to the following new geometric varables:

p=t1/a
u=s/a

The normalized angular frequency becomes:
W =w / 021 j a

Also the propagation factors change since



r /&P + k) =py (T +k H=pz
with

k =ak

T =ay

m

The solutions for the three fields can be written for every possible propagation constant I‘m:
B om™ i pAmJ . (sz)ej“’t —Tmu
Esm=v (F‘/Eo)(szkn)Amjo(pzm)ejwt ~Thu 5
E_ = /(u/e)(T /K DA Ty(pz )eit ~ Tm®

The preceding equations are valid for propagation in the positive u direction. For an excitation of the
system in the opposite direction simply replace T’ m by -T m

A final remark on the Bessel functions which describe the spatial distribution of the fields.The function
J, 1s a ‘coslike function while J, is a ‘sin'like function.Indeed for a set-up of parallel plates very sirnilar
solutions are found but with spatial sin and cos functions

3.2 Cylindrical pipe with discontinuity
The system is shown in figure 2
A charge p is travelling from left to right.
o = pei(t-kyu/B)
B =speed of the charge v/speed of light ¢

In the general case a wave F is travelling in the forward direction,ie. the direction of the moving
charge, and a wave B in the backward direction starting from the discontinuity.The origin of these
waves can be understood from the requirement of field continuity.Indeed,the space charge is perfectly
continous at the step for 0 <p <1 but has to be balanced by the F-wave for 1 <p <P.(There is no
space charge to the left of the step for | <p <P ') The link between space charge and fieid is given by
Ampére’s or Gauss’ law.Using the last one gives:

2-n-rEr Sc=p/'eu | is the space charge field

Er 5C = (Plrzﬂeoa)/p

Forl<p<P E +E =0 at the right hand side of the step.
The continuity equations between the F-wave and B-wave can be written. The integration constants
A, are replaced by F | and B respectively. This yields the following set of equations

pckn/2wap =2 TpmdiFm (E, 1<p<P)
Z LpdiBn= 0 pmdiFy (E, p<D (6)
Z zJoBg =2 ZpndoF (E, p<l)

= LB =3 LF_ (H, p<D



The factors zp, and T are respectively the zero’s of the Bessel functions and the corresponding
propagation constant inptgle pipe with normal radius P. Note that the last two equations are redun-
dant.

Our aim is now to find values for the constants F__ and B_ Remark that the equations contain an in-
finite sum in m. In fact it ressembles very much a Fourier analysis if only the J, and J; were cos and
sin 'The Bessel functions have stmilar orthogonal properties as the cos and sin. functions which allow
Fourler type of analysis of the infinite sums. As an example take one of the equations of the set:

= LB =3 ILF_

Multiply both sides with pl, (znp) and integrate over p from 0 to 1. This operation singles out a par-
ticular mode n :

2 z
Pm
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The same technique can be applied to the first equation of the set (6) which describes the continuity
between field and space charge.

-2o(zp, )z r_JI(z.) eck_Jo(zn,.)
. . e . ®
Por_FI, %z ) 2,2 zp, wal’ PP, 2z yzp

The quantities B can be considersd as components of a vector B.The same is true for F_ and
F.Hence equations (7) and (8) can be written more elegantly in matrix form where the substitutions
are obvious:

B - T,.,F =0
9
T, B + F =-C
The square matrices T, and T, can be completely determined from the geometry. The column matrix
C is determined by the passing charge.
3.3 Extension to double step

The set-up is shown in figure 3.

Waves are generated at the two steps when an electric charge passes through the pipe.At cach step
the continuity equations can be written down as was done for a single discontinuity.Proceding along
the same lines the following set of matrix equations is obtained :

Bl - TI‘FI _TI.AT-BZ ‘_"‘O
T,B, + F, - ATB, =.Celknui/B

Celknu./B (10)

- AT.Fl + Bz +T2‘FZ
-ATT,.F, - T,.B, + F, =0
The matrices T, and T, are exactly the same as before.The new matrix AT is a diagonal ma-

trix.Examine the continuity of the first step.The waves B, and F, participate directly in the equation
while B, first propagates from u, to u,.This feature is taken care off by AT.Its diagonal elements are:



AT(m,m)=¢TPm(U2-8:)

The exponential factor of the C-term on the right comss about from the same reasons.

The previous calculation makes it possible to compute a single bellows convolution or an open-ended
cavity.However,bellows are very rarcly made up of one convolution only and important vacuum
chamber sections in the SPS are much more complicated than that.Therefore our goal will be slightly
more ambitious.To explain the procedure turn back to a single dxscontmmty‘ but use the symbols of
figure 3.The main difference is that the normalising dimension a is not necessarily a pipe dimension.
The quantities P,,';,Z, are the normalised values for the radius, the propagation and the zero of J, at
the left of the discontinuity. The quantities to the right carry the index ,.

The matrix elements of T,,T, and C can be written down. The calculation is of course identical as
before.

22, 03022 0, P1)

T,(nm) =
(zxnz'zzmz)J1[zn]P1

o, Zapy PaJolzepy Pila {2, ]
T,(om) = an
(2111;\2‘zzpnz)rznJ 1 z{Zn]Pzz

k Jolz:p Pil
C(n) = (pc/a‘ Pn
ﬂPzznrznjl 2{zn} Pz 2

Extending the method to structures with 2 discontinuities as shown in fig 4 similar equations are ob-
tained as for the longitudinally symmetric cavity of fig 3.The first two lines of the matrix equation refer
to the first discontinuity,the following two lines to the second discontinuity.It is easy to construct the
relevant matrices T, ,T,,an C.They are as given in (11) where index , refers to quantities to the left of
the step and , to quantities to the right.It will be no surprise to the reader that an extension as shown
in figure 5 is straightforward. The matrix equation will contain twice as many lines as the structure
contains discontinuities.

The nature of the matrix equation makes it possible to compute the field coefficients F ) and B
at every discontinuity. Theoretically an infinite number of spatial modes m is needed to. reconstruct the
space- charge field at the step.Fortunately a limited number of them is sufficient to achieve a reason-
able accuracy the same way that a square wave can be accurately approximated with only a few har-
monic sine waves. We will come back to the problem of the required number of modes later.

3.4 The calculation of the longitudinal impedance.
- In principle the response of a given cylindrical structure to a charge excitation is known in terms
of electro-magnetic fields.

The longitudinal impedance is equal to the longitudinal electric field E, integrated along the center of
the structure divided by the passing current. In other words:

Zy ()= (1/pBe)fE (r=0t=s/Bc,s)ds
or in normal quantities:

Z ! (w)= (a/PBC)fES(P =0,t=ua/fc,u)du (12)



The integral goes from ~s to +« . Most of the fields need only be considered between consecutive
steps. At the end of the structure fields exist which extend to - and + . The short two step structure
of figure 3 contains all the ingredients of a general structure therefore the calculation is limited to that
particular case.

The waves exist in 4 types B,,F,,B,,F;, each with a given number of spatial modes. The longitudinal
position of the first step is u=0,the second step is at u="U. The contribution to Z.[ of mode m of
wave B, is:

Z| g m =/ Weo)alpeB)Bs 2. o/ flelet* TimDydu (13)

It can be seen from equations (11) that Chencethe solutions B,,B,,F, etc., contain the factor
pc/a. This factor is cancelled in (13) hence from now on it is dropped altogether from the C ma-
trix. Next,observe the presence of ,/(s/z;),the ‘impedance’ of the vacuum,ie. 1207 Q. Normalise to this
impedance.Equation (13) becomes:

Z“ Blm= Blmzlm/(ﬁkn)j(ejmt-i‘rlmu)du (14)

The same can be done for the other modes and waves.
The integral only involves the exponential propagation factor. The exponent is transformed to make it
suitable for integration:

jot+T, u=(k/B+T, ' (15)
The integration of (14) can now be performed:

Z| B = Bimtag/(Bk)(k + Ty Jelin * T i

The next step is to take the integration limits into account. The ‘internal’” integration Hrmnits,i.e the
ones determined by the longitudinal position of the discontinuity,pose no particular problem,just re-
place u in (16) by the corresponding normalised longitudinal step coordinate. The ‘external” integration
Limits demand inghtly more attention. These limits are at inﬁnity When ') im is real then the integra-
tion result at -o is zero.On the contrary when T, m 1§ imaginary then the exponent in (16) goes to -jeo
defining a unit vector with arbitrary phase. Obwously we cannot proceed dragging this arbitrary phase
along.It i1s proposed that the integration result at infinity is zero.This is a reasonable assumption for
two reasons:

* suppose the integration is performed many times.Each time an arbitrary phase tums up,most
probably different from preceding results.Now take the average value as the final integration
result. This average is zero when a sufficient large number of trial integrations is taken.

* Also on physical grounds it can be shown that the zero result is the most likely among the
possible values. The uncertainty only arises for waves that propagate in the end tubes.In our
treatment this propagation occurs without losses since ohmic losses were not considered in the
pipe material.To avoid the ambiguity assume that the end tubes have an infintesimally small
resistivity. The infinitesimally small attenuation that will result from this is sufficient to make
the fields decay to negligably small values if not to say zero at the infinite integration limits.

In the general case the expressions cannot further be simplified. The values at the integration lim-
its have to be calculated and the results have to be summed over a certain number of modes. However
when the charge is travelling with the speed of light ¢ then 5= 1.An internal redundancy in the infinite
sum. over the modes m can be exploited under certain conditions. In the following calculation the in-
dices ,,; etc. are dropped.

From equations {12),(13) and (14) it follows that the impedance calculation involves an integral
jE (O)du=E (0)/(;1{ —1I'). This integral has to be evaluated at every discontinuity and at +« and - .
The previous ? relation is transformed algebrazcally:



{E(0)du=-E(O)(T + ik )/z’]
=-E(0)T/z*-E(0)ik,,/z* (18)

‘We are interested in the first term which in cur convention involves a sum at the discontinuties. The
values to the left of a step carry a -sign while the the ones to the right carry a +sign. (a consequence
of the integration) From the set of equations (5) the following relation can be dertved :

{E dp=E_(0)T/2* (19)

The integration is to be performed over the radius of the pipe at the step under consideration.

The field E_ is continuous at every step and also its integral over the pipe cross-section.However it
T . .. .

must not be forgotten to take the space charge term into account.The continuity equation has to be

written as an cquality between integrated radial fields left and right from each step.When the structure

starts and ends with the same pipe radius then the space charge contributions cancel. But then we are
left with:

jErdpleft = IE rdpright

or in other words the first term in equation (18) is zero which introduces a considerable simplification.
This is not the only benefit of this operation.The impedance for a structure can be caleculated for a dif-
ferent number of modes.The accuracy of the computation is expected to improve as the number of
modes is larger. For the case $=1 the results do not change significantly for more than 6 modes.For
B <1 at least 12 modes are needed to achieve a sirmlar precision.

3.5 Conclusion of this chapter.

In the preceding paragraphs it is shown that the field coefficients can be calculated in a computer
for a cylindrically symmetric structure consisting of an arbitrary sequence of cross-section vama-
tions.From the knowledge of these field coefficients a value of the longitudinal field integrated along
the chamber axis can be derived.In the case of ultra relativistic particles,8 = l,and for end tubes with
the same radius a very good accuracy is achieved with a small number of spatial modes. The condition
on the end-tube radius is not a serious constraint.Indeed, the vacuum chamber of an accelerator is
closed on itself. The calculation is done for a given frequency.It can be repeated for any frequency It is
possible to make a frequency scan over an arbitrary range with any suitable resolution. All these fea-
tures have been implemented in a computer program called CISLIM.

4. RESULTS OBTAINED FOR BELLOWS.
4.1 The general case

. The betlow structure of figure 6 was first analysed with the time domain analysis program TBCI .
[1] The output of this program is shown in figure 7.The nature of a low Q resonator is evident but the
origin of the characteristic response is not very clear.The same structure is analysed with the frequency
domain program CISLIM presented in this paper.The output is shown in figure 8, The impedance as
shown in figure 8 produces exactly the response shown in figure 7 when subjected to the excitation of
the short bunch which was used in TBCIL. The two programs give the same answer but the first one
does it mn the time domain,the second one in the frequency domain.In order to clarify the arguments
that follow a shightly different bellows was calculated.The resuit is shown in figure 9. Remark the very
typical repeating resonant peaks at higher frequencies. These features recall the properties of open or
short circuited loss-less electrical lines. This electrical line can be identified in the bellow structure as
will be shown below.



The wavelength of the resonant frequency is equal to 4 times the electrical length of the short cir-
cuited parailel line formed by an undulation. The short circuit is simply the pipe material at radius P.
The mechanical length of this line is P-1.

The electrical length=P-1+ G/2

Many simulation results obtained with CISLIM have confirmed the model.

The outputs clearly indicate that the resonator is heavily damped. In other words the resonating struc-
ture looses energy via the waves in the end tubes. It is possible to calculate analytically the damping of
the resonator in a very approximate way.Since it agrees well with the computer simulation results it
will be repeated here.

4.1.1 Two parallel plates with a stub

The set-up is shown in figure 10.The stub is considered to be loss-less line shorted at
A/4=P-1.The spacing between the two conductor plates is U and the distance of the two main plates
at the left and the right is 2(the half distance is the normalisation factor). The extension perpendicular
to the plane of the figure is /

The current of the line continues to flow in the main plates.We now imagine a common fictive retum
conductor for the top and bottom line. This return conductor lies in the plane of symmetry as indicat-
ed in figure 10. The fictive conductor together with the main conductor plates also form a loss-less
parallel line of infinite length. This line is loading the quarter wavelength stub with its characteristic
impedance. The characteristic impedance of the fctive infinite line is:

Ro=2/nl in units of ./(g/ey)

4.1.2 The circular case.

Very bravely we replace [ by 2r iethe pipe circumference,and use the same formuiation as in the
parallel plate case.The characteristic impedance becomes:

Ry =1/m? 20
This is in good agreement with the results obtained with the program for a single undulation.
4.1.3 Circular case,a sequence of undulations.

When the number of undulations is increased then the load R, stays the same while the total in-
ductance increases.Hence the quality factor Q is expected to decrease.The simulations show that this
actually is the case but that Q tends towards a minimum value after a relatively small number of un-
dulations.This can tentatively be explained as follows:

The current in the equivalent plate geometry flows only in the same direction for a length in the order
of A/2.Hence a structure consisting of a large number of undulations can be split in atormic units of
length A/2.The quality factor of the structure will be equal to the quality factor of the A/2 unit.

Q= Ro/mrL=4/(1rzln [P)=4/m(P-1) (21

where L is the inductance of the undulations for a total Jength of A/2 .
For the intermediate case where the undulations occupy less than A/2 the following relation applies:

Q=4/720U EU<(P-1) 22
where 7 is the number of undulations.
The model remains reasonably valid for U < P-1.For the higher resonant modes, ¢ = 2,3,...,this condi-

tion becomes

U< (P-1)/(2% + 1)
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The simulation indicates larger and larger damping for the higher resonant harmonics. This progression
however is no longer linear in /. That means that the fine picture gradually breaks down.

Figure 11 shows the evolution of the quality factor of a bellows structure as a function of the number
of undulations ¢ as derived from the computer simulation and the analytical formula.

Typical bellow geometries have P-1=0.2 .From formula (21} it can be seen that the quality factor
Q for such a structure should be around 2 surprisingly close to the Q=1 of the standard broadband
impedance model.

4.2 A special case :the 70 Gev|c proton synchrotron in Serpukhov (SU 70)

The SU 70 machine in Serpukhov is a nice example of the material presented in the above para-
graph.The vacuum chamber is corrugated over about 80 percent of its circumference.This was done to
achieve sufficient mechanical rigidity for an elliptical chamber with semi-axis of 85mm*58mm.This
aperture is needed to accomodate the large emittance of the injected proton beam.The undulation
depth is 10 mm and the pitch 11 mm.The simulation with the equivalent circular chamber yields the
following results:

w [27 : 6.19 GHz
S(Z/n) : 155 Q
®(Z/n) : 45 Q

Q : 2.9

The Serpukhov team reports in [5] on the results obtained with the direct observation of u-wave sig-
nals.For all high energies they find a resonant frequency w erw = 5.65...6 GHz.From threshold consid-
erattons they conclude that ®(Z/n) =80 Q.However this last figure is critically dependent on the exact
knowledge of the bunch length.All in all a satisfactory correspondence with the theoretical calculation.

The Serpukhov results are also interesting in another respect. Indeed the real part of Z/n was
measured both at high {70 Gev/c) and low (7 Gev/c) energy.This revealed an energy dependence of the
impedance.Balbekov investigated this theoretically [6]. The SU 70 structure was then also analysed
with CISLIM in the mode 8 <1 .A similar energy dependence was found. Ths is illustrated by figure
12 which gives a plot of the impedance ratio:

ZB<DIZ(B=1) or Z(By<<)/Z(By>>)
The impedance reduction is less than 10 percent for energies above 20 Gev/c.

5. CALCULATION OF THE SPS IMPEDANCE FROM VACUUM CHAMBER
GEOMETRY

The SPS vacuum system contains many bellows but,as will be shown later,they are not the most
contributing elements to the impedance. In fact the vacuum pump-port chamber at every magnet unit
turns out to be one of the most contnbuting elements.Moreover it is a more complicated structure
than a bellows.An example is shown in figure 13.The analysis with CISLIM is shown in figure 14 and
a frequency zoom in figure 15 and 16.The value of Z/n=1.8m& . This value is derived from the slope
of the imagimary part of the calculated impedance at low frequencies,that 1s far from any resonance.
The lowest resonance occurs at f= .35 GHz with an extremely high quality factor.We are far from the
bellows case ! The resonant frequency corresponds with the frequency of the lowest propagation mode
in the largest part of the cavity.In practice these resonances are damped by resistances which are
mounted in this vacuum chamber. The program looses precision close to the resonant frequency.This
is due to the fact that the impedance calculation involves sums and differences. The numbers become
extremely large near a resonance and produce even unphysical negative results for ®(Z !1) as can be
seen in the figures. '
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A bellows is imbedded in the vacuum chamber shown in figure 13. The analysis with and without
this bellows gives nearly identical results.The reason for this is that the volume enclosed by the bellow
undulations is negligably small with respect to the total cavity volume.No sign is found of a loaded
structure so characteristic of a sequence of undulations.

This particular vacuum chamber is being modified.Indeed tungsten diaphragms are installed which
will shield the nearby magnets from the synchrotron radiation emitted by crrculating electrons when
the SPS is used as the injector for LEP. It introduces two cross-section variations at very short dis-
tance from each other near the middle of the cavity.Also this perturbation does not alter the results
obtained with the basic chamber.

3.1 Computation of the SPS impedance from the hardware

The example of figure 13 illustrates the fact that in some respects cylinders are an important in-
gredient in the SPS vacuum chamber system.On the other hand quite a few vacuum chambers are not
round at ail,e.g. the almost square vacuum chamber in the bending magnets which is the end tube for
many structures of the type shown in figure 13.For the calculation this rather flat end tube has been
replaced by a round one in such a way that the cut-off frequency is the same in both cases.

Following table gives an overview of the resuits of computer calculation of Z[ of the various type

of vacuum chamber that exist in the SPS.Some remarks are necessary to clarify the information con-
tamed in table 1.
The isolated bellows are designated by their inner and outer diameter in mm.The same is true for the
vacuum chamber transitions.The latter ones are calculated for two cross-section varations which are
separated by many vacuum chamber diameters. The heading Special chambers covers a large family of
different vacuum chambers. The first three are the ones which were treated in the previous para-
graph.The “ZS pot’ is a chamber mounted at both ends of the slectrostatic septa,while TAL, TAW and
TAC are chambers of the collimator system.BBSR is the vacuum chamber of the wirescanner. The
next items are the electrostatic pick-up stations,Schottky pick-up,deflectors for horizontal and vertical
transverse feedback system and the vacuum chamber of the horizontal electrostatic separators. The
next heading Special magnets concerns the vacuum chambers of magnetic septa and fast kicker mag-
nets for injection,extraction and tune measurement. The headings Directional couplers and Cavities are
self explanatory. ‘

The values found under the column heading Z/n are calculated with the prbgram CISLIM while
Z | has been derived using the classical formula

Z| =(2R/b¥)(Z/n) (23)

where b is the radius of the continuous beam tube.For cylindricat pipes b is well defined. When the end
tubes are not cylindrical,as is often the case in the SPS,an equivalent value for b’ has to be
found.H.Hereward has proposed following relation between the radius b of the equivalent cylindrical
tube and the half-height h of a flat chamber:

b =h3/[2(-¢ )] (24)

where ¢ and ¢ are the Lasslet coefficients for the coherent and incoherent image tune shifts.

The image coefficient £ is zero in the horizontal plane leading to negative values for b® and hence for
the coherent horizontal tune shift. The sign is relative in the sense that for a flat chamber the coherent
tune shift caused by the wall impedance has the opposite sign of the tune shift in the vertical plane and
this is the origin of the negative signs in the Z, n columns of table 1.

The main contributions to the impedance come from vacuum port chambers (the first three lines
of ‘Special chambers’),the accelerating cavities and to a lesser extent from the special magnet ¢ham-
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Table /: SPS impedance computed from hardware

ELEMENT Number b/h Zin Zin yA 1 Hor Z n Yer
jelement
mm mg Q MQ/m MQ/m
ISOLATED BELLOWS
165/185 739 78, 122 .09 .033 .033
300/340 W 154 135. .1475 0277 .003 .003
300/340 H 6 135, 616 0037 .0004 .0004
TRANSITIONS
65/135 2 65. 3.867 00773 .004 .004
78/109 40 78. .994 .04 .0145 .0143
115/170 2 115. 1.911 .0038 .0006 .0006
78/170 2 78. 5477 011 .004 .004
78/136 24 78. 2.45 .0588 0213 .0213
136/170 6 136. 808 0048 .0006 .0006
SPECIAL CHAMBERS
V.P..75/.75 336 2. 2.886 .97 ~2.77 4.4
51 168 22. 2.411 405 —-1.16 1.84
1/1 486 30. 1.796 873 —-1.34 2.13
ZS Pot 10 22.5 5.387 0539 -.15 23
TAL/TAW 9 135. 2.283 0205 .0025 0025
TAC 1 78. 4.162 0042 0015 0013
BBSR 3 78. 2.392 8071 0026 0026
ES PUH 108 22, .038 0041 -.012 019
ESPUYV 108 43. .023 0025 003 .003
Schot H/V 2 78. 4.322 0087 003 003
Damper H 2 72 4.156 0083 0035 —.0022
Damper V 2 18. 8.235 0185 —.079 126
Separator 6 80. 5.82 0349 012 —.0076
SPECIAL MAGNETS
MST i6 85. 3.709 0593 018 —.011
MKP 3 30.5 57.711 173 -.26 409
MKA 3 27. 30.122 09 ~.171 272
MKDH 2 28. 14.211 0284 ~.05 .08
MKDV 2 28. 17.97 036 —.063 A
MKE 7 16. 17.675 1237 — .67 1.063
MKQH 1 17. 22.24 02224 -.107 169
MKQV 1 28. 19.368 01936 -.034 054
DIRECTIONAL COUPLER
BPCN 12 46.5 .1533 0018 0019 0019
.BPCS 13 110.5 027 00035 .0001 .0001
BPCO 5 86.5 0923 .00046 0001 0601
ZKY 2 30. 7.273 .01454 0355 0355
CAVITIES
Tr.Wave 198 65. 14.548 2.8805 1.499% 1.4999
St.Wave 1 78. 37.792 0378 0137 0137

TOTAL 6.2 —-5.2 12.5
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bers.As was mentioned before the vacuum port chambers are damped with special resistors.The same
is not true for the accelerating cavities and the special magpet chambers.Moreover the lowest reso-
nances in these structures are well within the frequency spectrum of SPS bunches.The Z/n quoted in
table 1 for these elements is derived from the low frequency inductance.In order to check whether this
is acceptable an effective impedance is calculated according to:

Ze = fZ(w)h(w)dm /fh(w)dw

where h{w) is the bunch power spectrum.

The result of this calculation is shown in figure 17 for some high quality factor resonator.The resonant
frequency is w_ and the bunch length is 4r.In the SPS w =1 for the structures with relatively low re-
sonance frequency,hence the inductive part of the effective impedance is in very good approximation
equal to the inductive part of the low frequency impedance.The effective resistive impedance remains
small even near the maximum of the curve.

The effective impedance of the directional couplers was not computed.It is certainly much smaller
than the value quoted in the table which anyway is extremely small.The impedance of these devices
drops quickly beyond their cutt-off frequency which is at most,depending on the type,around 200
MHz.

From what preceeds it can be concluded that the SPS impedance can probably be approxtmated
by a resonator at 1.35 GHz (the lowest rescnant frequency of the vacuum port chamber) and some
low quality factor determined by the damping resistors in the same chamber.The inductive part of Z 4
and Z in H and V has been computed with CISLIM. '

5.2 Measurement of the SPS impedance with beam.

In what follows we report on experimental results concerning the inductive part of Z/n or Z I the
inductive part of Z N and the resistive part of Z/n.

5.2.1 Inductive part Z/n

When a bunch passes through a chamber with an inductive Z, a decelarating voltage is generated
by this inductance which modifies the longitudinal focussing of the beamn and hence for a given emit-
tance ,the bunch length.The derivation of Z/n from bunch lengthening measurements is given m ap-
pendix B. Table 2 shows that the results are in reasonable agreement with the results of previous para-

graph.

Earlier measurements based on transfer function measurements of longitudinal quadrupole oscil-
lations gave 10Q< Z/n <18 .[3]

5.2.2 Imaginary part of Z 1

The imaginary part of Z , can be determined by measuring the coherent tune shift of a single bunch as
a function of its intensitf%Thesc measurements were done several times in the SPS. The result is shown
in figure 18 .The interpretation of these data has to be done carefully since two effects produce a linear
tune shift dependence with the bunch intensity,that is to say the imaginary part of Z | and the direct
space charge effect. The method to unfold the two contributions is explained in appendix C.The net
result is that the two effects add in the vertical plane and subtract in the horizontal plane. Both effects
are of the same order of magnitude such that the net effect in the H plane is very near zero.

The tune shift dependence can be read from fgure 18:
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Table 2: Bunch lengthening

(10%) (ns) (eVs) (MV) (MV) ()
4 1.65 .469 1.67 0.0 -
4.2 1.675 " 1.361 0787 5.13
4.6 1.68 y 1.576 0938 5.6
6. 1.74 y 1.41 26 12.11
8 1.7 - 1.518 152 5.26
8.6 1.75 - 1.386 .284 9.27

3(Z/n)="7.47 Q

horizontal ~ AQp/i=0 normalised equivalent emittance sy =50 pradm
vertical AQy/i=2.8 107 normalised emittance ey =25 pradm

where 1'is the peak current in the bunch.
This yiclds:

Z, =13 Mi/m

Z, g=-8MQ/m
again in reasonable agreement with the calculations.
5.2.3 Beam measurement of resistive part of Z/n

From the hardware it 1s not possible to make definite statements about the resistive value of

Z/n.Nevertheless it is interesting to derive the resisitive part of Z/n from beam measurements and
check how effective the equivalent resonator is damped.The experimental results from [3] and [4] are
used in what follows. It is claimed that ®(Z/n) can be derived from thresholds and growth rates of the
p-wave instability. The reason for this is explained below.
The calculation involves the comparison between an impedance vector and a stability contour or sta-
bility diagram.Figure 19 shows the form of the stability diagram associated with a reasonable bunch
profile shown in the same figure. The general nature of the impedance is known,it is a resonator with a
known inductance and resonant frequency while the shunt impedance or the quality factor remains io
be determined. The maximum of the impedance vector occurs near the resonant frequency.This maxi-
mum in units of the shunt impedance is:

1//(1-1/4Q%)

For a large Q this value tends towards unity.For a quality factor close to one as is the case for the
standard broadband model.the impedance vector is 15 percent larger than the shunt impedance. How-
ever the impedance at the maximum is 30° off pure resistive. There the required impedance for insta-
bility is larger by about the same amount than a pure resistive impedance.For vectors more than 30 °
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off pure resistive the amplitude of the vector decrease rapidly and the required impedance
increases.Hence the instability will occur somewhere between the absolute impedance maximum and
the pure shunt impedance.]f this impedance value is interpreted to be resistive then an error of around
ten percent is made in the case of a Q=1 resonator.The error becomes much smaller for higher Q val-

ues as already mentioned.
5.2.3.1 p-wave stability measurements at 15 Gev/c

The beam stability is examined using the local Keil-Schnell criterion.The measured instability rise
time is translated into a normalised rise time so that the stability diagram can be used to derive
®(Z/n).Sec appendix A.The results are summarised in table 3 below.

Table 3: p-wave instability measurements at 15 Gevfc

bunch area .15 15 Vs
Half bunchiength 2.5 12.5 ns
rise time e .25 ms
®(Z/n) 17.6 38.3 9]

5.2.3.2 p-wave measurements at 26 Gev/c

The bunch length was measured for various bunch intensities. These data are used in the follow-
ing way to derive ®(Z/n):

The bunch is supposed to blow up until it is stable with respect to the x-wave instability. The stabil-
ity criterion involves the knowledge of dp/p,the corresponding half bunch length 7, which together
determine the bunch area A , and finally a factor derived from the stability diagram glocal application
of Keil-Schrell criterion ).In order that a longitudinal stability is efficient its rise time needs to be
shorter than the synchrotron period.Since the beam is at the treshhold of instability the rise time is
taken equal to the synchrotron period.This in tumn determines a normatised rise time in terms of the
resonant frequency of the resonator (1.35 GHz) and the amplitude of the impedance vector in the sta-
bility diagram which is just stable.See also appendix A.This then determines completely the stability
criterion and allows the computation of ®(Z/n). The summary is in the following table 4

5.3 Conclusion

The inductive impedances derived from beam measurements in the SPS are in extremely good
agreement with the values derived from the hardware using the computer code presented in this paper.
The total equivalent impedance of the SPS is a broadband resonator with a quality factor of around
6.This is based on the value of the shunt impedance calculated with the results on the p-wave instabil-
" jty.The agresment with the accepted model of 2 Q= 1 resonator is fair.
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Table 4: p-wave instability measurements at 26 Gev/c

1040 ns Q
10.5 1.775 41.8
10 1.81 45.2
12 1.86 41.8
12.8 1.86 38.3
13 1.925 418
14 1.96 38.3
15 2.01 383
16.6 2.1 4.8

<R(Zn)>=40Q
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APPENDIX A
APPLICATION OF LOCAL KEIL-SCHNELL CRITERION TC BUNCHES

It has been proposed by D.Boussard {7] that the Keil-Schnell criterion for the stability of DC
beams can be used locally in order to examine the stability of bunches against very high frequency
(#-wave) instabilities. This makes it possible to use a dispersion analysis to establish thresholds.

The stability condition for DC beams can be written in the following form ( see also [8]):

(Z/n)(Ne/T)/(dp/p)* = 2n(E/e)B*mljd(&)™ (A-1)

where T is the revolution period,E the beam energy,N the number of particles and d(§) the inverse
stability contour for a normalised frequency £. The longitudinal stability criterion is characterised by
the derivative of the particle distribution function. This makes it difficult to use a pure parabolic distri-
bution since it would be perfectly unstable all the time.Therefore a parabolic profile with smoothed
edges was adopted.

Formula (A-1) has now to be adapted to the case of a bunched beam.First the number of parti-
cles N becomes the number of particles in a bunch.Next it is the local intensity that counts and not
the average intensity.Hence T is replaced by 27, where 7, is the half bunch length.A final modification.
concerns the value for 1/d(¢).A DC beam is unstable when the instability rise time exceeds zero. This
corresponds to a well defined contour in the stability diagram.For the example of 2 parabolic distribu-
tion with smooth edges 1/d(£)~1/5.

The instability rise time for a bunched beam needs to be shorter than a synchrotron period in order
to be efficient. The comrection is small for the p-wave instability in the SPS. Indeed the synchrotron
frequency is small with respect to the longitudinal frequency spread at 1.35 GHz.The stability margin is
only reduced by about 10 percent.
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APPENDIX B

CALCULATION OF INDUCTIVE WALL FROM BUNCH LENGTH
MEASUREMENT

The equation of the longitudinal motion in the absence of a wall impedance can be written in the
following form:

d[(E/m@2)(dg/dt)]/dt-e ¥ (sing-singg)/2m = 0
where V is the amplitude of the RF voltage,¢ the phase between the particle and the RF wave and Q
1s angular revolution frequency.The other symbols have their usual meamng.
When the motion is linearized then the second term is modified:
eV (sing-singo)/ 27 = (e/2m)AV = (¢/27) <dV/de > A¢ (B-1)
The average voltage gradient <dV/d¢ > can be easily calculated for stable phase angle ¢,=0:
<dVjde> = (V/p,)e [ coseds = Vsing,/6,

where ¢ 7 is the extreme RF phase of the synchrotron orbit that is considered.
Equation (B-1) becomes:

(e¥/2m)sing = (e/20) V(sing y/9,)0 (B-2

The presence of an inductive wall impedance will modify the longitudinal focussing.The inductance
and Z/n are related as follows:

L=g3(Z/n)/Q
The voltage induced by a passing bunch will be:
VL_= L{di/dt)
The current of a parabolic bunch is:
i= (3/4)(Ne/ )L 1-(t/r,)7]
Hence the induced voltage takes the form:
Vi, =-(3/2)(Ne/hfd?s,*)}(Z/n)A¢ (B-3)

where the substitution A¢ =hft was used.
The gradient of the induced voltage is constant over the bunch length.

dVy jde =-(3/ 2)(Ne/hQ?r,*}(Z/n) (B-4)
The modified equation of motion can be rewritten using (B-2) and (B-4):
d[(E/hmQ?)(de/dt)]/dt-(e/2m)}(sinhQ7 ;,/hl g)(v-(3/2)Nef(Q‘T psinh@lr,)Z/n)A¢ =0
The equivalent RF voltage reduction caused by the inductance is
AV =-(3/2)Ne/(Qr,*sinhilz ;) Z/n

This expression fits the usual formula for small @r, and yields a vaiue for the inductive part of Z/n:



$(Z/n) = -(2/3)(Qr 2sinhQr,/Ne)AV (B-5)

The measurement of $(Z/n) can now proceed as follows:

The half bunch length v, and the number of particles N in the bunch are measured. The external RF
voltage V is known and held constant.For sufficiently low values for N there is no voltage contribution
from the inductive wall hence the bunch area can be determined. It becomes then possible to calculate
the inductive voltage reduction for the higher bunch intensities assuming that the bunch area remains
constant. This is reasonable when the intensity reductions are obtained by transverse scraping.



APPENDIX C

CALCULATION OF Z | FROM THE COHERENT TRANSVERSE TUNE
SHIFT

When a bunch is kicked transversely its oscillation frequency or transverse tune is a function of its
intensity. The difference with the zero intensity tune is called the coherent tune shift. This shift is made
up of two contributions:

® A tune shift caused by the space charge
* A tune shift caused by the transverse impedance Z |

These two contributions will be examined in the case of the SPS and it will be shown how a val-
ue for Z | can be derived from a measurement of the total coherent tune shift as a function of intensi-

ty.
C.1 Coherent tune shift from space charge

The space charge tune shift varies along the bunch in azimuthal direction.The maximum vaiue
occurs in the center of the bunch where the charge density is largest. This maximum is:

= Sl 2
AQSC—(-4IPR_1€0 Yecy“e

where = g/dney(E,/e) classical proton radius
Eo* space charge parameter
g dielectric constant in free space

normalised emittance

£
i maximum instantaneous bunch current

This can be transformed into:

AQ .= '-\/(P-/EQ}Ri‘é0*/[-,1-(1:‘_‘0/6)?261

To find a contribution to a coherent tune shift the average over the ensemble has to be found.

(AQqc)eoherent = <4 Q™ = J.AQscf(t/Tf)d(t/Tf)

where n= [F(t/7;)d(t/7,)=[F(§)d¢  panicles in a bunch
£=t/r /
fi&)=F(&)/n=10.75(1-£2) for a parabolic profile
Hence <AQ. > =0.75[AQ,(1-£2)d4
But AQ =0.75AQ(1-6%)
50 <AQ > =(9/16)AQ J(1-6%)ds = (3/5)AQ,
and finally:

< AQSC > = '(3/5)\/(#I,EQ)REQ*i?[W(EU;’e)?ZE] (C_ 1)



C.2 Coherent tune shift from Z L

The inductive part of Z | produces a coherent tune shift for a bunch with an average intensity
<i> defined over its bunch fength. This tune shift can be written as follows:

AQ=-S(Z ) <i>R/[4my(Eo/e)Q]

Remark that: <i> =(2/3)i
The expression for the coherent tune shift caused by 3(Z _L) becomes:

AQ,=-%(Z | JiR/[6mv(Ey/e)Q] (C-2)

C.3 The total coherent tune shift

Adding the result of the two previous sections (C-1) and (C-2), following expression is obtained
for the total coherent tune of a bunch

AQqgp = UR/QYEm(Eo/el3.6Qeo ™y (/eo)/(re) + S(Z | )]

It is now assumed that the contribution from the space charge can be computed accurately.That is to
say that the emittances are known from which the space charge coefficients ¢, can be calculated.

It should be noted that the formula for the total tune shift was derived for positive values of 3(Z  ).In
that case the two terms in the expression add.For the SPS this is valid in the vertical plane.In the hor-
izontal plane however it is expected that the two contributions subtract since a negative value for Z 1
was found in that plane.This indeed is borne out by the experiment.
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