
C
ER

N
-A

C
C

-2
01

4-
00

75
30

/0
6/

20
14

CERN-ACC-2014-0075
BNL C-A/AP/515

July 1, 2014
frank.schmidt@cern.ch

Report

Experience with OpenMP * for MADX-SC

Nicholas D’Imperio, Christoph Montag, Kwangmin Yu †, Valery Kapin ‡,
Eric McIntosh, Harry Renshall and Frank Schmidt §

Abstract

MADX-SC [1–3] allows the treatment of frozen space charge using beam-beam elements in a thin lattice,
i.e. one can take advantage of the standard set-up of MAD-X [4] lattices without the need for specialized
codes for the space-charge (SC) evaluation. The idea is to simulate over many turns without the problem
of noise as in the PIC 1 SC codes. For the examples under study, like the PS and RHIC, it would be
desirable to simulate up to 1 million turns or more. To this end one had to make an effort to optimize the
scalar speed and, most importantly, get a speed-up of approximately a factor of 5 using OpenMP [5].

Keywords: Accelerator Physics, beam optics

*see page 9
†BNL
‡Fermilab
§CERN
1see page 9

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

Contents

1 Introduction . 1

2 Main Body . 1

2.1 Why OpenMP and not MPI ? . 1

2.2 OpenMP - Speed-up Table . 1

2.3 OpenMP - Lost Particles . 3

2.4 OpenMP - Reproducibility (Kahan summation algorithm) 3

2.5 OpenMP - Interference with the MADX-SC central C part 4

2.6 OpenMP - Difficulty and Risk of OpenMP parallelization for MADX-SC 4

2.7 Profiling Scalar Speed and In-lining . 4

2.8 Attempt to maximize speed of TWISS . 6

2.9 SixTrack Error Function of a Complex Number . 6

3 Appendix: Used Acronyms . 9

i

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

1 Introduction
Kwangmin from BNL under the supervision of Nicholas has analyzed the tracking code in MADX-SC
which is called “trrun.f90” to see which loops might be turned over to OpenMP for speed-up. A speed-up
table will be provided and discussed. In parallel at CERN Frank & Harry have been investigating the
scalar speed and some minor speed improvements have been achieved.

During a 2 week visit of Frank at BNL an attempt has been made to revisit all issues of speed-up
of the code. It has been found quickly that special effort was needed to treat the loss of particles and keep
bit-by-bit agreement with the scalar code.

Frank asked Eric for help to include into MADX-SC the speed optimized error function from
SixTrack [6] which has been worked out a decade ago by the late Dr. G.A. Erskine.

Strict reproducibility, i.e. identical results for any number of cores on the same machine archi-
tecture, is essential for massive tracking studies and Frank & Harry had started this effort at CERN. At
BNL Kwangmin could identify the loop of summation that has caused the lack or reproducibility of the
results. Being a weak spot the OpenMP has been taken out for this loop (without major loss in speed)
and it has been replaced by the Kahan summation algorithm for least loss of precision.

At the end of Frank’s stay it was found that the OpenMP implementation produced a memory
clash with the central part of MADX-SC which is written in C, which could be traced back to C CALLS
to this central part within 2 OpenMP loops. Fortunately, these OpenMP loops could be taken out without
too much loss in speed-up.

In an appendix we collect the relevant acronyms used through this paper.

2 Main Body
2.1 Why OpenMP and not MPI 2?
Applications may be parallelized using many widely available API 3’s, among them OpenMP, MPI,
pthreads 4, and CILK 5. Two API’s, OpenMP and MPI were considered, however OpenMP was chosen
for the parallelization of MADX-SC. OpenMP is typically used when an application can utilize shared
memory. In contrast, MPI is typically used with a distributed memory model. There are also instances
in which a hybrid implementation is useful using both MPI and OpenMP together.

The choice of API is problem dependent. MPI is efficient when the problem can utilize a large
computational load locally with minimum data exchange between nodes. This is ideal, and even neces-
sary, for problems with large computational domains that will not fit in the available memory of a single
node. An example problem would be fluid dynamics using a finite difference method. The problem
domain of MADX-SC is more limited and easily fits within the memory of a single node for typical
problems. The main data exchange is done when the state data for each particle is updated. At that
point, every particle requires the state data for every other particle. This is best accomplished using a
global memory space. This, together with the modest memory requirements, make it an ideal problem
for OpenMP parallelization. An MPI implementation would require a substantial rewrite of the existing
code base as well as being less efficient from a performance perspective.

The primary disadvantage of OpenMP lies in the CPU 6 core count limit of a single node. At this
time, most nodes have no more than 8 physical cores which, with linear speedup, allows for a single
order of magnitude increase in performance. In practice, this limitation does not have significant impact
when running typical examples with particle counts not exceeding ten thousand.

2.2 OpenMP - Speed-up Table
In this section, we describe the performance test of the OpenMP implementation on MADX-SC. Since
the OpenMP parallelization is implemented primarily in the TRRUN() function, we measured only the

2see page 9
3see page 9
4see page 9
5see page 9
6see page 9

1

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

running time of TRRUN(). In this test, we used 100 turns and varied the number of particles. The hard-
ware consisted of an Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz CPU with 128 GBytes of RAM 7. We
compare two FORTRAN compilers the proprietary IFORT 8 compiler and the GNU9 compiler GFOR-
TRAN 10.

Number of Cores 1 2 4 8 16
1k particles 930 559 357 287 264

2k particles 1830 1080 683 516 463

4k particles 3680 2130 1340 980 855

8k particles 7950 4530 2800 1990 1647

16k particles 16028 9093 5577 3902 3187

Table 1: Running time (sec) of subroutine TRRUN using the IFORT compiler

Number of Cores 1 2 4 8 16
1k particles 1130 662 433 339 318

2k particles 2230 1300 832 624 569

4k particles 4470 2590 1650 1220 1083

8k particles 9600 5480 3420 2460 2109

16k particles 19393 11055 6884 4917 4119

Table 2: Running time (sec) of subroutine TRRUN using the GFORTRAN compiler

Figure 1: Speed-up comparison for the IFORT compiler case (Tab. 1)

7see page 9
8see page 9
9see page 9

10see page 10

2

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

Figure 2: Speed-up comparison for the GFORTRAN compiler case (Tab. 2)

According to Figure 1 and 2, both compilers show linear speed-up when we apply OpenMP par-
allelization and speed up improves with the number of particles. This is due to good weak scaling as the
parallelization is applied to loops over the number of particles.

2.3 OpenMP - Lost Particles
During Frank’s visit to BNL, Christoph found an immediate loss of all particles during his RHIC run.
Kwangmin checked and tested the code using his input file and was able to determine the section of code
causing the particle loss error.

The error was traced to subroutines calls, TMALI1 and TMALI2, from subroutine TRRUN. The
root cause of the problem was in array arguments passed to these subroutines.

An input parameter "zz" is passed to TMALI1 and TMALI2. "zz" stores temporarily values copied
from the two dimensional array "z". Algorithmically, "zz" should not be shared between threads. In FOR-
TRAN, the array is passed by reference and when "zz" is passed to TMALI1 and TMALI2, a reference to
the array is passed thus making the array itself commonly shared by all the threads. This caused variable
contamination due to concurrent memory access by different threads. Similarly, the input parameter "re"
also caused the same shared memory problem.

The solution was to make both arrays, "zz" and "re", private to each thread. This was accomplished
by making a distinct copy of both arrays for each thread.

2.4 OpenMP - Reproducibility (Kahan summation algorithm)
The lack of bit-by-bit reproducibility found in summation of the step-function for Ex/Ey evaluation
in subroutine IXY_FITTING in trrun.f90 file has been analyzed. The reason of the lack of bit-by-
bit reproducibility was due to the order of summation. Kwangmin compared forward summation and
backward summation and the results showed a difference of about 10−14. With the Kahan summation
algorithm applied by Frank (a nice explanation of this algorithm can be found at [7]), forward and
backward summations shows bit-by-bit consistency. But when Kwangmin tested zigzag summation,
summing numbers in odd indexes first and after that summing those in even indexes, difference of some
10−14 was found. In fact, this difference originates in round-off error of floating number arithmetic in
computers. Since OpenMP applied on the summation loop would change the summation order according
to the number of thread, it is not possible to achieve bit-by-bit consistency after applying OpenMP on

3

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

this summation loop although the reproducibility is on the level of round-off error. Since Frank insisted
on a general bit-by-bit reproducibility of the MADX-SC results, OpenMP is taken out of this summation
loop.

2.5 OpenMP - Interference with the MADX-SC central C part
This problem was also found by Christoph. This bug was difficult to diagnose due to its occurrence in
test runs being sporadic. It occurred 4 times during 14 test runs. The bug caused a sudden crash of the
code and it was determined that the crash position was in the function polish_value in mad_eval.c This
error occurred when a global variable "polish_cnt" exceeds its maximum limit.

Although the exact cause of the bug was not determined due to time constraints, it did not occur
when OpenMP parallelization was removed from the code responsible for the lost particle problem in
section 2.3.

It is possible that this bug is related to that described in section 2.3 where "zz" and "re" arrays
are passed as input parameters to the subroutines TMALI1 and TMALI2 called from TRRUN. Despite
making the arrays private to each thread to avoid shared memory issues, they still seem to contaminate
other areas of memory, specifically, it seems that the global variable "polish_cnt" is modified to a garbage
value.

This problem is resolved by removing the OpenMP optimized code from the loops.

2.6 OpenMP - Difficulty and Risk of OpenMP parallelization for MADX-SC
Section 2.3 and 2.5 are examples of the difficulties and risks of OpenMP parallelization for MADX-SC.
Common to both cases are memory conflicts. The memory conflict is aggravated by recursive calls in
OpenMP parallelization and by passing parameters by reference. In particular, TMALI1 and TMALI2
have several recursive subroutines or function calls and manipulation of variables passed by reference
leading to unintentional modification of variables in the calling section of code. Also, recursive subrou-
tines or function calls increase the possibility of out of bound array errors which also can lead to crashes.
Thus applying OpenMP parallelization must be done carefully on the code sections having potential
memory conflicts.

2.7 Profiling Scalar Speed and In-lining
The execution of two test cases have been profiled using GPROF 11 and the scalar version of MADX-SC.
The source was taken from the SVN 12 repository //svn.cern.ch/reps/madx/trunk/madX and built
with

make FC=ifort SHOW=yes PROFILE=yes

on the CERN machine lxplus0087 running the SLC6 system. The IFORT version was 14.0.2 and the
GCC version was:

4.4.7 20120313 (Red Hat 4.4.7-4) (GCC).

The two cases were main_deb_mad_6c.madx, a CERN PS model, and da_tracking.madx, a
RHIC model. After a first profiling showing that 10% of the CERN PS case was spent in calling the
functions DISNAN and SISNAN (to test for not a number) these two functions were forced inline by
adding:

!DEC$ ATTRIBUTES FORCEINLINE :: disnan

and
11see page 10
12see page 10

4

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

!DEC$ ATTRIBUTES FORCEINLINE :: sisnan

in their code and adding the −finline option to the IFORT compilation.

In each case a 500 turn run was made on a CERN lxbatch machine 13 of architecture IntelXeon
of 2 GHz frequency creating a gmon.out file for analysis by GPROF.

The CERN PS case had the flag set: bborbit = true, started with 1000 particles and the turns
command was:

RUN, turns=500, maxaper={ap_max,0,0,0,0,0}, n_part_gain=1,
sigma_z=9.59489078280046, track_harmon=2, deltap_rms=deltap_rms,
deltap_max=deltap_max; stop;

Flat profile showing the top ten entries: Each sample counts as 0.01 seconds.

% cumulative self self total time seconds seconds calls Ks/call
Ks/call name 63.22 981.14 981.14 1150804738 0.00 0.00 ccperrf_ 8.51
1113.19 132.05 4227000 0.00 0.00 trcoll_ 5.62 1200.34 87.15 __powr8i4
4.81 1274.95 74.61 3421000 0.00 0.00 ttmult_ 3.90 1335.46 60.51
4802500 0.00 0.00 ttdrf_ 3.63 1391.84 56.38 576000 0.00 0.00
ttbb_gauss_ 2.98 1438.05 46.21 exp.A 1.75 1465.20 27.15 4164808312
0.00 0.00 inf_nan_detection_mp_disnan_ 0.68 1475.77 10.57 108413236
0.00 0.00 name_list_pos 0.63 1485.48 9.71 43284777 0.00 0.00
node_value_

The call graph analysis showed that CCPERF called no children and nearly all the calls to it in
this example were from ttbb_gauss. These calls are made in a loop over all tracks with each track being
independent so was a clear candidate for parallel execution.

Call graph for CCPERRF:

index % time self children called name 00547 0.02 0.00
27648/1150804738 tmbb_gauss_ [78] 00548 981.12 0.00
1150777090/1150804738 ttbb_gauss_ [8] 00549 [9] 63.2 981.14 0.00
1150804738 ccperrf_ [9]

The RHIC case had the flag set: bborbit = true, started with 350 particles and the turns command
was:

RUN, turns=500, maxaper={ap_max,0,0,0,0,0}, n_part_gain=1, sigma_z =
3.0, track_harmon=120, deltap_rms=deltap_rms, deltap_max=deltap_max;
stop;

Flat profile down to 1.5% of time: Each sample counts as 0.01 seconds.

% cumulative self self total time seconds seconds calls Ks/call
Ks/call name 19.59 277.00 277.00 418321982 0.00 0.00 ccperrf_ 11.71
442.54 165.54 1084458390 0.00 0.00 polish_value 11.50 605.17 162.63
3175965511 0.00 0.00 name_list_pos 11.01 760.81 155.65 1001796201
0.00 0.00 node_value_ 2.81 800.51 39.70 388205734 0.00 0.00
get_node_vector_ 2.76 839.57 39.06 928398982 0.00 0.00 m66byv_ 2.65
876.99 37.42 464199481 0.00 0.00 tmali2_ 2.38 910.71 33.72 cos.N 2.09
940.25 29.54 464199501 0.00 0.00 tmali1_ 2.06 969.37 29.12 3173500
0.00 0.00 trcoll_ 2.02 997.95 28.58 2536000 0.00 0.00 ttmult_ 1.90

13see page 10

5

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

1024.78 26.83 1492737537 0.00 0.00 mycpy 1.65 1048.05 23.27 121267865
0.00 0.00 el_par_value 1.58 1070.40 22.35 __intel_memset 1.57 1092.54
22.14 464199481 0.00 0.00 sutran_

As in the CERN PS case CCPERRF is the largest single time user. The call graph shows that
name_list_pos, which is a binary search to find the parameters of a character mad name in a structure,
calls no children. Most of the calls to it are from the chain of find_variable called from polish_value
called from update_vector called from get_node_vector called by SUELEM called by TMALI2 which
is described as the transport map for orbit displacement at exit of an element. It is hard to see how this
chain could be parallelized but perhaps it could be simplified for example to avoid the repeated binary
search on character mad names which, given the calls count, seems to be called for each element in the
ring for each turn in this case. The CERN PS case has no calls to TMALI2.

index % time self children called name

17.87 606.02 464199481/464199481 tmali2_ [6] [9] 44.1
17.87 606.02 464199481 suelem_ [9] 37.97 348.20 371359587/388205734
get_node_vector_ [10]

128.24 0.00 2504365179/3175965511 find_variable [20]
14.07 316.34 387573627/388212900 get_node_vector_ [10] [12] 23.4
14.09 316.86 388212900 update_vector [12] 177.94 138.92
1074181301/1077934994 polish_value <cycle 2> [14]

[14] 21.6 165.54 139.41 1084458390 polish_value <cycle 2> [14] 11.38
128.02 2500048627/2504365179 find_variable [20]

128.24 0.00 2504365179/3175965511 find_variable [20]
[19] 11.5 162.63 0.00 3175965511 name_list_pos [19]

2.8 Attempt to maximize speed of TWISS
Kwangmin has analyzed the twiss.f90 file and found several candidate loops for additional OpenMP
parallelization. The candidate loops are in subroutine TMCLOR, TMTHRD, TMMULT, CCPERRF,
and TMRFMULT. Analysis of running time showed the most time consuming part of TWISS is calling
TMCLOR followed by TMFRST. Unfortunately, the main loop in TMCLOR contains GOTO statements
and output to I/O channels rendering OpenMP parallelization impractical without extensive modification
of the existing code base.

2.9 SixTrack Error Function of a Complex Number
The MAD-X module TRRUN and SixTrack use CCPERRF and ERRF respectively to compute the func-
tion, both being basically the CERNLIB routine WWERF which computes the result to almost full double
precision. These routines cannot be easily vectorized or pipe-lined over a set of arguments as they use
an iterative loop. The late Dr. G. A. Erskine wrote the routines WZSET and WZSUB which are much
faster (around ten times faster than CCPERRF), but much less precise with a maximum absolute error of
1E-8. WZSUB uses two methods to calculate the desired value. The routine WZSET computes values at
regular intervals lying inside the rectangle (0,0) (7.77,7.46) using WWERF, and WZSUB then uses third
order divided-difference interpolation for arguments inside this box. For arguments outside the rectangle
a two-term rational approximation is used. Note that both arguments x,y must be greater than zero (not
checked) and that values of x or y greater than 1d120 are set to that value.

Eric then developed WZSUBV(n,x,y,u,v) which accepts two vectors x and y of length n and pro-
duces the corresponding two result vectors. The pipe-lining of the computation is effective only when

6

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

both x and y lie either inside or outside the rectangle. A new version has been developed which accu-
mulates pointers to argument values inside or outside the box in two small temporary vectors which then
provide a further speedup of 40 to 50% using the Intel IFORT compiler with input vectors of length 50
to 10,000.

Frank has been testing for the PS case the latest version of WZSUBV and it turns out that a sizable
reduction of computing time has been achieved compared to CCPERF as seen in Fig. 3.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

0 1000 2000 3000 4000

C
o

m
p

u
ti

n
g

 T
im

e
 [

s
e
c

]

Particles

CCPERF

WZSUBV

Figure 3: Comparison of computing time for 500 turns in the PS using the classical CCPERF routine of MAD-X
and Eric’s newest WZSUBV routine.

What counts is to evaluate the reduction of CPU time (see Fig. 4) which is expressed as the ratio
of the CPU time needed for tracking with WZSUBV and CCPERF respectively. Between 500 and 2000
particles the reduction goes down from 75% to 68% pretty steeply. Thereafter, the reductions is less
steep and goes to 65% for 4000 particles. In fact, this fits well with the simulation requirements to deal
with a few thousand turns.

7

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

0.65

0.7

0.75

0 1000 2000 3000 4000

C
o

m
p

u
ti

n
g

 R
a
ti

o
 [

C
C

P
E

R
F

/W
Z

S
U

B
V

]

Particles

Figure 4: Reduction of CPU time expressed as the ratio [WZSUBV/CCPERF].

Bibliography
[1] V. Kapin and Yuri. Alexahin, “Space Charge Simulation Using MADX with Account of

Synchrotron Oscillations”, Proc. XXII Russian Particle Accelerator Conference RuPAC-2010,
Protvino, Moscow region, Oct 27, 2010, pp. 204-206.

[2] V. Kapin, “Space Charge Simulation Using MADX with Account of Longitudinal Motion”, FNAL
Beamsdoc- 3582 v2, Apr. 2011.

[3] V. Kapin and F. Schmidt “Frozen space charge model in MAD-X with adaptive intensity and sigma
calculation", Workshop "Space Charge 2013”, CERN, April, 2013.

[4] L. Deniau et al., “MAD - Methodical Accelerator Design”, CERN web page:
http://mad.web.cern.ch/mad/.

[5] www.openmp.org
[6] R. de Maria, “SixTrack web page”, http://sixtrack.web.cern.ch/SixTrack/.
[7] http://en.wikipedia.org/wiki/Kahan_summation_algorithm.

8

http://mad.web.cern.ch/mad/
http://sixtrack.web.cern.ch/SixTrack/
http://en.wikipedia.org/wiki/Kahan_summation_algorithm

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

3 Appendix: Used Acronyms
The explanations for the following acronyms have been taken from Wikipedia and other publicly avail-
able Internet resources.

OpenMP: Open Multi- Processing is an API that supports multi-platform shared memory multiprocessing
programming in C, C++, and Fortran, on most processor architectures and operating systems,
including Solaris, AIX, HP-UX, GNU/Linux, Mac OS X, and Windows platforms.

PIC: The Particle-In-Cell method refers to a technique used to solve a certain class of partial differ-
ential equations. In this method, individual particles (or fluid elements) in a Lagrangian frame
are tracked in continuous phase space, whereas moments of the distribution such as densities and
currents are computed simultaneously on Eulerian (stationary) mesh points. PIC methods were
already in use as early as 1955, even before the first Fortran compilers were available. The method
gained popularity for plasma simulation in the late 1950s and early 1960s by Buneman, Daw-
son, Hockney, Birdsall, Morse and others. In plasma physics applications, the method amounts to
following the trajectories of charged particles in self-consistent electromagnetic (or electrostatic)
fields computed on a fixed mesh.

MPI: Message Passing Interface is a standardized and portable message-passing system designed by a
group of researchers from academia and industry to function on a wide variety of parallel com-
puters. The standard defines the syntax and semantics of a core of library routines useful to a
wide range of users writing portable message-passing programs in Fortran or the C programming
language. There are several well-tested and efficient implementations of MPI, including some that
are free or in the public domain. These fostered the development of a parallel software industry,
and there encouraged development of portable and scalable large-scale parallel applications.

API: Application Programming Interface specifies how some software components should interact with
each other.

Pthreads: Pthreads is a POSIX standard for describing a thread model, it specifies the API and the semantics
of the calls. Model popular, nowadays practically all major thread libraries on Unix systems are
Pthreads-compatible.

Cilk: Cilk is a general-purpose programming language designed for multithreaded parallel computing.
The C++ incarnation is called Cilk Plus.

CPU: A central processing unit (formerly also referred to as a central processor unit) is the hardware
within a computer that carries out the instructions of a computer program by performing the basic
arithmetical, logical, and input/output operations of the system. The term has been in use in the
computer industry at least since the early 1960s. The form, design, and implementation of CPUs
have changed over the course of their history, but their fundamental operation remains much the
same.

RAM: Random-Access Memory is a form of computer data storage. A random-access memory device
allows data items to be read and written in roughly the same amount of time regardless of the order
in which data items are accessed. In contrast, with other direct-access data storage media such as
hard disks, CD-RWs, DVD-RWs and the older drum memory, the time required to read and write
data items varies significantly depending on their physical locations on the recording medium, due
to mechanical limitations such as media rotation speeds and arm movement delays.

IFORT: Intel Fortran Compiler, also known as IFORT, is a group of Fortran compilers from Intel. The
compilers generate code for IA-32 and Intel 64 processors and certain non-Intel but compatible
processors, such as certain AMD processors. A specific release of the compiler (11.1) remains
available for development of Linux-based applications for IA-64 (Itanium 2) processors. On Win-
dows, it is known as Intel Visual Fortran. On Linux and OS X, it is known as Intel Fortran.

GNU: GNU is a Unix-like computer operating system developed by the GNU Project. It is composed
wholly of free software. It is based on the GNU Hurd kernel and is intended to be a "complete
Unix-compatible software system" GNU is a recursive acronym for "GNU’s Not Unix!", chosen
because GNU’s design is Unix-like, but differs from Unix by being free software and containing
no Unix code.

9

Report
CERN-ACC-2014-0075

BNL C-A/AP/515

GFORTRAN: gfortran is the name of the GNU Fortran compiler, which is part of the GNU Compiler Collection
(GCC). gfortran has replaced the g77 compiler, which stopped development before GCC version
4.0. It includes support for the Fortran 95 language and is compatible with most language ex-
tensions supported by g77, allowing it to serve as a drop-in replacement in many cases. Parts of
Fortran 2003 and Fortran 2008 have also been implemented.

Gprof: Gprof is a performance analysis tool for Unix applications. It uses a hybrid of instrumentation
and sampling and was created as extended version of the older "prof" tool. Unlike prof, gprof is
capable of limited call graph collecting and printing.

SVN: Apache Subversion (often abbreviated SVN, after the command name svn) is a software versioning
and revision control system distributed as free software under the Apache License. Developers use
Subversion to maintain current and historical versions of files such as source code, web pages,
and documentation. Its goal is to be a mostly compatible successor to the widely used Concurrent
Versions System (CVS).

LXBATCH: Batch Service for batch computing jobs.The CERN batch computing service currently consists
of around 30,000 CPU cores running Platform LSF® providing computing power to the CERN
experiments for tasks such as physics event reconstruction, data analysis and physics simulations.
The public batch service is open to all CERN users. It aims to share the resources fairly and as
agreed between all the CERN experiments that make use of the system. The relative share you
have on the service will depend on which experiment you belong to and the activity you are doing
within the experiment.

10

	Introduction
	Main Body
	Why OpenMP and not MPI see page 9?
	OpenMP - Speed-up Table
	OpenMP - Lost Particles
	OpenMP - Reproducibility (Kahan summation algorithm)
	OpenMP - Interference with the MADX-SC central C part
	OpenMP - Difficulty and Risk of OpenMP parallelization for MADX-SC
	Profiling Scalar Speed and In-lining
	Attempt to maximize speed of TWISS
	SixTrack Error Function of a Complex Number

	Appendix: Used Acronyms

