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Chapter 1

Introduction: Heavy Ion Collisions and

the Quark Gluon Plasma

1.1 The Standard Model and Notions of Symmetry

In the past century, with the introduction of the concepts that characterize modern

physics, the physical objects and forces found in our universe have been described as be-

ing composed of elementary particles of various properties. The theoretical framework used

to model the behavior and interactions of these particles is called Quantum Field Theory

(QFT). QFT combines the advances of the earlier special relativity and quantum mechan-

ics. In this framework, particles are quanta (excitations) of fields that interact with each

other. The quantum field theory that describes the known elementary particles is called the

Standard Model [34]. The Standard Model classifies elemetary particles into two categories.

Fermions, the particles that compose matter, are caracterized by an intrinsic angular mo-

mentum (spin) with a value equal to an half-integer multiple of the reduced planck constant

~. Fermions obey Fermi-Dirac statistics, which follows from the inability of two fermions to

be in the same quantum state. Bosons have integer spin and follow Bose-Einstein statistics.

The vectors of the three fundamental interactions described by the model are called gauge

bosons. Those three interactions are the electromagnetic interaction, carried by the photon,

the weak interaction, carried by the two W-bosons and the Z-boson, and the strong interac-

tions, carried by the gluons. The gravitational interaction is not described by the Standard

Model, as attempts to reconcile quantum mechanics and general relativity have not had
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experimental verification at this time. The Higgs boson is the result of the Higgs Mecha-

nism, which explains the breaking of the isospin symmetry of the unified electromagnetic

and weak (electroweak) interactions. Figure 1.1 shows the elementary particles described by

the standard model.

Figure 1.1: Table of fundamental particles as described by the standard model, with the
quantum numbers that characterize those particles [1].

Fermions are composed of two families, each including six particles spread in three

generations as well as their antiparticles. The first family, leptons, do not participate di-

rectly in the strong interaction; it is composed of doublets of the quantum number called

weak isospin, with the upper part of the doublets filled by electrons, muons and tau, which

can interact via the electromagnetic and potentially weak interactions, depending on their

handedness, and the lower parts are filled by their corresponding neutrinos, which are only

sensitive to weak interactions. The other family, quarks, is composed of three generations of

two quarks. Quarks carry a fractional electric charge and are thus sensitive to the electro-
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magnetic interaction; they also participate in the weak and strong interactions.

Interactions between fermions can give rise to situations in which a system of several

fermions has lower total energy than if each particle was considered separately; such a system

is said to be in a bound state. These bound states constitute the more complex forms of

matter that are encountered in particle physics, nuclear physics, and chemistry, e.g. the

hundreds of non-fundamental particles, the nuclei, and the atoms.

A core concept of modern physics is the notion of symmetry. Noether’s theorem states

that to each symmetry of the action describing a physical system corresponds a conserved

quantity in that system [35]. The most famous examples are conservation of momentum

and conservation of energy, which arise from invariance of the action under space and time

coordinate translations, respectively. The mathematical formulation of this theorem is that

for a transformation of the coordinates and fields given by

xµ → xµ + εaAµa (x)

φi (x)→ φi (x) + εaFi,a (φ, ∂φ)

(1.1)

which leaves the action invariant, a being an integer index which can reach arbitrarily high

values, there is a conserved current density,

jµa =
∂L

∂ (φi,µ)
[Aνa (x)φi,ν − Fi,a (φ, ∂φ)]− Aµa (x)L. (1.2)

In Equations 1.1 and 1.2, L is the Lagrangian density, xµ are the four space-time coordi-

nates, φi (x) are the components of a field at point x, Aµa and Fi,a are the generators of the

transformation and εa are the corresponding parameters.

For instance, the theory describing the interaction of charged particles with the photon

field, Quantum Electrodynamics (QED), is modelized by the following Lagrangian (simplified
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for only one species of charged particles):

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν , (1.3)

where the Dµ operator is a shorter notation for ∂µ + iqAµ, ψ is the Dirac spinor field for the

charged particles and Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength tensor. The

local U (1) gauge transformation,

ψ → eiqθ(x)ψ

Aµ → Aµ − ∂µθ,
(1.4)

leaves the action invariant; applying Equation 1.2 gives a conserved current density vector

jµ = ψ̄γµψ and a conserved charge Q =
∫
d3xψ†ψ, which correspond classically to the known

electric charge and current conservation laws.

Noether’s theorem can be applied to discrete symmetries; in particular, the three sym-

metries known as time reversal (x0 → −x0), parity reversal (in 3 dimensions, xi → −xi)

and charge conjugation (particle → antiparticle), noted respectively T , P , and C, are, when

conserved by an interaction, associated to conserved quantities. The standard model action

is not invariant to parity, time, or charge reversal transformation. The weak interaction

sector is known to violate P and C as well as the combined CP transformations, the latter

being equivalent to a violation of the T symmetry. However, a theorem known as the CPT

theorem states that Lorentz invariance requires CPT symmetry. This theorem has so far

been confirmed by all experimental evidence.
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1.2 The Strong Interaction and Quantum Chromody-

namics

The matter composing objects we interact with and observe on a regular basis has been

determined to be composed of several successive layers of substructures: molecules composed

of atoms, each composed of a nucleus and a cloud of electrons, the former being composed of

nucleons (protons and neutrons), and the nucleons being a bound state of quarks exchanging

gluons [36]. The electromagnetic interaction cements the two first layers, while nuclei and

nucleons are bound by various aspects of the strong interaction.

The nucleon-nucleon interactions that bind the nucleus together are called the nuclear

force, or residual strong interaction. The residual strong interaction is an emergent phe-

nomenon that arises from the consequences of the strong interaction. It is modelized by

an exchange of pions, rather than gauge bosons, between the nucleons. Pions are massive

non-fundamental bosons (i.e., with a substructure and excited states) which are themselves

bound states of light quarks. However, the quarks composing a nucleon are directly bound

by the strong interaction, which is the interaction of the quark fields and gluon fields. The

nucleons contain virtual quark-antiquark pairs, also known as sea quarks, as well as three

valence quarks [37], the flavor of which determine the type of nucleon. A simplified model

represents the nucleon as the result of three constituent quarks, which are valence quarks

“dressed-up” with the gluons and sea quarks that fluctuate in the nucleon. These features,

sea, valence, constituent quarks [38], are generally valid for all other bound states of quarks,

called hadrons. Among hadrons, mesons are states composed of one valence quark and one

valence anti-quark, and are bosons since they have integer spin, and baryons are the fermionic

states composed of three valence quarks or three valence antiquarks with half-integer spin.

Quarks and gluons are often collectively named partons.

The theory describing the strong interaction is called Quantum Chromodynamics [39]

(QCD). Chromodynamics does not refer to usual concept of color, which is purely in the
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electromagnetic sector, but find its origins in the terminology employed to described the

strong charges. QCD is an SU(3) gauge theory in which the charge is called color. Color

can take three values which have been named blue, green, and red.

The QCD Lagrangian is

L = −1

4
FµνF

µν + ψ̄(iγµDµ −meiθ
′γ5)ψ. (1.5)

A more general form of this Lagrangian would be

L = −1

4
FµνF

µν − nfg
2θ

32π2
FµνF̃

µν + ψ̄(iγµDµ −meiθ
′γ5)ψ. (1.6)

The θ parameter is usually considered to be null when performing QCD calculations.

A non-zero θ would give rise to parity violating effects in QCD, which have not been exper-

imentally demonstrated. However, we choose to include θ it in Equation 1.6 as the analysis

described in the future chapters revolve around the search for these parity-violating effects.

We will discuss in the next chapter under which conditions the term associated to θ could

be non-zero. Calculations based on QCD are complicated by the fact that the perturbative

approach, based on a Taylor-like expansion in powers of the coupling constant, is not often

applicable in this context. Unlike QED, in which the coupling constant is much smaller

than unity, the QCD coupling constant is large, especially at low energies with values on the

order of αs ∼ 1. Other approaches are often required, such as Lattice QCD, where numerical

calculations are performed on a space-time lattice and based on the path integral formalism

of quantum field theories.

SU(3) is a non-Abelian group [40], which means that its elements do not systematically

commute. In particular, different generators of SU(3) never commute with each other. In

QCD, these generators correspond to gluons, which are themselves carriers of the strong

charge. This is in contrast with QED, in which photons do not carry the electric charge.

Unlike photons, gluons interact directly with each other. Eight gluon eigenstates, corre-
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sponding to the generators, exist in QCD, as the color singlet 1√
3

√
bb̄ + gḡ + rr̄ is not a

member of the SU(3) group, e.g. there are no “colorless” gluons. Gluon color charge and the

non-Abelian nature of QCD have major consequences in the properties of QCD, the three

principals of which are confinement, asymptotic freedom, and chiral symmetry breaking.

When the distance between two quarks, or a quark and an anti-quark, in a hadron

increases, color anti-screening arises from the color charges carried by the gluons, increasing

the effective charge as distance increases, and creating a field tube between the two quarks.

The effective QCD potential increases with distance, and can be approximated as a Coulomb-

like term and a linear term [41],

V (r) = −α
r

+ σr, (1.7)

known as the Cornell potential, and as a result the further away from each other the quarks

are, the stronger the interaction is. “Pulling” the quarks apart requires increasingly more

energy until enough energy for a quark-antiquark pair creation is provided, which results in

the formation a new hadron. The result is that quarks are confined in bound states with no

color charge, and more generally independent color-charged particles cannot be observed.

Similarly to the weak and electromagnetic coupling constants, the renormalized strong

coupling constant αs runs, i.e. it has a dependence on the interaction momentum transfer Q.

However, one particularity of QCD, gluon-gluon interactions, give to the coupling constant

a logarithmic decrease with energy:

αs =
1

β0 ln
(
Q2

Λ2

) , (1.8)

where β0 is a constant based on the number of quark flavors and Λ2 a cutoff scale. One

consequence of this dependence of the coupling constant on the momentum transfer is that at

high energy, the regime becomes peturbative and a perturbative expansion approach to QCD

calculations becomes effective. Another consequence is the phenomenon called asymptotic

freedom; as the energy increases, the coupling constant and thus the interaction strength
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decrease; asymptotic freedom is also obtained when the distance between quarks decreases,

where the Coulomb-like potential term dominates, and the quarks become quasi-free [42].

Chiral symmetry involves the transformation of the light quark fields,

ψ → ψ′ = e(i(αλF /2)γ5)ψ, (1.9)

where ψ (x) = (u (x) , d (x) , s (x)) is the light quark field multiplet, e(i(αλF /2)) performs a

flavor rotation and γ5 = iγ0γ1γ2γ3. When this transformation is a symmetry of the La-

grangian, the interaction is said to have chiral symmetry. While the interaction term of the

QCD Lagrangian is invariant through this transformation, it is not the case of the fermion

term:

mψ̄ψ → mψ̄e(i(αλF /2)γ5)ψ. (1.10)

With m = 0 this term vanishes and chiral symmetry is a good symmetry of the interaction;

the small masses of light quarks mean that this symmetry is broken explicitely, i.e. chiral

symmetry is not a symmetry of the QCD Lagrangian. However, experimental evidence, such

as masses of hadrons, shows that chiral symmetry is still broken in the limit of vanishing

quark masses [43]. In that context, the QCD vacuum state, not the Lagrangian, breaks this

symmetry, which is said to be spontaneously broken. In the hot and dense matter created

by heavy ion collisions, this symmetry is expected to be restored as the vacuum state would

change to another vacuum state that conserves the symmetry with increasing temperature.

1.3 Deconfinement and the Quark-Gluon Plasma

Equation 1.7 and lattice QCD results show that increasing the energy density and

temperature of nuclear matter would lower the interaction strength between the quarks

bound in a hadron, in effect removing the bound state. A phase transition occurs between

a hadronic state of matter where the quarks are confined, and another where quarks are
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free and can travel within the partonic medium; we call this phenomenon deconfinement.

The newly reached state of matter with free quarks is called a Quark-Gluon Plasma (QGP)

[44, 45]. The QGP is a state of matter believed to have existed in the first instants of the

universe, ending in the first microsecond with the formation of hadrons, called hadronization,

as the universe expanded and the quark matter cooled down. The creation of a QGP in a

laboratory is sometimes called “little bang” by analogy to the Big Bang. Figure 1.2 shows a

chronology of the universe and the times scales at which the QGP phase is assumed to have

existed.

Figure 1.2: Chronology of the early universe, showing the different stages following the big
bang and their times scales [2].

Figure 1.3 shows the discontinuity in degrees of freedom, linked to the ratio of the

energy density ε to T 4, at a certain critical temperature Tc, based on lattice QCD caclulations.

This type of discontinuity is characteristic of a phase transition, and the Quark-Gluon Plasma

constitutes the phase above that critical temperature. The degrees of freedom are hadronic

before the phase transition, and partonic beyond it.

Following the introduction of the concept of phase transitions for nuclear and quark

matter, by analogy with the phase transitions of matter around the standard conditions of

temperature and pressure, we can explore the phase diagram of nuclear matter over the

broad range of temperatures and chemical potential or density that can be found in various

contexts such as particle physics experiments or stellar phenomena [46]. This phase diagram

is depicted on Figure 1.4. Indicated on this diagram are the results from the energy scan
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Figure 1.3: The energy density/temperature ratio as a function of temperature in units of
the critical temperature Tc, calculated from lattice QCD with staggered fermion action; this
is an approximation of the number of degrees of freedom in the medium, and characteristic
of a phase transition. This Figure was obtained from [3].

performed by the Relativistic Heavy Ion Collider (RHIC) in the search for the critical point

as well as the chemical freezeout temperature, which could be approximated at the phase

transition boundary. Chemical freezeout is defined as the stage at which inelastic collisions

cease (i.e., when the composition of the system is fixed outside of potential future decays

of short-lived resonances), as opposed to kinetic freezeout which is the stage when elastic

collisions cease [47]. The lower-right side of the phase diagram, while somewhat out of the

scope of relativistic heavy ion collisions and QGP physics, is also an interesting field of

investigation, particularly in astrophysics. The “low”-temperature/high-chemical potential

region of the diagram is indeed believed to correspond to the matter found in neutron stars.

The Quark-Gluon Plasma is believed to have been obtained and observed on a regular

basis in the last fifteen years in ultrarelativistic heavy ion experiments such as the ones

performed at RHIC (a collider that specializes in the search for the QGP) and the Large
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Figure 1.4: The various phases of nuclear matter over a large range of conditions, as a
function of energy and density [4].

Hadron Collider (LHC). In these experiments, heavy nuclei corresponding to elements with

atomic mass around 200 are accelerated at velocities close to the speed of light, giving

them center of mass energies per nucleon pair that can range from tens of GeV to a few

TeV. Usually, experiments at RHIC are performed with gold (Au) nuclei accelerated to

Ebeam = 100 GeV and the LHC heavy ion program of 2010 and 2011 used lead (Pb) nuclei

accelerated at Ebeam = 1.38 TeV. Many other center of mass energies have been used at

RHIC during the aforementioned energy sweep and for comparison purposes, and other nuclei

(protons, deuterons, copper) are sometimes used in symmetrical (A–A) or asymetrical (p–

A/d–A) collisions. Recently, experiments involving uranium (U) nuclei have been performed

to take advantage of their non-spherical shapes and study the changes in QGP properties
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that ensued for the newly obtained collision symmetries [48, 49, 50].

Figure 1.5 depicts the global picture of a heavy ion collision. The flattened shapes of

the nuclei in the laboratory frame are due to the very large lorentz-contraction effects in the

center of mass, a result of the nuclei being accelerated at speeds above .9999c. The impact

parameter b is defined as the distance between the centers of the nuclei. The quantity named

centrality, which estimates the overlap between the nuclei and has a major impact on the

properties of the medium created by the collision (size, shape, and other consequences) is

closely linked to the impact parameters. In general, smaller impact parameters mean lower

centrality central collisions) and impact parameters that approach the diameter of a nucleus

mean higher centralities, peripheral collisions. In order to define centrality more quantita-

tively, we will have to tie its definition to detector signals in later chapters. The nucleons

that interact with the nucleons belonging to the other nucleus are called participants, while

the others are called spectators. Central collisions have a large number of participants while

in peripheral collisions most nucleons are spectators.

Figure 1.5: The lorentz-contracted nuclei in a non-central heavy ion collision and the defini-
tion of the impact parameter [5].

In parallel with the chronology of the big bang shown in Figure 1.2, we can establish a
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chronology of the little bang and study the evolution of the system. Figure 1.6 is a light-cone

diagram of the evolution of the QGP. In the early stage, the medium created by the collision

is not thermalized; as the thermalization takes place, the medium becomes a QGP proper,

which then expands under the influence of the very high pressure gradients, and cools down

in the process. As the cooling process progresses, the system begins to hadronize, forming

first a mixed QGP/hadron phase which becomes a hadron gas, and then crosses the chemical

freezeout temperature as the composition of the system is fixed. Finally, kinetic freezeout

sets in as the particles’ kinetic properties no longer change via elastic collisions. Each of

these stages happen at constant proper time [51, 47]. Figure 1.7 shows the same evolution in

a cartoon format. It also allows us to understand that it is not possible to observe the QGP

directly, as it is very short lived and only the final state particles are collected, long after the

QGP has frozen-out. Hence, we will have to use statistical analysis tools and theoretical or

phenomenological models to understand the evolution of the system from the partial final

state collected by the detectors.

Figure 1.6: Space-time diagram of the evolution of the medium created in ultrarelativistic
heavy ion collisions. The boundary between the different phases are located at constant
proper time [6].
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Figure 1.7: The various stages of evolution of the medium created in a heavy ion collision.
The system thermalizes to form a QGP, hadronizes until the chemical freezeout, then particle
interactions cease at kinetic freezeout and the final particles or their decay products are
collected by the detectors [7].

1.4 Main Results from Relativistic Heavy Ion Experi-

ments

In more than a decade of ultrarelativistic heavy ion collision experiments, a large

number of seminal experimental results have been obtained by the major collaborations

that participate in the research in this field. A large number of properties of the medium

have been extracted through analysis, although many questions remain open to this day.

Three main categories of results are considered signatures of the Quark-Gluon Plasma. Bulk

measurements, via correlation and spectra, bring among other things strong evidence of

collective motion. Hard probes use the high-momentum particles created in the medium to

probe it, by comparing their characteristics to the ones obtained from scaled pp collisions.

Resonances can be used to study the yields and spectra of rare particles containing heavy

flavors of quarks to extract characteristics of the medium such as temperature.
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The bulk consists of low-momentum light quarks and the hadrons they form before

freezeout. They are formed through soft interactions of the quarks and gluons from the

participant nucleons. The higher transverse momentum limit for hadrons resulting from the

bulk is found to be around 1 to 1.5 GeV/c. The bulk includes the vast majority of particles

that form the QGP, and the analysis of low-momentum hadrons can give information about

the thermodynamic and geometric properties of the system and their evolution. The major

points of interest concerning the bulk are the transverse momentum spectra and relative

yields of light hadrons and the azimuthal distribution anisotropy in momentum space. The

transverse momentum distribution of hadrons at low pT can be fitted with using a Blast

Wave equation or a function obtained from hydrodynamic models, with the fitting degrees

of freedom equal to the medium properties (kinetic freezeout temperature, radial expansion

rapidity) [52]. The chemical freeze-out can be extracted from the ratios of integrated yields

for various particle species [53], based on the fact that heavier hadrons have lower interaction

cross-sections and their kinetic freeze-out is closer to the chemical freeze-out (as their kinetic

properties vary less after their creation), shown in Figure 1.8. The chemical freeze-out

temperature is close to the critical temperature, this indicates that the system underwent

a phase transition during its expansion and cooling. Evidence of a thermalized system can

be found in the hadron yield ratios. A grand canonical ensemble statistical approach, based

upon the assumption of thermal equilibrium, reproduces with good accuracy the ratios found

in the ultrarelativistic heavy ion experiments [54]. Finally, the study of particle correlations

between low transverse momentum hadrons has provided another major result, evidence of

collective phenomena based on the azimuthal anisotropy in momentum distributions, the

anisotropic flow. The underlying idea is that in a medium composed of weakly interacting

particles, when one pictures each point of the medium as a source of hadrons, each of these

points would radiate these hadrons isotropically. No matter what the initial geometry of

the system and other initial condition considerations, the final distribution for a given value

of pT (scalar) would be independent of the azimuthal angle modulo fluctuations due to
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the finite multiplicity. However, in a strongly interacting medium with steep gradients of

pressure in the transverse plane, particles would be pushed by the flowing fluid and the

directions of hadrons coming from the same source would be correlated from having received

a push in the same direction. In this picture, an initial geometrical anisotropy in the system

such as the “almond shape” obtained from non-central collisions (Figure 1.9) translates into

an anisotropy in momentum space, as the different values of pressure gradients gives rise

to different push rapidities at different azimuthal angles. The study of anisotropic flow is

performed via the Fourier expansion of the the particle distribution in momentum space [55]:

E
d3N

dp3
T

=
dN2

2πpTdpTdy

(
1 +

∞∑
i=0

vi cos (n (φ− ψ))

)
. (1.11)

In this equation, φ denotes the azimuthal angle, N the number of particles, y is the rapidity

along the z-axis and ψ is a reference angle tied to the geometry of the collision, called the

reaction plane. The reaction plane is defined by the beam axis and the line that goes through

the center of the nuclei (from which the impact parameter is determined). The moments of

this Fourier expansion, the vi coefficients, give information about the system’s reaction to

the initial conditions, which in turn gives insight into the properties of this system, such as

its viscosity. There are notable names given to the four first coefficients of this expansion:

directed flow (v1), elliptic flow (v2), triangular flow (v3) and quadrangular flow (v4). It is

worth noting that in the definition given above, the vi coefficients do not exactly describe

flow, i.e. collective motion, as the Fourier coefficients also include non-flow effects. However,

colloquially, we will refer to the various components of flow using these coefficients. One

notable result from RHIC is the discovery of strong elliptic flow, in addition to a strong mass

ordering of v2. At constant pT , hadrons of higher mass have lower elliptic flow (Figures 1.10

and 1.11). Figure 1.12 shows evidence of quark scaling [11], in which at low and medium

transverse momentum the elliptic flow of hadrons scaled by the number of constituent quarks

is identical, and is explained by low-momentum hadron formation via coalescence of flowing



17

constituent quarks that combine their momenta in the final hadron; this provides further

evidence of collective motion. Hydrodynamic models [56, 51] provide a very good description

of these aspects of the medium created in relativistic heavy ion collisions. In essence, this

medium behaves like a perfect liquid, with a very low shear viscosity to entropy density

ratio η/S, very close to the minimal value allowed by quantum mechanics. Strong pressure

gradients are found in the medium, and their magnitude is higher along the reaction plane

than perpendicular to it, the opposite of the initial space anisotropy. This is evidence that the

system is strongly coupled and particles in this medium have a short mean free path. Higher

moments of the Fourier expansion are used to study the finer details of spatial anisotropy

and reconstruct initial conditions.

Figure 1.8: Left: Kinetic freeze-out temperature and collective velocity obtained from blast-
wave model fits to data based on Au+Au collisions at

√
sNN = 200 GeV. Right: ratios of

various hadron species obtained from data based on Au+Au collisions at
√
sNN = 200 GeV,

with comparison to thermal models [8].

Hard probes consist of the high-momentum particles created in parton-parton hard

scattering in the initial stages of the collision. There are much fewer high-momentum par-

ticles than particles belonging to the bulk. The idea behind hard probes is to look at the

influence of the medium on the characteristics of high-momenta particles, generally by com-

paring observables based on these particles in pp, asymetrical (p/d–A) and A–A collisions.

The two major results obtained from high-momentum hadrons are the high-pT supression

(nuclear modification factor) and jet quenching. The nuclear modification factor RAA is
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Figure 1.9: Sketch of a heavy ion collision showing the reaction plane and the initial spatial
anisotropy of the system. This anisotropy, coupled with the strongly interacting nature of
the medium, gives rise to anisotropic flow [9].

defined as:

RAA =

d2NAA(pT )
dpT dy

Ncoll
d2Npp(pT )

dpT dy

=
σAA

Ncollσpp

. (1.12)

In Equation 1.12 Ncoll is the number of independent nucleon-nucleon collisions in a heavy ion

collision, Npp (pT ) the number of particles with transverse momentum pT in a pp collisions

and NAA (pT ) the corresponding number in a heavy ion event. A heuristic way to understand

RAA is as a comparison between the number of high-momentum particles that traversed the

medium created by a heavy ion collision (numerator) and the number of high-momentum

particles created in a pp-collision scaled by the number of binary nucleon-nucleon collision in

the heavy ion event. The same number of such particles should have been initially created,

but it is expected that in the heavy ion collisions, these particles would interact with the

medium and lose their energy and momentum. Figure 1.13 shows the experimental results

for this quantity at RHIC. A strong suppression of high-momentum particles is observed,

indicating that they interact with the medium and deposit a significant amount of their

energy, indicative of a strongly coupled medium.

High pT partons from hard-scattering processes produce jets, a phenomenon where the
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parton hadronizes by fragmenting into a cone of hadron. Conservation of momentum dictates

that in pp collision, jets are produced in back-to-back pairs, called dijets. In heavy ion

collisions, since the high-momentum particles have to travel through a strongly interacting

medium, some of the momentum can be lost by gluon bremsstrahlung. In the case of jets

formed deeper within the medium, both of the jets could be strongly affected, and would

either not be found during analysis or be found with a broadening of the cone and lower

total energy; jets created in the surface would be less affected but the opposing jet would lose

energy to the medium [13]. The experimental result is a disappearance of the back-to-back

correlations of high-pTparticles normally found in pp collisions as shown in Figure 1.14.

Other notable results include the suppression of heavy resonances such as J/ψ, which

is described by the “melting” of these resonances in the QGP. The results are consistent

with a QGP temperature around 170 MeV at RHIC [57].

1.5 Thesis Outline

This thesis will discuss two-particle correlations with respect to the reaction plane in

an effort to provide evidence for the Chiral Magnetic Effect (CME) and CP-violation in the

strong sector as described in chapter 2. It focuses on the estimation of the background effects

from local charge conservation using an observable sensitive to these effects but not to the

CME. The measurements are based on ALICE Pb+Pb collisions at
√
sNN = 2.76 TeV. The

chapter 7 shows a comparison of results with blast wave model calculations.
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Figure 1.10: Pion (higher panel) and proton (lower panel) differential elliptic flow in
√
sNN =

130 GeV Au+Au collisions calculated for three different centrality bins. The doted lines are
based on caclulations performed with a full hydrodynamical model [10].
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Figure 1.11: Differential elliptic flow calculated for pions, protons and Kaons in
√
sNN = 130

GeV Au+Au collisions. Modified (dotted) and unmodified (solid) blast-wave calculations are
also shown [10].
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Figure 1.12: Elliptic flow as a function of transverse mass obtained from Au+Au collisions
at
√
sNN = 62.4 GeV after scaling by the number of constituent quarks (higher panel). The

dotted line is based on a polynomial fit of the scaled elliptic flow data, and the lower panel
shows the ration data/fit. [11]
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Figure 1.13: RAA from Au+Au collisions at
√
sNN = 200 GeV measured by the STAR

experiment, for various centralities. We observe a strong supression of high-momentum
particles in central collisions, decreasing at more peripheral centralities. [12]
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Figure 1.14: Two-particle correlations in p + p and d+Au collisions (a) and p + p and
Au+Au collisions (b) at RHIC measured by the STAR experimental. Pedestal have been
subtracted in all graphs. The peak found in p + p and d+Au collisions, corresponding to
dijets, disappears in Au+Au collisions [13]
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Chapter 2

Theoretical Framework

2.1 The Chiral Magnetic Effect

Modern physics find its roots in the notion of symmetry and conserved quantities

(currents, charges...). One of the main goals of particle physics is to identify the symmetries

involved in interaction processes such as the one found in collisions. This notion of symmetry

is the cornerstone of the standard model. As we have seen in the previous chapter, a category

of potential symmetries of the action is the set of 3 discrete symmetries C, P , and T , the

charge conjugation, the parity reversal and time reversal transformations respectively. C

reverses all internal quantum number (charge, spin...), in 3 dimensions P reverses space

coordinates ~x → −~x, and T reverses the time t → −t. It was initially believed that all

interactions were invariant under each of those transformations, but theorists Tsung Dao

Lee, Chen Ning Yang and the experimentalist Chien-Shung Wu found evidence that the

weak interaction violates the P symmetry and that parity was not conserved [58, 59]. It was

later discovered that CPand T were also violated.

In the QCD Lagrangian

L = −1

4
F µν
α Fαµν +

∑
f

ψ̄f [iγµ(∂µ − igAαµtα)−mf ]ψf , (2.1)

where f runs over the 3 colors, ψ is the quark field, t is the set of SU(3) group generators,

A being the color field vector potential and F is the associated field strength tensor. This

Lagrangian is C, P and T invariant, and thus conserves parity. Another term can be added
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to this Lagrangian:

Lθ = − θ

32π2
g2F µν

α F̃αµν . (2.2)

This term can be rewritten as a 4-divergence ∂µKµ and is thus seemingly irrelevant as it

should not modify the equations of motion. However, there exist solutions of the euclidian

equations of motions, named instantons, which have a non-trivial topological charge:

q(F ) =
g2

32π2

∫
d4xF µν

α F̃αµν , (2.3)

q(F ) taking integer values [60]. These solutions correspond to a transition (via tunneling)

to a different vacuum characterized by a different topological Chern-Simons number:

ν =

∫ +∞

−∞
dt
dQ5

dt
, (2.4)

where Q5 =
∫
d3xK0 is the chiral charge. These degenerate vacua introduce a term of the

form eiθq in the QCD action, adding an effective θ to the Lagrangian.

A non-zero value of θ introduces P and CP-violation. However, this P-violation has

been looked for and never observed. A prediction based on a non-zero value of θ was the

existence of an electric dipole moment in neutrons; measurements made on neutrons have

set an upper limit to the value of θ: θ < 3 ·10−10. However, this measurement corresponds to

an average value of θ, and the conclusion is that there is no global P-violation in the strong

interaction. It does not exclude the possibility that parity is violated locally, via the transi-

tion to a vacuum state different from the ground state. A picture where contributions from

different vacuum states to P-violation cancel each other is still consistent with the results

obtained for the neutron electric dipole moment. Figure 2.1 shows how the fluctuations in

topological charge give rise to a null average dipole moment.

In particular, a P-violating metastable vacuum could be transitioned to in the hot and

dense medium created by heavy ion collisions, which would affect the way quarks interact in
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Figure 2.1: Effects of the event-by-event fluctuations of the topological charge. Because of
these fluctuation, a measurement of the dipole moment would average to zero [14].

this region. One feature of such a region would be how it affects the chirality of produced

quarks. The quark-antiquark pairs produced in the non-trivial vacuum would have a total

non-zero chirality 〈~σ · ~p〉, depending on the topological charge. If we consider the QGP as

an axially symmetric domain (with the symmetry axis being the angular momentum vector,

perpendicular to the reaction plane), the spins of the quarks orient themselves along the

symmetry axis, parallel to the strong magnetic fields created in the medium. The direction

of alignment depends on the charge of the quark (Figure 2.3). Positively charged quarks will

have spins parallel to the magnetic field, while the spins of negatively charged quarks will

be anti-parallel to the magnetic field. Figure 2.2 shows the orientation of this magnetic field

and the reaction plane with respect to each other. These magnetic fields, which can reach

1014 T, are created by the strong currents from the charged, ultrarelativistic spectators

moving in opposite directions on each side of the medium. In the presence of instantons

or sphalerons, the combination of the charge-dependence of spin direction and the non-zero

chirality would cause the production of up and down quarks to be asymmetrical with respect

to that symmetry axis as the momentum of those particles would align preferentially in the

same or opposite direction with respect to the spin, depending on the topological charge.

This is known as the chiral magnetic effect [61, 62].

A preferential direction along the angular moment for different light quark flavors would

be identified as an asymmetry in the azimuthal distribution of some charged hadrons, such
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Figure 2.2: Orientiation of the magnetic field and charge separation with respect to the
reaction plane [15].

Figure 2.3: Depiction of the Chiral Magnetic Effect. The combination of parity violation,
which fixes the helicity of the produced quarks, and magnetic field, which in interacts with
the spin of these particles, orients momenta in the direction perpendicular to the reaction
plane according to the charges, creating charge separation [16].

as pions.

The complete expression for the Fourier expansion of the particle density azimuthal

distribution is

E
d3N

dp3
T

=
d2N

2πpTdpTdy

(
1 +

∞∑
n=0

(vn cos (n (φ− ψ)) + an sin (n (φ− ψ)))

)
, (2.5)

where φ is the azimuthal angle, ψ is the angle giving the position of the reaction plane. The

an coefficients are usually omitted in this distribution. The definition of the reaction plane

implies that the collision is symmetric with respect to that plane. As a consequence, the
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sine coefficients are considered to be 0, although event-by-event statistical fluctuations give

them a finite value, and only the vn coefficients are calculated. However, the asymmetry in

charged pion production manifests itself out-of-plane. Thus, in the presence of P violation

and as a consequence of the CME, the value of some of the an coefficient (most notably a1)

would be finite.

The magnitude of this effect is expected to be rather small (∼ 0.01) and would be

impossible to detect in a single event because the large multiplicity of particles and event-

by-event fluctuations would mask it. Moreover, the sign of the a1 coefficient for a specific

species of pion with respect to the angular moment of the QGP is not constant, as it depends

on the topological charge of the P violating region. This charge can take both positive and

negative signs, and the preferential directions of pion emission reverse when it changes sign.

Hence the average of a1+ (for π+) over a large number of events will be null; a similar

reasoning applies to a1−.

The study of like- and opposite-charge pions flow correlations, 〈aαaβ〉 where α and β

can correspond to π+ and π−, provides a solution to these issues. On the other hand, contri-

butions to this correlator from effects that are not due to P violations might be significant

and need to be evaluated before any conclusion can be drawn from the corresponding re-

sults. Evaluating this correlator can be made by calculating 〈sin(∆φα)sin(∆φβ)〉. However,

this correlator can be rewritten as 〈aαaβ〉 + Boutofplane, B being a background contribution

containing correlations unrelated to the reaction plane. If we instead calculate

〈cos(φα − φβ − 2φc)〉 = 〈cos(∆φα)cos(∆φβ)〉 − 〈sin(∆φα)sin(∆φβ)〉

≈ −〈a1,αa1,β〉+ [Binplane −Boutofplane],

(2.6)

under the assumption that directed flow is very small, we have eliminated all background

contributions unrelated to the reaction plane [63]. Estimates for the magnitude of the parity

violation effect give an order of magnitude for the value of this correlator of ∼ 10−4. Its de-

pendence on the centrality of the event should follow from its dependence on pion multiplicity
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and the magnetic fields involved, and decreases faster than 1/N . The rapidity dependence of

the effect is such that it is expected to happen entirely within the central barrel acceptance.

In practice, the calculation of this correlator can be made through the use of a third species

of particles (three-particle correlation), according to the following equation:

〈cos(φα − φβ − 2φc)〉 = v2,c 〈cos(φα + φβ − 2ΨRP )〉 , (2.7)

with c denoting the third species. In order for this formula to hold, the third particle must

not have non-flow correlations with the charged pions. Such correlations would introduce

a systematic uncertainty which should be limited by a proper choice of the third particle

species.

Equation 2.7 requires the calculation of the elliptic flow for the c-particle, but not

the direct determination of the event plane from the charged pions. We can thus chose

an appropriate third particle with a large flow that will only be correlated to pions through

event-plane related correlations. This correlator is indeed a P- even quantity, which means it

is sensitive to flow correlations unrelated to P-violations. Identifying the processes in which

the pions will be correlated and evaluating their magnitude is thus necessary for a proper

interpretation of the results. One of the biggest challenge of the flow coefficient calculation,

when looking for evidence of P violation, will be to eliminate the contributions from non-

flow correlations. These contribution can come from several sources, such as jets, clustering,

or resonance decays. While most of these effects depend on multiplicity like 1/N , which

implies that they will have a lesser impact on the value of the flow coefficients at LHC than

at RHIC, some might account for a significant part of the value of those coefficients. The

a1 component of the flow which could arise from parity violations is expected to be, at best,

quite small (∼ 0.01). Conducting a thorough study of the different sources of correlations is

a necessary step of the analysis before any conclusion can be drawn.

Among those processes which contribute to the background affecting the correlator
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measurement is the production of particles from cluster decays. By making the assumption

that the only contribution to the value of the correlator comes from those decays, we can

estimate its influence on the final result:

〈cos(φα + φβ − 2ΨRP )〉 =
N clust

event
·N pairs

clust

N pairs
event

· 〈cos(φα + φβ − 2 · φclust)〉clust, (2.8)

where the “clust” index indicates that we are only taking the average over pairs coming from

the same clusters. This quantity can be estimated using simulations and then compared to

the experimental value of the correlator.

2.2 Local Charge Conservation

One source of background expected to affect Equation 2.6 is the interplay of local charge

conservation and the strong elliptic flow found in non-central collisions. The principle behind

local charge conservation (LCC) is that particles created in a heavy ion collision, be they of

partonic or hadronic nature, are created in opposite charge pairs [64]. The main tool used

for the study of balancing charge is the balance function:

B (p2|p1) =
N+− (p2|p1)−N++ (p2|p1)

dM/dp1

+
N−+ (p2|p1)−N−− (p2|p1)

dM/dp1

, (2.9)

where Nαβ is the number of pairs composed of a particle of charge α and one particle of

charge β, and M is the charged particle multiplicity. It can be interpreted the following way:

given a charged particle with momentum p1, it is the probability that a particle with mo-

mentum p2 has opposite charge rather than same charge. Experimental evidence has shown

that initial spatial correlations, when combined with elliptic flow, gave rise to correlations

in momentum space [65]. In general, all particles created in the same nucleon-nucleon bi-

nary collisions receive momentum space correlations from having been created in proximity

of each other and are collimated by flow. However, the strong spatial correlations of the
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balancing charges introduces an additional azimuthal correlation between these two parti-

cles. The various moments of anisotropic flow give a reaction-plane dependence to these

correlations. For instance, elliptic flow will give rise to stronger correlations in-plane than

out-of-plane, which translate in a contribution to the mixed-harmonic correlators introduced

in Equation 2.6. Similarly, the effect of quadratic flow on local charge conservation will affect

the charge-dependent double-harmonic correlator 〈cos (2φa + 2φb − 4ψ)〉. When calculating

the opposite-charge pair correlations, one has to remember that local charge conservation is

not the only source of correlation that arises from the interplay of spatial proxmity and flow.

In particular, local charge conservation would express itself as a background to the correla-

tors used in the search for the CME via a difference between the opposite- and like-charge

correlator:

2〈cos (φ+ + φ− − 2ψ)〉 − 〈cos (φ− + φ− − 2ψ)〉 − 〈cos (φ+ + φ+ − 2ψ)〉. (2.10)

As a consequence, while LCC could potentially explain the difference between the opposite

and same sign versions of the second harmonic correlator from Equation 2.6, the strong

same-sign signal alone cannot be explained in this fashion and requires another mechanism.

A proposed candidate is the effect of momentum conservation, as discussed in [66].

This dissertation is centered around the estimation of the LCC background affecting

the charge-dependence of the second harmonic correlator using the fourth harmonic correla-

tor. The latter is not sensitive to the CME, allowing the measurement of purely non-CME

contributions. A comparison of the ratio of the fourth to second harmonic correlators with

phenomenological calculations can help us determine the magnitude of the contribution of

LCC to the second harmonic correlator.
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Chapter 3

Experimental Setup

3.1 The Large Hadron Collider

The results presented in this dissertation are based on ultrarelativistic heavy ion colli-

sion data collected by the ALICE experiment at the Large Hadron Collider (LHC). The LHC

is a colliding beam facility that first became operational in 2009. It is the result of an inter-

national effort to build a high-energy physics experimental facility that would reach center-

of-mass energies greater than those of other existing colliders and provide new experimental

results that would help confirm (or infirm) a series of theoretical predictions. The most widely

known of such predictions is the Higgs mechanism (more accurately Englert—Brout—Higgs

mechanism) which provides an explanation for the electroweak symmetry breaking, and was

confirmed in 2012 with the experimental discovery of the Higgs boson. The LHC might

provide the first experimental steps leading beyond the standard model, although no such

results have been obtained as of yet. The LHC facilities are located at the European Center

of Nuclear Research near Geneva (better know as CERN based on the French initials). The

LHC ring is 27km in circumference, crosses the French-Swiss border multiple times, and

uses the same tunnel that was previously used by a lepton collider named the LEP. The

main component of the LHC is a synchrotron capable of accelerating two beams of either

protons or lead ions at velocities very close to c, and energies of several TeV. Currently,

beam energy has reached values as high as 4 TeV for protons and 2.76 TeV for lead ions, but

a run of pp collisions at
√
sNN= 14 TeV is planned for 2015. The LHC operates as follow:

protons are obtained by stripping away electrons from a hydrogen gas using an electric field;
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a similar procedure is applied to obtain lead ions for the relevant experiments. They are

then injected in a linear accelerator (LINAC 2) which brings them to an energy of 50 MeV.

Following this, they are transfered through a series of 3 synchrotrons which each accelerates

the beam to higher energies: first the PSB (Proton Synchrotron Booster) brings it to 1.4

GeV, then the PS (Proton Synchrotron) brings it to 25 GeV, and finally the SPS (Super

Proton Synchrotron) brings the beam to 450 GeV before injecting it into the main LHC ring

where they will reach the energy required for the experiment. Figure 3.1 shows the locations

of the various components and facilites of the LHC.

Figure 3.1: Location of the large hadron collider accros the Swiss-French border [17].

3.2 The ALICE Experiment

ALICE is general-purpose detector optimized for the study and analysis of ultra-

relativistic heavy-ion collisions. It is designed to enable particle identification of a large

number of particle species (charged and neutral pions, kaons, protons, electrons, muons,

photons...) anticipated to be produced in these collisions. While the main purpose of this

detector is to study Pb+Pb collisions (
√
sNN= 5.5 TeV per nucleon pair energy), collisions

at lower energies and involving lighter ions will also be analyzed to study the dependence of

the QGP properties on energy density and nucleus size. p+p collisions will also be studied

both as a reference for Pb+Pb collisions and for the physics specific to those collisions.

The ALICE detector distinguishes itself from the other detectors installed at the LHC
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by its ability to track and identify particles over a large momentum range (from pT ∼ 100

MeV to ∼ 100 GeV) in a high-multiplicity environment, and to allow for the reconstruction

of short-lived particles such as heavy mesons. The multiplicity density (number of particle

produced in the collision per unit pseudorapidity) is expected to be as high as dN/dη = 4000,

but the detector has been tested in simulations with twice as much density [23]. The high-

precision, slower detectors used in ALICE limit the heavy ion collisions to a reduced rate

relative to the other LHC experiments (∼ 10 kHz for Pb+Pb). A set of triggers makes it

possible to select specific rare events, such as those containing high-momentum jets. Up to

∼ 10 million events can be selected and stored this way each year of operation (effectively

during a few weeks allocated to Pb+Pb runs).

The central part of the detector covers a pseudorapidity range of −0.9 < η < 0.9. It

is composed of several detectors which are, from the inside out: the Inner Tracking Sys-

tem (ITS) detectors, the Time-Projection Chamber (TPC), a Time-of-Flight (TOF) array,

a ring imaging Cherenkov High Mometum (HMPID) detector, Transition Radiation (TRD)

detectors, a calorimeter called the Photon Spectrometer (PHOS) and another Electromag-

netic Calorimeter (EMCal). Aside from the EMCal, PHOS and HMPID, the other detectors

cover the full azimuthal range (not taking into account the acceptance effects due to the

construction of the detector). The central barrel is surrounded by a solenoid magnet that

produces a magnetic field of 0.5 T, whose purpose is to give a curvature to the tracks of the

charged particles, allowing the measurement of the momentum.

Aside from the central barrel, ALICE also contains a set of small angle detectors: a

forward muon spectrometer, associated with a dipole magnet to bend the muon tracks, a

Zero-Degree Calorimeter, a Photon and Forward Multiplicity detectors (PMD, FMD), a T0

(measuring the event time) and a V0 (to trigger on minimum bias and reject ion-gas collisions

background) detector, that are part of the trigger system and allow the characterization of

the event. The trigger system is composed of several levels which allow the selection or

rejection of the events based on desired properties. If desired conditions are satisifed, a
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software, High-Level trigger reads the data from the TPC (a slow detector) and analyses it

“online” to achieve a finer selection of events and reduce the amount of data of each event

to be writtent to storage. Figure 3.2 shows the detectors composing the ALICE experiment.

Figure 3.2: Schematics of the ALICE experiment, showing the disposition of the various
detectors [18].

3.3 The Inner Tracking System

The innermost set of detectors directly surrounding the interaction vertex is called the

Inner Tracking System (ITS). It is composed of six layers of silicon-based detectors, arranged

in three pairs of two layers, disposed as shown on Figure 3.3. Each of these pairs is designed

based on a different technology, due to the rapid change in particle density with increasing

radius. Predictions on the upper limits of multiplicities in the most central collisions give

values of 8000 tracks per rapidity unit. The requirement to keep the channel occupancy low

prompted the design of detectors with very high granularity. The pseusdorapidity coverage

varies for each detector, but the whole ITS provides |η| < 0.9 for collision vertices within the

interaction diamond; all the layers cover the full azimuthal range. The main design goals of

the Inner Tracking System are to locate the collision vertex with good accuracy (resolution

better than 100 µm and to provide high-resolution tracking of charged particles. The ITS
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adds to the tracking capability provided by the TPC, by extending the tracking of high-

momentum particles (increasing the resolutions in angle and momentum), by expanding the

acceptance to the dead regions of the TPC,and by allowing low-momentum (< 100 MeV)

tracking thanks to the analogue readout of the four outermost layers. The high spatial

resolution provided by the ITS close to the interaction vertex also enables the reconstruction

of secondary vertices of short-lived resonances decay. All these detectors share similar basic

principles: charged particles that traverse through the detector cause ionization, and create

electron-holes pairs in number proportional to the particle energy loss. These are collected

at the electrodes to form a signal that will then be treated and output by the readout

electronics.

Figure 3.3: Disposition of the six layers of the ITS detectors [19].

The detector composed of the two innermost layers is named Silicon Pixel Detector.

Its first layer is located at a radius or 3.9 cm from the beam axis, while the second layer is

located at a radius of 7.9 cm. Each layer consists of a 2-dimensional matrix of hybrid silicon

diodes (which act as pixels) in reverse bias mode, each bonded to a readout cell on a readout

chip. Each readout cell contains a pre-amplifier-shaper and a discriminator. The readout is

binary, the value depending on the shaped signal reaching a certain threshold. The logical
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level is sent to a delay line until the arrival of the L1 trigger, and then stored in a front-end

buffer. The detector is composed of 240 ladders of 256 × 160 cells and five readout chips

(each chip serves 256×32 cells), for a total of about 9.8 million pixels. Such a high density of

cells is required in the high particle densities this close to the collision vertices, which could

reach 80 tracks.cm−2. An added advantage of this very high granularity is the very high

diode signal-to-noise ratio. In order to minimize the material budget the readout chips and

sensor matrix are as thin as possible while still allowing for enough yield to obtain a proper

signal; the total silicon budget of a ladder is 350 µm. In order to minimize the radiation

of heat towards the next two layers of the ITS, whose operation is negatively affected by

temperature change, the SPD is surrounded by a shield composed of aluminum-coated carbon

fibre, which brings the total material budget to ∼ .02X0 for a track perpendicular to the

beams. The ladders were designed to withstand in excess of 100 kGy, well above the 2.2 kGy

of radiation expected over 10 years of operation. The readout chips (ALICE1LHCb) are

programmable, application-specific integrated circuits (ASIC). The values of leakage current

compensation, individual and global threshold voltages for the cell readout binary output,

current and voltage bias references and trigger delay can be adjusted by modifying the global

and individual cell registers. The outputs of readout cell discriminators provide a fast-OR

signal when at least one pixel registers a hit. This functionality enables the SPD to be used

as a part of a L0 trigger which can be particularly useful for low-multiplicity pp events. Like

the pixels themselves, the fast-OR runs on a 10 MHz system clock. As the bunch crossing

frequency is 40 MHz, the fast-OR signal is integrated over 4 bunch crossings. When the L2

trigger signal is received by the readout chips, the data located in the first location of the

buffers are sent to shift registers, then sent to the PILOT chip in 256 (one for each row)

32-bit words. At each clock cycle, the data for a particular row are output, and each chip

of a pair of ladders composing a half-staff is read sequentially, and all half-staves are read in

parallel, giving a total readout time of 256 µs. This allows the SPD to operate on a 1 kHz

L2 trigger, where only it and the muon arm are readout.
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The two intermiediary layers form the Silicon Drift Detectors (SDD). They are com-

posed of 260 wafers with a sensitve area of 70.17 mm × 75.26 mm, located at a radius of

15 cm and 23.9 cm from the beam axis respectively, where particle density could reach 7

cm−2 for the most central collisions. The SDDs have a material budget of .011X0 for each

layer, and .029X0 for the supporting structure. Each element of the SDD is composed of a

Neutron Transmutation Doped silicon ladder arranged in two drift regions separated by a

central cathode. On each drift regions and on both sides of the wafer are found 291 other

parallel, regularly spaced p+ cathode strips with a pitch of 120 µm. A voltage bias of 2.4 kV

is applied to the central cathode, and voltage dividers provide a decreasing voltage between

each cathode to generate a drift field parallel to the wafer. At both extremities, a row of

anodes form the collecting region. This region contains on one surface a pull-up cathode and

on the other an array of 256 anodes connected to the front-end electronics, arranged in a line

parallel to the cathode strips, with a pitch of 294 µm. A separate power supply ensures that

independently of the central cathode bias, a -40 V voltage difference exists between the last

cathode and the anodes. When a charged particle crosses the silicon, it frees electrons which

are then subject to the drift field and carried to the nearest collection region and the anodes

[67]. The integral of the signal collected from the interaction of one particle with the SDD

is proportional to the dE/dx energy loss; unlike SSD signals, the amplitude of the signal is

relevant for these detectors and will be digitized via ADC. The front-end electronics consist

of three successive sets of ASICs. The so-called PASCAL ASICs sample the signal from the

anodes row at ∼ 40 MHz, amplify and digitize it upon receiving a trigger signal. The data

output by a PASCAL chip are then sent to an AMBRA chip, which perform 10-to-8 bits data

compression on the signal and stores it on a 4-deep buffer. The signal finally reaches a CAR-

LOS ASIC, which performs zero suppression and data compression. The position of a hit by

a charged particle can be reconstructed using the position of the anode that produced the

signal, which gives one of the coordinates (z) in a straightforward fashion, as well as the drift

time, which can be used to extrapolate the other coordinate (rphi) assuming constant drift
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velocity of 8.1 µm.ns−1 produced by a -2.4 kV central anode bias voltage. Because knowledge

of the drift velocity is critical to the hit localization and track reconstruction processes and

since it can vary significantly with temperature, MOS charge injectors are located in each

drift region to monitor drift velocities. The 40.08 Mhz sampling rate of the anode signal by

the PASCAL chips coupled with the anodes pitch gives a cell size of 294 µm ×202 µm, for a

total number of cells of 2316× 106. These characteristics ensure the SDDs have good spatial

resolution and multitrack capabilties, with the ability to distinguish clusters from different

particles with a relative separation of 800 µm around the central cathode with ∼ 70% ef-

ficiency. The SDDs also participates in momentum reconstruction via energy loss (dE/dx)

information, offering a good compromise between track information and granularity.

The two outermost layers of the ITS are composed of Silicon Strip Detectors (SSD).

The sensors composing the SSD are 73× 40 mm2 active area silicon wafers covered with 768

p-strips on one side and 768 n-strips on the other. All the strips on one side are parallel, with

a pitch of 95 µm. However the p- and n-strips make an angle of 35 mrad with each other,

with the p-strips and n-strips making an angle of 7.5 mrad and 27.5 mrad with the beam axis

respectively, creating a net which will allow the location of a hit matching p- and n- strips

signals. The sensors operate along the following principles: charged particles going through

the wafer will create charge carriers (electrons and holes), which are then collected by the

n- and p-strips respectively. The relatively small angle between n- and p-strips (so-called

stereoscopic angle) was determined by simulations to minimize ambiguity from multiple hits,

as shown in Figure 3.4.

The 5th and 6th ITS layers are mounted with the n- and p-sides facing the interaction

vertex, which results in a total of four different orientations for the strips, allowing greater

accuracy in the localization of hits. The hit precision is ∼ 20 µm in the rφ direction and

820 µm along the beam (z) axis. The front-end electronics of the SSDs are composed of 12

HAL25 ASIC per sensor. These chips pre-amplify and shape the signal into a voltage step

with a magnitude dependent on the amount of charge collected by the strips. The HAL25
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Figure 3.4: Multiple particle hits fire several pairs of strips creating ambiguities (“ghosts”).
The small stereoscopical angles allows an easier discrimination between real and fictive hits
using charge correlations between both sides of the sensor [20].

hold the signal upon reception of a L0 trigger-derived HOLD signal, awaiting a L1 trigger.

A L1-reject ends the readout the sequence and removes the HOLD signal, while a L1-accept

triggers the digitization and zero-suppression of the signals. Provided a L2-accept trigger

has been received, the signal is stored in a multi-event buffer once the digitization and zero-

suppression are complete, which allows a new trigger cycle to take place while the data are

transferred to the DAQ system.

3.4 The Time Projection Chamber

The main detector of the central barrel (and, by extension, the tracking system) is the

Time-Projection Chamber. Its purpose is to provide accurate tracking of charged particles

with 2π azimuthal coverage, allowing track reconstruction over a large range of momenta

and particle identification via specific energy loss (dE/dx) in the low momentum region
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(less than a few GeV/c) and in the very high momentum region (a few dozen GeV/c), the

so-called “relativistic rise” region. It was designed to provide a momentum resolution < 1%

in the 100 MeV to 1 GeV region in a 0.5T field, and, when used in combination with the

other tracking detectors, to attain a resolution of ∼ 10% for very high-momentum tracks

(100 GeV/c), to provide discrimination of charged tracks with similar momenta if their

momentum difference is at least on the order of 5 MeV/c, and a dE/dx resolution of < 5%

in the low momentum region, and ∼ 7% in the relativistic rise at large multiplicities. It is

able to operate in central events approaching a charged particle density of dNch/dη = 8000

for a total of 20000 tracks in the TPC. In such events, the occupancy reaches ∼ 40% at the

innermost radius and ∼ 15% at the outermost radius. In the much higher rate of interaction

during pp runs, the tracks for ∼ 60 events are registered together with the triggering event

in the TPC, and rejected by discriminating tracks with the wrong vertices. The tradeoff for

the outstanding tracking abilities and momentum resolution is the relative slowness of the

detector. Its maximum rate of operation is a 400 Hz for minimum bias Pb–Pb events, 200

Hz for central Pb–Pb events and 1000 Hz for pp events. The TPC is a cylindrical field cage

divided into two regions by a central electrode, covering the rapidity region between -0.9 and

0.9 (although it reaches 1.5 if we include partial tracks with reduced momentum resolution).

Its inner radius is ∼ 85 cm, its outer radius ∼ 2.50 m, and its length in the z direction is 5 m.

It is filled with a gas mixture of 90% Ne and 10% CO2. Readout is provided by multi-wire

proportional chambers with cathode pad, located in the 18 end-plate sectors. The TPC is

separated in two regions along the z axis by a central electrode at z=0. This electrode is

brought to a 100 kV potential (while the endcaps are kept at the reference voltage), with

voltage dividers located in the inner and outer support rods of the TPC, aligned with the

“dead zones” between the readout chambers. This creates a field cage with a strong uniform

electric field, insulated from the rest of ALICE by CO2 containment vessels surrounding the

drift cage. Schematics of the TPC are shown on Figure 3.5.

When a charged particle travels through the gas filling the TPC, it loses energy while
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Figure 3.5: Schematics of the TPC (showing the electric field orientation) and pictures of
some of its various components [21].

ionizing the gas, separating electrons and ions. The 400 V.cm−1 electric field drifts the

electrons towards the end plates and the readout proportional chambers where they are

collected to provide a signal. This provides a 3D-picture of the track: two dimensions

are given by the x and y position of the hits on the readout chambers, while the z-axis

location of the track is obtained from the time distribution of hits and extrapolating using the

known drift velocity of 2.94 cm.µs−1. The stability of drift velocity is critical to the tracking

resolution, which in turn means that the temperature of the gas needs to be stable as well,

as it significantly affects drift velocity. The collected charge is amplified and integrated, then

processed by a shaper in a “PASA” ASIC chip, each of which contains the readout electronics

for 16 channels. The signal is then sent to an ALTRO ASIC, where each channel’s output is

digitized by a separate 10-bit pipelined ADC, then stored in memory upon reception of an L1

trigger signal. It is then either discarded if an L2 reject is received, or the latest event data

are frozen and processed furthered. Following this, the signal undergoes channel-to-channel

gain equalization, tail cancellation baseline subtraction and zero-supression. Time stamps

and size information are added to the data packet containing the final, corrected signals,

and the output is sent to a data memory before being transmitted to DAQ. For a very large
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multiplicity event, the TPC data could reach a total size of 60 MB[23].

3.5 The VZERO Detectors

The VZERO (or V0) detector provides ALICE with centrality identification and trig-

gering for the central barrel, minimum bias triggering, luminosity measurements and a pp

validation signal for the muon trigger. The triggers provided by the VZERO are of L0 level.

It is composed of 2 arrays called VZEROA and VZEROC, located on both sides (A and C) of

the interaction vertex (Figure 3.6). The VZEROC is placed on the muon spectrometer side,

in ahead of the front absorber, 90 cm from the interaction point, while the VZEROA array is

located 340 cm from the interaction point on the other side. Because of their location, special

care is taken to remove secondaries due to electrons generated by the material located in

front of the arrays when calculating centrality/multiplicity or for triggering purposes. Beam

gas interactions are rejected by comparing the time-of-flight for both arrays.

Figure 3.6: Localization of the VZEROA and VZEROC arrays on both side of the interaction
point. The VZEROC is fixed to the front absorber [22].

The arrays are composed of 32 counters in 4 concentric rings, covering between 0.4

and 0.6 units of pseudorapidity. Each sector is composed of a scintillator connected via

WaveLenght-Shifting fibres and clear fibres to a photomultiplier located several meters away,

for a time resolution of less than 1 ns. The output from the photomultiplier is separated
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into two signals, one of which is amplified tenfolds and sent to the frontend electronics. The

amplified signal is processed by a Time Digital Converter (which digitizes the signal pulse

time) while the unamplified one is processed by an ADC. Discrimination between beam-beam

and beam-gas interactions is done using pre-adjusted time windows in coincidence with the

output of the TDC, while the ADC output can be used for triggering based on the total

signal output by each array, such as centrality triggering.

3.6 Brief descriptions of the other detectors

� Transition Radiation Detector (TRD)

The Transition Radiation Detector, located around the TPC at a radius of 2.9 m, is

the main detector for electron identification. It uses the photons emitted via transition

radiation to distinguish between particles of different masses. It is used to discriminate

electrons from hadrons (usually pions), and reconstruct light and heavy hadron from

semi-leptonic or leptonic decay channels.

� Electromagnetic Calorimeter(EMCAL)

The EMCAL, located outside of the TOF detector, identifies particles using the elec-

tromagnetic showers they trigger in scintillators. Using the cell locations and energy

deposited in each cell, shower shapes can be reconstructed and analyzed. Direct pho-

tons and decay photons from neutral pions can be reconstructed. It can also be used

for jet energy reconstruction and jet events triggering. It covers the |η| < 0.7 region

with a 107°azimuthal coverage.

� Photon Spectrometer (PHOS)

The PHOS detector is similar in purpose and principle to the EMCAL, but with a

smaller acceptance in exchange for a higher spatial resolution. It can be used for jet

triggering and reconstruction. It covers the |η| < 0.14 region with a 110°azimuthal

coverage opposite to the EMCAL.
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� Zero Degree Calorimeter (ZDC)

The ZDC detector is a set of four calorimeters located 115m away from the vertex

diamond on both A and C sides. Two of these calorimeters are used to detect proton

spectators, and two are used to detect neutron spectators. They are mainly used to

determine centrality from the number of collected spectators.

� Time-of-Flight (TOF)

The Time-of-Flight identifies charged particles in the intermediate momentum region

( a few GeV). This identification is made by combining the signal time measurement

from the TOF detector with the momentum and track length from the corresponding

central barrel track. It has full azimuthal coverage and a pseudorapidity coverage of

|η| < 0.9. It is located around the TRD detector, at a radius of 3.7.

� T0

The T0 detector is a set of two Cherenkov radiation detectors located on each side

of the vertex diamond. It is mainly used as an early triggering (L0 level) and timing

detector with a time resolution of 50 ps.

� Muon Spectrometer

The muon spectrometer is a large forward detector aimed at reconstructing heavy

quarkonia resonances via their muon decay channels (high-momentum muons). It is

composed of an absorber that filters out the background made of other (non-muon)

particles, a set of tracking chambers surrounded by a magnet, and a muon trigger to

select heavy quarkonia events. It covers the −4 < η < −2.5 region.

� Forward Multiplicity Detector (FMD)

The FMD is a forward detector composed of 5 rings of semiconductor detectors. It

is aimed at detecting the multiplicity of charged particles emitted at forward rapidi-

ties (1.7 < |η| < 5.1). It is also used for the study of elliptic flow and multiplicity

fluctuations.
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3.7 Triggering Systems

The trigger system is designed to select events displaying desired features as well as

accomodate the limitation of the DAQ system’s bandwith when transfering the large amounts

of data created by high-multiplicity central Pb-Pb events. Previous sections of this chapter

have discussed a sample of the detectors found in the ALICE expriment, and in particular

the varying readout and data transfer speed, data size and in general busy time. The ALICE

trigger system’s complexity arises from being designed around this constraint. Three levels

of hardware trigger are used in ALICE, called Level 0 (L0), Level 1 (L1) and Level 2 (L2).

The first two triggers are “fast” triggers. The L0 trigger is sent to the relevent detectors

to instruct them to start the readout, while the L1 trigger instruct them to either continue

proceeding with the readout, or discard the event. The necessity for the existence of two

triggers arises from the different speed of trigger input detectors and the necessity for some

readout detectors (that is, detectors on the receiving end of the trigger) to start processing

the event early. The L0 trigger is sent 1.2µs after the event, while the L1 trigger is sent 6.5

µs later and is based on detectors that are two slow to participate in the L0 decision. The L2

trigger is of a different nature. It is sent after a much longer time has passed since the collision

(∼ 88µs) and serves the role of past-future protection. It sends the signal that the event has

been rejected or accepted based on the presence or absence of pile-up, i. e. multiple collisions

registered as a single event by the readout detectors. The main component of the trigger

system is the Central Trigger Processor (CTP). It receives input from triggering detectors,

computes the triggering decision and dispatches it to the various detectors. The CTP is

capable of handling 50 trigger classes, which are configurations of trigger input conditions, i.

e. which detectors are required and the logic operation between those signals; the triggering

decision can be made differently and independently to six “groups”, or clusters, of detectors.

Because there are so many classes, and up to 24 L0 inputs, 20 L1 inputs and 6 L2 inputs, it

is not possible to simply refer to a table for the trigger decision of an event, and the CTP’s



48

decision is based on logical AND gates.

3.8 The ALICE Online Systems

The ALICE experiment contains five online systems, Data Acquisition (DAQ), High-

Level Trigger (HLT), Detector Control System (DCS), Experiment Control System (ECS)

and the CTP. Figure 3.7 shows a representation of the DAQ and trigger systems and Figure

3.8 depicts the organisation of the ALICE online systems. The purpose of the DAQ system

is to collect the data readout from the detectors, process it and archive it. It is designed

to provide the bandwith required for the large data size of frequent Pb-Pb trigger (Pb-Pb

minbias, central or mid-central events), as well as collecting the highest possible event count

for rare triggers, such as dimuons or dielectrons. It performs a selection of events with

high-level trigger algorithms, compresses the selected events which are then collected by the

publish agent, which sends them to the Grid storage where they are referenced on the AliEn

catalog; they are also eventually archived on tape by the CASTOR system.

Figure 3.7: Schematics of the DAQ and trigger systems [23].
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Figure 3.8: Schematics of the ALICE online systems and the online-offline transition [24].

The data transfer between the detector readout systems and the DAQ is carried out

by Detector Data Links (DDL) using the same standard protocol. The front-end electronics

(Local Datal Concentrators, LDCs) assemble this data into sub-events and ship them to

a farm of machines called Global Data Collectors (GDCs), which collect the sub-events

into a whole event before eventually sending them to the storage network. The DAQ is

also able to send BUSY signals to the CTP, as well as enable (or disable) some triggers to

maximize detector availability of rare events. The High-Level Trigger system receives the

data in parrallel to the DAQ, through a set of DDLs. The High-Level Trigger is a system

designed to sift through events that contain the signature of a rare probe or phenomenon

(obtained from rare event triggers) and perform a stricter selection, rejecting fakes; it does

so by performing an online analysis of these events. It can also select parts of an event while

rejecting the rest (for instance filtering low-momentum tracks or cleaning pp pile-up) and

compresses the data without loss of physics information. The motivation behind the use of

the HLT is the limitations of the ALICE data storage, which cannot host the entirety of the

data collected by the DAQ.

In addition, each detector produces condition data, which includes information rele-

vant to its status (for instance, noisy or bad channels) and the environmental conditions

(temperature, high-voltage levels) during its operation. Condition data are extracted online
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by the online systems using dedicated algorithms for each detector. The requirement for

the condition data to be gathered on the online side, rather than reconstructed via offline

analysis, arises from the limits of the computing resources available. At the end of each run,

the ECS triggers the Shuttle framework which collects the condition data from the DAQ,

HLT and DCS, processes it and converts it to ROOT format, then posts it to the Offline

Conditions DataBase (OCDB) located on the computing Grid storage and referenced by the

AliEn catalog.

3.9 Software Aspects of the ALICE experiment

3.9.1 Vertex and Track Reconstruction

The required first step of the track reconstruction process is the determination of the

event vertex, which correspond to an estimation of the collision spatial coordinates. The

vertex reconstruction is conducted via the two innermost layers of the ITS which constitue

the SPD. This reconstruction is conducting in two steps. The first of these steps involves a

rough determination of the vertex on the z axis via the determination of the centroid (zcen

of hit distribution on the SPD. For vertices close to z=0, zcen deviates very little from the

true vertex ztrue. However, for values ztrue far from the center, this approximation becomes

increasingly unreliable partly due to the SPD’s acceptance and asymmetrical hit losses.

Because of this, a polynomial relationship is used to estimate the first-order approximation

of the vertex z coordinate, z0
v . The second step involves taking the z coordinates of all the

hits on the first layer (z1) and all the hits of the second layer (z2) and correlating each pairs

of hit to obtain, in each case, a vertex position zv (Figure 3.9). Only pairs that give a vertex

position within the condidence interval of z0
v and within ∆Φ = φ1− φ2 azimuthal angle cuts

are considered. A distribution in zv is obtained, which is then fitted with a gaussian function

plus a constant f (zv) = A · e−(zv−zfound)2/σ2
+C as shown on Figure 3.10. The value of zfound

is taken as the z coordinate of the collision vertex. Similar processes are applied to find the
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coordinates of the vertex in the transverse plane.

There are two classes of methods for the track reconstruction processes, local and global.

Global track finding methods are mainly used in the HLT system and use the measurements

pertaining to one track from all the detectors, simultaneously. In ALICE, global track

finding is performed using a Kalman-filtering approach. Before the reconstruction proceeds,

2-dimensional clusters are found in the TPC and their center-of-gravity identified (after

corrections for threshold effects) to determine the cluster’s position. Similarly, ITS clusters

are reconstructed and their position determined. The reconstruction proper starts with track

candidates on the outer boundary of the TPC, where the track density is the lowest. The

track reconstruction progresses towards the center of the TPC, assigning clusters to track

candidates using the Kalman filter; each cluster added to a track improves the estimation

of track parameters. The tracking is prolongated in the ITS and as close as possible to

the collision vertex. Another ITS-only track reconstruction is then conducted in order to

reconstruct tracks that cannot be found in the TPC (because of decays, dead zones, or

momentum cuts). The tracking procedure is then restarted from the inner ITS layer to the

outer TPC boundary, then tracks are extrapolated into the TOF, TRD, HMPID and PHOS

detector to acquired PID information. Finally, a final Kalman-filter fit is performed from

the outer radius towards the inner radius, and the information collected is used to determine

secondary vertices.

3.9.2 Centrality Determination

We have seen in previous chapters the strong influence the initial geometry of the

collision could have on observables. Unlike protons, nuclei are finite objects with a non-

negligeable volume and this strongly influences the characteristics of collisions. The depen-

dence of observables such as the anisotropic flow or jet quenching on the geometry and size

of the system is very strong, and as a consequence there is a need for a reliable and consistent

way to determine an impact-parameter related quantity that would provide information on
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Figure 3.9: Graphical representation of the determination of the z vertex from one pair of
ITS hit [23].

how close to “head-on” the collision has been and how many participants were involved in

the collision.

The quantity used to estimate the overlap between the two nuclei in the collision is

called centrality. It is defined as the percentage of the total nuclear interaction cross section

that corresponds to an impact parameters below a certain value b0:

c (b0) =

∫ b0
0
dbdσ

db∫∞
0
dbdσ

db

=

∫ b0
0
dbdσ

db

σtot

. (3.1)

However, neither the impact parameter nor many of the quantities that would allow one

to estimate it are directly measurable, such as the number of binary collisions Ncoll, or the

number of participants and spectators Npart and Nspec. However, multiplicity or total energy

deposited in a calorimeter are monotonic functions of centrality (modulo fluctuations), as a

lower impact parameter translates into more binary collisions and a larger number of created

particles, with larger total center-of-mass energy. The definition of centrality becomes the

hadronic cross section for a multiplicity above a certain value M0 or a deposited energy above
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Figure 3.10: Fits of the zv distribution obtained via ITS hit pair correlations. The centroid
of this distribution is taken as the final value of the z coordinate of the vertex [23].

a value E0:

cmeas (M0) =

∫ N0

0
dN dσ

dN

σtot

(3.2)

cmeas (E0) =

∫ E0

0
dE dσ

dE

σtot

. (3.3)

These quantities are estimated by finding the proportion of measured events with multiplici-

ties (typically in VZERO detectors) or deposited energy (typically in the ZDC) and correcting

for trigger efficiency and rejection of the most peripheral events, where the hadronic cross

sections are contaminated by QED processes. This correction is done by fitting the obtained

distributions with a function based on a Monte-Carlo Glauber-model of nuclear collisions.

This fit also allows for the extraction of the centrality-related parameters mentioned above.

However, the event-by-event detector-dependence of the centrality estimation remains and

the resulting systematic uncertainties will have to be taken into account in analyses that

study the centrality dependence of an observable.

In the analysis presented in this dissertation, centrality for the main measurements

will be based on the multiplicity obtained in the VZERO detector, which is the standard
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multiplicity used in ALICE heavy ion runs. Measurements performed using other detectors

will be made for systematic error estimations. Figure 3.11 shows the VZERO multiplicity

distribution and the resulting centrality definition after the Glauber model fit.

Figure 3.11: VZERO estimated multiplicity distribution and fit based on a Glauber model.
The various common centrality bins used in analyses are shown [25].

3.9.3 The Analysis Framework

The analysis presented in this thesis and many others performed by the ALICE col-

laboration are centered around two software systems named ROOT and AliRoot. ROOT

is an object-oriented software toolkit including a set of statistical analysis libraries, a C

interpreter and a GUI. ROOT is widely used in the field of high-energy physics, in many

experiments. It is written in C++ with an interface to FORTRAN. ROOT stores analysis

data structures in objects equiped with methods appropriate for the convenient treatment

of these data structures and extraction of usual parameters. Objects corresponding to many

common statistical analysis data stuctures exist, such as histograms of arbitrary dimension,

profiles, n-tuples, and tree-like structures. It includes mathematical libraries for integration,

fourier transform, minimization and fitting, and many other complex operations. ROOT is

also equiped with a power graphing tool for the display of its data structres which has been
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used for many of the figures presented in this thesis.

The ALICE experiment uses a set of software libraries built on top of the ROOT system,

called AliRoot. It is a set of software classes, usually written in C++, written specifically to

analyze data collected by the various detectors of the ALICE experiment and related tasks

including reconstruction, use of the calibration data stored on the OCDB, simulation of the

detectors, quality analysis and visualization of events. The library structure of ALIROOT is

shown in Figure 3.13. Its core analysis functionalities are based on the processing of events

stored in 3 types of data structures, called MC (for events created by Monte Carlo simula-

tions), Event Summary Data (ESD) and Analysis Object Data (AOD). The ESD format is

the result of the event reconstruction process (i.e. tracking, etc.) and contains all the data

produced by that process. It includes a header containing general event and run informa-

tion such as run number, magnetic field configuration, trigger information, reconstruction

software version, various collision vertex and centrality estimations, multiplicity, etc. It also

contain the complete arrays of tracks, V0 vertices and clusters found in all all the detectors.

Details on AliRoot and the various event data structure can be found in [68]. A diagram

depicting the organisation of the ALICE offline framework is shown on Figure 3.12.

The AOD format is obtained by filtering ESD events and selecting specific tracks,

vertices and clusters. The filters obey specifications decided by the workgroups working on

ALICE data based on specific analysis requirements. One particular set of filters is applied

to the tracks obtained from the central barrel. These tracks are selected or rejected based

on parameters and what detector data is available for this track, and then assigned a binary

mask composed of filter bits. Each track can have potentially two sets of parameters (and be

stored in potentially 2 track objects in an AOD): global parameters and parameters extracted

from TPC clusters only. In this analysis, we will mainly use the filter “128” (so-called “TPC-

only”), which corresponds to tracks containing TPC-only information without ITS cluster

presence requirements, in order to preserve uniform track quality but with azimuthal “dead

zones” due to the geometry of the TPC. For systematic uncertainties estimation purposes,
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Figure 3.12: Schematics of the ALICE offline analysis framework [26].

we will also look at the 768 filter bit in 2011 Pb-Pb data (so-called “hybrid”) which uses

global parameters, with more uniform φ coverage.

In order to facilitate analysis tasks, which often have to process millions of Pb-Pb events

with hundreds or thousands of tracks or clusters, often with a quadratic (or worse) time cost,

CERN provides for the LHC users a distributed computing network called the Grid. It is

based on a collaboration of computing centers found in many places around the world (their

locations can be found on the Grid status page found in [69]. Each computing center provides

data storage, which, when taken globally, can host the 15 yearly petabytes of data produced

by the LHC. These centers also provide computing power for analysis tasks. The ALICE

Environment software (AliEn) provides an interface to the Grid for ALICE users, including

various routines and shell environments to browse the catalog of files stored on the Grid and

manage them, as well as submit analysis “jobs” to the dispatcher, which will separate them

into smaller subjobs that each process a limited amount of data. The job submission is done

through the creation and execution of a script written in the Job Description Language,
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Figure 3.13: Library structure of AliRoot [27].

which tells the Grid infrastructure which versions of ROOT and AliRoot are needed as well

as suplemental source files, where to store the output and which data to analyse via a catalog

file written in XML.
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Chapter 4

Flow Coefficients and Mixed Harmon-

ics Calculation Methods

Over the years, a variety of methods have been devised to calculate flow and flow-

like observables. While we will mainly discuss the event plane and Q-cumulant methods,

others exist with different advantages and drawbacks, such as the Lee-Yang Zeros or Bessel

Transform methods which remove nonflow correlations such as jet correlations.

4.1 The Event Plane Method

The first method we will discuss is also one of the earliest one to have been used to

study collective phenomenon in heavy-ion collisions, the event plane method. Its principle

lies in the determination of an estimate of the reaction plane for a particular subevent,

composed of particles that we will call reference particles, followed by the calculation of the

correlation of the particles whose azimuthal distribution we are studying, flow particles, with

respect to that event plane.

We define the two-dimensional flow vector (also known as Q-Vector) as

Xn = Qx
n =

∑
i

wi cos (nφ) (4.1)

and

Yn = Qy
n =

∑
i

wi sin (nφ), (4.2)
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where the index i runs over all the reference particles. The weights wi are chosen in such

a way as to optimize the determination of the event plane by lowering its resolution. In

general, the selection of a particular set of particles can be used as a weight, as will be the

case in this analysis. From this flow fector, we define the nth order event plane as:

ψn =
1

n
tan−1

(
Xn

Yn

)
=

1

n

(∑
i sin (nφ)∑
i cos (nφ)

)
. (4.3)

Several remarks can be made concerning this definition. Firstly, while there is a unique

reaction plane in a heavy ion collision, we can define a large number of event planes, based

on the chosen order and set of reference particles. Secondly, the event plane method involves

the use of anisotropic flow itself to calculate an estimation of the reaction plane.

In this analysis, the event plane is determined using data collected by the VZERO

detectors. However, we have seen that this detector does not give data pertaining to indi-

vidual particles, but rather a signal proportional to the number of particles going through

separates sectors of the azimuthal space at the rapidities covered by the VZERO acceptance.

This implies that the above definition of the flow vector will not be used when calculating

an event plane with the VZERO detectors. Instead, when calculating a VZERO-based event

plane, we will use the following equations:

Xn = Qnx =
∑
i

gi cos (nφi) (4.4)

and

Yn = Qny =
∑
i

gi sin (nφi), (4.5)

where i is an index that runs over all 32 of sectors of one of the VZERO detectors, and gi

is the corresponding gain. We have seen that the VZERO detectors have a π/4 rotational
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symmetry. When we will calculate the 4th order event plane, these equations will become:

X4 = Q4x =
∑
i

gi cos (4φi) =
∑
i

gi cos (4 · (k + 1/2) π/4) = 0 (4.6)

Y4 = Q4y =
∑
i

gi sin (4φi) =
∑
i

gi sin (4 · (k + 1/2) π/4) = ±1, (4.7)

and

ψ4, VZERO = lim
x→0+

1

4
tan−1

(
±1

x

)
= ±π

8
. (4.8)

The fourth order event plane calculated from the VZERO detectors (both A and C sides)

can only take 2 discrete values; this will have consequences on the fourth order event plane

resolution and the uncertainty of our 4th-harmonic measurements using VZERO detectors.

Once the event plane has been obtained, the calculation of the flow harmonics coef-

ficients can be performed. Using an mthorder event plane, any nthorder flow coefficient vn

such that n = k ·m, k ∈ N can be calculated as The flow coefficients are obtained from the

following equation:

vobs
n = 〈cos (n (φ− ψm))〉. (4.9)

In this equation, vobs
n differs from vn in that it is calculated using an estimate of the reaction

plane rather than the reaction plane itself. However, correction methods exist to obtain the

latter quantity from vobsn . In this analysis, flow and reference particles used for the calculation

of event planes will always be distinct. When this is not the case, a correction to the event

plane must be made to remove auto-correlation effects due to a particle being used both for

flow coefficient and event plane calculation. When calculating the average from Equation

(4.9) via a sum over all flow particles
∑

i cos (n (φ− ψm)), one has to recalculate the event

plane, omitting the i particle.

Writing the azimuthal distribution with respect to the event plane as a Fourier distri-

bution gives

dn

d (φ− ψm)
=

1

2π

∑
k

1 + 2vobsk·m cos (k ·m · (φ− ψm)). (4.10)
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4.2 Event Plane Resolution

Obtaining vn from this step is done via the calculation of an event plane resolution.

We can rewrite Equation (4.9) as :

vobsn = 〈cos (k (φ− ψm + ψ − ψ))〉 = 〈cos (k (φ− ψ))〉〈cos (k (ψm − ψ))〉, (4.11)

where we assumed that the sine terms cancel out. We identify, in Equation (4.11), the flow

coefficient vn:

vn =
vobsn

〈cos (m (ψm − ψ))〉
, (4.12)

where 〈cos (m (ψm − ψ))〉 is called the event plane resolution for ψm. This equation involves

the reaction plane angle, which we cannot know exactly. However, we can estimate this

quantity from event planes (which can be of different order) calculated with a set of different,

independent subevents:

〈cos
(
m
(
ψam − ψbk

))
〉 = 〈cos

(
m
(
ψbm − ψ

))
〉〈cos (m (ψak − ψ))〉. (4.13)

In Equation (4.13) a and b are indices denoting different subevents used to calculate the

respective event planes. For ”equal” subevents, of equal average multiplicity and expected

event plane resolution, e.g. tracks from the A and C sides of the TPC η rang, this would

reduce to

Ra,m = 〈cos (m (ψam − ψ))〉 =
√
〈cos (m (ψbm − ψam))〉, (4.14)

where Ra,m is the mthorder event plane resolution for event planes calculated from particles

belonging to the a set. However, in the case of VZERO event planes, because the A and C

side detectors are not symmetrical in their pseudorapidity coverage, we do not expect the

event plane resolutions to be equal, and cannot use this equation. If we were to use a third

subevent, e.g. calculated using TPC tracks, we could combine the associated instances of
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equation (4.13) into a single one:

〈cos
(
m
(
ψam − ψbm

))
〉〈cos (m (ψam − ψcm))〉

〈cos (m (ψbm − ψcm))〉
=
(
〈cos

(
m
(
ψbm − ψ

))
〉
)2
, (4.15)

or

〈cos
(
m
(
ψbm − ψ

))
〉 =

√
〈cos (m (ψam − ψbm))〉〈cos (m (ψam − ψcm))〉

〈cos (m (ψbm − ψcm))〉
. (4.16)

We can thus obtain all three event plane resolutions (for the a, b and c subevents) by

measuring the correlation between the respective event planes over a large number of event.

However, this resolution contributes to the uncertainty in the flow harmonic measurement.

In particular, in the case of the 4thorder event plane for the VZERO detectors, the event

planes correlation cos (k (ψ4,V0A − ψ4,V0C)) will take the values 1 or -1 almost equally often,

averaging to a quantity close to 0 with a relatively large uncertainty, which is the cause

of the very large systematic errors we obtain at this order for calculations involving these

detectors.

4.3 Q-Cumulants Method

Another method for flow coefficient and mixed harmonics calculations is the direct

use of the flow vectors introduced in Section 4.1 via cumulants. We denote cn{2} the two-

particles cumulant and vn{2} the nth flow coefficient measured using a 2-particles cumulant.

It can be shown [70] that :

vn{2} =
√
cn{2} and vn{4} = − 4

√
cn{4}. (4.17)

Reference [70] also gives the expression for the 2- and 4-particle cumulants:

cn{2} = 〈〈ein(φ1−φ2)〉〉 (4.18)
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where the inner brackets represent an average over the particles of one event or subevent,

and the outer brackets the average over a large number of events. Let us look in closer details

at these averages.

〈ein(φ1−φ2)〉 =
1

M (M − 1)

M∑
i,j=0
i 6=j

ein(φi−φj) =
1

M (M − 1)

(
M∑
i,j=0

ein(φi−φj) −M

)
, (4.19)

where the M diagonal terms have been subtracted in the right hand side of the equation.

This quantity can be expressed in terms of the flow vectors that have been introduced in

section 4.1, since
∑M

i=0 e
(inφi) = Qx

n + iQy
n = Qn, the complex notation of the flow vector.

Our 2-particles correlations can thus be expressed in terms of the Q-vectors:

〈ein(φ1−φ2)〉 =
QnQ

∗
n −M

M (M − 1)
=
|Qn|2 −M
M (M − 1)

. (4.20)

When averaging this quantity over many events to obtain the 2-particles cumulant, one can

use event weights. Typically, these will be equal to the number of terms in the sum, in this

case M (M − 1):

cn{2} =

∑
|Qn|2 −M∑
M (M − 1)

. (4.21)

The 4-particles cumulant can be shown [70] to be given by:

cn{4} = 〈〈ein(φ1+φ2−φ3−φ4)〉〉 − 2 · 〈〈ein(φ1−φ2)〉〉2, (4.22)

where, similarly to the 2-particles cumulant discussed previously, we can express the 4-

particles correlations in terms of flow vectors [71]:

〈ein(φ1+φ2−φ3−φ4)〉 =

|Qn|4 + |Q2n|2 − 2< (Q2nQ
∗
nQ
∗
n)− 2 (M − 2) |Qn|2 −M (M − 3)

M (M − 1) (M − 2) (M − 3)
,

(4.23)

where the terms on the right side of |Qn|4 again represent the removal of diagonal terms.
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4.4 Acceptance Corrections

We have so far assumed perfect detectors and neglected acceptance effects in the flow

calculation equations. In reality, the efficiency of the detectors will be a function of the

phase space variables, and in particular, in this analysis, azimuthal angles. For a detector

with uniform acceptance, we should have 〈Qx
n〉 = 0, 〈Qy

n〉 = 0. The impact of the dominant

contribution to these acceptance effects is proportional to 〈〈cos (nφ)〉〉 and 〈〈sin (nφ)〉〉, and

introduces an extra term to Equation 4.21 [71]:

cn{2} =

∑
|Qn|2 −M∑
M (M − 1)

−<
[

(〈〈cos (nφ)〉〉+ i〈〈sin (nφ)〉〉)×

(〈〈cos (nφ)〉〉 − i〈〈sin (nφ)〉〉)
]

=

∑
|Qn|2 −M∑
M (M − 1)

− 〈〈cos (nφ)〉〉2 − 〈〈sin (nφ)〉〉2.

(4.24)

In Equation 4.24, 〈cos (nφ)〉 = Xn, 〈sin (nφ)〉 = Yn and 〈〈cos (nφ)〉〉 = X̄n, 〈〈sin (nφ)〉〉 =

Ȳn. We will correct for acceptance effects by recentering the distribution of the flow vec-

tors components Xn and Yn. The procedure for this recentering involves the subtraction of

the average of these components over all events, calculated independently for each data run

number to account for the variation in azimuthal coverage. The new flow vector is

Qn =

 Xn − X̄n√
X̄2
n − X̄n

2
,

Yn − Ȳn√
Ȳ 2
n − Ȳn

2

 . (4.25)

The recentered components verify 〈〈cos (nφ)〉〉 = 0 and 〈〈sin (nφ)〉〉 = 0, and we can use

Equation 4.21 with the recentered Q-vectors without additional corrections.
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4.5 VZERO Gain Corrections

The geometry of the VZERO detectors is such that for a large number of events, one

would expect the average gain for every sector of a layer to be equal, due to the azimuthal

symmetry of the detector. However, as can be seen in Figure 4.1, the average gain fluctuates

from channel to channel. VZERO gain recalibration corrects these effects by equalizing the

Figure 4.1: Number of counts (color scale) for each value of multiplicity (y-axis) in each
channel (x-axis) of the VZERO detector, during run 170040.

average gain of all channels and setting it to the global average (over all channels) for the

detector. This procedure is performed separately for the A and C sides. The procedure for

this recalibration is the following: after collecting the gain data for all channels in a single

run, the average gain for each side is obtained via a linear fit. Thereafter, new gains are

calculated for each event and each channel:

G′ (i) = Gi ·
¯̄G

Ḡi

. (4.26)
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In Equation 4.26, Gi is the gain of channel i for a single event, Ḡi the gain for the same

channel over all events in the run, and ¯̄G the average over all events and all channels.

4.6 Event and Particle Selection

The analysis presented in this thesis is based on Pb-Pb data taken by the ALICE

experiment at
√
sNN = 2.76 TeV. The data are composed of the second reconstruction pass

of runs from years 2010 and 2011, LHC10h and LHC11h. 2010 events are selected using the

minimum bias trigger, while 2011 events consists of minumum bias, central and mid-central

triggers.

List of 2010 runs used in the analysis: 137161 137162 137231 137232 137235 137236

137243 137366 137430 137431 137432 137434 137439 137440 137441 137443 137530 137531

137539 137541 137544 137546 137549 137595 137608 137638 137639 137685 137686 137691

137692 137693 137704 137718 137722 137724 137751 137752 137844 137848 138190 138192

138197 138201 138225 138364 138396 138438 138439 138442 138469 138534 138578 138583

138621 138624 138638 138652 138653 138662 138666 138730 138732 138837 138870 138871

138872 139028 139029 139036 139037 139038 139042 139104 139105 139107 139173 139309

139310 139311 139314 139328 139329 139360 139437 139438 139439 139440 139465 139503

139505 139507

List of 2011 runs used in the analysis: 168464 169099 169550 169588 170207 168512

169555 169969 170268 169045 169515 169586 170040 170311 169506 168076 169238 170084

170228 168105 170312 168311 167987 169138 167920 168511 170163 168069 170159 169846

170089 169094 169040 169156 168208 168207 170390 168318 169498 170204 170306 169148

170081 170270 170091 168361 170203 169420 169035 169145 170309 169838 170388 168342

168108 169835 170027 169504 167915 169417 169160 168206 169167 167988 170556 168467

168181 168175 168322 168514 168341 170155 169965 169144 168107 170315 168362 169044

169533 169590 169858 168213 170036 169418 170085 170308 169859 167985 169557 170193
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169411

Track selection is based on the AOD filter mask 128. This includes a minimum number

of 70 TPC clusters, and a tracking fit χ2 of less than 4. The estimated closest distance

between the track and the vertex, called distance of closest approach (DCA) is lower than

2.4 cm in the radial direction and 3.2 cm along the beam axis. The pseudorapidity range

is restricted to−0.8 < η < 0.8, smaller than the 0.9 > |η| nominal TPC range, to reduce

systematic errors from border effects. The main results presented in Chapter 5 are obtained

by restricting particles a and b and the corresponding Q-vector components to the −0.8 <

η < 0.8 and 0.4 < η < 0.8 pseudorapidity regions. When using the Q-cumulant method, the

Q-vector representing the c particle will then be calculated from the opposite pseudorapidity

region from particles a and b (e.g, if a and b are in the 0.4 < η < 0.8 region, c will be in

the −0.8 < η < 0.8 region). Q-cumulant results calculated using the entire −0.8 < η < 0.8

region are provided for comparison purposes.

4.7 Observables Used in this Analysis

In the analysis presented in this dissertation, we measure the second- and fourth-

harmonic correlators. The following is a description of the various methods used to obtain

these measurements. The equation used to perform the calculation of the correlators based

on the VZERO event planes can be obtained from the general expression of the correlator
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〈cos (φα + φβ − 2ψ)〉:

〈cos (φα + φβ − 2ψ)〉 = 〈< (exp (i (φα + φβ − 2ψ)))〉

= <



Mα,Mβ∑
α,β=0
α 6=β

exp (i (φα + φβ − 2ψ))

npairs



= <



Mα,Mβ∑
α,β=0
α 6=β

e(iφα)e(iφβ) (cos (2ψ)− i sin (2ψ))

npairs


.

(4.27)

We use α and β indices to qualify the set of particles of a particular charge within selection

cuts. npairs corresponds to the number of pairs that can be made with the running α and

β indices; it corresponds to the number of terms in the sum. Two cases arise at this point:

in the equation corresponding to opposite-charge correlators, the α and β sets of particles

are distinct and no diagonal terms have to be accounted for; in the equation corresponding

to same-charge correlator, the α = β terms need to be removed when simplifying the sum

in the last line of Equation 4.27. Let us consider the latter case. Replacing the exponential



69

terms in Equation 4.27 with the Q-vector equivalents :

〈cos (φα + φα − 2ψ)〉 =

<



(Mα∑
α=0

e(iφα)

)2

−
Mα∑
α=0

e(2iφα)

 (cos (2ψ)− i sin (2ψ))

Mα (Mα − 1)


= <

(
((X1,α + iY1,α) (X1,α + iY1,α)− (X2,α + iY2,α)) (cos (2ψ)− i sin (2ψ))

Mα (Mα − 1)

)
=

1

Mα (Mα − 1)

[(
X2

1,α − Y 2
1,α −X2,α

)
cos (2ψ) + (2 ·X1,αY1,α − Y2,α) sin (2ψ)

]
.

(4.28)

When deriving the equation for the opposite-charge correlator, no diagonal terms have

to be subtracted. The final expression for this correlator is then:

〈cos (φα + φβ − 2ψ)〉 =

1

MαMβ

[(X1,αX1,β − Y1,αY1,β) cos (2ψ) + (X1,αY1,β +X1,βY1,α) sin (2ψ)] .
(4.29)

The ψ event plane angle is estimated using the second order event plane obtained from the

VZERO detectors, ψ2,VZERO, and dividing 〈cos (φα + φβ − 2ψ2,VZERO)〉 by the corresponding

event plane resolution. The fourth-harmonic correlator is calculated following the same

guidelines, but a final step must be added after obtaining the fourth-order equivalent to the

last line of Equation 4.28. Because of the geometry considerations of the VZERO detector,

cos (ψ4,V ZERO) = 0. This is a detector effect that needs to be corrected for. This can be

done by noting that the sine and cosine terms of the final line of Equation 4.28 should be

equal due to azimuthal symmetry, after averaging over all events. The opposite-charge and

same-charge correlators become:

〈cos (2φα + 2φβ − 4ψ)〉 =
2 [(X2,αY2,β +X2,βY2,α) sin (4ψ4,VZERO)]

R4,VZEROMαMβ

〈cos (2φα + 2φα − 4ψ)〉 =
2 [(2 ·X2,αY2,α − Y4,α) sin (4ψ4,VZERO)]

R4,VZEROMα (Mα − 1)
.

(4.30)
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Another measurement of the correlators will be calculated using exclusively TPC par-

ticles:

〈cos (φa + φb − 2φc)〉 = v2,c〈cos (φa + φb − 2ψ)〉 (4.31)

In the analysis presented in this thesis, we will calculate the event-plane dependent correlator

using the left-hand side of Equation 4.31 and v2,c (v4,c) measurements published by the

ALICE collaboration.

〈cos (φα + φβ − 2φc)〉 = 〈< (exp (i (φα + φβ − 2φc)))〉

= <



Mα,Mβ ,Mc∑
α,β,c=0
α 6=β 6=c

exp (i (φα + φβ − 2φc))

nterms


.

(4.32)

Using the Q-vector components similarly to the derivation of Equation 4.28, we obtain a set

of four equations, depending on the overlap between particle sets α, β and c. If α and β

belong to the same set and overlap with c:

〈cos (φα + φβ − 2φc)〉 =

1

Mα (Mα − 1) (Mc − 2)

[(
Mα∑
α=0

e(iφα)

)2( Mc∑
c=0

e(−2iφc)

)
−(

Mα∑
α=0

e(2iφα)

)(
Mc∑
c=0

e(−2iφc)

)
−

2

(
Mα∑
α=0

e(iφα)

)(
Mc∑
c=0

e(−iφc)

)
+ 2 ·Mα

]

=
1

Mα (Mα − 1) (Mα − 2)

[
X1,αX1,αX2,α − Y1,αY1,αX2,α+

X1,αY1,αY2,c −X2,αX2,c − Y2,αY2,c − 2X1,αX1,c − 2Y1,αY1,c + 2Mα

]
.

(4.33)
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If α and β belong to different sets with the c set composed of α and β combined:

〈cos (φα + φβ − 2φc)〉 =

1

MαMβ (Mα +Mβ − 1)

[(
Mα∑
α=0

e(iφα)

)Mβ∑
β=0

e(iφβ)


Mα∑
α=0

e(−2iφα) +

Mβ∑
β=0

e(−2iφβ)

−
(

Mα∑
α=0

e(iφα)

)Mβ∑
β=0

e(−iφβ)

−(Mα∑
α=0

e(−iφα)

)Mβ∑
β=0

e(iφβ)

]

=
1

MαMβ (Mα +Mβ − 1)

[
X1,αX1,β (X2,α +X2,β) +

(X1,αY1,β + Y1,αX1,β) (X2,α +X2,β)− Y1,αY1,β (X2,α +X2,β)−

2X1,αX1,β − 2Y1,αY1,β

]
.

(4.34)

If the c particle set does not intersect with the α or β particle sets, we can extrapolate

from 4.28

〈cos (φα + φα − 2φc)〉 =

1

McMα (Mα − 1)

[(
X2

1,α − Y 2
1,α −X2,α

)
X2,c + (2 ·X1,αY1,α − Y2,α)Y2,c

] (4.35)

for the same-charge correlator and

〈cos (φα + φβ − 2φc)〉 =

1

McMαMβ

[(X1,αX1,β − Y1,αY1,β)X2,c + (X1,αY1,β +X1,βY1,α)Y2,c]
(4.36)

for the opposite-charge correlator. The fourth-harmonic correlators are calculated from

Equations 4.33 to 4.36 by doubling the indices of the Q-Vector components.
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Chapter 5

Experimental Results

5.1 Previous STAR and ALICE Results for the CME

correlators

Several sets of results based on heavy ion collisions have been published in the past

concerning the search for strong-CP violation [28, 72]. A large part of these results are

based on the charge-dependent mixed-harmonic correlators with respect to the reaction

plane introduced in Chapter 4. A simular pattern arises both in results gathered by the

STAR experiment (Au-Au at
√
sNN = 200 GeV) and ALICE (Pb-Pb at

√
sNN = 2.76 TeV):

significant correlations appear in the case of same-charge pairs while the opposite-charge

correlators are closer to zero in central and mid-central collisions. Simple HIJING Monte-

Carlo simulations, which do not model P-violating effects, do not reproduce this difference

(Figures 5.1 and 5.2).

This difference can be explained by a phenomenon similar to jet quenching: same-

charge pairs created on the surface of the medium coud have similar momentum due to

the CME, and fly off in a direction nearly perpendicular to the surface. However, for an

opposite-charge pair created close to the surface, one of the particles has to travel through

the medium and scatter with the particles composing it, and the correlation is mostly lost.

The signal is stronger at lower multiplicities, but does not drop at high-pTas we could expect

from the non-perturbative nature of the phenomenon (Figure 5.3). The signal has a strong

dependence in ∆η. This is an interesting characteristic, as such dependences are signatures
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Figure 5.1: Same- and opposite-charge second harmonic correlators measured in Au-Au and
Cu-Cu collisions in STAR [28].

of the range and time at which the correlation was established.

The main conclusions from the current results are:

� The correlator involving pions of different charges has a smaller value than for same-

sign pions. This was expected because of the supression of back-to-back correlation

observed in the medium created in those collisions (due to the strong couplings involved

in the medium). This effect is weaker for Cu+Cu collisions.

� The magnitude of this effect is larger at lower energy. This is in agreement with the

1/N dependence of the P-violation effect on multiplicity. Similarly, the value is smaller
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Figure 5.2: Same- and opposite-charge second harmonic correlators measured in Pb-Pb
collisions in ALICE [28].

for central collisions.

� The value of the contribution from cluster correlations mentioned in Chapter 2 ap-

pears to be smaller than the experimental values of the correlator. This would tend to

indicate that those contributions are not the only ones involved, but does not rule out

the possibility of other non P-violating contributions.

� One would expect the P-violation process to only happen at low pT , since its causes

(the instantons) are inherently a non-perturbative effect. The coupling constant of

QCD becoming smaller with higher energies, at high pT , this effect should become

smaller. However, the value of the correlator is higher at high transverse momentum.
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Figure 5.3: Left panel: momentum difference dependence of the same and opposite-charge
second harmonic correlators. Center panel : average momentum dependence of the same
and opposite-charge second harmonic correlators. Right panel: ∆η dependence of the same
and opposite-charge second harmonic correlators [28].

5.2 Event Plane

Some of the measurements made in this analysis involve event planes calculated from

the VZERO detector. It is therefore relevant to study the event plane distributions first.

These distributions are shown in Figures 5.4 to 5.7. In the first two of these figures, the

distribution is close to flat in the −π < ψ < π range, as these are second-order event planes,

with minor substructures due to residual acceptance effects that weren’t completely removed

by the recalibration of the VZERO channels and the recentering of the Q-Vectors used in

event plane calculations. The two latter figures are fourth-order event planes. As noted in

Chapter 4, at this order, due to the VZERO geometry, the distribution in event plane angles

for both sides of the detector consists of two delta-function-like structures at −π/8 and π/8.

This unusual event plane distribution is thus expected and not indicative of any unforeseen

issue.

Figures 5.8 and 5.9 show the corresponding event plane resolutions at the second and

fourth order. These resolutions are calculated using Equation 4.16, using TPC tracks (|η| <

0.8) as the 3rd subevent. The TPC event planes will not be used in this analysis and are

thus not shown in the figures. We can see on Figure 5.9 the consequence of the event plane
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Figure 5.4: Second-order event plane ψ2,V 0A azimuthal distribution.

Figure 5.5: Second-order event plane ψ2,V 0C azimuthal distribution.

distributions from Figures 5.6 and 5.7. The fourth-order event plane resolution for VZERO

is quite low, with somewhat large errors; this will affect the measurements based on the

VZERO event planes.

5.3 Second- and Fourth-Harmonic Correlators

The calculations of the second- and fourth-harmonic calculators presented here were

introduced in Equations 4.27 to 4.36. The Q-Cumulant results shown in this section are

obtained by correlating particles a and b (in 〈cos (φa + φb − 2φc)〉, 〈cos (2φa + 2φb − 4φc)〉)
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Figure 5.6: Fourth-order event plane ψ4,V 0A azimuthal distribution for various centrality
bins.

from the negative η part of the TPC with the c-particle from the positive η, then vice-

versa; both results are then averaged and divided by 1
2

(v2{2}+ v2{4}) (second harmonic)

or v4{2}, |∆η| > 1 published in [32]. The results based on VZERO event planes likewise use

a and b particles from half the TPC correlated with the event plane, then likewise with the

other half before averaging both results and dividing by the event plane resolution.

Figure 5.10 shows the same- and opposite-charge second harmonic correlators at both

the second and fourth order. The signal we observe shows similar properties to previously

published analyses: a strong same-charge correlator and an opposite-charge correlator with

values closer to zero between 0 and 40% centralities. The fourth harmonic signal, on the

other hand, is strong and almost identical in both the same- and opposite charge correlators.

If we investigate the charge-dependence of both harmonics, we observe a significant

signal in the second harmonic (Figure 5.11), but a signal consistent with zero or close to zero

for the fourth harmonic5.12, which might be indicative of weak contributions from LCC.

However, two things moderate this conclusion: it is necessary to understand how the LCC

background scales from the fourth to the second harmonic, which will be the subject of the

final chapter of this thesis; and systematic errors might change this conclusion. In particular,
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Figure 5.7: Fourth-order event plane ψ4,V 0C azimuthal distribution for various centrality
bins.

a first-order approximation tells us that

∆〈cos (2φ + 2φ − 4ψ)〉
∆〈cos (φ + φ − 2ψ)〉

∼ v4

v2

∼ 0.1. (5.1)

In Equation 5.1, the ∆ sign denotes the charge-dependence, which is the difference

between opposite and same charge correlators.
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Figure 5.8: Second-order event plane resolution as a function of V0 Centrality for ψ2,V 0A and
ψ2,V 0A.

Figure 5.9: Fourth-order event plane resolution as a function of V0 Centrality for ψ4,V 0A and
ψ4,V 0A.



80

V0 Centrality (%)
0 10 20 30 40 50 60

〉
) 

ψ
 

 2
b
,+

φ
 +

 
a
,+

φ
 c

o
s
(

〈

0.6

0.5

0.4

0.3

0.2

0.1

0
3

10×

Full TPC

V0A EP

V0C EP
 < 0.4

c
η > 0.4, 0 < 

b
η, 

a
η0 > 

 < .8
c

η > .8, 0.4 < 
b

η, 
a

η0.4 > 

This Work

V0 Centrality (%)
0 10 20 30 40 50 60

〉
) 

ψ
 

 2
b
,

φ
 +

 
a
,+

φ
 c

o
s
(

〈

30

20

10

0

10

20

30

6
10×

V0 Centrality (%)
0 10 20 30 40 50 60

〉 
ψ

 
 4

b
,+

φ
 +

 2
a
,+

φ
 c

o
s
(2

〈

0

0.002

0.004

0.006

0.008

0.01

0.012

V0 Centrality (%)
0 10 20 30 40 50 60

〉 
ψ

 
 4

b
,

φ
 +

 2
a
,+

φ
 c

o
s
(2

〈

0

0.002

0.004

0.006

0.008

0.01

0.012

Figure 5.10: Comparison of the correlators calculated using various methods. Top-left panel:
same-charge second harmonic correlator. Top-right panel: opposite-charge second harmonic
correlator. Bottom-left panel: same-charge second fourth correlator. Bottom-right panel:
opposite-charge fourth harmonic correlator. Pseudorapidity gaps will be discussed in the
next chapter. Statistical errors only.
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Figure 5.11: Charge-dependence of the second harmonic correlator (〈cos (φ + φ − 2ψ)〉opp.−
〈cos (φ + φ − 2ψ)〉same) calculated with the VZERO event plane method and TPC Q-
Cumulant methods (with and without pseudorapidity gaps)

Figure 5.12: Charge-dependence of the fourth harmonic correlator
(〈cos (2φ + 2φ − 4ψ)〉opp. − 〈cos (2φ + 2φ − 4ψ)〉same) calculated with the VZERO event
plane method and TPC Q-Cumulant methods (with and without pseudorapidity gaps)
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Chapter 6

Systematic Errors

6.1 Sources of Systematic Errors

The results obtained from the analysis presented in this thesis would not be complete

without the study of systematic uncertainties. These correspond to the various biases that

arise from the analysis method, event and particle selection, and detector imperfections and

acceptance effects. While there is no exact method to accurately calculate these effects, they

can be estimated. The general method for systematic estimation is to perform the same cal-

culation as for the main value of the final results, while varying some of the conditions under

which those calculations are performed. For instance, different event or particle selection

cuts can be chosen, a different centrality definition, or detector configuration. Several main

sources of systematic errors have been identified in this analysis.

� Magnetic field polarization.

The L3 solenoid magnet used for charged particles tracking is generally used in two

configurations, which we will call negative and positive. These configurations are not

exactly symmetrical, which can be due to an asymmetry in the field itself or in the

acceptance of the tracking detector. This could results in significant differences in the

correlators calculated in this analysis.

� Filter bits: particle selection cuts and tracking parameters The use of AOD track

filters restricts the range of particle selection cuts that can be modified to study the

associated systematic uncertainties. However, we can study the effect of a change of
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filter configuration on the final results. We will look at the correlators obtained using

filter bit 768, which corresponds to hybrid tracks, with global track parameters and

ITS-calculated DCA when available.

� c-particle dependence.

We define the charge-dependent second and fourth harmonics correlator with same-

charge c-particle as

(〈〈cos (φ+ + φ− − 2φc)〉〉 − 0.5 (〈〈cos (φ+ + φ+ − 2φ+)〉〉+ 〈〈cos (φ− + φ− − 2φ−)〉〉))
v2

,

(6.1)

and with opposite-charge c-particle

(〈〈cos (φ+ + φ− − 2φc)〉〉 − 0.5 (〈〈cos (φ+ + φ+ − 2φ−)〉〉+ 〈〈cos (φ− + φ− − 2φ+)〉〉))
v2

.

(6.2)

The dependence on the charge of the c-particle doesn’t affect the correlator with

opposite-charge a and b particles, for symmetry reasons. However, it might affect

the terms that involves same-charge a and b; this dependence appears when we select

the c-particle to have the same charge (respectively opposite charge) as the two oth-

ers. As shown in Figure 6.1, the results have a strong dependence on the charge of

the c particle in 〈cos (φa + φb − 2φc)〉. We will estimate this dependence and discuss

the methods used to reduce it, as well as the corresponding results. The c particle

in the 〈cos (φa + φb − 2φc)〉 correlator plays a role similar to an event plane, and pro-

vides a way to determine the orientation of the magnetic field created by the colliding

ions. As such, rejecting short range correlations with the two other particles is de-

sirable to reduce the systematic errors that arise from this dependence, and we will

introduce a pseudorapidity gap between the two sets of particles, i.e. we will confine

the a and b particles to a smaller (0.4 units wide) rapidity region on one side of the

TPC (0.4 < ηa,b < 0.8 and −0.4 > ηa,b > −0.8) and c on the other (respectively
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−0.4 > ηc > −0.8 and 0.4 < ηc < 0.8). Using a restricted pseudorapidity region will

affect the main values of the correlators considering their dependence on ∆η (Figures

5.3, 6.2, 6.3).

� Centrality definitions.

Since we are studying the centrality dependence of the correlators, our final results

depend on the detectors used for centrality determination. The main results are ob-

tained from VZERO, but we will estimate the corresponding systematic by looking at

centralities obtained from TPC and SPD multiplicities.
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Figure 6.1: Influence of the charge of the c-particle on the values of
〈〈cos (φ+ + φ− − 2φc)〉〉/v2 − 0.5〈〈cos (φ+ + φ+ − 2φc)〉〉/v2 − 0.5〈〈cos (φ− + φ− − 2φc)〉〉/v2

(left panel) and 〈〈cos (2φ+ + 2φ− − 4φc)〉〉/v2 − 0.5〈〈cos (2φ+ + 2φ+ − 4φc)〉〉/v2 −
0.5〈〈cos (2φ− + 2φ− − 4φc)〉〉/v2 (right panel). In the graph labeled “Left + Right
TPC”, 0 < ηc < 0.8 and 0 > ηa,b > −0.8.

6.2 Methods for Systematic Error Calculations

In order to estimate the systematic errors, we will first calculate the charge-dependence

of the fourth and second harmonic correlators, as well as their ratio, for the following con-

figurations: |Zvtx| < 10 cm, filter bit 768 (hybrid), TPC and SPD centralities, positive and
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Figure 6.2: Comparison of the correlators calculated using various methods. Top-left panel:
same-charge second harmonic correlator. Top-right panel: opposite-charge second harmonic
correlator. Bottom-left panel: same-charge second fourth correlator. Bottom-right panel:
opposite-charge fourth harmonic correlator.

negative magnetic field polarity event selections. We will also look at several selected com-

bination of these settings to take into account the combined effect of these systematic error

sources. For each of these settings, we will also look at the c-particle charge-dependence (ex-

cept for the results obtained using VZERO event planes). The results of this investigation

are shown on Figures 6.12 through 6.27. We observe that the most significant contributions

to systematic errors come from c-particle charge dependence (when relevant) and filter bit

configuration. This is easily understood when one considers that hybrid tracks contain global

parameters instead of TPC-only, and have full azimuthal coverage with mixed track quality,
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Figure 6.3: Charge-dependence of the second (left panel) and fourth (right panel) harmonic
correlator calculated using Q-cumulants without several pseudorapidity range settings for
the a, b and c particles 0 > ηa,b > −0.4, 0 < ηc < 0.4 (averaged with the reversed range)
is shown for comparison with a similar pseudorapidity range without the η gap, as the two
regions are then contiguous.

the ITS covering the TPC blind zones.

For each centrality bin of the quantities that are calculated in this analysis we select

the highest and lowest value of all the corresponding quantities obtained in these systematic

errors studies; the set of highest values is our first estimate of the higher boundaries of the

systematic errors, while the set of lower values gives the lower boundaries.

We expect the systematic errors to be a smooth function of centrality. However, sta-

tistical fluctuations of the quantities used for systematic error derivation give more irregular

results; this is partially corrected using a second-order polynomial fit which is then used as

the final estimation of the systematic errors (example provided on Figure 6.28).

6.3 Estimates of the Systematic Errors

Figures 6.29 and 6.30 show the second and fourth harmonic correlators with combined

statistical and systematic errors, the latter having been estimated using the methods dis-

cussed in this chapter. The results from VZERO event plane give the best results for most

centralities especially for the fourth harmonic correlator. The c-particle charge dependence
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and strong filter bit dependence of the Q-cumulant based results give rise to much larger sys-

tematic errors. However, the fourth order event plane resolution gives rise to large statistical

errors for the results based on VZERO event planes.
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Figure 6.4: Charge-dependence of the second harmonic correlator calculated using Q-
cumulants without pseudorapidity gaps for multiple event and particle cuts. Left panel
is without restriction on the c-particle, central panel with same-charge c-particle and right
panel with opposite-charge c-particle.
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the c-particle, central panel with same-charge c-particle and right panel with opposite-charge
c-particle.
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Figure 6.10: Charge-dependence of the second harmonic correlator calculated using Q-
cumulants with pseudorapidity gaps for multiple event and particle cuts. Left panel is
without restriction on the c-particle, central panel with same-charge c-particle and right
panel with opposite-charge c-particle.



95

Centrality (%)
0 10 20 30 40 50

〉
 )

ψ ⋅
 

 2
 

b
φ

 +
 

a
φ

 c
o
s
 (

 
〈

∆

0.5

0

0.5

1

1.5

10×

| < 7, filter 128, VZERO cent.
Vtx

|Z

All ch. cpart.
| < 10, filter 768, SPD cent.

Vtx
|Z

Filter 768, SPD cent.
| < 10, filter 768, TPC cent.

Vtx
|Z

| < 10, TPC cent.
Vtx

|Z

This Work

| > 0.8η∆|

Centrality (%)
0 10 20 30 40 50

Opp. ch. cpart.

Centrality (%)
0 10 20 30 40 50

Same ch. cpart.
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calculated using Q-cumulants with pseudorapidity gaps for multiple event and particle cuts.
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Figure 6.16: Charge-dependence of the second harmonic correlator calculated using VZE-
ROA event planes for multiple event and particle cuts.
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Figure 6.17: Charge-dependence of the second harmonic correlator calculated using VZE-
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different combinations.
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Figure 6.18: Charge-dependence of the fourth harmonic correlator calculated using VZEROA
event planes for multiple event and particle cuts.
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Figure 6.19: Charge-dependence of the fourth harmonic correlator calculated using VZEROA
event planes for multiple event and particle cut variations used simultaneously in different
combinations.
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Figure 6.20: Ratio of the charge-dependence of the fourth and second harmonic correlators
calculated using using VZEROA event planes for multiple event and particle cuts.
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Figure 6.21: Ratio of the charge-dependence of the fourth and second harmonic correlators
calculated using using VZEROA event planes for multiple event and particle cut variations
used simultaneously in different combinations.
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Figure 6.22: Charge-dependence of the second harmonic correlator calculated using VZE-
ROC event planes for multiple event and particle cuts.
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Figure 6.23: Charge-dependence of the second harmonic correlator calculated using VZE-
ROC event planes for multiple event and particle cut variations used simultaneously in
different combinations.
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Figure 6.24: Charge-dependence of the fourth harmonic correlator calculated using VZEROC
event planes for multiple event and particle cuts.
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Figure 6.25: Charge-dependence of the fourth harmonic correlator calculated using VZEROC
event planes for multiple event and particle cut variations used simultaneously in different
combinations.
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Figure 6.26: Ratio of the charge-dependence of the fourth and second harmonic correlators
calculated using using VZEROC event planes for multiple event and particle cuts.
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Figure 6.27: Ratio of the charge-dependence of the fourth and second harmonic correlators
calculated using using VZEROC event planes for multiple event and particle cut variations
used simultaneously in different combinations.

Figure 6.28: Fit of the estimated systematic errors for the second harmonic (left panel) and
fourth harmonic (right panel) correlators calculated using Q-cumulants with pseudorapidity
gaps
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Figure 6.30: Charge-dependence of the fourth harmonic correlator
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Chapter 7

Comparison with Blast Wave Model Cal-

culations

7.1 Introduction to the Blast Wave Model

In this section, we will try and compare the results obtained in the previous chapters

with predictions derived from phenomenological models. To this end, we will use variants of

the so-called ”blast wave model” of particle distributions. It is based on a parametrization

of the momentum and coordinate configurations at the kinetic freeze-out at constant proper

time obtained in hydrodynamic models. Unlike the latters, the parameters are not directly

derived from the equation of state but empirically determined from fit quantities (spectrum,

flow) obtained from data. The blast wave equation is derived from the Cooper-Frye particle

distribution at kinetic freeze-out:

E
dN

d3p
=

∫
σ

f (x,p) pµdσµ, (7.1)

where σ is the freeze-out hypersurface, dσµ is an hypersurface element, pµ is the momentum

of particles within that element. f (x,p) is the phase space distribution, which we approx-

imate as a boosted Boltzmann distribution f (x,p) = e−uµpµ/Tf , and uµ is a collective

velocity perpendicular to the hypersurface that pushes the fluid elements outwards. Since

we are mainly concerned with the azimuthal distribution of particles, we ignore the rapid-

ity dependence in these equations, and the hypersurface will be described by an spherical
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shell. We express the boost angle φb which is also, in this picture, the polar coordinate

of an element of fluid. Using this coordinate, we introduce the transverse flow rapidity as

ρt =
(
r
R

)n
(ρ0 + ρ2 cos (2φb) + ρ4 cos (4φb)). Similarly, we write the source azimuthal distri-

bution as Ω = (1 + s2 cos (2φb) + s4 cos (4φb)) [73]. One can recognize in this equation a

harmonic expanson limited to even terms; this is how we introduce the anisotropy in the

single-particle azimuthal distribution, both via an anisotropy in the ”push“ (ρt) and in the

source of particles. The final blast wave equation we will used to parametrize the single-

particle distribution is:

d2N

dp2
tdφ

=

∫ R

0

rdr

∫
dφbΩ (φb) e

αt cos(φb−φ)K1 (βt)mt, (7.2)

which we can rewrite as

dN

ptdp2
t

=

∫ R

0

rdr

∫
dφbΩ (φb) I0 (αt)K1 (βt)mt. (7.3)

In these equations, αt = pt
T

sinh (ρt), βt = mt
T

sinh (ρt), and mt =
√
m2 + p2

t . We see that this

equation relies on 7 parameters we will have to determine: the freeze-out temperature T , the

maximum transverse radial push rapidity ρ0, the anisotropy coefficient for the transverse push

rapidity associated with the elliptic flow and quadratice flow ρ2 and ρ4, the corresponding

source anisotropies s2 and s4 and the coefficient n introduced in the definition of ρt which

describes the evolution of the transverse flow with respect to the radius. In section 7.2,

we will see in details how to obtain the parameters that describe the heavy ion collisions

analyzed in previous sections.

Our objective with blast wave model calculations is not to describe single-particle

distributions but to calculate two-particle correlations and compare them with previous

results. This is done by modifying the model and extrapolating the equations to a system

of two particles. The assumption made is that both particles are created at the exact same

coordinates. We will discuss in this section the required conditions for this approximation
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and its consequences. Assuming the two particles are created at the same coordinates, we

have [74]:

ρ2 (pt,1,pt,2) =∫ R

0

rdr

∫
dφbΩ (φb) e

αt,1 cos(φb−φ1)eαt,2 cos(φb−φ2)K1 (βt,1)K1 (βt,2)mt,1mt,2.
(7.4)

We can interpret this equation in the following fashion: two particles are created close to one

another, for instance, to a good approximation, 2 particles from the same binary nucleon-

nucleon collision, and are subject to the same push from the collective motion in the medium.

The final result emerges from the interplay of the initial correlation between the two particles

and the contribution of the transverse flow, identical for both particles. In reality, not all

pairs of particles in an event are created within the vicinity of each other. In fact, the

majority of pairs are ”unrelated“, for instance because they originate from different binary

collisions. This means we will need to introduce a correction to account for the proportion

of pairs that do not have these short range correlations. This correction takes the form of a

dilution factor D, defined as the ratio of pairs created at the same coordinates to the total

number of pairs in the collision.

Using the Equations 7.3 and 7.4 for the 1- and 2-particle distributions, we can derive

equations for related observables, such as flow coefficients and the mixed harmonic correla-

tors. The differential flow coefficients are expressed as

vn (pT ) =

∫ 2π

0
dφ
∫ R

0
rdr

∫
dφb cos (φ) Ω (φb) e

αt cos(φb−φ)K1 (βt)mt∫ R
0
rdr

∫
dφbΩ (φb) I0 (αt)K1 (βt)mt

=

∫ R
0
rdr

∫
dφbΩ (φb) In (αt)K1 (βt)mt∫ R

0
rdr

∫
dφbΩ (φb) I0 (αt)K1 (βt)mt

,

(7.5)
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and the mixed harmonics are obtained from

1

D
〈cos (n (φa + φb − 2ψ))〉 =∫
dΓ cos (n (φ1 + φ2)) Ω (φb) e

αt,1 cos(φb−φ1)eαt,2 cos(φb−φ2)K1 (βt,1)K1 (βt,2)mt,1mt,2∫
dΓΩ (φb) eαt,1 cos(φb−φ1)eαt,2 cos(φb−φ2)K1 (βt,1)K1 (βt,2)mt,1mt,2

,
(7.6)

where
∫
dΓ =

∫∞
0
dpt,1

∫∞
0
dpt,2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ R
0
rdr

∫
dφb.

We have previously defined the dilution factor as the ratio of the number of correlated

pairs to the total number of pairs. We would usually have the average number of pairs

produced in a single binary collision as the numerator, and the total number of pairs as the

denominator. This can be approximated by

D =
〈n (n− 1)〉

(Ncoll − 1) 〈n〉2 + 〈n (n− 1)〉
, (7.7)

where n is the number of particles created in a nucleon-nucleon binary collision and Ncoll

is the number of those independent collisions. Ncoll〈n (n− 1)〉 corresponds to the average

number of correlated pairs and Ncoll (Ncoll − 1) 〈n〉2 the average number of uncorrelated pairs.

Our motivation for performing blast wave calculations is to estimate the value of

the charge-dependence of the second order and fourth order mixed harmonic correlators

〈cos (φ+ + φ− − 2ψ)〉−0.5〈cos (φ− + φ− − 2ψ)〉−0.5〈cos (φ+ + φ+ − 2ψ)〉 and

〈cos (2φ+ + 2φ− − 4ψ)〉−0.5〈cos (2φ− + 2φ− − 4ψ)〉−0.5〈cos (2φ+ + 2φ+ − 4ψ)〉. An appro-

priate choice of dilution factor can reduce the calculation of these charge-dependence to a

single calculation using Equation 7.6. Let us consider the charged particles created in a

single nucleon-nucleon collision. We will assume that the only contribution to the charge-

dependence of the mixed-harmonics correlators arises from local charge conservation (as we

do not model the potential consequences of the CME). In this picture, the oppositely charged

particles are created at freeze-out at the same coordinates and will be subjected to the same

boost from the collective transverse expansion. If we consider all the particle pairs that can

be chosen from this independent collision, oppositely charged pairs that were created to-
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gether are on average more strongly correlated than other pairs. We distinguish three types

of pairs in this collision:

1. Pairs that were created together, i.e. participate to local charge conservation. These

are necessarily opposite-charge pairs

2. Opposite-charge pairs of particle that were created independently (but from the same

nucleon-nucleon collision).

3. Same-charge pairs, which are always created independently.

The first two types of pairs both contribute to the opposite-charge mixed-harmonic

correlators. If 2n charged particles are created in a binary collision, there are n pairs of

the first type and n (n− 1) pairs of the second type. The third type of pairs, of which

there are n (n− 1) as well, are the only contributions to the same-charge correlators. As a

consequence, the charge-dependence CD = ∆〈cos (φa + φb − 2ψ)〉 can be rewritten as:

CD = 〈cos (n (φa + φb − 2ψ))〉opp. − 〈cos (n (φa + φb − 2ψ))〉same

=
1

n2

∑
a∈+,b∈−
first type

cos (n (φa + φb − 2ψ))〉opp. +
1

n2

∑
a∈+,b∈−

second type

cos (n (φa + φb − 2ψ))〉opp.

−
∑

a∈+,b∈+
a∈−,b∈−

〈cos (n (φa + φb − 2ψ))〉same.

(7.8)

We use the indices ”corr“ and ”uncorr“ to qualify respectively the first types of pairs, and

the second and third type of pairs. Equation 7.8 becomes:

CD =
1

n
〈cos (n (φa + φb − 2ψ))〉corr +

n (n− 1)

n2
〈cos (n (φa + φb − 2ψ))〉uncorr

− 〈cos (n (φa + φb − 2ψ))〉uncorr

=
1

n
〈cos (n (φa + φb − 2ψ))〉corr −

1

n2
〈cos (n (φa + φb − 2ψ))〉uncorr.

(7.9)

In Equation 7.9 we have made the assumption that the second and third types of pairs have

identical contributions, on average, to their respective correlators, because any correlations
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between them is presumed to be independent of their respective charges (unlike the first

type of pairs); this contribution is 〈cos (n (φa + φb − 2ψ))〉uncorr. With values of n > 5

and assuming that |〈cos (n (φa + φb − 2ψ))〉|corr > |〈cos (n (φa + φb − 2ψ))〉|uncorr (due to the

stronger correlations arising from local charge conservation), we will neglect the second term

of this equation so that the charge-dependence is now expressed as:

CD =
1

n
〈cos (n (φa + φb − 2ψ))〉corr. (7.10)

The correlation between the particles in the pairs that contribute to these averages is a

spatial correlation as both particles were created at the same location and are subject to

the same contribution from the anisotropic flow. We do not make any assumption as to

the relative angle between these two particles and we neglect the effects from momentum

conservation. This is exactly the condition corresponding to the two-particles distribution

in Equation 7.6, and we can extrapolate our dilution factor to be 1/n. We have defined n

to be half the number of particles created in a single binary collision, or alternatively the

number of pairs of the first type in that collision. However, we need to take into account

the large number of pairs that are formed from particles originating from separate binary

collisions in the dilution factor, as well as correlated pairs from every collision. To determine

this quantity, we need to find the ratio of the number of pairs of particles created together

to the total number of pairs. It is useful to extend the comments made on the number of

pairs of each type to the entire event. In first approximation there are as many same-charge

as opposite-charge uncorrelated pairs. When comparing the total number of opposite charge

pairs to that of same charge pairs, the difference is made up from pairs affected by local

charge conservation. This can be expressed by:

D =
N+− −N++ −N−−
N+− +N++ +N−−

. (7.11)

This is the equation we will use to estimate the dilution factor in our blast wave calculations.
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However, while it is necessary to use a dilution factor in the context of the calculation of

a mixed-harmonic correlator, when calculating the ratio of the 4th harmonic to the 2nd

harmonics, this quantity will appear both at the numerator and the denominator and thus

cancel out. This eliminates the uncertainties that are otherwise associated to this factor and

propagate to our final results.

7.2 Determination of the Parameters from Fits of v2,

v4 and the Spectra of Charged Particles

The parameters used in the blast wave equation are chosen to best fit observables

obtained from event-based data. In our parametrization, there are 7 such parameters, T ,

n, ρ0, ρ2, s2, ρ4, s4, which can be classified in 3 categories: ”isotropic“(T , n, ρ0), elliptic

flow-dependent (ρ2, s2), and quadrangular flow-dependent (ρ4, s4). In order to determine

these parameters, we perform fits of transverse momentum spectra and differential elliptic

flow v2 (pT ) obtained from identified pions, kaons and protons to obtain the first five of these

parameters, followed by a fit of v4 (pT ) of unidentified charged particles to obtain the latter

two. To reduce the uncertainty on the radial and elliptic flow-dependent parameters, we will

perform the fit simultaneously on six histograms, corresponding to the spectra and differential

elliptic flow of (negatively-charged) kaons, antiprotons and pions. This simultaneous fit uses

the TMinuit minimization algorithm provided by the ROOT data analysis toolkit. We

minimize a quantity, χ2, that we calculate based on each bin of each histogram using the

following equation:

χ2 =
∑

histograms

∑
i∈bins

(
gBW − h (i)

σh(i)

)2

. (7.12)

In Equation 7.12, h (i) is the value of the ith bin of one of the histograms, and gBW is a blast

wave-based ”guess“ function of pT (for the spectrum or elliptic flow depending on the nature

of h) obtained by using a set of parameters chosen by TMinuit. The parameters are varied by



119

the algorithm in order to obtain the minimum (or minima) of χ2. Once the global minimum

has been found, we have the set of parameters that describe the data the most appropriately.

Each gBW in the sum from Equation 7.12 differ by the particle mass used in the blast wave

integral (equation 7.3) and enter this expression via the transverse mass mT . It is not

possible to directly (and accurately) fit an observable obtained from unidentified particles

using this equation. In particular, as we lack a set of satisfying differential quadratic flow

results for identified particles, we need to find a method to obtain the 4th order parameters

from unidentified charged particle data. This is done by considering that kaons, protons and

pions constitute almost the entirety of the charged particles detected by the tracking system

and that v4,unid. (pT ) is an average of the contributions from these three particle types. In

other words, we will fit a single histogram and the χ2 will be obtained from

χ2 =
∑
i∈bins


dNπ
dpT

gBW,π+
dNK
dpT

gBW,K+
dNp̄
dpT

gBW,p̄

dNπ
dpT

+
dNK
dpT

+
dNp̄
dpT

− h (i)

σh(i)


2

, (7.13)

where gBW,π is the blast wave spectrum assuming pion mass, etc. In this context, we use

an average of all three spectra weighted by their abundance at each value of pTused in the

calculation of χ2. While we still expect large uncertainties from this method, they will be

reduced compared to a calculation that would assume pion mass and estimate the parameters

from a simple fit of this blast wave function.

Figures 7.1 and 7.2 show the fits for the pions, kaons and protons spectra and elliptic

flow, respectively. Likewise, Figure 7.3 shows the results of the unidentified particles v4 (pT )

fits using a linear combination of the pion-, kaon- and proton-mass blast wave integral. The

resulting parameters are shown in Tables 7.1 to 7.6 and Figures 7.4 and 7.5.



120

Table 7.1: Blast Wave integral parameters obtained from the fitting of identified particle
spectra, v2 and charged particle v4, 0-5% centrality

T s2 ρ0 ρa γ s4 ρb
0.094751 0.023206 1.274177 0.022661 1.106246 0.016024 0.018766

σT σs2 σρ0 σρa σγ σs4 σρb
0.003067 0.000853 0.019462 0.001326 0.045886 0.009242 0.004514

T s2 ρ0 ρa γ s4 ρb
T 0.000009 -0.000000 -0.000027 0.000001 -0.000021 0.000000 0.000000
s2 -0.000000 0.000001 0.000008 -0.000000 0.000014 0.000000 0.000000
ρ0 -0.000027 0.000008 0.000379 0.000008 0.000734 0.000000 0.000000
ρa 0.000001 -0.000000 0.000008 0.000002 0.000025 0.000000 0.000000
γ -0.000021 0.000014 0.000734 0.000025 0.002106 0.000000 0.000000
s4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000085 -0.000040
ρb 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000040 0.000020

Table 7.2: Blast Wave integral parameters obtained from the fitting of identified particle
spectra, v2 and charged particle v4, 5-10% centrality

T s2 ρ0 ρa γ s4 ρb
0.098163 0.037253 1.241177 0.042123 1.067754 0.010268 0.015968

σT σs2 σρ0 σρa σγ σs4 σρb
0.002600 0.000825 0.014209 0.001725 0.041225 0.001595 0.001009

T s2 ρ0 ρa γ s4 ρb
T 0.000007 0.000001 -0.000007 0.000003 0.000011 0.000000 0.000000
s2 0.000001 0.000001 0.000007 0.000000 0.000014 0.000000 0.000000
ρ0 -0.000007 0.000007 0.000202 0.000011 0.000461 0.000000 0.000000
ρa 0.000003 0.000000 0.000011 0.000003 0.000043 0.000000 0.000000
γ 0.000011 0.000014 0.000461 0.000043 0.001700 0.000000 0.000000
s4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000003 -0.000002
ρb 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000002 0.000001
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Table 7.3: Blast Wave integral parameters obtained from the fitting of identified particle
spectra, v2 and charged particle v4, 10-20% centrality

T s2 ρ0 ρa γ s4 ρb
0.102234 0.056070 1.211599 0.062219 1.078263 0.019090 0.011813

σT σs2 σρ0 σρa σγ σs4 σρb
0.002426 0.000991 0.011962 0.002386 0.041592 0.001495 0.000929

T s2 ρ0 ρa γ s4 ρb
T 0.000006 0.000001 0.000002 0.000004 0.000030 0.000000 0.000000
s2 0.000001 0.000001 0.000008 0.000001 0.000020 0.000000 0.000000
ρ0 0.000002 0.000008 0.000143 0.000017 0.000397 0.000000 0.000000
ρa 0.000004 0.000001 0.000017 0.000006 0.000070 0.000000 0.000000
γ 0.000030 0.000020 0.000397 0.000070 0.001730 0.000000 0.000000
s4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 -0.000001
ρb 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000001 0.000001

Table 7.4: Blast Wave integral parameters obtained from the fitting of identified particle
spectra, v2 and charged particle v4, 20-30% centrality

T s2 ρ0 ρa γ s4 ρb
0.107940 0.076585 1.176757 0.084202 1.129609 0.033239 0.004375

σT σs2 σρ0 σρa σγ σs4 σρb
0.003486 0.002040 0.019107 0.005730 0.080217 0.002415 0.001465

T s2 ρ0 ρa γ s4 ρb
T 0.000012 0.000006 0.000047 0.000018 0.000218 0.000000 0.000000
s2 0.000006 0.000004 0.000035 0.000010 0.000138 0.000000 0.000000
ρ0 0.000047 0.000035 0.000365 0.000097 0.001435 0.000000 0.000000
ρa 0.000018 0.000010 0.000097 0.000033 0.000424 0.000000 0.000000
γ 0.000218 0.000138 0.001435 0.000424 0.006438 0.000000 0.000000
s4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000006 -0.000003
ρb 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000003 0.000002
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Table 7.5: Blast Wave integral parameters obtained from the fitting of identified particle
spectra, v2 and charged particle v4, 30-40% centrality

T s2 ρ0 ρa γ s4 ρb
0.110708 0.093759 1.140160 0.095938 1.184522 0.043160 0.000812

σT σs2 σρ0 σρa σγ σs4 σρb
0.002362 0.001723 0.013673 0.003536 0.054693 0.004007 0.002312

T s2 ρ0 ρa γ s4 ρb
T 0.000006 0.000002 0.000003 0.000006 0.000040 0.000000 0.000000
s2 0.000002 0.000003 0.000016 0.000004 0.000061 0.000000 0.000000
ρ0 0.000003 0.000016 0.000187 0.000028 0.000635 0.000000 0.000000
ρa 0.000006 0.000004 0.000028 0.000013 0.000135 0.000000 0.000000
γ 0.000040 0.000061 0.000635 0.000135 0.002992 0.000000 0.000000
s4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000016 -0.000009
ρb 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000009 0.000005

Table 7.6: Blast Wave integral parameters obtained from the fitting of identified particle
spectra, v2 and charged particle v4, 40-50% centrality

T s2 ρ0 ρa γ s4 ρb
0.112333 0.105013 1.072642 0.095329 1.139262 0.066358 -0.009745

σT σs2 σρ0 σρa σγ σs4 σρb
0.002281 0.002159 0.016111 0.003257 0.067329 0.007543 0.003983

T s2 ρ0 ρa γ s4 ρb
T 0.000005 0.000002 -0.000002 0.000005 0.000030 0.000000 0.000000
s2 0.000002 0.000005 0.000024 0.000004 0.000103 0.000000 0.000000
ρ0 -0.000002 0.000024 0.000260 0.000025 0.000950 0.000000 0.000000
ρa 0.000005 0.000004 0.000025 0.000011 0.000134 0.000000 0.000000
γ 0.000030 0.000103 0.000950 0.000134 0.004535 0.000000 0.000000
s4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000057 -0.000029
ρb 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000029 0.000016
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7.3 Integration of the Blast Wave Equation and Com-

parison with Reference v2 and v4

A possible test of the accuracy of our blast wave fits and calculation is to verify that

we can reconstruct the reference v2 and v4 and compare them to the ones associated with the

published differential v2 (pT ) and v4 (pT ) (Figures 7.6 and 7.7). Similarly, we can verify that

the blast wave results for other common hydrodynamic variables, such as the mean collective

motion tranverse rapidity ρ2
t (Figure 7.8), have reasonable values. The reference elliptic flow

we obtain from the blast wave integral is very close to the publish v2; the discrepancy is

much larger in the case of quadratic flow (∼ 10%). This is not unexpected, as these errors

arise from fitting unidentified particles v4 with mass-specific blast wave integrals. Using a

linear combination of several particle-specific blast wave functions reduced this discrepancy

but did not eliminate it entirely.

Figure 7.9 shows the dilution factor calculated by applying Equation 7.11 to TPC

track pairs. Using this dilution factor, we estimate the charge-dependence of the second-

and fourth-harmonic correlators, shown in Figures 7.10 and 7.11

7.4 Systematical Errors

Several sources of systematic error have been identified in our blast wave calculations.

The most easily identifiable sources of systematic errors arise from the propagation of er-

rors on the parameters, but as we have noted in a previous section, there is a significant

discrepancy between the reference v4 reconstructed from our blast wave model and the pub-

lished quadratic flow. In order to take into account this discrepancy, we refit a modified

set ofv4 (pT ), each scaled by the corresponding centrality bin of the ratio
v4,BWref

v4,ref
(Figure

7.12). The newly obtained parameters are shown in Figure 7.13 Another source of system-

atic uncertainties comes from the choice of fitting range. We estimate the contribution to the
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systematic error by performing the same spectra, v2 and v4 fits while increasing the fitting

range by 0.5 GeV towards the high-pT end. The results are plotted in Figures 7.14 and 7.15

The contribution of the uncertainty on the parameters is estimated by recalculating the blast

wave observables, second and fourth harmonic, as well as their ratio, while varying the fitted

parameters up and down by a value equal to their standard deviation (i.e. ±σ). Several

combinations of parameter variations are used, and Figures 7.16 and 7.17 are the resulting

relative discrepancy. In each centrality bin, the lower and highest point are selected to form

the lower and higher limits to systematic error contributions.

These three sources of systematic errors will be considered independent, corresponding

to a ”worst case scenario“ approach, and added in quadrature to give the final systematic

errors.

7.5 Results and Comparison with Data

Figures 7.18 and 7.19 show the comparison of the observed charge-dependence of the

second and fourth harmonic correlators with their blast wave predictions. In the second

harmonic case, the blast wave describes the observed results quite well, which contributes

to validating the approach in this context and our choice of dilution factor. The fourth

harmonic correlators from data and blast wave calculations are consistent with each other,

but the uncertainties on both are rather large.

Similarly, the uncertainties on the ratio of the charge-dependence of the fourth har-

monic to the charge-dependence of the second harmonic (Figures 7.20 and 7.21) make it

difficult to conclude decisively one way or another. The blast wave results are consistent

with the results obtained from Pb-Pb data, withing statistical errors, but further studies are

required to control the systematic errors.
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Figure 7.1: Fits of the kaons, protons and pions spectra from Pb–Pb at
√
sNN = 2.76 TeV

using a blast wave integral; dashed lines prolongate the fit function outside of the fitting
domain. Black points from [29]
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Figure 7.2: Fits of the elliptic flow of kaons, protons and pions from Pb–Pb at√
sNN=2.76 TeV using a blast wave integral; dashed lines prolongate the fit function outside

of the fitting domain. Black points from [30]
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Figure 7.3: Fits of the elliptic flow of unidentified charged particles from Pb–Pb at√
sNN=2.76 TeV using a blast wave integral (using pion, kaon and proton mass with abun-

dacy weights); dashed lines prolongate the fit function outside of the fitting domain. Black
points from [31]
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Figure 7.4: Parameters from Tables 7.1 to 7.6, obtained from fits of published identified
particles (π, K, p) spectra and v2.

Figure 7.5: Parameters from Tables 7.1 to 7.6, obtained from fits of published charged
(unidentified) particles v4.
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Figure 7.6: Reference v2{2} and v4{2} from [32] (ALICE Pb-Pb
√
sNN = 2.76 TeV) com-

pared with reference v2 recalculated from the blast wave integral with the fitted parameters.
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Figure 7.7: Reference v4{2}|∆η > 1| from [33] (ALICE Pb-Pb
√
sNN = 2.76 TeV) compared

with reference v4 recalculated from the blast wave integral with the fitted parameters.
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Figure 7.8: 〈ρ2
t 〉 calculated from the blast wave integral. This corresponds to the magnitude

of the transversal collective ”push“
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Figure 7.9: Dilution factor calculated from Equation 7.11 using Pb-Pb data at
√
sNN = 2.76

TeV
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Figure 7.10: Second harmonic correlator with respect to the reaction plane, calculated using
the blast wave integrals.
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Figure 7.11: Fourth harmonic correlator with respect to the reaction plane, calculated using
the blast wave integrals.
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Figure 7.12: Ratio of the reference v4 recalculated using the blast wave integral and the
reference v4{2} from ALICE data from [33] (Pb–Pb,

√
sNN = 2.76 TeV).

Figure 7.13: Anisotropy parameters obtained from fit v4 rescaling.
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Figure 7.14: Parameters obtained from fit range extension.

Figure 7.15: Anisotropy parameters obtained from fit range extension.

Figure 7.16: Relative discrepancy from the main blast wave value (second harmonic corre-
lator)for various variations of the parameters.
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Figure 7.17: Relative discrepancy from the main blast wave value (fourth harmonic correla-
tor)for various variations of the parameters.
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Figure 7.18: Comparison of the second harmonic correlators obtained from the VZERO EP
method, TPC Q-Cumulants method with pseudorapidity gaps and blast wave predictions.
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Figure 7.19: Comparison of the fourth harmonic correlators obtained from the VZERO EP
method, TPC Q-Cumulants method with pseudorapidity gaps and blast wave predictions.
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Figure 7.20: Comparison of the ratios of the fourth to second harmonic correlators obtained
from the VZEROA and VZEROC EP, TPC Q-Cumulants method with pseudorapidity gaps
and blast wave predictions. Wide vertical bars represent combined statistical and systematic
errors.
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Chapter 8

Summary and Conclusion

In this thesis, we have reported results of the charge-dependence of the second and

fourth harmonic correlators ∆〈cos (φa + φb − 2ψ)〉 and ∆〈cos (2φa + 2φb − 4ψ)〉 and their

ratio, calculated using data collected from Pb-Pb collisions at
√
sNN = 2.76 TeV measured

by the ALICE experiment. The charge-dependence of the second harmonic correlator is

sensitive to the Chiral Magnetic Effect, a phenomenon in which the combination of possible

local strong parity violation with the strong magnetic field perpendicular to the reaction

place manifest itself as an anisotropy in the charged pion distribution with respect to that

reaction plane. The combination of balancing charge pair creation with the collimation

from anisotropic flow, called local charge conservation, contributes to both the second and

fourth harmonic correlator charge dependences. The measurement of the fourth harmonic

correlator charge-depedence can be used to estimate the contribution of the local charge

conservation to the second harmonic. The results shown in this thesis are based on a Q-

Vector method applied to TPC tracks, using a pseudorapidity gap to reduce the charge-

dependence on the reference particles. The same-charge second harmonic correlators show a

strong signal while the opposite-charge second harmonic correlators are significantly smaller

up to 40% centrality, similarly to previously published results. Same- and opposite-charge

fourth harmonic correlators have similar values with their difference consistent with zero,

within statistical errors.

These results are compared with a blast wave model calculation of the charge-dependence

of the fourth and second harmonic correlators, using parameters obtained from fits of charged

particles spectra and second and fourth order flow coefficients. The ratio of the charge de-
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pendence of the fourth and second harmonic correlators obtained from data has also been

compared to the corresponding blast wave model calculation. These results are consistent

with each other, but the large errors associated with the results obtained from data prevent

us from drawing a definitive conclusion concerning the magnitude of local charge conserva-

tion. The systematical errors affecting the results obtained from Q-Vector calculations are

dominated by the effects of the particle selection variation. Future analysis could achieve a

significant reduction of these systematical errors using different selection cuts which lower

the sensitivity of the correlators to a variation of the cuts’ criteria. The results obtained us-

ing the VZERO event plane method have lower systematical errors, but the statistical errors

that propagate from the fourth order event plane resolution are large due to the geometry of

this detector. A different choice of forward rapidity detector, such as the ZDC, could provide

a fourth order event plane with a better resolution while conserving a large pseudorapidity

gap between reference and flow particles, which is necessary to remove the charge-dependent

correlations between them. While an increase in the amount of data analyzed by this method

could also improve these results, the number of collisions required to reduce the statistical

errors by a large enough factor is significantly greater than the currently available 2010 and

2011 Pb-Pb data.
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Quantum Chromodynamics, which describes the interactions of quarks and gluons,

has been found not to violate global parity symmetry. However, the possibility of local

parity violations due to quark interactions with topologically non-trivial gluonic fields

is not excluded. The effects of these parity violations could be measured in the hot and

dense medium created in the ultrarelativistic heavy ion collisions experiment conducted

at the Large Hadron Collider, called a Quark-Gluon Plasma, in which the quarks that

compose most of ordinary matter are deconfined. In the strong magnetic fields which

permeate the QGP in non-central collisions, parity violation would express itself as a

charge asymetry with respect to the reaction plane, a phenomenon called the Chiral

Magnetic Effect. The measurements of the charge-dependent correlations in a heavy-

ion collisions allow to experimentally probe effects of the CME. These measurements

are conducted via the use of the second harmonic two-particle correlator with respect to

the reaction plane, 〈cos(φa+φb−2ψ)〉. The background affecting these measurements is

the consequence of an interplay of strong anisotropic flow and correlations unrelated to

the CME. Correlations with respect to the fourth harmonic, 〈cos(2φa+ 2φb−4ψ)〉, are

insensitive to the CME and can be used to estimate the magnitude of these background

effects. In this thesis, we present results from charge-dependent correlations with
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respect to both the second and fourth harmonic event planes measured in Pb+Pb

collisions at
√
sNN = 2.76 TeV at the LHC using data from the ALICE detector. We

also present the ratio of the fourth to second harmonic correlators, and compare it to

calculations based on the blast wave model which serve as a baseline to understand

how these background effects scale between one harmonic and another.
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